统计学的研究对象和方法.ppt
合集下载
统计学完整全套PPT课件
介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
统计学ppt课件
配对样本非参数检验
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
统计学完整ppt课件完整版
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
《统计学基础》PPT课件1
任务二 统计学研究对象和作用
本节的重点: 统计研究对象及其特点 统计的作用
本节的难点: 统计研究对象的特点
27
一、统计学的研究对象及其特点
(一)统计学的研究对象 社会经济统计学的研究对象,是社会经济现象
的总体的数量方面,即社会经济现象总体的数 量特征和数量关系。 就是通过特有的统计指标和统计指标体系来表 明社会经济现象的规模、水平、速度、比例和 效益等,揭示现象发展的本质规律。
概率论 (包括分布理论、大数定律
和中心极限定理等)
反映客观 现象的数
据
样本数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进
行估计和检验等)
总体内在的 数量规律性
统计学探索现象数量规律性的过程
理论统计与应用统计
理论统计
▪ 研究统计学的一般理论 ▪ 研究统计方法的数学原理
23
三、统计学与其他学科的关系
(三)统计学与数学的关系 数学是统计学的研究工具,统计研究要
运用大量的数学知识,研究理论统计学 的人需要较深的数学功底,使用统计方 法的人要具有良好的数学基础。统计学 与数学又有着本质的区别
24
三、统计学与其他学科的关系
(四)统计学与数理统计学的关系 一方面,统计学的产生先于数理统计学,从一
12
历史上各国对统计学的译法
法国: Statistique
意大利: Statistica
英国:
Statistics
日本:
政表、政算、国势、形势等
中国: ,,,,,,,,,,统计(钮永建、林卓南于1903译)
13
《统计学》完整ppt课件
秩和检验的应用场景
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
统计学PPT课件
19世纪初,法国数学家、统计学家拉普拉斯在总结前人成果 的基础上出版了《概率的分析理论》一书,从而形成完整的应用 理论体系。
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
统计学原理(第3版)课件第1章
CH1-2 统计的研究对象和研究方法
14
二、统计学的研究对象及特点
(二)统计学研究对象的特点
具体性
数量性
社会性
总体性
统计学研究对象的特点
广泛性
CH1-2 统计的研究对象和研究方法
15
三、统计学的分科与其他学科的关系
(一)统计学的分科
描述统计学是对统计总体数量特征的表现及其变化加以记录、测量和显示,并通过综合、 概括和分析反映客观现象变动的规律性。
CH1-3 统计工作过程
28
三、统计在经济管理中的应用
(三)市场营销
在信息社会中,企业获得的信息量非常大,并且要注重情报信息 的收集、处理、分析,为企业正确决策提供建设性意见。
例如,企业市场营销部门运用统计学方法来估计顾客对某一种商 品喜爱的比例,以及他们为什么喜欢该种商品,用何种广告能让更多 的人知道、喜欢、购买该种商品等等。从而增强企业竞争力,提高企 业的经济效益。
例如,宏观经济领域的专家既可以利用统计方法描述居民家庭收 入分布状况,也可以对经济变量的未来水平进行分析和预测,还可以 对变量之间的关系进行研究。
CH1-3 统计工作过程
27
三、统计在经济管理中的应用
(二)财务会计
抽样对选择合适的财务统计表对上市公司进行审计有很重要的作 用。
例如,假设一事务所要确定某上市公司资产负债表上的应收账款 金额是否属实,不能对全部账户一一进行核实,而可以按统计抽样技 术对抽中的少数样本单位进行核实,并通过样本的准确性与否来推断 资产负债表中应收账款金额的真实性。
第一章 绪论
学习目标
1
了解统计学的产生和发展、统计学科的种类 及统计学的性质
2
明晰统计工作过程,明晰统计学的研究对象和 研究方法
统计学ppt(全)
概率论—数理统计
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
《统计分析方法》课件
假设检验的基本原理
80%
提出假设
根据研究目的,提出一个或多个 关于参数的假设。
100%
检验统计量
根据样本数据和提出的假设,计 算一个或多个检验统计量。
80%
决策
根据检验统计量和临界值,决定 是否拒绝或接受提出的假设。
单侧检验与双侧检验
单侧检验
只考虑参数在某一方向上的变化,例如只考虑数值增大或只考虑数值减小。
VS
详细描述
非参数核密度估计通过使用核函数对数据 进行加权,并根据权重生成密度函数,能 够估计出数据的分布情况。该方法不需要 假设数据分布形式,具有较好的灵活性和 稳健性。
非参数秩次检验
总结词
非参数秩次检验是一种不依赖于数据 分布形式的统计检验方法。
详细描述
非参数秩次检验将数据按照大小进行 排序,并赋予秩次,然后根据秩次计 算统计量进行假设检验。该方法能够 处理异常值和离群点,且对数据分布 形式的要求较低。
课程目标
02
01
03
掌握各种统计分析方法的基本原理和应用。
能够根据实际需求选择合适的分析方法。
培养学生对数据的敏感性和分析能力,提高其数据处 理和分析的能力。
02
描述性统计分析
数据的收集与整理
01
02
03
04
确定研究目的
在开始数据收集之前,需要明 确研究的目的和问题,以便有 针对性地收集相关数据。
方差分析的统计模型
方差分析使用F统计量 来检验各组数据的方差 是否存在显著差异。
F统计量的计算公式为 :$F=frac{组间方差}{ 组内方差}$。
如果F统计量大于临界 值,则说明各组数据的 方差存在显著差异,即 数据来自不同总体。
统计学ppt课件贾俊平完整版
时间序列预测的评价指标
平均误差、均方误差、均方根误差和平均绝 对误差等。
08
统计计算与软件应用
统计计算基础
描述性统计
计算数据的中心趋势( 均值、中位数、众数) 和离散程度(方差、标 准差、四分位距)。
概率论基础
理解概率、期望、方差 等基本概念,掌握常见 概率分布(如正态分布 、t分布、F分布等)。
数据分布的图形表示
介绍直方图、箱线图等图形表示方法 ,用于直观展示数据的分布形态。
03
概率论基础
随机事件与概率
随机事件
在一定条件下,并不 总是发生,也不总是 不发生的事件。
概率
描述随机事件发生的 可能性大小的数值。
பைடு நூலகம்
概率的性质
非负性、规范性、可 加性。
条件概率
在给定另一事件发生 的条件下,某一事件 发生的概率。
专注于数据管理和统计分析,提供丰富的计量经济学方法,适 合经济学和金融学等领域。
开源且易学的编程语言,拥有强大的数据处理和可视化库(如 pandas、matplotlib等),适合数据科学和机器学习领域。
R语言在统计学中的应用实例
数据清洗和整理
使用R中的dplyr等包进行数据清洗、 筛选和变换。
02
统计学的研究方法
描述统计方法
描述统计方法是统计学中最基础 的方法,它通过对数据进行整理 、概括和可视化,帮助我们了解
数据的基本情况和分布特征。
推断统计方法
推断统计方法是统计学中更高级 的方法,它基于概率论和数理统 计的理论,通过对样本数据的分 析来推断总体数据的特征和规律
。
实验设计方法
实验设计方法是统计学中用于研 究因果关系的方法,它通过设计 和实施实验来控制和观察各种因 素的变化,从而揭示出因素之间
统计学原理课件PPT
05
回归分析
一元线性回归分析
定义
模型
一元线性回归分析是用来研究一个因变量 与一个自变量之间的线性关系的统计方法 。
y = ax + b,其中y是因变量,x是自变量,a 是斜率,b是截距。
参数估计
假设检验
最小二乘法是常用的参数估计方法,通过 最小化误差平方和来估计参数a和b的值。
包括检验线性关系的显著性以及检验回归 模型的适用性。
先验分布与后验分布
先验分布是指在观测数据之前对参数的信念,后验分布是指在观测数 据之后对参数的信念。后验分布是贝叶斯推断的关键。
先验概率与后验概率
先验概率
先验概率是指在没有任何数据的情况下,对某个事件或参数发生的概率的估计。先验概率可以基于历史数据、专家意 见或其他相关信息进行估计。
后验概率
后验概率是指在观测到数据之后,对某个事件或参数发生的概率的估计。后验概率是通过将先验概率与样本信息结合 起来得到的。
02
条件概率
条件概率是指在某个条件成立的情况下,另一个事件发生的 概率。条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
03
独立事件和互斥事件
独立事件是指一个事件的发生不受另一个事件是否发生的影 响,互斥事件则是指两个事件不能同时发生。独立事件的概 率乘法公式为P(A∩B)=P(A)×P(B),互斥事件的概率加法公 式为P(A∪B)=P(A)+P(B)。
概率的分类
概率可以分为必然事件、不可能事件和随机事件三类。必然事件是指一定会发生的事件, 不可能事件是指一定不会发生的事件,随机事件则是指可能发生也可能不发生的事件。
概率的运算性质
概率具有加法、乘法、互补等运算性质,这些性质在概率论和统计学中有着广泛的应用。
统计学研究的对象和方法
• 现在, 数理统计学的丰富程度完全可以使其独立成为一门宏大的学 科, 但它还不可能完全代替一般统计方法论。 传统的统计方法虽 然比较简单, 但在实际统计工作中运用的频率极大, 正如四则运算 与高等数学的关系一样。
上一页 下一页 返回
1. 1 统计的产生和发展
• 不仅如此, 数理统计学主要涉及资料的分析和推断方面, 而统计学 还包括各种统计调查、 统计工作制度和核算体系的方法理论, 统计 学与各专业相结合的一般方法理论等。 由于统计学比数理统计学在 内容上更为广泛, 因此, 数理统计学相对于统计学来说不是一门并 列的学科, 而是统计学的重要组成部分。
上一页 下一页 返回
1. 1 统计的产生和发展
• 1. 1. 3 统计学的现代期
• 统计学的现代期为 20 世纪初到现在的数理统计时期。 自 20 世 纪 20 年代以来, 数理统计学发展的主流从描述统计学转向推断统 计学, 如 19 世纪和 20 世纪初的统计学教科书中主要描述统计 学中的一些基本概念、 资料的收集、 资料的整理、 资料的图示和资 料的分析等,后来逐步增加概率论和推断统计的内容。 直到 20 世 纪 30 年代, 费希尔 ( Fisher, 1890—1962) 的推 断统计学才促使数理统计进入现代范畴。
下一页 返回
1. 1 统计的产生和发展
• 2 国势学派 • 这个学派的代表人物是海门尔康令 ( Hermamn Conrin
g, 1606—1681)、 高特费里德阿亨瓦尔 ( Gottfr ied Achenwall, 1719—1772) 等。 他们在 大学中开设了一门新课程, 最初叫“ 国势学” , 人们把从事这方 面研究的德国学者称为国势学派。 他们所做的工作主要是对国家重 要事项进行记录, 因此又被称为 “ 记述学派” 。 这些记录记载着 关于国家组织、 人口、军队、 领土、 居民职业以及资源财产等事项, 几乎完全偏重于质的解释, 而忽视了量的分析。 严格来说, 这一学 派的研究对象和研究方法都不完全符合统计学的要求, 只是登记了 一些记述性材料, 借以说明管理国家的方法。 但是, 国势学派对统 计学的创立和发展做出了不容置疑的贡献, 那就是为统计学这门新 兴的学科起了一个至今仍为世界公认的名称———“ 统计学” ( S tatistics) , 并提出了至今仍为统计学者所采用的一些 术语, 如 “ 统计数字资料”“ 数字对比” 等。
上一页 下一页 返回
1. 1 统计的产生和发展
• 不仅如此, 数理统计学主要涉及资料的分析和推断方面, 而统计学 还包括各种统计调查、 统计工作制度和核算体系的方法理论, 统计 学与各专业相结合的一般方法理论等。 由于统计学比数理统计学在 内容上更为广泛, 因此, 数理统计学相对于统计学来说不是一门并 列的学科, 而是统计学的重要组成部分。
上一页 下一页 返回
1. 1 统计的产生和发展
• 1. 1. 3 统计学的现代期
• 统计学的现代期为 20 世纪初到现在的数理统计时期。 自 20 世 纪 20 年代以来, 数理统计学发展的主流从描述统计学转向推断统 计学, 如 19 世纪和 20 世纪初的统计学教科书中主要描述统计 学中的一些基本概念、 资料的收集、 资料的整理、 资料的图示和资 料的分析等,后来逐步增加概率论和推断统计的内容。 直到 20 世 纪 30 年代, 费希尔 ( Fisher, 1890—1962) 的推 断统计学才促使数理统计进入现代范畴。
下一页 返回
1. 1 统计的产生和发展
• 2 国势学派 • 这个学派的代表人物是海门尔康令 ( Hermamn Conrin
g, 1606—1681)、 高特费里德阿亨瓦尔 ( Gottfr ied Achenwall, 1719—1772) 等。 他们在 大学中开设了一门新课程, 最初叫“ 国势学” , 人们把从事这方 面研究的德国学者称为国势学派。 他们所做的工作主要是对国家重 要事项进行记录, 因此又被称为 “ 记述学派” 。 这些记录记载着 关于国家组织、 人口、军队、 领土、 居民职业以及资源财产等事项, 几乎完全偏重于质的解释, 而忽视了量的分析。 严格来说, 这一学 派的研究对象和研究方法都不完全符合统计学的要求, 只是登记了 一些记述性材料, 借以说明管理国家的方法。 但是, 国势学派对统 计学的创立和发展做出了不容置疑的贡献, 那就是为统计学这门新 兴的学科起了一个至今仍为世界公认的名称———“ 统计学” ( S tatistics) , 并提出了至今仍为统计学者所采用的一些 术语, 如 “ 统计数字资料”“ 数字对比” 等。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-6-17
谢谢阅读
1
四、统计量与参数
(一)统计量:在实标研究中直接从样本计 算得到的各种持征量数。
(二)参数:从已知统计量推论得到的总体 的各种特征量数。
2020-6-17
谢谢阅读
1
本课程常见的统计量、参数符号对照表
2020-6-17
谢谢阅读
1
五、连加求和与连乘符号
2020-6-17
谢谢阅读
2020-6-17
谢谢阅读
1
第2节:几个基本概念与符号
一、随机现象与随机变量
(一)随机现象:
1、确定性现象:在相同条件下,一定发生或不发 生的现象。
2、随机现象:即不确定性现象,指个体上表现为 不确定性,而大量观察中呈现出统计规律的现象。
(二)随机变量:表示随机现象的各种可能结果的 变量。
2020-6-17
谢谢阅读
1
二、总体、个体、样本
(一)总体:具有某一共同特性的全部研究 对象。
(二)个体:构成总体的每一基本单位。
(三)样本:从总体中抽出来的,对总体特 征具有一定代表性的部份个体。
2020-6-17
谢谢阅读
1
三、统计指标 ▪ 反映总体现象数量特征的概念和具体数值。 (一)总量指标 (二)相对指标 (三)平均指标
第一章:绪言
第1节:统计学的研究对象和方法 第2节:统计学中的几个基本概念与符号
2020-6-17
谢谢阅读
1
第1节:统计学的研究对象和方法
一、统计学的研究对象 (一)统计的涵义: 1、统计工作: 2、统计资料: 3、统计学:
2020-6-17
谢谢阅读
1
(二)、研究对象:
统计学是一门收集、整理和分析统计 数据的方法科学,其目的是探索数据的内 在数理规律性,以达到对客观事物的科学 认识。
1
▪ 典型的统计软件
▪ SAS ▪ SPSS
▪ Excel
▪ MINITAB ▪ STATISTICA
2020-6-17
谢谢阅读
1
▪ 康令(H.Conling)1660年起,在大学讲授“国 势学”。
▪ 阿亨瓦尔(G.Achenwall)在哥丁根大学开设了 “国家学”课程,并发表了《欧洲各国国势学概 论》、1749年。202Βιβλιοθήκη -6-17谢谢阅读1
2、近代统计学(18世纪末—19世纪末): 数理统计学与社会统计学
▪ 数理统计的主要特点是概率论;比利时的阿道 夫·凯特勒(A.Quetelet),把法国的古典概率论 引入社会经济统计,后经英国的高尔登(Goldon) 和皮尔逊(Pearson)等人的发展,形成了数理 统计学派。
1
四、学习统计学的重要意义
(一)为管理工作和管理决策服务。 (二)是进行社会调查和社会研究工作的工
具。 ▪ 专家提示:21世纪中国最有发展前途的三
大学科为语言学、心理学、统计学。
2020-6-17
谢谢阅读
1
五、学习统计学应明确的几点要求
(一)树立统计思想,同时坚特辩证观。 (二)正确选用统计方法。 (三)熟悉掌握各种基本符号、概念和公式。 (四)理论联系实际,循序见进,由浅入深。
▪ 理论统计学和应用统计学 ▪ 方法论技术科学
2020-6-17
谢谢阅读
1
(三)、统计学简史
1、古典统计学(17世纪中叶—18世纪末叶):政 治算术与国势学
▪ 威廉·配弟(William Patty)、《政治算术》、 1690年。
▪ 约翰·格朗特(John Grannt)、《关于死亡表的 自然观察与政治观察》、 1662年。
▪ 20世纪中叶基本构成了现代统计学的框架。
2020-6-17
谢谢阅读
1
二、统计学的基本内容
▪ 实验(调查)设计→描述资料→分析资料。 (一)、描述统计 (二)、推断统计
2020-6-17
谢谢阅读
1
三、统计学的研究方法
(一)大量观察法 (二)统计分组法 (三)综合指标法
2020-6-17
谢谢阅读
▪ 古典概率论,奠基人是法国的帕斯卡尔(B Pascal:1623-1662)和费马特(Pierre de Fermat:1601-1665)
2020-6-17
谢谢阅读
1
3、现代统计学(20世纪初始):描述统计学 与推断统计学
▪ 1907年,英国的戈赛特(W.S.Gosset)提出 了小样本t检验理论,使统计学进入了现代 统计学(主要是推断统计学)的阶段。