多高层建筑钢结构设计
多高层房屋钢结构的节点连接设计
接节点设计,在整个设计工作中应将其视为一个非常
重要的组成部分。节点设计是否恰当,将直接影响到
结构承载力的可靠性和安全性。因此节点设计至关重
要,应予以足够的重视。但是,在多、高层房屋钢结
构中,连接节点很多 ( 如国家标准图 01SG5所1编9 制 的诸多节点也只是高层钢结构房屋中一般性的常用节
点 ),今天只能检其最主要的、如与梁柱刚性连接的
多高层房屋钢结构的节点连接 设计
多高层房屋钢结构的节点连接设计
主要内容
1 讲述多、高层房屋钢结构梁柱刚性连接节
点 设 计及 其 相关 的 国家 标 准图 01SG519
的构造详图(上午)。
2 介绍国家标准图03SG519-1与04SG519-2 节
点连接设计的技术条件、图集的内容及其
使用方法(下午)。
5/3/2021
多高层房屋钢结构的节点连接设计
13
1 第一种设计方法
(即按组合内力来设计的方法)
采用该法的理论根据是,认为在多遇地震作用下,
结构处于弹性阶段,连接设计只要根据组合内力,并
根据梁的应力强度比 R1(即梁的地震组合弯矩设计值
乘以梁的承载力抗震调整系数 0.75 后,在梁截面中产
生的弯曲应力与梁的钢材强度设计值之比)来进行设
比)只用到了 0.7S 5(0.9S)0.8 。3
5/3/2021
多高层房屋钢结构的节点连接设计
18
3)如果在梁端仍不采用加强的作法,而是在梁端采
用栓焊连接的另一种常规作法(即梁腹板与柱之间采
用只传递剪力的螺栓连接,梁翼缘与柱之间采用只传
递弯矩的全熔透坡口对接焊)由于焊缝的抗弯承载力
最多只能作到梁截面抗弯承载力设计值的 85% ,此 时就必须要改用一个能承受 900.8 0 510k6N m 0的 梁截面,但此时由于梁截面只需用 75k0N m的弯矩 值来设计,梁的承载力更加富裕而不能充分利用,其
多高层钢结构(一)
多高层钢结构(一)引言概述:多高层钢结构一直受到建筑界的广泛关注,其优势如高强度、轻质和耐久性使得其成为现代建筑设计中的首选材料之一。
本文将从多个方面介绍多高层钢结构的特点和应用,旨在提供对于多高层钢结构的全面了解。
正文内容:1. 钢结构的特点1.1 高强度:钢材具有较大的抗拉、抗剪和抗压能力,在高层建筑中能够承受较大的荷载。
1.2 轻质:相比混凝土结构,钢结构的重量较轻,可减轻建筑自重并方便施工。
1.3 耐久性:钢材对于环境的腐蚀和老化能力较强,能够保持长期的使用寿命。
2. 多高层钢结构的应用领域2.1 商业建筑:多高层办公楼、购物中心等商业建筑常采用钢结构,可以提供灵活的空间布局和快速建设。
2.2 住宅建筑:高层公寓、别墅群等住宅建筑也可以采用钢结构,可实现异型布局和个性化设计。
2.3 工业建筑:工厂、仓库等工业建筑要求大空间、大跨度,钢结构能够满足这种需求。
2.4 文化建筑:剧院、博物馆等文化建筑通常需要特殊的造型和空间要求,钢结构可以满足设计师的创意。
3. 多高层钢结构的施工方法3.1 钢框架搭建:钢结构的施工通常采用钢框架的方式,先搭建好钢框架再进行其他施工工序。
3.2 钢柱、钢梁的组装:钢柱和钢梁通过焊接、螺栓连接等方式进行组装,形成整体的钢结构。
3.3 钢板、钢柱的切割:根据设计要求,将钢板、钢柱进行切割、加工,以满足建筑需要。
4. 多高层钢结构的设计要点4.1 结构安全系数:根据建筑高度、结构形式等因素确定结构的安全系数,保证结构的抗震能力和稳定性。
4.2 火灾防护:针对钢结构易受高温影响的特点,需要在设计时考虑火灾防护措施,如防火涂料和防火隔离带的设置。
4.3 风荷载计算:多高层建筑容易受到风荷载的影响,需要进行风荷载计算,并在设计中进行相应调整。
5. 多高层钢结构的优势与挑战5.1 优势:多高层钢结构具有施工周期短、质量可控、环保等优势,能够满足快速建设的需求。
5.2 挑战:钢结构的设计、施工和装修等方面存在一定的技术要求和难度,需要合理组织和协调各方资源。
钢多高层结构设计手册
钢多高层结构设计手册钢结构是目前建筑行业中常用的一种结构形式,它具有抗震、抗风、耐久等优点,在高层建筑中得到广泛应用。
本手册将围绕钢多层结构的设计原则、结构构件、施工工艺和安全管理等方面展开说明,以期为相关从业者提供指导和参考。
一、设计原则1.1 结构设计的主要任务在设计钢多层结构时,首先要明确其承载力、变形、稳定性和振动等方面的设计要求,确保结构的安全、经济和合理。
1.2 结构设计的基本原则(1)遵循国家相关规范标准,确保结构的安全性和合法性;(2)根据建筑功能需求和使用性能要求,合理设计结构形式和布局;(3)满足建筑设计的外观和空间布局要求;(4)考虑施工和装饰方便性,减少施工难度。
1.3 结构设计的安全原则设计师应充分考虑建筑的使用环境、自然条件、工作强度等因素,确保结构稳定、安全。
二、结构构件2.1 主要构件(1)柱:作为承受垂直荷载的主要构件,要具备足够的承载力和稳定性。
(2)梁:承受楼板和荷载的主要构件,要求刚度大、变形小。
(3)框架:形成整体的框架结构,承受建筑整体受力,并保证整体稳定性。
2.2 钢结构材料选择在设计中应选择合适的钢材,常用的有碳素结构钢、合金结构钢、不锈钢等。
选择时要考虑其机械性能、耐腐蚀性、可焊性等因素。
2.3 连接方式钢结构的连接方式主要有焊接、螺栓连接和铆接等,设计时应根据实际情况选择合适的连接方式,确保连接的牢固可靠。
三、施工工艺3.1 工艺准备施工前应做好工艺准备工作,包括加工和制作构件、预制各类节点连接件等,确保施工的顺利进行。
3.2 焊接工艺焊接是钢结构施工中最常用的连接方式,施工中应严格按照规范进行焊接作业,采取必要的防护措施,确保焊接质量。
3.3 混凝土浇筑在多层钢结构中,混凝土浇筑工艺是不可或缺的一环,在施工中应注意浇筑质量和混凝土与钢结构的连接工艺。
四、安全管理4.1 安全意识在施工过程中,施工人员应始终保持严谨的安全意识,严格遵守相关安全规定,确保施工现场的安全。
钢多高层结构设计手册
钢多高层结构设计手册钢多高层结构设计手册第一章:引言1.1 本手册的目的和范围本手册旨在为工程师和设计师提供一套完整的、系统的高层钢结构设计指南,以确保高层建筑的结构安全、稳定性和经济性。
本手册适用于超过30层的高层钢结构建筑设计和施工,并且概述了一些与空间结构和特殊结构相关的内容。
1.2 现行标准和规范高层建筑的设计必须符合国家和地区的建筑设计标准和规范要求。
本手册将根据最新的标准和规范提供设计建议,并指出其中的变化和差异。
1.3 本手册的结构本手册共包括八个章节,分别是:引言、材料、结构设计、节点设计、振动控制、防火设计、耐震设计和施工。
每个章节将逐一详细介绍相关的设计原则、计算方法、核心技术和注意事项。
第二章:材料2.1 钢材的选用和使用选取合适的钢材对于高层钢结构的设计和施工至关重要。
本章将介绍常用的结构钢种类、性能、优缺点,以及如何进行合理的材料选择。
2.2 钢材的特性与应用钢材的强度、延展性、疲劳性等特性对于高层钢结构的设计和施工具有重要影响。
本章将介绍钢材的力学特性,如强度、刚度、韧性等,并探讨其在高层结构中的应用。
2.3 钢材的预应力控制预应力技术在高层钢结构中具有重要的应用价值。
本章将介绍预应力的原理、方法和控制要点,并提供实际计算案例。
第三章:结构设计3.1 弹性设计基本原理弹性设计是高层钢结构的基本设计原则。
本章将介绍弹性设计的基本概念、假设条件和计算方法,并提供详细的计算流程和示例。
3.2 塑性设计基本原理塑性设计在高层钢结构设计中具有重要的应用价值。
本章将介绍塑性设计的原理、方法、局限性和计算要点,并提供实际计算案例。
3.3 极限状态设计基本原理极限状态设计对于高层钢结构的安全性和可靠性具有重要意义。
本章将介绍极限状态设计的基本原理、设计要求和计算方法,并提供详细的计算流程和示例。
第四章:节点设计4.1 节点设计基本原理节点是高层钢结构的重要组成部分,对于整体结构的性能和稳定性起着至关重要的作用。
多高层建筑钢结构梁与柱连接节点设计
22 设 计计 算方 法及连 接 方式 . () 用 设 计 法 。 即梁 翼 缘 承 担 全 部 作 用 弯 1常 矩 , 腹 板 只承 担 全 部 作 用剪 力 的假 定 。通 常情 梁 况 下 , 翼 缘 与 柱 的连 接 多 采 用设 有 引弧 板 的完 梁 全 焊 透 的坡 口对 接 焊 缝 连 接 , 腹板 与柱 的连 接 梁 可 采 用 双 面 角焊 缝 连 接 , 或摩 擦性 高 强度 螺 栓 连
Hale Waihona Puke 【 bt c】n oueh s n eu e etad e osi prcl e aip ni e fh A s at I r c t d i qi m n t d, tu rh s r c lo t r td e e g r r sn m h n ai at b c i p e
【 e od 】 i d oe f emad o m ,t n i s ek o , poe et K y rs Rg d a l nsogo tw a l i rvm n w i n ob n cu r jn pem
1 前言
能力 。
梁 与 柱 的连 接 按 梁 对 柱 的 约 束 刚 度 ( 动 刚 转 度 ) 致 可分 为三 类 即铰 接 连 接 、 刚性 连 接 、 大 半 刚
截 面惯性 矩分 担作用 于梁 端 的弯矩 M, 以梁翼 缘承 担 弯 矩 MF 并 以梁 腹 板 同 时 承担 弯 矩 MW 和梁 , 端 全 部 剪 力 V进 行 连 接设 计 的 。 通 常情 况 下 , 梁 翼 缘与 柱 的连 接 多采 用 完全 焊透 的坡 口对 接 焊缝 连接 , 而梁 腹 板 与 柱 的连 接 可 采 用 双 面角 焊 缝 连 接, 或梁 翼 缘 和 腹 板 与 柱 的 连 接 全部 采 用 双 面角 焊缝 ( 即沿 梁 端 全 周 采 用 角焊 缝 与柱 相 连 )后 一 , 种通 常是 由于 梁端作 用 内力较 小 的场合 。
01(04)SG519 多、高层钢结构图集修改说明
图集号 03(04)SG519的应力强度比大于时,就必须要在梁端采取加强措施(如在梁端上、下翼缘加焊盖板或局部加宽翼缘板等),来增大焊缝的抗弯承载力。
2 )当梁的应力强度比小于时,在梁端只需全焊接连接(即截面的抗弯等强连接)就可满足式(1.2)的要求。
3 )当梁的应力强度比在以下时, 在梁端还可以采用连接的抗弯承载力只有梁截面抗弯承载力左右的栓焊连接。
(即梁腹板与柱之间采用只传递剪力的螺栓连接,梁翼缘与柱之间采用只传递弯矩的全熔透坡口对接焊)。
同样也能满足式(1.2)的要求。
83.083.067.0%80 但是,当地震烈度高于多遇地震、进入基本烈度时的过程中,凡是应力强度比较小的抗侧力构件,由于其还处于弹性阶段,其内力都将随地震作用的加大而加大,应力强度比也必然随之增大到。
同样,也需在梁端局部加大截面,并使加大截面后的焊缝抗弯承载力设计值不应小于梁截面抗弯承载力设计值的倍才能确保框架梁在大震时进入塑性使延性得到充分发挥。
这就是为什么在抗震结构中,梁柱刚性节点的连接不能按组合内力来设计,而只能按条的规定来进行连接设计的原因所在。
12.11.3.11.3.3 在梁与柱的栓焊连接或梁与柱的全焊接连接中,当梁端翼缘未作任何加强时,根据1.3.1条的规定,都是不能满足梁端连接的抗弯承载力设计值不应小于框架梁抗弯承载力设计值倍要求的。
只有在梁端采用局部加大截面后才能增大焊缝的抗弯能力。
但局部加大梁端截面后,就必然使塑性铰外移,而产生如原图集页19节点①②和页20节点①②所示的增强式连接;或在离梁端不远处,将梁的上下翼缘进行削弱,形成如原图集页20节点③所示的犬骨式连接,才能满足1.3.1条抗震结构节点连接的设计要求。
2.11.3.4 在抗震设防结构中,梁腹板与柱的连接只考虑承受剪力不承受弯矩的这一假定,只能在梁端经过局部加强使塑性铰外移后的情况下才能采用。
因为只有此时才有条件使梁腹板在塑性铰处的弯曲应力通过一定长度的、局部加宽的梁端翼缘板(或盖板)传递给梁端的对接焊缝。
第四章多高层钢结构
结构受力
1)内部设置剪力墙式的内筒,与钢框架竖向构件
主要承受竖向荷载;
2)外筒体采用密排框架柱和各层楼盖处的深梁刚
接,形成一个悬臂筒,以承受侧向荷载;
3)同时设置刚性楼面结构作为框筒的横隔。
剪力滞后(Shear Lag)
在框剪结构中,形成筒体的构面内存在的 剪切变形,即为剪力滞后。 为了避免严重的剪力滞后造成角柱的轴力 过大,通常可采取两个措施: 1)控制框筒平面的长宽比不宜过大 2)加大框筒梁和柱的线刚度之比
束筒结构
由各筒体之间共用筒壁的一束筒状结 构组成(减缓框筒结构的剪力滞后效应) 可将各筒体在不同的高度中止 可较灵活地组成平面形式 密柱深梁的钢结构筒体 筒体
钢筋混凝土筒体(常作为内筒出现)
钢结构和有混凝土剪力墙的 钢结构高层建筑的适用高度(m)
抗震设防烈度
结构种类
结构体系
非抗震设防 6, 7
内筒的边长不宜小于相应外框筒边长的1/3;
框筒柱距一般为1.5~3.0m,且不宜大于层高;
框筒的开洞面积不宜大于其总面积的50%;
内外筒之间的进深一般控制在10~16m之间; 内筒亦为框筒时,其柱距宜与外框筒柱距相同,且 在每层楼盖处都设置钢梁将相应内外柱相连接;
框筒结构布置时的注意事项(续)
低碳钢 低合金钢 低合金钢 低合金钢 低碳钢
SS50
SS55
284
401
490~608
≥540
19
17
2.0a
2.0a
低碳钢
低合金钢
构件截面 柱
焊接箱型截面 焊接H型截面 450
╳
450
厚度 42 — 19 宽度200 — 250
多、高层房屋结构的分析和设计计算
对质量及刚度沿高度分布比较均匀的结构,基本 自振周期可用下列公式近似计算:
Un——结构顶层假想侧移(m)。
多、高层房屋结构的分析和设计计 算
初步计算时,结构的基本自振周期按经验公式估算: n—建筑物层数(不包括地下部分及屋顶小塔楼) 。
Tg=0.4s (Ⅱ类场地,第二组)
T=1.5s(Tg∽5Tg)地震影响系数
T=4s(5Tg∽6s)地震影响系数 T=0~0.1s 地震影响系数 0.45 max∼2 max T=0.1s~Tg地震影响系数2 max
0.015 0.012
0.023∼0.05 0.05
0.027 0.021
0.036∼0.09 0.09
多、高层房屋结构的分析和设计计 算
(2)振型分解反应谱法
对不计扭转影响的结构,振型分解反应谱法可仅考虑 平移作用下的地震效应组合,并应符合下列规定: (a) j振型i层质点的水平地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 水平地震作用效应(弯矩、剪力、轴向力和变形) :
突出屋面的小塔楼,应按每层一个质点进行地震作用计 算和振型效应组合。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
顶部突出物:底部剪力法计算顶部突出物的地震作用, 可按所在的高度作为一个质点,按其实际定量计算所得水平 地震作用放大3倍后,设计该突出部分的结构。
增大影响宜向下考虑1~2层,但不再往下传递。
多、高层房屋结构的分析和设计计 算
基本自振周期 T1:
(3)竖向地震作用
PKPM多高层钢结构设计
水平支撑加变截面柱
编辑课件
变截面梁柱
编辑课件
多层钢结构工业厂房
编辑课件
空间塔围结构
编辑课件
普通多层钢结构
编辑课件
普通多层钢结构
编辑课件
特殊工业钢结构
编辑课件
2。多层钢结构的分析模型
➢ 结构分析应满足相应的设计规范、规程。 ➢ 结构分析一般可以选择:弹性楼板、P-Δ效应、总
刚模型计算结构的振型、振型数应取得足够多满足 有效质量系数,等等。 ➢ 结构的振型分析,可以观察到结构的薄弱部位,应 尽量减少结构的面外振动、局部振动。
编辑课件
➢ 层间位移:抗震规范规定,当地震力作用下的位 移应小于1/300,当为高层钢结构时,可以放松到 1/250。同时还应考虑舒适度的要求,控制顶点的 加速度值。。
➢ 有侧移无侧移:1。当楼层最大杆间位移小于 1/1000时,可以按无侧移设计;2。当楼层最大 杆间位移大于1/1000但小于1/300时,柱长度系数 可 以 按 1.0 设 计 ; 3 。 当 楼 层 最 大 杆 间 位 移 大 于 1/300时,应按有侧移设计。
编辑课件
吊车内力的预组合目标
➢ 吊车柱预组合目标共14项: ➢ (1)Vxmax(2)Vymax(3)+Mxmax(4)-Mxmax ➢ (5)+Mymax(6)-Mymax(7)Nmax+Mxmax ➢ (8)Nmax-Mxmax(9)Nmax+Mymax ➢ (10)Nmax-Mymax(11)Nmin+Mxmax ➢ (12)Nmin-Mxmax(13)Nmin+Mymax ➢ (14)Nmin-Mymax ➢ 吊车荷载作用下梁的预组合目标为: ➢ (1)+Mmax/T(2)-Mmax/T(3)-Vmax/N
建筑设计中多高层轻钢结构体系分析
建筑设计中多高层轻钢结构体系分析王字平(恩宜珐玛(天津)工程有限公司,天津市300100)工程技术喃要]多层钢结构多应用于住宅体系,但其发展在我国仍处于起步阶段。
国家为加快住宅产业现代化的步伐。
采取了一系列的政策措施,不但明确提出要积极合理地扩大钢结构在建筑中的应用,同时,还明确规定了被淘汰建材品种及时间表等等。
[关键词]建筑设计;轻钢结构体系;现状1我国多高层钢结构体系发展现状目前,我国内地建成和在建的高层钢结构建筑有近40幢,总面积约320万平方米,用钢量约30万吨,投资约600亿人民币。
与此相适应,我国在高层钢结构的科学研究、设计软件的编制、设计能力及各项配套的工艺方面均取得较大的进展,在钢结构的制作及安装方面的国产化已具有相当水平。
多层钢结构多应用于住宅体系,但其发展在我国仍处于起步阶段。
国家为加快住宅产业现代化的步伐,采取了一系列的政策措施,不但明确提出要积极合理地扩大钢结构在建筑中的应用,同时,还明确规定了被淘汰建材品种及时间表等等。
2多高层钢结构体系的优点虽然制约钢结构推广的因素很多,但是其中最重要的是其造价问题。
要酬医成本,势必从减少结构用钢量、减轻结构自重着手,除采用合理的设计方法之外,还需要研究开发经济合理的结构体系以及轻质高强的楼板和墙板。
减轻结构白重,不仅可以节约大量建材,降低工程造价,还有利于抗震,从而获得良好的经济效益和社会效益。
多层钢结构的优点可以归结如下,1)设计制造周期短,设计生产一体化。
2)大跨度、大开问,有利于功能、空间的灵活布置。
3)钢结构体系具有良好的抗震性能。
4)自重轻,刚氐基础造价。
5)工期短,施工效率高,采用钢结构体系可为施工提供较大的空间和较宽敞的施工作业面。
6)钢结构的质量容易保证。
7)管线布置方便。
8)节能环保,钢材可以重复使用,遗留的废料垃圾少,其生产和使用中对自然环境的破坏小。
3多高层钢结构体系简介玉1框架体系框架体系是指沿房屋的纵向和横向均采用框架作为承重和抵抗侧力的主要构件所形成的结构体系。
多高层钢结构住宅设计
多高层钢结构住宅设计研究摘要:钢结构作为一种可循环利用的绿色建筑材料,同时兼具优良的材料力学性能和其工业化生产的优点,使其不仅可以突破以往钢筋混凝土和砌体结构在住宅设计方面的局限,创造更为灵活的住宅空间,满足现代居住生活的需要,同时使住宅的产业化成为可能。
这些特点使得钢结构住宅体系将会成为未来中国通行的绿色环保型住宅体系。
鉴于此,本文对多高层钢结构住宅设计进行了探讨。
关键词:多高层;钢结构;住宅设计一、前言钢结构建筑的发展水平从某种角度来说是衡量一个国家经济发展水平的重要标志之一。
多高层钢结构住宅由于其所采用的建筑材料、适用范围和产业化的特点,使其建筑设计方法与于普通意义上的钢筋混凝土和砌体结构建筑的设计有较大的不同。
其自身的特点要求其建筑设计方法应该满足三个方面的要求。
其一,以钢结构作为主要的结构材料,其建筑设计应充分发挥钢结构强度高、刚度大的特点,尽量采用大空间的布局方式,保持室内空间分隔的灵活性,在满足近期不同使用需求的情况下,还可满足远期改造的要求;其二,由于其适用范围为多高层住宅,其建筑设计必须符合多高层住宅设计的特点,一方面必须满足住宅设计的相关规范要求,另一方面,必须满足当前和日后市场对住宅设计的舒适性和审美要求;其三,钢结构住宅设计应该符合产业化的特点,建筑设计应执行标准化、多样化的特点,积极采用新技术、新材料,以促进住宅产业化的发展。
二、多高层钢结构住宅设计注意事项1.多高层钢结构体系选型设计目前国内进行多高层钢结构住宅建设所采用的结构体系主要分为四种:1)纯框架形式;2)框架支撑形式;3)型钢混凝土组合形式;4)钢框架一混凝土抗震墙形式。
对于纯框架形式,梁柱材料采用型钢,通过焊接或螺栓连接的方式进行组合安装。
框架支撑形式同纯框架形式类似,只是由于抗震需要,在主体结构两个主轴方向布置斜撑,钢斜撑与型钢柱和梁连接组成竖向抗侧力析架,从而取代传统的混凝土剪力墙,安装方式同样采用焊接或螺栓连接。
多高层民用建筑钢结构节点构造cad设计详图
多层及高层房屋钢框架结构
4.3 柱和支撑的设计
4.3.1 框架柱设计概要
➢柱截面形式: 箱形、焊接工字形、H型钢、圆管等 ➢截面估计:按1.2N的轴心受压构件,34层作一次截面变
化,厚度不宜超过100mm ➢板件宽厚比,见下表 ➢长细比:多层(12层)框架柱在68度设防时不应大于120,
9度设防时不应大于100。高层(>12层)框架柱在设防烈度 为6,7以及8和9度时,分别为120,80以及60
bc1= bc2
组合梁混凝土翼板的有效宽度
(a) Afbcehcfcm (塑性中和轴在混凝土受压翼板内)
(b) Af>bcehcfcm (塑性中和轴在钢梁截面内) 正弯矩时组合梁横截面抗弯承载力计算图
2.负弯矩作用时
MMp+Asfsy(y3+/y4 /2)
As
组合梁塑性中和轴 钢梁塑性中和轴
y4 y3
多层(12 层)
高层(>12 层)
7度 8度 9度 6度 7度 8度 9度
13 11 9 9 8 8 7
33 30 27 25 23 23 21
31 28 25 23 21 21 19
42 40 40 38
➢ 截面形式:
1. 双轴对称截面 2. 单轴对称截面,采取防止绕对称轴屈曲的构造措施
➢ P-效应导致的附加效应:
多层(12层) 按压杆设计
150
按拉杆设计 200
120 120 150 150
高层(>12层)
120
90 60
➢ 板件宽厚比: 1. 6度抗震设防和非抗震设防:按《钢结构设计规范》(GB50017) 2. 抗震设防结构:
板件名称
翼缘外伸部分 工字形截面腹板
装配式多高层钢结构住宅建筑体系研究与进展
装配式多高层钢结构住宅建筑体系研究与进展1. 引言1.1 背景介绍多高层钢结构住宅建筑体系的研究和应用将大大推进建筑行业的技术更新与发展,提高建筑质量、节约资源、减少能耗,从而实现可持续发展。
对于装配式多高层钢结构住宅建筑体系的研究与进展,具有重要的现实意义和广阔的发展前景。
本文将从多个方面对此进行深入探讨,并就未来研究方向进行展望。
1.2 研究意义多高层钢结构住宅建筑体系是当前建筑领域的一个热门研究方向,其具有以下几点研究意义。
随着城市化进程的加速和人口增长,高层住宅建筑的需求量呈现出增长趋势。
而采用钢结构和装配式建筑技术可以有效缩短建筑周期、减少资源浪费、提高建筑质量,因此研究多高层钢结构住宅建筑体系对于提高建筑施工效率和满足市场需求具有重要意义。
多高层钢结构住宅建筑体系的设计原则和施工工艺直接影响建筑结构的稳定性和安全性,而这些因素又直接关系到住户的生命财产安全。
深入研究多高层钢结构住宅建筑体系的设计和施工技术,对于确保建筑结构的安全可靠性具有重要意义。
多高层钢结构住宅建筑体系的性能研究可以为建筑结构的改进和优化提供理论支持,促进钢结构与装配式建筑技术的进一步发展。
通过研究多高层钢结构住宅建筑体系的性能,可以为其他类型的高层建筑结构提供借鉴和参考,推动建筑行业的可持续发展。
2. 正文2.1 多高层钢结构住宅建筑体系概述多高层钢结构住宅建筑体系是指采用钢结构作为主要承重结构的多层住宅建筑体系。
相比传统的混凝土结构,钢结构具有自重轻、抗震性能好、施工速度快等优点,因此在高层建筑领域得到广泛应用。
多高层钢结构住宅建筑体系通常采用钢柱、钢梁和钢框架作为主要承重结构,地板则采用钢板混凝土结构或夹层板结构。
在设计中,需要考虑结构的整体稳定性、抗风性能、抗震性能等因素,以确保建筑在各种外部荷载作用下能够安全稳定地运行。
多高层钢结构住宅建筑体系还需要考虑建筑的功能布局、空间利用效率、建筑节能等方面的问题,以满足用户对于住宅建筑的需求和要求。
多高层建筑钢结构设计(一)2024
多高层建筑钢结构设计(一)引言:多高层建筑钢结构设计是现代建筑领域中一项重要的技术,通过使用钢材来构建高层建筑的结构,可以提供更大的建筑空间,增加建筑的安全性和稳定性,以及降低建筑的整体重量。
本文将详细介绍多高层建筑钢结构设计的概述和要点。
正文内容:一、选择合适的钢材1. 考虑抗拉强度和抗剪强度2. 考虑可焊性和可塑性3. 考虑耐候性和耐腐蚀性4. 考虑材料的价格和供应稳定性5. 考虑材料的可持续性和环保性二、确定结构荷载1. 考虑建筑的自重和附加荷载2. 考虑风荷载和地震荷载3. 考虑人员和设备的荷载4. 考虑临时荷载和安全荷载5. 考虑荷载的影响因素和计算方法三、设计结构的布置1. 确定建筑的整体布局和功能需求2. 考虑结构的平面布置和立面形式3. 考虑结构的杆系和节点连接方式4. 考虑结构的刚度和柔度,以及适当的振动控制措施5. 考虑结构的消防和疏散设计要求四、进行结构计算和分析1. 建立合适的数学模型和力学假设2. 进行静力和动力计算,包括线性和非线性分析3. 分析结构的变形、应力和稳定性4. 评估结构的可靠性和安全性5. 优化结构设计,满足设计要求五、控制施工质量和安全1. 编制施工图纸和工艺规范2. 选择合适的建筑施工设备和施工方法3. 监督施工质量和安全,进行质量检查和验收4. 加强施工过程中的质量控制和安全管理5. 完善施工记录和档案,提高后期维护管理效率总结:多高层建筑钢结构设计需要考虑钢材选择、结构荷载确定、结构布置设计、结构计算分析以及施工质量和安全控制等多个方面。
通过合理的设计和施工管理,可以确保高层建筑的结构安全稳定,并提供优质的建筑空间。
对于未来的高层建筑设计和施工,钢结构将继续发挥重要的作用。
多高层钢结构建筑汇总
钢骨混凝土
高层建筑钢管混凝土结构
钢管混凝土
高层建筑组合结构
概 述
上述两种或以上材料的组合
2 抗侧力体系类型 高层建筑的结构体系
抗重力体系 抗侧力体系
竖向重力 水平力(风和地震)
抗侧力体系
高层建筑结构体系
主要部分
概 述
抗侧力体系
基本组成单元
分类 各类抗侧力体系
做法 水平变形特点 应用范围 实例
概 述
钢框架体系
1、做法
把梁柱刚接成整体,形成空间杆系结构 是最早出现、也是最基本的抗侧力体系
2、特点
A、平面布置比较灵活,可以获得大空间 B、安装简单方便,造价相对较低 C、应用于10层以内的高层建筑
体 系
D、在水平力作用下,抗侧力刚度小,顶层位移大
顶层水平位移
层间水平位移
层间水平位移 由 柱 弯 曲 剪
层高
地下室 — 0.00 一层 二层 三 — 二十二层 二十三层 二十四层 二十五层
体 系
6.8 m 4.5 m 5.0 m 3.3 m 4.3 m 4.1 m 3.3 m
钢框架 — 支撑体系
1、做法
把钢框架和支撑桁架共同组合, 作为抗侧力体系
体 系
2、特点
A、平面布置比较灵活,不能获得大空间 B、安装较为简单方便 C、应用于30 — 60层的高层建筑 D、抗侧力刚度比钢框架大
出结构设计图
结构设计说明 结构设计图
构件加工详图
结构计算书
概 述
二、结构体系
抗侧力体系
体 系
钢框架体系 钢框架—支撑体系 钢框架—筒体系 大型支撑体系 支撑—筒体系 筒 中 筒体系 筒 束 体系
抗侧力体系
高层建筑钢结构连廊结构设计
高层建筑钢结构连廊结构设计摘要:高层建筑中,连廊应用越来越广泛,应对连廊设计方案进行优化,使得设计过程更加高效合理,满足质量控制目标。
本文主要分析大跨度钢结构连廊设计中需要重点考虑的要素,根据目前设计现状和现有技术,对钢结构连廊的设计方案进行优化,重点研究主体结构、楼板质量和节点连接方式,提升设计质量,期望能够为空中连廊的设计提供有益的参考。
关键词:高层建筑;钢结构;空中连廊;风荷载、地震作用;舒适度引言高层建筑相对密集的区域可通过连廊形式进行相互连接,该种空中连廊不但可降低交通的压力,还可形成具有观赏性的景观。
因此空中连廊建设不仅需从结构方面进行科学的选择归化,同时还需从设计艺术的角度对连廊的构造进行细致规划,从而形成城市中的独有风景。
连廊通常会设置在高层建筑的中上位置,跨度可设置为十几到几十米不等,一般会使用刚接或者滑动的支座与楼体连接。
空中连廊除了需承担来自纵向的外力外,同时还需对风和地震具有一定的承受能力。
空中连廊所能承担的外力情况相对复杂,如果主体结构发生变形,便需同步进行连廊调节,因此形成水平方向的荷载力,连廊结构便需承担较大的内应力。
此外如果连廊的跨度较大,则受到纵向的地震影响也更为明显。
因此连廊倾向于使用刚性体,同时运用加强手段,以此保证在充足刚度的支持下提升构件的稳定性,避免出现局部扭转或者振动的情况,尤其连廊为多层连接结构时,更需科学控制其舒适度指标。
与主体刚度不同,连廊的刚度指标相对较小,因此运用滑动连接的形式便可有效降低主体结构在水平方向的变形差对于连廊构件的内力作用。
但滑动连接形式的应用目的便是放宽对连廊自由度的控制,降低连接体与主体结构发生变形的可能性。
因此需对可采取的措施进行细化分析,尽量减低连廊对结构整体的稳定性构成的负面影响。
本文便结合工程的实际情况,重点对高层建筑的空中连廊设计及抗震效果进行分析,希望能够为后续的类似施工提供意见参考。
1、大跨度钢结构连廊设计中考虑要素与其他类型的建筑不同,连廊结构所具有的扭转振动幅度较大,这便需对其扭转效应实施科学分析,重点衡量风与地震荷载对结构的影响作用。
PKPM结构设计软件入门与应用实例:钢结构框架(多高层篇)
需修改截面参数时,选择需修改的构件,再单击修改,进入“截面类型选择界面”图17,再按图18,操作完成修改。
需定义新截面时按上述图16至图18重新操作即可完成,如定义相同类型新截面时,还可选择与要定义的截面类型相同的已有截面,单击 ,进入截面参数定义界面,如图1-18,修改截面参数,单击 ,完成新截面定义。
本工程耐火等级一级,建筑类别为一类,建筑物使用年限100年。
结构类型:钢框架结构。
本地设防烈度6度,场地土类别二类。
楼板采用压型钢板非组合型楼板。
结构安全等级一级,建筑物抗震设防类别为乙类。
墙体材料:±0.000以上采用加气混凝土砌块,容重≤6kN/m3
基本分压:0.45kN/m2
基本雪压:0.40kN/m2
2.钢梁定义:选择梁布置进入梁定义的界面,如图1-19,单击 ,进入截面类型选择界面,如图1-17。
图1-19梁定义界面
本工程钢梁选用H型梁单击 ,进入截面参数定义界面,如图1-20。
图1-20截面参数定义界面
随后的操作与钢柱定义操作相同。
3.次梁布置:先在图1-19界面中定义好钢梁截面,选择次梁布置,进入次梁选择界面,如图1-19。选择所布置次梁截面后,单击 ,进入次梁布置界面,如图1-21。
图1-10五层~二十二层结构平面布置图
1.2平面建模
编者按:高层钢结构的在设计中的分析与钢筋混凝土高层结构的建模与结构分析操作过程类似,本书重点介绍的就是高层钢结构与钢筋混凝土高层结构PKPM应用的不同之处。
1.2.1建立工作目录
启动PKPM软件钢结构模块后,进入用户界面,如图1-11所示。
图1-11框架主界面
支撑:H250×380×16×20,H250×380×14×18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H :室外地坪至屋顶檐口的高度
当有可靠根据时,基础埋深可适当减小。
抵抗 四、高层建筑钢结构之抗侧力体系 高层建筑钢结构 结构体系
抗重力体系
抗侧力体系
竖向重力
260
180
有混凝土剪力 墙的钢结构
钢框架-混凝土核心筒 钢框筒-混凝土核心筒
220
180
100
70
220
180
150
70
芯筒体系
亦称悬挂结构; 打破了密柱深梁对建筑设计的桎梏; 实现优势互补(充分发挥钢结构抗
拉强度高和钢筋混凝土结构抗压性 能好的优势);
通常设置一些称为帽桁架和腰桁架
SM50A SS41 F10T
力学性能
伸长率 % 24 22 19 20 26 19 17 冷弯试验 试件厚度 1.0a 1.5a 1.5a 1.5a 1.5a 2.0a 2.0a 钢 种
低碳钢 低合金钢 低合金钢 低合金钢 低碳钢 低碳钢 低合金钢
构件截面 柱 框架梁
焊接箱型截面 焊接H型截面 450
单榀支撑桁架的弯曲变形、剪切变形及组合变形
撑系框架
抗弯框架
相互作用力
(a)
(b)
撑系框架与无支撑框架间的相互作用 (b)由于相互作用产生的剪力变化 (a)特性变形形状
框架
楼板钢板
独立支撑框架
框架--支撑体系
独立框架 框架支撑体系的协同工作
3 、分类(两种分类方法)
按支撑杆的设置方法
轴交支撑
支撑杆一端位于梁柱节点,另一端 与另一支撑杆相交于框架梁或节点 上 支撑杆端点与梁柱节点之间 (或)两支撑杆端点之间 耗能梁段 存在
支撑斜杆、节点、相邻构件中将产生很大附加应力 D、地震反复作用下,两支撑杆会先后压屈后不能恢复(拉直)
偏交支撑
支撑框架体系
结构体系的选择,不仅要从满足使用功能节约等考虑,更要取决于建筑 的高度。建筑层数越多,高度越高,风力或地震力引起的侧向力就越大, 建筑物必须有相应的刚度来抵抗侧向力。因此,随着建筑层数的不断增加, 结构体系也就需要不断的发展。支撑框架体系又可分为框支结构和框剪框 筒结构
一.框支结构体系: 在框架体系中,沿结构的纵横两个方向布置一定数量的支撑。在这种体 系中,框架的布置原则和柱网尺寸,基本上与框架体系相同,支撑大多沿
剪力滞后
在框剪结构中,形成筒体的构面内存在的剪切变形,即为 剪力滞后。
为了避免严重的剪力滞后造成角柱的轴力过大,通常可采
取两个措施:
1)控制框筒平面的长宽比不宜过大 2)加大框筒梁和柱的线刚度之比
束筒结构
由各筒体之间共用筒壁的一束筒状结
构组成(减缓框筒结构的剪力滞后效应)
可将各筒体在不同的高度中止 可较灵活地组成平面形式
2.设计特点
(1)荷载的特点:多、高层建筑随着高度的增加,结构上的控制荷载由竖向 荷载变为水平荷载;地震区的地震作用比风荷载大得多。
(2)内力特点:多、高层建筑,随着高度的增加,结构上的控制内力,由轴 力起控制作用到弯矩起控制作用;结构的侧移随高度增加而迅速增加 ,故 结构侧移成为重要的控制因素。
楼面中心部位服务面积的周围布置,沿纵向布置的支撑和沿横向布置的支
撑相连接,形成一个支撑芯筒。
二.框剪结构组成 框架结构上设置适当的支撑或剪力墙
亦可二者皆设置
侧向位移模式
在侧向荷载的作用下,
纯框架结构:
剪切变形模式 抗剪结构: 弯曲变形模式 二者组合(框剪结构):
显著减少了纯框架结构的侧向位移
钢框架
钢框架
支撑桁架
支撑桁架
大型支撑体系
筒
筒
基本单元的组合
钢框架
钢框架
支撑桁架
支撑桁架
筒
筒
支撑—筒体系
基本单元的组合
钢框架
钢框架
支撑桁架
支撑桁架 筒 束 体系
筒
筒 筒 中 筒体系
钢框架体系 钢框架—支撑体系 钢框架—筒体系 抗侧力体系
大型支撑体系
支撑—筒体系
筒 中 筒体系
筒 束 体系
钢框架体系 钢框架—支撑体系 钢框架—筒体系 抗侧力体系
偏交支撑
轴交支撑
十字交叉斜杆 梁元 柱元 字形杆元 单斜杆 人字形杆元 字形杆元
轴力杆元
(a)
(b)
(c)
(d)
轴交支撑特点
用于抗风或不太强的地震力
当有强震作用时,会有如下严重后果 A、地震反复作用下,两支撑杆会先后压屈,支撑抗侧力刚度降低 B、支撑的两侧柱子产生压缩变形和拉伸变形时,由于支撑 的端点实际构造做法并非铰接,而导致支撑产生较大的附加 内力及应力 C、往复的地震作用 结构受冲击作用 支撑斜杆会从受压的压屈状态 受拉的拉伸状态
大型支撑体系
支撑—筒体系
筒 中 筒体系
筒 束 体系
二、钢框架体系
1、做法
把梁柱刚接成整体,形成空间杆系结构
是最早出现、也是最基本的抗侧力体系
2、特点
A、平面布置比较灵活,可以获得大空间 B、安装简单方便,造价相对较低 C、应用于30层以内的高层建筑
结构种类
结构体系 钢框架
非抗震 设 防 110 260 360 6、7 110 220 300
θ i
θ i -1
反弯点
1/2hiθ i-1
梁弯曲、剪切变形引起层间位移
δ
ig
δ if
框架弯曲变 形引起δ if
if
边柱拉伸变形
边柱压缩变形
3、实例
长富宫中 心 北京 地 上 25 层 , 地 下 2 层 , 94m 1987年建成 2层以下和地下室为型钢 砼结构 , 以上全部为钢 框架结构
密柱深梁的钢结构筒体 筒体
钢筋混凝土筒体(常作为内筒出现)
钢结构和有混凝土剪力墙的 钢结构高层建筑的适用高度(m)
抗震设防烈度
结构种类
结构体系
非抗震设防 6, 7
8 90 200 9 50 140
框架 钢结构
110 260
110 220
框架-支撑(剪力墙板)
各类筒体 钢框架-混凝土剪力墙
360
300
框筒的开洞面积不宜大于其总面积的50%; 内外筒之间的进深一般控制在10~16m之间; 内筒亦为框筒时,其柱距宜与外框筒柱距相同,且在每层 楼盖处都设置钢梁将相应内外柱相连接;
框筒结构布置时的注意事项(续)
控制角柱截面积为非角柱的1.5~2.0倍;
外框筒为矩形平面时,宜将其作成切角矩形;(以削 减角柱应力)
为提高内外筒的整体性能以及缓解剪力滞后,可设置 帽桁架和腰桁架; 腰桁架一般布置于设备层; 帽桁架和腰桁架一般是由相互正交的两组桁架构成, 等距满布于建筑物的横(纵)向。
基础埋深的考虑 室外地面标高至基础底面的距离
敷设地下室;(补偿基础、增大结构抗侧倾能力)
有抗震设防时,高层结构部分的基础埋深宜一致、不宜采 用局部地下室;
框筒结构是筒体结构的一种结构布置(筒中筒)
适用的建筑高度可超过90层(因横向刚度较大) 结构特点: 当钢筋混凝土墙沿服务性面积(如楼梯间、电梯间 和卫生间)周围设置,就形成框架筒体结构体系 这种结构体系在各个方向都具有较大的抗侧力刚度。
结构受力 1)内部设置剪力墙式的内筒,与钢框架竖向构件 主要承受竖向荷载; 2)外筒体采用密排框架柱和各层楼盖处的深梁刚 接,形成一个悬臂筒,以承受侧向荷载; 3)同时设置刚性楼面结构作为框筒的横隔。
抵抗
水平力
高度大
抗侧力体系
结构体系的主要部分
基本组成单元 抗侧力体系 分类
做法
水平变形特点 应用范围 实例
各类抗侧力体系
一、抗侧力体系基本单元
高层建筑钢结构 (包括钢—砼组合结构) 钢框架 支撑桁架
支撑桁架 + 框架
钢砼剪力墙
筒 (密柱深梁)
1-450×450外筒柱子 2-450×450内柱 3-带高强度螺栓的裙梁
纽约市贸中心大厦外筒中心梁柱安装单元
筒
( 支撑桁架 + 框架 )
筒
( 钢砼剪力墙 )
钢框架 或 钢筒
基本单元的组合
钢框架
钢框架 钢框架体系
支撑桁架
支撑桁架
筒
筒
基本单元的组合
钢框架
钢框架
支撑桁架
支撑桁架
钢框架—支撑体系
筒
筒
基本单元的组合
钢框架
钢框架
支撑桁架
支撑桁架
筒
筒
钢框架—筒体系
基本单元的组合
框剪结构的特点
这种结构以剪力墙作为抗侧力结构,既具有框架结构平面布 置灵活、使用方便的特点,又有较大的刚度,可用于四十至 六十层的高层钢结构;剪力墙数量应使框剪结构顶点位移满 足规范限值。与剪力墙相连的梁端受力大,易产生塑性铰, 可将梁刚度乘折减系数。 用于地震区时,具有双重设防的优 点 钢筋混凝土结构:需采取构造措施 剪力墙: 钢板结构 (8~9mm厚钢板) 研究表明,在 侧向刚度相同时,钢板剪力墙的 框剪结构比框架结构用钢量少。
结构钢材 (日本钢材)
柱及主梁: 次梁及压型钢板: 高强度螺栓:
国名 标准号 钢号 SM41 SM50 日本 JIS3106 (1975) SM53 SM58 SS41 SS50 SS55 屈服点 (MPa) 245 323 363 460 245 284 401 抗拉强度 (MPa) 401~510 490~608 520~637 568~715 401~510 490~608 ≥540