克里格法插值法

合集下载

克里金插值(kriging)

克里金插值(kriging)
P (ξ=xk)= pk, k=1,2,….
则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。
E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。
P
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
第二讲
克里金插值
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
地质统计学
由法国巴黎国立高等矿业学院G.马特隆教授于 1962年所创立。 主要是为解决矿床储量计算和误差估计问题而 发展起来的
条件累积分布函数(ccdf)

克里金插值-Kriging插值-空间统计-空间分析

克里金插值-Kriging插值-空间统计-空间分析

克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。

克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。

克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。

以下介绍普通克里金插值的原理。

包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。

判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。

()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。

max min γγ-越大,空间相关性越强。

如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。

在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。

然后会通过这些离散点拟合成连续的半变异函数。

拟合函数的形式有球状、指数、高斯等。

在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。

普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。

具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。

克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。

克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。

在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。

克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。

除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。

总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。

在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。

克里格空间插值法

克里格空间插值法
1 最近邻点法:泰森多边形方法移动 2 平均插值方法:距离倒数插值 3 克里格插值:克里格插值是空间自协 方差最佳插值方法
1.4邻域函数的统计函数及其意义



众数(majority):邻域中出现频率最高的数值 最大值(max):邻域中最大的数值 最小值(min):邻域中最小的数值 中位数(median):邻域中数值从小到大排列后位于中间的 数 平均值(mean):邻域中数值的算术平均 频率最小数(minority):邻域中出现频率最小的数值 范围(range):邻域中数值的范围,最大值与最小值之差 标准差(std):邻域中数值的标准差 和(sum):邻域中数值的和 变异度(varity):邻域中不同数值的个数
1.8 方差变异函数

3)理论方差函数曲线不穿过原点,而是存在一个最小的方差值。理论上讲,当间隔 h=0时,估值的方差应该为0,因为任何一点与自身之差的值为0。h趋近于0时,r(h) 轴上的正截距是残差的一个估计,该值称为块金(或基底,nugget)。在理论函数模型 中,用C0表示。 块金是在间隔距离小于采样间距时的测量误差或空间变异,或者是二者的和。测 量误差是由仪器的内在误差引起的,空间变异是自然现象在一定空间范围内的变化。 小于采样间距的微观尺度上空间变异是块金的一部分。 当r(h)值在所有的h值上都等于基台值时,实验半方差函数就表现为纯块金效应, 这通常由于短间距内点与点的变异很大而引起,表明所使用的采样间隔内完全没有空 间相关性,此时,可以认为各个样点是随机的,区域平均值就是各点的最佳估计值。 此时,只有增大采样间隔才能揭示出空间相关性。 块金与基台的比值(C0/(C+C0),基底效应)可以用来说明空间的变异特征,该值 越大,说明空间变异更多的是随机成分引起的,否则,则是由特定的地理过程或多个 过程综合引起的。 空间相关性的强弱,可用C/(C+C0)表示,该值越高,表明空间相关性越强。 在实际的模型计算中,块金与基台两个参数是可以调整的,其取值取决于整体的 拟合效果。

克里格插值

克里格插值

克里格插值什么是克里格插值?距离权重倒数插值和样条法插值被归类为确定性的插值方法,因为它们是直接基于周围已知点的值进行计算或是用指定的数学公式来决定输出表面的平滑度的插值方法。

而第二个插值方法家族包括的是一些地统计学的插值方法(如克里格插值),这些方法基于一定的包括诸如自相关(已知点间的统计关系)之类的统计模型。

因此,这些方法不仅有能力生成一个预测表面,而且还可以给出预测结果的精度或确定性的度量。

克里格插值与距离权重倒数插值相似之处在于给已知的样本点赋权重来派生出未知点的预测值。

这两种内插方法的通用公式如下,表达为数据的权重总和。

其中, Z(Si)是已测得的第i个位置的值;λi是在第i个位置上测得值的未知的权重;S0是预测的位置;N 是已知点(已测得值的点)的数目。

在距离权重倒数插值中,权重λi仅取决于距预测位置的距离。

然而,在克里格插值中,权重不仅建立在已知点和预测点位置间的距离的基础上,而且还要依据已知点的位置和已知点的值的整体的空间分布和排列。

应用权重的空间排列,空间自相关必须量化。

因此,运用普通克里格插值(Ordinary Kriging),权重λi取决于已知点的拟合模型、距预测位置的距离和预测点周围的已知点间的空间关系。

利用克里格方法进行预测,必须完成以下两个任务:(1)揭示相关性规则。

(2)进行预测。

要完成这两项任务,克里格插值方法通过以下两个步骤完成:(1)生成变异函数和协方差函数,用于估算单元值间的统计相关(也叫空间自相关),而变异函数和协方差函数也取决于自相关模型(拟合模型)。

(2)预测未知点的值。

因为前面已经说过的两个明确的任务,因此要用克里格方法对数据进行两次运算:第一次是估算这些数据的空间自相关而第二次是做出预测。

变异估计(Variography)变异估计就是拟合一个数学模型或空间模型,象已知的结构分析。

在已测点结构的空间建模中,首先得出经验半变异函数的曲线图,计算如下:半变异函数(距离h)= 0.5*均值[ (在i 位置的值-在j 位置的值)2 ]用于计算被距离h分隔的每一点对相对应的位置。

克里格插值

克里格插值

0x 克里格(Kringing )插值法是建立在统计学理论基础上,实际上是利用区域化变量的原始数据和半方差数据的结构特征,对位采样点的区域化变量的取值进行线性最优无偏估计的一种方法,也就是根据待估样点有限领域内若干已经择定的测定的样点数据,在认真考虑了阳电的形状、大小和相互空间位置之间的关系,以及他们与待估样点见相互位置关系和编译函数提供的结构信息之后,对待估样点间相互位置关系的编译函数提供的结构信息之后,对待估样点值进行的一种线性最优无偏估计。

下图为运用克里格法计算未知点的值的一般步骤:其插值原理如下:设在某一研究内未知点0x 的属性为)(0x Z ,其周围相关范围内有n 个已知已测点),,2,1(n i x i ⋯=。

通过n 个测定值的线性组合求其估计值)(0x Z :)()(10i n i i x Z x Z ∑==λ式中i λ为)(i x Z 位置有关的加权系数,并且∑==ni i 11λ克里格插值法是根据无偏估计和方差最小的要求来确定上式中的系数i λ。

1.构造半变异系数:设j x 和i x 的距离问为h 。

设n 个样点中mh 对样点的距离为h ,以他们的含量差)(-)(i j x Z x Z 构造的半变异函数为:2))()((21)(∑=--=h x x i j i j x Z x Z m h a 2.拟合得出变异系数:将n 个样点的含量带入公式,使用直线函数进行拟合3.构造矩阵和向量:求出任意两个已知点的半变异函数值,构造矩阵A:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯=011110101021221112n n n n a a a a a a A 取任意一个已知点i x ,求出与未知点0x 的距离并代入求出该点与未知点0x 的半变异函数值0i a ,得到向量B:)1,,,,(02010n a a a B ⋯=方程AX=B 的姐的前n 个分量即为公式()的权重系数i λ。

克里金插值(kriging)(推荐完整)

克里金插值(kriging)(推荐完整)
P (ξ=xk)= pk, k=1,2,….

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。

E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分

xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)

kriging(克里金方法,克里金插值)

kriging(克里金方法,克里金插值)

(h) C(0) C(h)
(二阶平稳假设条件下变差函数与协方差的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
min
应用拉格朗日乘数法求条件极值
j
E
Z *x0 Zx0 2
2
n
j
0,
i1
j 1,, n
Z*(x0)
进一步推导,可得到n+1阶的线性方程组, 即克里金方程组
n
i 1
C
xi
xj
i
C
x0
n
xj
i 1
i 1
j 1,, n
当随机函数不满足二阶平稳,而满足内蕴(本征)假设时, 可用变差函数来表示克里金方程组如下:
①在整个研究区内有 E[Z(u)-Z(u+h)] = 0
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),

kriging插值

kriging插值
m=

−∞
xp( x)dx
(∑ zi )
i =1Βιβλιοθήκη NN(2)方差 方差 为随机变量ξ的离散性特征数。若数学期望 E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。 D(ξ)= E[ξ-E(ξ)]2 其简算公式为 D(ξ)=E(ξ2) –[E(ξ)]2 方差的平方根为标准差,记为σξ
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 每次取值(观测)结果 为一个确定的数值, 为一个确定的数值 随机变量Z的一个实现。 随机变量 的一个实现。
P
φ
离散型地质变量
(范畴变量) 范畴变量) 类型变量
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
砂体 相 流动单元 隔夹层 断层
随机变量的特征值: 随机变量的特征值:
(1)数学期望 数学期望 是随机变量ξ的整体代表性特征数。 是随机变量 的整体代表性特征数。 的整体代表性特征数 ①设离散型随机变量ξ的所有可能取值为 离散型随机变量 的所有可能取值为 x1,x2,…,其相应的概率为 , P (ξ=xk)= pk, k=1,2,…. 则当级数 ∑ x k p k 绝对收敛时,称此级数的 k =1 和为ξ的数学期望,记为E(ξ),或Eξ。 E(ξ) =
第二讲
克里金插值
克里金方法( 克里金方法(Kriging), 是以南非矿业 ) 工程师D.G.Krige (克里格 名字命名的一项 工程师 克里格)名字命名的一项 克里格 实用空间估计技术, 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。 组成部分,也是地质统计学的核心。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

kriging(克里金方法,克里金插值)[1]

kriging(克里金方法,克里金插值)[1]

精选完整ppt课件
15
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
精选完整ppt课件
精选完整ppt课件
21
三、克里金估计(基本思路
----以普通克里金为例
设 x1,, xn 为区域上的一系列观测点,zx1, ,zxn
为相应的观测值。区域化变量在 x 0 处的值 z*x0 可
采用一个线性组合来估计:
n
z*x0 izxi i1
无偏性和估计方差最小被作为 i 选取的标准
无偏 最优
16
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
提出了“地质统计学”概念 (法文Geostatistique)
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
区域化变量理论
克里金估计
1977年我国开始引入精选完整ppt课件随机模拟
3
克里金插值方法
n
z*x0izxi i1 (普通克里金)
•不仅考虑待估点位置与
特殊地,当h=0时,上式变为
Var[Z(u)]=C(0), 即方差存在且为常数。

kriging(克里金方法-克里金插值)汇总

kriging(克里金方法-克里金插值)汇总

(h) C(0) C(h)
(二阶平稳假设条件下变差函数与协方差的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}

离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
从矩的角度说,方差是ξ的二阶中心矩。
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)

克里金(克里格)(Corigine)算法

克里金(克里格)(Corigine)算法

克里格,或者说克里金插值Kriging。

法国krige名字来的。

特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。

(当然也看你算法设计和电脑反应速度了呵呵)。

而那些趋势面法,样条函数法等。

虽然较快,但是毕竟程度和适合用范围都大受限制。

具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。

克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。

int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。

double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。

Kriging插值法

Kriging插值法

Kriging插值法克⾥⾦法是通过⼀组具有 z 值的分散点⽣成估计表⾯的⾼级地统计过程。

与插值⼯具集中的其他插值⽅法不同,选择⽤于⽣成输出表⾯的最佳估算⽅法之前,有效使⽤⼯具涉及 z 值表⽰的现象的空间⾏为的交互研究。

什么是克⾥⾦法?IDW(反距离加权法)和样条函数法插值⼯具被称为确定性插值⽅法,因为这些⽅法直接基于周围的测量值或确定⽣成表⾯的平滑度的指定数学公式。

第⼆类插值⽅法由地统计⽅法(如克⾥⾦法)组成,该⽅法基于包含⾃相关(即,测量点之间的统计关系)的统计模型。

因此,地统计⽅法不仅具有产⽣预测表⾯的功能,⽽且能够对预测的确定性或准确性提供某种度量。

克⾥⾦法假定采样点之间的距离或⽅向可以反映可⽤于说明表⾯变化的空间相关性。

克⾥⾦法⼯具可将数学函数与指定数量的点或指定半径内的所有点进⾏拟合以确定每个位置的输出值。

克⾥⾦法是⼀个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表⾯,还包括研究⽅差表⾯。

当您了解数据中存在空间相关距离或⽅向偏差后,便会认为克⾥⾦法是最适合的⽅法。

该⽅法通常⽤在⼟壤科学和地质中。

克⾥⾦法公式由于克⾥⾦法可对周围的测量值进⾏加权以得出未测量位置的预测,因此它与反距离权重法类似。

这两种插值器的常⽤公式均由数据的加权总和组成:其中:Z(s i) = 第i个位置处的测量值λi = 第i个位置处的测量值的未知权重s0 = 预测位置N = 测量值数在反距离权重法中,权重λi仅取决于预测位置的距离。

但是,使⽤克⾥⾦⽅法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。

要在权重中使⽤空间排列,必须量化空间⾃相关。

因此,在普通克⾥⾦法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。

以下部分将讨论如何使⽤常⽤克⾥⾦法公式创建预测表⾯地图和预测准确性地图。

使⽤克⾥⾦法创建预测表⾯地图要使⽤克⾥⾦法插值⽅法进⾏预测,有两个任务是必需的:找到依存规则。

克里格法插值法

克里格法插值法

克里格法插值法克里格法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。

其特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以计算速度较慢。

而那些趋势面法,样条函数法等。

虽然较快,但是逼近程度和适用范围都大受限制。

克里格插值又分为:简单,普通,块,对数,指示性,泛,折取克里格插值等。

克里格插值的变异函数有球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里格方法。

如与分形的结合,发展了分形克里格法;与三角函数的结合,发展了三角克里格法;与模糊理论的结合,发展了模糊克里格法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数。

它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。

克里格插值法

克里格插值法
工程数学
工程数学
提出了如下的平稳假设及内蕴假设: 提出了如下的平稳假设及内蕴假设:
{ 随机函数: 随机函数:Z (u ), u ∈ 研究范围} ,其空间分布律不因平移 而改变,即若对任一向量h, 而改变,即若对任一向量 ,关系式
F ( z1 , z2 , ⋅⋅⋅; x1 , ⋅⋅⋅) = F ( z1 , z2 , ⋅⋅⋅; x1 + h, x2 + h, ⋅⋅⋅)
D(ξ ) = Var (ξ ) = E[ξ − E (ξ )] = E (ξ ) − E (ξ )2 22来自工程数学工程数学
(3)协方差 ) 协方差是用来刻画随机变量之间协同变化程度的指标, 协方差是用来刻画随机变量之间协同变化程度的指标,其 大小反映了随机变量之间的协同变化的密切程度。 大小反映了随机变量之间的协同变化的密切程度。
σ ij = Cov(ξ1 , ξ 2 ) = E[(ξ1 − E (ξ1 ) (ξ 2 − E (ξ 2 ) ] ) )
= E (ξ1ξ 2 ) − E (ξ1 ) E (ξ 2 )
(4)相关系数 ) 协方差是有量纲的量,与随机变量分布的分散程度有关, 协方差是有量纲的量,与随机变量分布的分散程度有关,为 消除分散程度的影响,提出了相关系数这个指标。 消除分散程度的影响,提出了相关系数这个指标。
成立时,则该随机函数 成立时,则该随机函数Z(x)为平稳性随机函数。 为平稳性随机函数。 这实际上就是指,无论位移h多大,两个 维向量的随机变量 多大, 这实际上就是指,无论位移 多大 两个k维向量的随机变量
{ Z ( x1 ), Z ( x2 ),L , Z ( xk )} 和 { Z ( x1 + h), Z ( x2 + h),L , Z ( xk + h)}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克里格法插值法
克里格法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。

其特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以计算速度较慢。

而那些趋势面法,样条函数法等。

虽然较快,但是逼近程度和适用范围都大受限制。

克里格插值又分为:简单,普通,块,对数,指示性,泛,折取克里格插值等。

克里格插值的变异函数有球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里格方法。

如与分形的结合,发展了分形克里格法;与三角函数的结合,发展了三角克里格法;与模糊理论的结合,发展了模糊克里格法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数。

它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。

按照空间场是否存在漂移(drift)可将克里格插值分为普通克里格和泛克里格,其中普通克里格(Ordinar
y Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。

利用克里格法插值时变异函数的确定是其关键。

当区域化变量不满足二阶平稳假设存在漂移时,漂移的形式、残余(Residual)变异函数参数的估计比较困难。

有人提出利用多元逐步回归法确定漂移的次数;采用矩法和最大似然法相结合估计残余变异函数参数;当区域内数据点个数比较多时,在三角网格剖分过程中一次确定三角形与其内数据点的包含关系,用于快速检索待插点邻域内的数据点。

对于同一个区域化变量,有些人认为满足二阶平稳假设,而另一些人则认为带有漂移,没有一个判定准则。

实际应用中,漂移次数的确定可借鉴利用多元逐步回归法确定。

克里格插值一般步骤:
1)计算被估点坐标(网格节点坐标)
(2)根据搜索策略选择满足条件的参估点
(3)根据变差函数参数建立方程组
(4)解方程组,求权系数
(5)求被估点的值
(6)重复(1)-(5)步,直到网格节点全部求出;
由上可见,克里格插值其实也是对已知值赋权重计算未知值,但是它不仅考虑了距离插值点的距离远近的影响,还考虑了己知点的位置和属性值整体的空间分布和格局。

这个权重使用半方差函数模型(生成的表
示地理现象连续表面的函数),在半方差函数模型和邻近已知点的空间分布的基础上,对研究区内的各个位置进行预测,权重wi取决于已知点的拟合模型、到插值点的距离和插值点周围的已知样点的空间关系。

克里格插值的第一项任务即揭示研究数据间的相关(自相关)。

一旦有了空间自相关的信息,就可以运用调整好的模型进行克里格插值的第二项任务即再次运用数据进行预测。

步骤是:
1、确定搜索半径,取可变的还是固定的。

2、选择普通克里格插值法还是全局克里格插值法。

选择标准:普通克里格方法是最普通和应用最广的克里格方法。

它假设常数的均值是未知的。

这是一个合理的假设除非你有一些科学的理由来否定这些假设。

全局克里格方法假设数据中有主导趋势,它可以用一个确定性的函数或多项式来模拟。

全局克里格方法将仅用于知道数据的趋势并能合理而科学地描述它的情况,即定性分析。

3、选择模型球状的还是指数的等等,根据需要选择。

一般的,球状用于地学类,指数一般用于生物类。

总之,克里格插值法是一种线性、无偏、最优估计的插值方法,但普通克里格插值法要求区域化变量满足二阶平稳假设或是固有假设,但实际应用中这一假设往往无法满足,即存在漂移现象。

由于物化探数据存在有区域异常问题,因此是非平稳的,从而限制了克里格插值方法的应用.通过分析,泛克里格插值法可较好地估计和拟合物化探区域异常,因此可较好地解决物化探数据的插值问题.对物化探数据进行了泛克里格变异函数选取,并完成了物化探区域异常的一次或二次多项式拟合.将克里格插值法和泛克里格插值法应用于物化探数据网格化插值处理,并利用交叉证实法验证,结果表明泛克里格法比普通克里格法具有更好的网格化插值效果,得到的物化探图精度有提高。

泛克里格插值法避开了克里格插值法的二阶平稳假设,使插值得到的物化探图更加符合物化探异常特征。

以上是参考了一些看到的克里格插值网格化方法资料整理的一点学习心得笔记,愿与大家交流共享。

由于克里格插值网格化方法以前用的不多,也是边学边干,所以若有理解或提法不妥之处请指正,以共同提高。

相关文档
最新文档