模拟移动床技术
模拟移动床研究进展_万红贵
1282012Vol.38No.1(T ota l 289)模拟移动床研究进展万红贵,张波,汪文进,王文娟,缪玲玲(南京工业大学生物与制药工程学院,江苏南京,210009)摘要详细介绍了模拟移动床(simulated moving bed ,SMB )的分离原理,就模拟移动床在石油化工、生物分离、手性药物方面的实际应用,模型的设计与优化方法,新式模拟移动床及新型操作方式的出现予以综述,并对模拟移动床以后的发展趋势和研究重点予以展望。
关键词模拟移动床,分离,应用,设计,操作方式第一作者:学士,研究员(通讯作者)。
收稿日期:2011-09-21模拟移动床(simulated moving bed ,SMB )的设计脱胎于真实移动床(true moving bed ,TMB ),最早由美国环球油品公司(UOP )于20世纪60年代开发并应用于石油化工领域,工艺被称为Sorbex ;后来又开发了不少新的SMB 系统,并逐渐应用到精细化工、药物分离和生物技术等领域,目前研发的重点集中到了高纯度的产品,但产量较小。
为了对相应的模拟移动床系统进行最佳的设计与优化,达到高纯度、高生产率、低溶剂量的要求,研究人员又提出了各种不同的理论设计方法,如Marco mazzotti 等人的三角理论法,Wang 等人的驻波设计法等。
近些年来随着人们对于产品的精度、生产率、产量及生产的经济性有了更高的要求,针对传统的模拟移动床工艺操作过程提出了一些新的概念,如powerfeed ,varicol ,modicon 等,并设计出了诸如三区开环SMB ,五区SMB ,单柱四区SMB 等新式SMB 系统,并取得了较好的效果。
1模拟移动床(SMB )原理在真实移动床(TMB )中,液相与固相会做相对移动,如图1b 所示,但是由于固相移动困难,固体颗粒磨损,液化,低效等一系列的问题而阻碍了它的发展与大范围应用,并在一定程度上催发了模拟移动床(SMB )的出现。
模拟移动床
12.2模拟移动床色谱的分离原理12.2.1真实移动床色谱的分离原理为了更好的理解模拟移动床的工作原理,首先介绍一下与之相关的真实移动床(tru moving bed, TMB)的分离原理。
对于传统的单柱色谱,假设是一个两组份分离体系,当脉冲进样后用适当的溶剂洗脱时就产生如图12.1.a的情况:一个物质移动慢,另一个物质移动快,当色谱柱足够长时,两者将最终分开。
这与龟兔赛跑的情形相似,两者的距离会越落越远。
这正是经典色谱分离纯化物质的原理。
真实移动床则给我们提供了另外一种分离方法。
如果龟兔赛跑的跑道是会逆向移动的。
在跑道的作用下,龟兔会向相反的方向运动。
现在讨论下述情况:当跑道不动时,设龟的速度为V1,兔的速度为V2,则V1<V2 (12.1) 当跑道逆向运动时,且运动速度V0介于龟兔运动速度V1和V2之间,即:V1<V0<V2(12.2) 当跑道移动和自身运动的共同作用下,龟的移动速度V1和兔的移动速度V2分别为:V1=V1-V0<0 (12.3)V2=V2-V0>0 (12.4)由此可见,龟将会向跑道的移动方向移动,而兔则向跑道移动相反的方向移动。
这样就好像是龟在往后走,兔在往前走,最终兔与龟分别从跑道的两头下来,如图12.1b所示:图12.1真实移动床色谱原理图[12]a. 单柱分离过程b、龟和兔在移动带上这样通过移动床模式就可以把龟兔完全分开。
可以看出,在这一分离过程中,进样可以采取连续进样方式。
从而改变了经典色谱法间断进样的这一不利制备分离的工艺要求。
上面的原理可应用于移动床色谱中,即将龟兔自身的移动看成流动相的推动作用。
跑道的反向作用可通过固定相的整体逆向于流动相方向来实现。
这种制备分离装置便称为真实移动床,其原理如图10.2所示:图12.2真实移动床示意图在图12.2中所示的真实移动床色谱中,固定相自上向下移动,淋洗液自下向上移动,同时连续地进行再循环。
模拟移动床
(1)系统整体机电合一,起动迅速方便; (2)柱箱升温均匀,控制稳定,且可常温或低温工作; (3)工作压力、流量稳定,柱外死体积极少; (4)根据工艺要求料液进出口可任意更换位置; (5)精细分离能力强,优于其它分离技术(如,蒸馏乃 至
分子蒸馏,超临界萃取)。 (6)较一般工业制备色谱及其它分离设备质耗低,能耗 低,
• 最基本功能:是能够实现分离技术工业化与连续化。
研究进展
1.20世纪60年代发展起来的,主要用于石油 化工产品的分离;
2.1969年,美国UOP公司(环球石油公司)将SMB分离技术用于分离对 二甲苯和间二甲苯; 3.1993年,法国Seperex公司将SMB分离技术用于药物和精细
化工领域; 4.近些年,SMB分离技术研究主要集中在糖类分离、同分异构
果糖因不易导致高血糖、肥胖、龋齿而被重视; 工业化常采用淀粉做原料,利用固定化葡萄糖异构酶转
化,一般含有42%果糖和58%葡萄糖,成为果葡糖浆; 葡萄糖与果糖互为同分异构体不易分离,因此,果葡糖
浆中分离纯化果糖需要用精细分离技术; 本研究利用模拟移动床技术成功的将果糖与葡萄糖分离,
制备出99%以上的高纯果糖。
SMB 的特点
• 可连续分离操作; • 可根据生物、药物活性成分的种类调试不同的分离方
法(层析、离交、吸附等等); • 制备效率高,提纯效果较一般工业制备色谱分离高出
40%。 • 运行成本低,使加工成本降50%,甚至80%。
实验型模拟移动色谱设备
• 可用于分离条件摸索,建立工艺参数。 • 甚至可以用于生产:——附加值极高的产品。 • 转换阀门:转换灵敏、自动化、不渗漏; • 连续离子交换、连续梯度洗脱、连续色谱分离
04期8 • 张伟;林炳昌;;人参皂甙Rb_1的模拟移动床分离[J];精细化工;2007年06期9 • 沈树宝;欧阳平凯;;吸附分离果糖和葡萄糖的基础研究[J];南京工业大学学报(自然科学
模拟移动床技术
04
模拟移动床技术发展前景
技术发展趋势
高效能化
随着技术的不断进步,模拟移动床的分离效 率和精度将得到进一步提升,以满足更严格 的生产要求。
案例二:制药工业中的应用
总结词
高纯度产品、降低成本
详细描述
在制药工业中,模拟移动床技术用于生产高纯度产品,降低生产成本。通过模拟移动床实现高效分离 和纯化,提高产品的纯度和收率,降低生产过程中的物料消耗和能源消耗。
案例三:环保领域中的应用
总结词
资源回收、环保减排
详细描述
模拟移动床技术在环保领域中主要用 于资源回收和环保减排。通过模拟移 动床实现废水和废气的净化处理,回 收有价值的资源,降低污染物排放, 提高环保效益。
分离和纯化。
技术发展历程
01
模拟移动床技术的发展始于20世纪70年代,最初是为了解 决传统分离技术效率低下的问题。
02
随着技术的不断发展和完善,模拟移动床技术在20世纪90 年代开始得到广泛应用。
03
近年来,随着计算机技术和自动化技术的不断发展,模拟移动 床技术也得到了进一步的改进和完善,实现了更加高效、连续
灵活性强
该技术可根据不同物料和分离要求进行灵活 调整,适应性强。
应用实例
石油化工
模拟移动床技术在石油化工领域 的应用包括油品的分离和精制, 提高油品质量和产量。
制药工业
在制药工业中,模拟移动床技术 成功应用于药物的分离、纯化和 精制,如抗生素、维生素等。
食品工业
在食品工业中,模拟移动床技术 用于果汁、酒类、乳题
模拟移动床色谱(SMBC)..
物的分离。
模拟移动床色谱原理
1-a
1-b
图1 SMB工作原理图
对于传统的单柱色谱, 假设是一个两组分 分离体系, 当脉冲进样后用适当的溶剂洗脱时就 产生如图1-a 的效果: 一个物质移动慢, 另一个 物质移动快, 当色谱柱足够长时两者将最终分开。 这与龟兔赛跑的情形相似, 两者的距离会越落越 远。
如果假设龟兔赛跑的跑道是会逆向移动的, 并
且移动速度介于龟与兔之间, 这样就好像是龟 在往后走, 兔在往前走。最终龟与兔分别从跑
道的两头下来, 如图1-b 所示。
移动床分成4 个区域, 原料(A+ B, A
为弱吸附组分, B为强吸附组分) 从ц、 ш区之间连续进入, 流动相由下往上 移动, 固定相以介于A 和B 之间的速 度向下移动 , 最终从两个出口可以 分别得到纯的提取液 (Extract)B 和 提余液(Raffinate) A。图2中Q1~ Q4 分别为区Ι~ 的流动相流量; Qr, Qf,
• 3.料剂比 • 料剂比是评价SMB的重要指标之一, 也是影 响分离能力的关键。模拟移动床运行时, 每 一升原料液, 需要加入的解吸剂 的量越小, 表示模拟移动床分离效果越好。
模拟移动床色谱应用
1.模拟移动床色谱技术在石油化工领域中的应用 1969 年美国 UOP 公司将模拟移动床色谱技术用于分离对二 甲苯和间二甲苯;同时 UOP 公司还将该技术应用于其他工业 级的石油产品的分离过程中。如:对甲苯酚和间甲苯酚的分 离,从 C8 芳香族化合物中分离乙苯,从煤油 C4 烯烃混合物 中分离丁烯 - 1,从蒎烯混合物中分离 β- 蒎烯等。
• 柱压降与柱结构、泵动力和分离剂粒径有关。相同的柱结构,
分离剂
粒径越小, 柱压降越大。一般柱压降为 0.02M Pa /m。分离剂粒径小,对
模拟移动床技术及其在石化领域中的研究进展
综述专论刘剑*佟华芳詹海荣汲永钢张永军孙淑坤摘要:本文介绍了模拟移动床技术的工作原理及其在石化领域中分离二甲苯、乙苯、芳烃及正构烷烃分离等方面的应用。
关键词:模拟移动床技术分离石化中图分类号:TQ 0282.8 文献标志码:A文章编号:T1672-8114(2013)05-0013-04(中国石油天然气股份有限公司石油化工研究院,黑龙江大庆163714)模拟移动床[1](S i m u l a t e d Mov i n g Be d chromatograph ,简称SMB )分离技术是20世纪60年代人们开发的一种新型分离技术。
它由类似色谱柱的固定床层串联起来的分离系统,以逆流连续方式操作,通过变换固定床吸附设备的物料进出口位置,产生相当于吸附剂连续向下移动,而物料连续向上移动的效果。
SM B 技术的生产能力和分离效率比固定床高,又可避免移动床吸附剂磨损、碎片或粉尘堵塞设备或管道及固体颗粒缝间的沟流等问题。
它具有分离能力强,设备体积小,投资成本低,便于实现自动控制等优点。
SM B 技术是化工技术中的一次革新,应用遍及石油化工、生物发酵、医药食品等领域。
1SMB 技术1.1S MB 技术原理SMB 原理如图1所示,进料时A 、B 二元混合物,脱附剂D 。
吸附强度次序是D>A >B 。
按进料进出位置和所起的作用不同,吸附床分四个区域。
Ⅰ区(吸附区):向上移动的D 优先吸附进料中模拟移动床技术及其在石化领域中的研究进展的A ,同时置换出已吸附的部分D 。
该区底部将抽余液B+D 部分排出,部分循环。
Ⅱ区(精馏区):该区底部上升的含A+B+D 的吸附剂,与顶部下降的含A+D 的物料逆流接触,吸附强度A >B ,B 脱附,上升的吸附剂只含A+D ,靠调节流量,B 可完全脱附;Ⅲ区(解吸区):该区底部上升的吸附剂D 与塔顶循环返回塔底的B+D 逆流接触,D 置换出A ,一部分作为抽出液抽出,其余进入Ⅱ区回流。
移动床技术
实际的SMB设备中,在程序 控制下,通过旋转阀RV的步 进,同步改变进料位置,和流 体流过床层方向抽出的位置, 实际上固体吸附剂是不移动的 。
中试设备图
SMB技术现已广泛用于分离和提纯
……
生物发酵
食品
SMB 的应用
手性药物
精细化学品
早期成功应用在石油的轻组 Fra bibliotek分离和果葡糖浆的纯化中。
由于具有设备结构小、产 率高、溶剂消耗少、分离能力 强、污染少以及便于连续化生 产和自动控制等优点,在生物 分离和手性拆分中备受关注。
移动床技术的发展
一种吸附操作单元
真实移动床( TMB )
模拟移动床( SMB )
什么是移动床?
固定床:间歇操作,非吸附分 离的时间比较长,若处理细胞浆 或发酵液会堵塞床层 流化床:吸附效率虽高,但返 混严重 ,吸附剂有磨损
? 移动床分离技术也称色谱分离技术,与传统的制 备色谱技术相比,现在移动床多采用连续操作的 手段,利于实现自动化,制备效率高,制备量大。
II 区: 抽取液出口与进料口 之间———解吸弱吸附组份
III 区: 进料口与抽余液出口 之间——吸附强吸附组份
IV区: 抽余液与洗脱液进口 之间——吸附弱吸附组份
每经过一个切换周期物料进出口管线沿液相流动方向移动一个色谱柱, 通过周期性开启、关闭进出口阀门来模拟固定相吸附剂与流动相液体的逆流
接触移动
除了pH、温度、吸附剂和吸附质的性质、床层空隙率、 颗粒空隙率、吸附等温线和传质参数外,与操作参数有关如:
切换时间 进料液流量 洗脱液流量 萃取液流量 萃余液流量 循环液流量
参数设计
安全边界因子法、 Massimo三角形理论法 驻波分析法
① ISMB (Improved SMB):即改进的模拟移动床技术,只需要少量 的柱数,但却可以实现比传统SMB系统更好的分离效果 。
模拟移动床分离技术原理
模拟移动床分离技术原理1.分离原理传统固定床吸附分离操作简单,易于实施,属间歇操作,故处理量少、不易实现自动控制;连续移动床降低了吸附剂的寿命,使生产成本增加,同时固体吸附剂很难实现轴向活塞流动,影响了吸附效率。
而模拟移动床吸附操作具有固定床良好的装填性能和移动床可连续操作的优点,并能保持吸附塔在等温、等压下操作。
模拟移动床分离原理如图1 所示,进料是A 、B 二元混合物,脱附剂D。
吸附强度次序是D>A>B。
吸附床分四个区域:图1 模拟移动床吸附分离原理示意图Ⅰ区:向上移动的D 优先吸附进料中的A和微量B ,同时置换出已吸附的部分D,在该区底部将抽余液B+D 部分排出,部分循环;Ⅰ区:该区底部上升的含A+B+D 的吸附剂,与顶部下降的含A+D的物料逆流接触,吸附强度A>B,B脱附,上升的吸附剂只含A+D,靠调节流量,B可完全脱附;Ⅰ区:D 自此区顶部入塔,与底部上升的含A+D的吸附剂逆流接触,D 置换出A,同时从底部抽出一部分作为抽出液,其余流进Ⅰ区起回流液的作用;Ⅰ区:该区底部上升的吸附剂D与塔顶循环返回塔底的B+D 逆流接触,按吸附平衡,B部分被吸附,D被部分置换与新鲜D一并进入Ⅰ区以循环利用,减少了所需新鲜脱附剂的循环量。
Ⅰ区底部抽余液主要含有B+D,Ⅰ区底部抽出液主要含有A+D。
Ⅰ区组分为A+B+D,Ⅰ区为A+D,Ⅰ区为B+D。
如图2所示,在程序控制下,通过旋转阀的步进,定期启闭切换吸附塔各塔节进出料和解吸剂阀门,使各液流进入口位置不断变化,模拟了固体吸附剂在相反方向上的移动。
阀门未切换前,对每个塔节而言是固定床间歇操作,当塔节较多和各阀门不断切换,或采用多通道旋转阀不停转动时,吸附塔是“连续操作的移动床”。
图2 模拟移动床吸附分离操作示意图吸附塔一般由24个塔节组成,第3 、6 、15和23 塔节分别是脱附剂、抽余液、原料和抽出液进出口。
本技术关键之一便是转换物流方向的旋转阀门,旋转阀转动一格,各液体进入口位置相应改变一塔节,固体吸附剂和循环液流成“相反”方向移动。
模拟移动床色谱(SMBC)
3.其他行业的应用 氨基酸具有重要的生物、药物和营养价值,工业 生产中一般采用发酵法生产。由于氨基酸是一 种热敏性生化物质, 传统的分离手段如蒸馏、
吸附、萃取、结晶、沉降分离等在其分离中受 到限制, 而色谱吸附分离过程无需热再生, 能
耗低, 分离效率高且适应性强。已利用 SM B技 术进行分离的产品有赖氨酸、苯丙氨酸与色氨 酸等。
2.模拟移动床色谱技术在糖醇分离中的应用 SMB 早期主要应用在制糖工业上,在糖醇分离中果糖与葡萄糖的分离, 可能是目前制糖工业分离中规模最大的,也是起步最早的。这是一个典 型的二组分分离,因此利用 SMB 的优势也非常明显。 利用 SMB 分离果葡糖浆的工艺已有成熟的工业化实例,该分离通常是 选择一种 Ca 型的阳离子交换树脂作为固定相,利用去离子水作为洗脱 剂,由于果糖和 Ca 离子形成一个复合体而被阻流在柱中,而葡萄糖和 其他寡糖则被洗脱剂带走。含果糖 42%的果葡糖浆利用模拟移动床色 谱分离后,流出液果糖纯度为 95%~99%,回收率在 90%以上;残液中 葡萄糖的纯度在 90%以上。
合适的吸附剂、提高产品浓度和纯度。以上三个技
术难题得以解决,
模拟移动床技术在药物和手性化
合物上的分离将会得到很好应用。
国内 SMB 的研发工程师们有两件事情要解决和完善:一 是自行研究生产大型 SMB, 以解决石化系统长期从国外
进口问题。就目前国内SM B的设备生产水平和自动化控 制水平来说, 完全可以生产百万吨级的 SMB, 替代进口产 品。石化工厂所用的非亲油型分离剂国内也已经可以大规 模生产。关健在于应用环节, 使用厂家应转变观念, 推广 使用价廉实用而服务又很到位、及时的国内产品;二是 SMB 小型化, 以便能得心应手的应用于药物和手性化合
模拟移动床
(二)甜叶菊甙分离纯化的工艺技术研究
——甜菊糖甙是含8种成分的双萜糖甙的混合物, 天然无热量高倍甜味剂。 ——甜叶菊甙的常规制取方法中需要经过脱盐、脱 色和吸附三步处理。 ——本研究利用多功能模拟移动床小试设备对甜叶 菊甙粗提液进行分离和纯化技术参数摸索。
(三)果葡糖浆中的果糖分离技术研究
研究进展
1.20世纪60年代发展起来的,主要用于石油 化工产品的分离;
2.1969年,美国UOP公司(环球石油公司)将SMB分离技术用于分离对 二甲苯和间二甲苯; 3.1993年,法国Seperex公司将SMB分离技术用于药物和精细 化工领域; 4.近些年,SMB分离技术研究主要集中在糖类分离、同分异构 体分离、手性化合物分离等方面。
运行成本低。
关键技术:多通旋转阀、槽道外臵结构、料
液分配器的制造技术 。
创新性:多功能性—柱层析、离子交换和
梯度洗脱;可进行批处理分离操作;具有 连续离子交换、连续色谱分离等5项功能。
SMB应用前景
功能性物料制备(皂甙、异黄酮、糖甙……) 高纯度食品配料、食品添加剂(果糖浆、低聚木糖 ……) 医药 石油…… 化工……
模拟移动床(SMB)应用研究进展
组员:丛 畅- 熟悉资料、准备答辩 孙婉婷 - 查找文献、收集资料 张 倩- 整理资料、制作ppt
模拟移动床色谱
• 模拟移动床(Simulated Moving Bed SMB)是一种可以用于层 析、吸附、离子交换、梯度洗脱等一种连续运行的色谱设备主体; • 与吸附剂结合,多个单体柱组合,通过“模拟移动”工艺可以实现 高效、廉价、连续分离。 • 最基本功能:是能够实现分离技术工业化与连续化。
(四)SMB分离纯化肝素钠的应用技术研究
模拟移动床色谱分离技术在功能糖生产中的应用
口 刘宗利 王乃强 王明珠 王彩梅 杨海军 保龄宝生物股份有限公司
色谱分离技术又称层析分离技术或
色层分离技术, 是一种分离复杂混合物 中各个组分 的有效方法。 它是利用不同 物质在 由固定相和流动相构成的体 系中 具有不同的分配 系数 , 当两相作相对运 动 时, 这些物质随流动相一 起运动 , 并 在两相间进 行反复多次 的分配 . 从而使
产品分离纯 化中的应 用
低聚异麦芽糖 ( o l s ) -8 I mat e 是2 s o 个葡 萄糖分子 以o , 糖 苷键连接 起 【 6 -1
分离物收集点的位置来实现逆流操作.
产生相 当于吸附剂连续向下移动 . 而物 料连续 向上移 动的效果 。 这种设备 的生 产 能力和分离效率比固定吸附床 高, 又
() 2 分离参 数优化 选 用钠型 树脂 作为分 离用树 脂 ,
式模 拟移 动床分离低 聚异麦 芽糖 的最 佳参数为 : 采用钠离子改型的强酸性 聚 苯乙烯 的大孔树脂 . 分离条件为料液 浓
度 5 % ~6 % . 温 6 ~7 口 分离 p 8 3 柱 5 C. 5 H
因子 经 多年 临床与实际应用表明, 。 双 歧杆菌有许 多保健功能 . 而作为双歧杆 菌促进 因子 的低聚异麦芽糖自然就受到
度 达  ̄ 9 % 以上 , 由于 生 产成 本高 而 J0 但
离, 应运而生的S MB( S 顺序式模拟移动
床色谱分离) 技术则有效解决了这一难 题 。 S 是一种 间歇顺 序操作的模拟 S MB 移动床 . 增加了可以供分离 中间组分流
各物质达到分离 。 色谱分离技术能够分 离物化性能差别很小 的化合物 当混合
移动床技术
真实移动床TMB
优点:操作连续化,提高了吸附剂的利 用率,增加了原料的处理量 缺陷:床层移动造成床层装填性能恶化, 吸附剂颗粒易磨损 ,固定相易堵塞
催生了一门新技术:模拟移动床(Simulated Moving Bed ,SMB) 概念由上世纪50年代提出的,60年代由美国的 环球油品公司(UOP)公司申请了专利,命名为 Sorbex。
② SMBR (SMB reactors):模拟移动床反应器是一种化学反应器,把反应和相应 产品的分离综合在一起,减少设备,提高工艺性能。对有平衡限制的反应,通过打 破平衡,一边反应一边把产物分离出去,最终实现彻底地转化。
③
SF-SMB(Superitical Fluid SMB):把SMB技术和超临界流体SFC技术
无机质类
有机质类
手性填料
水质特点
I区: 洗脱液进口与抽取液出 口之间——解吸强吸附组份 II区: 抽取液出口与进料口 之间———解吸弱吸附组份 III区: 进料口与抽余液出口 之间——吸附强吸附组份 IV区: 抽余液与洗脱液进口 之间——吸附弱吸附组份
每经过一个切换周期物料进出口管线沿液相流动方向移动一个色谱柱, 通过周期性开启、关闭进出口阀门来模拟固定相吸附剂与流动相液体的逆流 接触移动
模拟移动床
模拟移动床(Simulated Moving Bed SMB)是一种可
以用于层析、吸附、离子交换、梯度洗脱等一种连续运行
的色谱设备主体;
与吸附剂结合,多个单体柱组合,通过“模拟移动”工艺 可以实现高效、廉价、连续分离。
最基本功能:是能够实现分离技术 工业化与连续化。
工业色谱的分离介质
真实流动床技术
特点:连续逆流循环 基于色谱分离技术的原理 流动相在床层内通 过循环泵不断自下而上 循环流动,而吸附剂颗 粒依靠重力向下移动, 与进料逆流接触。床层 中部连续进料,弱吸附 组分从床层顶部流出, 而强吸附组分在固定相 作用下从床层底部流出, 逐步完成吸附、精制和 解吸的过程
模拟移动床色谱分离技术
5.2.3模拟移动床系统
在模拟移动床系统中,整 洗脱液
萃取液
个吸附床层由若干个互相
连接的色谱柱组成。
固定相在小柱中不动,小
流动相
柱也不动,但进出样口沿
流动相的流动方向有次序 残余液
样品溶液
的移动,从而有效的模拟
萃取液
了固定相与流动相的相对
逆流流动。
洗脱液 残余液
流动相
样品溶液
6 模拟移动床色谱系统
5.2.2移动柱系统
移动柱系统是固定相装在色谱柱中,相对柱 管的位置不动,进出口位置也不变,但把整 根柱切成很短的小柱,整个小柱在移动。
移动柱系统通过柱的移动来代替填料的直接 移动,克服了真正逆流移动床色谱系统的不 足,但其本身有不可逾越的缺陷,即在较高 的系统操作压力下,在移动的色谱柱与静止 的进、出口之间很难实现可靠的机械密封。 正是在这种情况下,模拟移动床应运而生。
一精馏带); 样品溶液F入口与残余液R出口之间的区域称为吸附带III; 在残余液R出口与洗脱液D入口之间的区域称为二精带IV
(第二精馏带), 这样的模拟移动床系统称为四带系统。
三带系统
如果流动相不循环,IV带可以省略,这样的 模拟移动床系统称为三带系统。
模拟移动床主要是通过PLC控制各接点阀来 实现进样点(F)、进流动相点(D)、出产 品点(E)和出杂质点(R)位置的变换,从 而模拟固定相的逆流,提高固定相和流动相 的利用率,同时实现了色谱分离的连续化。
第二,对生物制品要求高纯度、无色、结晶以及能长期保存 等。
第三,生物制品多为活性组分,耐温性差,在深加工过程中 多次分离、浓缩会造成收率低、步骤多、过程复杂等缺点。
综上所述有必要研究生物成品或来自间体的规模化精细分离技 术。4 模拟移动床色谱分离技术
简述模拟移动床吸附分离的过程
模拟移动床吸附分离是一种重要的化工分离技术,它在化工生产和环境保护领域有着广泛的应用。
本文将简要介绍模拟移动床吸附分离的过程,包括其基本原理、工艺流程、关键参数和优势等内容。
一、模拟移动床吸附分离的基本原理模拟移动床吸附分离是利用吸附剂对混合气体或混合液中的组分进行选择性吸附,从而实现组分的分离。
其基本原理可概括为:通过物料的逐步移动,使吸附剂经历一系列的吸附、解吸和再生过程,最终实现对混合物的有效分离。
二、模拟移动床吸附分离的工艺流程1. 进料阶段:混合气体或混合液经过预处理后,进入模拟移动床吸附分离系统。
在此阶段,吸附剂处于空气状态,等待进料。
2. 吸附阶段:混合气体或混合液在一定的压力和温度下,通过吸附剂层,使其中的一部分组分被吸附,而其他组分通过吸附剂,完成吸附分离过程。
3. 解吸阶段:当吸附剂饱和时,需进行解吸操作,将已吸附的组分从吸附剂上解吸出来,此时通入适量的解吸剂,使吸附剂重新恢复吸附能力。
4. 再生阶段:解吸后的吸附剂需要进行再生操作,将解吸剂脱除并进行处理,使吸附剂重新恢复至吸附状态。
5. 排放阶段:再生后的吸附剂重新恢复至吸附状态,等待下一轮的进料。
以上过程循环往复,实现了对混合气体或混合液的有效分离,从而达到了提纯、浓缩等目的。
三、模拟移动床吸附分离的关键参数1. 吸附剂:选择合适的吸附剂对于模拟移动床吸附分离过程至关重要,吸附剂的种类、粒度、孔径大小等因素都会直接影响分离效果。
2. 进料条件:包括混合气体或混合液的成分、流量、温度、压力等因素,这些条件将影响到吸附剂的选择和操作参数的确定。
3. 操作参数:如压力、温度、流速、再生剂的使用量等操作参数的选择和控制,决定了整个分离过程的效率和质量。
四、模拟移动床吸附分离的优势1. 高效、节能:模拟移动床吸附分离过程中,可以通过合理控制操作参数和优化工艺流程,实现高效的分离效果,同时减少能耗。
2. 适应性强:模拟移动床吸附分离适用于各种气体、液体混合物的分离,且对进料条件的变化具有一定的适应性。
模拟移动床
研究进展
1.20世纪60年代发展起来的,主要用于石油 化工产品的分离;
果糖因不易导致高血糖、肥胖、龋齿而被重视; 工业化常采用淀粉做原料,利用固定化葡萄糖异构酶转 化,一般含有42%果糖和58%葡萄糖,成为果葡糖浆; 葡萄糖与果糖互为同分异构体不易分离,因此,果葡糖 浆中分离纯化果糖需要用精细分离技术;
本研究利用模拟移动床技术成功的将果糖与葡萄糖分离, 制备出99%以上的高纯果糖。
目前,我国生物、药物及农副产物中活性化合物的色
谱分离纯化使用的是工业制备色谱。
存在的瓶颈问题是:分离成本高 、制备效率较低、设 备造价高。
为了改变这种现状,开始注重研究模 拟移动床色谱 分离技术(SMB)的应用。
SMB 的特点
• 可连续分离操作; • 可根据生物、药物活性成分的种类调试不同的分离方 法(层析、离交、吸附等等); • 制备效率高,提纯效果较一般工业制备色谱分离高出 40%。 • 运行成本低,使加工成本降50%,甚至80%。
(四)SMB分离纯化肝素钠的应用技术研究
肝素钠(heparin)是重要的生物药品。我国是世界上粗
品肝素钠的主要出口国
低效价、低附加值——加工技术和装备水平达不到要求。 本研究利用模拟移动床色谱分离设备,研究了肝素钠的 纯化新工艺。
展望
SMB技术是一种先进的分离技术,但是由于其系统 配置 及操作参数的确定较为复杂,且长期为国外专利 所垄 断,售价极高,限制了它在我国的推广利用。 随着生命科学、生物技术和医药技术的快速发展, 各种高附加值的活性成分需要研究开发,越来越多的单
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装备的应用与工业放大是极有意义的。
参考文献
【1】Calculation and Optimization of Simulated Moving Bed for the Industrial Process of p-Xylene Separation [D]. Zhufeng WANG,Nanjing University,2011.6
鞠全亮-张友全教授 李维-崔学民教授 王靖淳-潘远凤教授
主要内容
模拟移动床简介
模拟移动床(Simulated Moving Bed SMB)是一种可以用于层析、 吸附、离子交换、梯度洗脱等一种连续运行的色谱设备主体; 与吸附剂结合,多个单体柱组合,通过“模拟移动”工艺可以实现 高效、廉价、连续分离。 最基本功能:是能够实现分离技术工业化与连续化。
移动床的工作原理
色谱分离的工作原理
利用样品在流动相和固定相中分配系数或者吸附能力的 不同来达到分离的目的。 在此基础上,若使固定相和移动相的逆向流动,并且通过 控制移动速度使各组分逆向分开,从而形成了移动床的工作 原理。
移动床的工作原理
龟兔赛跑
设兔子速度v1,乌龟速度v2 传送带速度v0。其中v1>v0>v2
通过对进料组 成、吸附比、 置换比、脱附 比、温度和压 力等因素的调 整,最终产品 纯度可以达到 99.5%。
图5.Parex法工艺示意图【1】
工业化SMB设备
模拟移动床对C8芳烃的分离
石化领域:正构烷烃的分离,奈系物异构体
的分离;
食品领域:生产高纯度化的果糖,蔗糖的脱
色,氨基酸的分离;
制药领域:手性药物和天然药物的分离。
移动床的工作原理
图2.真实移动床原理【1】
移动床的工作原理
图3.模拟移动床工作示意图【1】
模拟移动床对C8芳烃的分离
图4.C8芳烃的物理性质【1】
模拟移动床对C8芳烃的分离
Parex法 高选择性吸附剂 脱附剂
吸附剂:八面沸石型分子筛 脱附剂:对二乙苯 模拟移动床:核心技术
模拟移动床
模拟移动床对C8芳烃的分离
望
SMB技术是一种先进的分离技术,但是由于其系统 配置 及操作参数的确定较为复杂,且长期为国外专利 所垄 断,售价极高,限制了它在我国的推广利用。 随着生命科学、生物技术和医药技术的快速发展, 各种高附加值的活性成分需要研究开发,越来越多的单
体成份及手性药物需要分离;
开发我国自主知识产权的SMB装置及这一先进技术