【数学】南京2020届高三年级学情调研卷 及解析

合集下载

2020届江苏省南京市高三9月学情调研数学试题

2020届江苏省南京市高三9月学情调研数学试题

2020届江苏省南京市高三9月学情调研数学试题一、填空题 1.函数()1f x x =-的定义域是【答案】[1,)+∞【解析】试题分析:要使函数有意义,需满足101x x -≥∴≥,因此定义域为[1,)+∞ 【考点】函数定义域2.已经复数z 满足(2)1z i i -=+(i 是虚数单位),则复数z 的模是________. 【答案】10 【解析】【详解】(2)1z i i -=+,11323,i iz i i i++∴=+==- 10z =,故答案为10.3.某算法的流程图如图所示,则物出的n 的值为_______.【答案】4【解析】循环代入n p 、的值,直到10p >时输出p 的值. 【详解】第一次循环:2,5n p ==;第二次循环:3,10n p ==;第三次循环,4,17n p ==,此时满足10p >可退出循环得:4n =.【点睛】本题考查程序框图循环结构中的判断问题,难度较易.程序框图问题主要是两种处理方法:(1)逐步列举,将退出循环前的情况依次列举;(2)根据循环结构中的特殊形式简化运算.4.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100〕,则图中x 的值为_______【答案】0.018【解析】根据频率和为1来计算x 的值. 【详解】因为(0.00630.010.054)101x ⨯+++⨯=,所以0.018x =. 【点睛】本题考查频率分布直方图中频率总和为1这一知识点,难度较易.5.有3个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组的可能性相同,则这两位同学参加了不同的兴趣小组的概率为______ 【答案】23【解析】甲、乙参加了不同的兴趣小组的可能数与可能的情况总数的比值即为对应概率. 【详解】甲、乙参加了不同的兴趣小组的情况有23A =6种,总的可能情况有339⨯=种,则概率62=93P =.【点睛】本题考查古典概型的概率计算,难度较易.古典概型的概率计算公式为:P =待求事件包含的基本事件个数可能出现的事件总数.6.把一个底面半径为3cm ,高为4 cm 的钢质实心圆柱熔化,然后铸成一个实心钢球(不计损耗),则该钢球的半径为_______cm 【答案】3【解析】根据熔化前后的体积不变求解钢球的半径即可. 【详解】圆柱体积:=94=36V ππ⨯⨯圆柱,球的体积:34=3V r π球,所以34363r ππ=,解得3r =.【点睛】圆柱的体积公式:2V r h π=;球的体积公式:343V r π=. 7.在平面直角坐标系xoy 中,若双曲线22221(0,0)x y a b a b-=>>的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为______.【解析】根据准线与两条渐近线恰能围成一个等边三角形得到渐近线的斜率,然后再计算离心率的值. 【详解】由题意可知其中一条渐近线倾斜角为:30︒,所以tan 303b a =︒=,则c e a ===.【点睛】本题考查双曲线的离心率计算,难度较易.求解离心率的时候如果涉及到几何图形,可借助几何图形的特点去分析问题. 8.若函数()2sin()(0)6f x x πωω=->的最小正周期为π,则当[0,]2x π∈时,()f x 的值域为_______. 【答案】[-1,2]【解析】先根据最小正周期求出ω的值,再利用给定区间分析函数()f x 的最值. 【详解】 因为2||T ππω==,所以2ω=,则()2sin(2)6f x x π=-; 又[0,]2x π∈ ,所以5(2)[,]666x πππ-∈-,则max ()2sin22f x π==,min ()2sin()16f x π=-=-. 所以()f x 的值域为:[1,2]-.【点睛】本题考查三角函数的周期以及值域,难度较易.对于求解()sin()f x A x ωϕ=+在给定区间D 上的值域:先分析x D ∈时,x ωϕ+的范围,再根据sin y x =的单调性求解()f x 的值域.9.若锐角α满足tan (α+4π)=3tanα+1,则tan 2α的值为_____. 【答案】34【解析】先计算tan α的值,再利用二倍角公式计算2tan α的值. 【详解】 由题意可知:1tan 3tan 11tan ααα+=+-,则1tan 3α=或tan 0α=(舍,α为锐角),则22122tan 33tan 211tan 41()3ααα⨯===--. 【点睛】常用的二倍角公式:2222cos 2cos sin 2cos 112sin ααααα=-=-=-,sin 22sin cos ααα=,22tan tan21tan ααα=-.10.已知函数()1||xf x x =+,则不等式(3)(2)0f x f x -+>的解集为____. 【答案】(1,+∞)【解析】先分析()f x 奇偶性,再分析()f x 单调性,然后将不等式转化为自变量间的关系,计算出解集. 【详解】()f x 的定义域为R ,关于原点对称且()()1||xf x f x x -=-=-+,所以()f x 是奇函数;又因为0x >时1()111x f x x x ==-++是增函数,所以()f x 在R 上是增函数; 因为(3)(2)0f x f x -+>,所以(3)(2)f x f x ->-且(2)(2)f x f x -=-,则有32x x ->-,故1x >,即(1,)x ∈+∞.【点睛】解关于函数值的不等式,一般可先考虑函数的奇偶性(注意定义域)和单调性,将函数值的大小关系转化为自变量之间的大小关系,然后求解出对应解集.11.等差数列{n a }的前n 项和记为n S ,已知147a a a ++=99,258a a a ++=93,若存在正整数k ,使得对任意n *N ∈,都有n k S S ≤恒成立,则k 的值为_______. 【答案】20【解析】先根据条件求解出n S 的表达式,然后分析n S 取最大值时对应n 的值即为k 的值. 【详解】因为1474399a a a a ++==,所以433a =;因为2585393a a a a ++==,所以531a =;则5431332d a a =-=-=-,14339a a d =-=, 所以221(1)40(20)4002n n n S a n d n n n -=+=-+=--+,则20n =时,n S 有最大值,即20k =. 【点睛】(1)等差数列性质:若2m n p q c +=+=,则2m n p q c a a a a a +=+=;(2)等差数列{}n a 中,若10,0a d ><,则n S 有最大值;若10,0a d <>,则n S 有最小值.12.在△ABC 中,点P 是边AB 的中点,已知CA =4,CP =3,∠ACB =23π,则CP CA 的值为______. 【答案】6【解析】现根据中点对应的向量关系求解出CB 的长度,然后再将CP CA 化简到可利用||||CA CB 、直接进行计算即可. 【详解】如图所示,1()2CP CA CB =+,则22211()||||4344CP CA CB CB CB =+=-+=,所以||2CB =;又2111()||8(2)6222CP CA CA CB CA CA CB CA =+=+=+-=. 【点睛】几何图形中的向量问题,一定要先分析图形找到其中的数量关系;其次就是对待求式子的分析,将其变为可以用已知量直接进行计算的形式.解决这类问题,这里还有另一种常用的方法:坐标法,已坐标的方式去考虑各个量之间关系.13.在平面直角坐标系xoy 中,已知圆M:22()(2)4x a y a -+-=,圆N :22(2)(1)4x y -++=,若圆M 上存在一点P ,使得以点P 为圆心,1为半径的圆与圆N 有公共点,则实数a 的取值范围为________. 【答案】[-2,2]【解析】可将问题转化为圆M 的半径增加1后与圆N 有交点,然后利用圆心距计算即可. 【详解】根据题意可知:圆22()(2)9x a y a -+-=与圆22(2)(1)4x y -++=有交点,则5≤,得24a ≤,即[2,2]a ∈-.【点睛】解答有关圆的问题的时候,要学会将所给的条件转化成更容易处理的条件,比如针对一些“存在”“恒成立”问题,一般只需要根据已知条件找到临界条件即可进行计算求解.14.已知函数32()31f x x x =-+,2211,0()1,04x x g x x x x ⎧-+⎪=⎨--≤⎪⎩>.若函数[]()y g f x a=-有6个零点(互不相同),则实数a 的取值范围为______. 【答案】(34,2) 【解析】分别画出()f x 、()g x 的图象,采用换元法令()f x t =,考虑()g t a =中t 的取值可使()f x t =有6个解时对应的a 的取值范围. 【详解】作出()f x 、()g x 图象如下:因为()g x a =至多有两解,()f x t =至多有三解,则()g x a =有两解时()f x t =有6解; 且(0)1f =,(2)3f =-,所以()f x t =有三解时(3,1)t ∈-; 当3t =-时,3(3)4a g =-=,当1t =时,(1)2a g ==, 故3(,2)4a ∈时,[]()y g f x a =-有6个零点. 【点睛】涉及到分段函数的零点问题时,一定记得使用数形结合思想;函数零点或者方成根问题中,出现了复合函数,换元法也是很常规的手段,此时就需要结合多个函数图象来分析问题.15.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且asin 2B 2bsinA . (1)求B 的大小; (2)若cosC 5,求sin()A C -的值. 【答案】(1)4B π=;(2)2sin()10A C -=【解析】(1)根据正弦定理以及二倍角公式完成求解;(2)利用A B C π++=计算A 的正余弦值,再利用两角差的正弦公式完成结果求解.【详解】解:(1)由正弦定理得:sin sin 22sin sin A B B A =即2sin sin cos 2sin sin ()A B B B A =*∵A ,B ∈(0,π) ∴()可化简为2cos 2B =∴4B π=(2)由(1)知2cos 2B =,可得2sin 2B = ∵5cos 0C =>,C ∈(0,π) ∴25sin 0C => []cos cos ()cos()cos cos sin sin A B C B C B C C B π=-+=-+=-+2525210=-⨯+⨯=∵A ∈(0,π) ∴310sin 10A =310525102sin()sin cos sin cos 10551010A C A C C A -=-=⨯-⨯=【点睛】(1)边化角、角化边的过程中,对于正余弦定理的选择一定仔细分析; (2)三角形的问题中有一个隐含条件:A B C π++=,要注意使用.16.如图,在三梭柱ABC -A 1B 1C 1中,AC =BC ,E ,F 分别为AB ,A 1B 1的中点.(1)求证:AF ∥平面B 1CE ;(2)若A 1B 1⊥1B C ,求证:平面B 1CE ⊥平面ABC . 【答案】(1)见证明;(2)见证明【解析】(1)先通过证1//AF B E ,由线线平行经过判定定理得到线面平行; (2)由线线垂直1(,)AB B C AB EC ⊥⊥经过判定定理得到线面垂直11(A B ⊥平面)ABC ,再由面面垂直的判定定理证明即可.【详解】(1)证:在三棱锥ABC-A 1B 1C 1中,AB ∥A 1B 1 ,AB=A 1B 1 ∵E ,F 是AB ,A 1B 1的中点 ∴FB 1∥12A 1B 1,AE ∥12AB ,FB 1=12A 1B 1,AE =12AB ∴FB 1∥12AE ,FB 1=12AE ,四边形FB 1EA 为平行四边形 ∴AF ∥EB 1又∵AF ⊄平面B 1CE ,EB 1⊂平面B 1CE ,∴AF ∥平面B 1CE (2)证:由(1)知,AB ∥A 1B 1 ∵A 1B 1⊥B 1C ∴AB ⊥B 1C又∵E 为等腰ΔABC 的中点 ∴AB ⊥EC 又∵EC∩B 1C=C AB ⊥B 1C ∴AB ⊥平面B 1CE 又∵AB ⊂平面ABC ∴平面ABC ⊥平面B 1CE 【点睛】(1)线面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,那么该直线与此平面平行;(2)面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.17.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,点(2a,3e )和(b ,3e )都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的标准方程;(2)若点C 是椭圆上异于左、右顶点的任一点,线段BC 的垂直平分线与直线BC ,AC 分别交于点P ,Q ,求证:OB PQ ⋅为定值.【答案】(1)22143x y +=;(2)见证明 【解析】(1)将点的坐标代入方程,联立求解;(2)设出C 点坐标,然后求解出P Q 、的坐标,最后利用向量数量积的坐标表示计算结果得出定值. 【详解】(1)由题意知:222222191431e bb e a b ⎧+=⎪⎪⎨⎪+=⎪⎩,结合222a bc =+ 解得2a =,3b =1c =.所以椭圆的标准方程为:22143x y +=.(2)由题意知:A (-2,0),B (2,0),O (0,0),设C (0x ,0y ),则P (022x +,02y) AC l :00(2)2y y x x =++,PQ l :000022()22x x yy x x y -+=-+ 化简得:PQ l :00026x yy x y -=- 连理AC ,PQ 直线的方程,解得Q 000014(18),22(2)x y x x ⎛⎫++⎪+⎝⎭所以(2,0)(6,)12P Q OB PQ y y ⋅=⋅-=.【点睛】本题考查圆锥曲线中的椭圆方程以及定值问题,难度一般.对于求解方程,将满足条件的等式联立即可直接求解;定值问题中最难的就是如何将待求的式子表示出来,当能正确表示的时候,即可进行计算,中间可能会借助点自身满足的关系式进行化简.二、解答题18.随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t (单位:分钟)满足:4≤t ≤15,t ∈N ,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t 近似地满足下列函数关系:()()21800159,491800,915t t p t t ⎧--≤≤⎪=⎨≤≤⎪⎩,其中t N ∈.(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t 的值. (2)若平均每趟地铁每分钟的净收益为6()7920100p t Q t-=-(单位:元),问当发车时间间隔t 为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益. 【答案】(1)t =4.(2)当发车时间间隔为7min 时,平均每趟地铁每分钟的净收益最大,最大净收益为260元.【解析】(1)分段考虑()1500p t ≤的解;(2)净收益也是分段函数,将其写出,分别考虑每段函数的在对应t 的范围内的最大值. 【详解】解: (1)9≤t ≤15时,1800≤1500,不满足题意,舍去. 4≤t <9时,1800-15(9-t )2≤1500,即218610t t -+≥ 解得t舍)或t≤9∵4≤t <9,t ∈N. ∴t =4.(2)由题意可得4410(90)1520,49,2880100,915,t t t N tQ t t N t⎧-++≤<∈⎪⎪=⎨⎪-≤≤∈⎪⎩4≤t <9,t =7时,1520Q ≤-=260(元) 9≤t ≤15,t =9时,28801009Q ≤-=220(元) 答:(1)若平均每趟地铁的载客人数不超过1500人,发车时间间隔为4min.(2)问当发车时间间隔为7min 时,平均每趟地铁每分钟的净收益最大,最大净收益为260元. 【点睛】处理函数的实际应用问题时,如果涉及到分段函数,一定要记得分段去处理,求解出每一段满足的解,同时在分析函数的时候也可以借助每段函数本身具备的性质,必要时利用导数这个工具也是可行的.19.已知函数2()2ln ,,f x x ax bx a b R =+-∈(1)若曲线()y f x =在x =1处的切线为y =2x -3,求实教a ,b 的值. (2)若a =0,且()f x ≤-2对一切正实数x 值成立,求实数b 的取值范围. (3)若b =4,求函数()f x 的单调区间.【答案】(1)1a =,2b =.(2)2b ≥;(3)当a =0时,()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭;当0a <时,()f x 的增区间为⎛ ⎝⎭,减区间为⎫+∞⎪⎪⎝⎭;当01a <<时,()f x 的增区间为⎛ ⎝⎭,减区间为1a ⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为11a a ⎛⎫- ⎪ ⎪⎝⎭;当1a ≥时()f x 在(0,)+∞上单调递增.【解析】(1)根据切线斜率以及函数值,得出等量关系后联立求解; (2)采用分离参数法,构造新函数完成求解;(3)分析导函数中a 的取值,采用分类的思想求解()f x 的单调区间. 【详解】 (1)2()2f x ax b x'=+-,由题意知,(1)1f a b =-=-,(1)222f a b '=+-= 解得1a =,2b =.(2)由题意知,2ln 2x bx -≤-恒成立,整理得2ln 2x b x+≥对任意(0,)x ∈+∞恒成立. 设2ln 2()x g x x+=,则2ln ()xg x x -'=,令()0g x '=,解得1x =. 且当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,即max ()(1)2g x g == 所以2b ≥.(3)当b =4时,2()2ln 4f x x ax x =+-,则22242()24ax x f x ax x x-+'=+-=设2()242h x ax x =-+ ①当a =0,()0h x '<的解集为1,2⎛⎫+∞⎪⎝⎭,()0h x '>的解集为10,2⎛⎫⎪⎝⎭所以()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭.②当0a <时,()0h x '<的解集为⎫+∞⎪⎪⎝⎭,()0h x '>的解集为⎛ ⎝⎭所以()f x 的增区间为⎛ ⎝⎭,减区间为⎫+∞⎪⎪⎝⎭. ③当0a >时,161616(1)a a ∆=-=-若1a ≥,则0∆≤,所以()0h x '<恒成立,()f x 在(0,)+∞上单调递增.若01a <<,则()0h x '<的解集为⎝⎭()0h x '>的解集为11⎛⎛⎫+-+∞ ⎪ ⎪⎝⎭⎝⎭所以()f x 的增区间为10,a ⎛ ⎝⎭,减区间为1a ⎛⎫++∞ ⎪ ⎪⎝⎭,减区间为11,a a ⎛+ ⎝⎭. 【点睛】(1)根据切线方程求解参数的方法:①导数值等于斜率值;②()f x 的函数值等于切线方程的y 值;(2)根据不等式恒成立,求解参数范围的方法:①分离参数法(构造新函数,分析参数范围);②分类讨论法(从临界点出发,求解参数范围). 20.已知数列{n a }的首项a 1=2,前n 项和为n S ,且数列{nS n }是以12为公差的等差数列·(1)求数列{n a }的通项公式;(2)设2nn n b a =,*n N ∈,数列{n b }的前n 项和为n T ,①求证:数列{nT n}为等比数列, ②若存在整数m ,n (m >n >1),使得()()m m n n T m S T n S λλ+=+,其中λ为常数,且λ≥-2,求λ的所有可能值.【答案】(1)1n a n =+;(2)①见证明;②当n =2,m =4时,λ=-2,当n =2,m =3时,λ=-1.【解析】(1)先求解等差数列{}nS n的通项公式,再根据1(2)n n n S S a n --=≥求解{}n a 的通项公式;(2)①采用错位相减法先求n T ,再根据11(0)n n T n c c T n++=≠,证明{}n T n 为等比数列;②将所给的等式变形,然后得到对应的等量关系,接着分析此等量关系(借助数列的单调性)在什么时候满足即m n λ、、取什么值时能满足要求. 【详解】(1)因为12a =,所以121S = 所以1132(1)222n S n n n =+-=+即21322n S n n ==+当2n ≥时,2211311(1)(1)12222n S n n n -=-+-=+-∴11(2)n n n a S S n n -=-=+≥当n=1时,12a =,符合上述通项,所以1()n a n n N *=+∈ (2)①因为1()n a n n N *=+∈,所以2(1)nn b n =+ 所以23222324...2(1)nn T n =⋅+⋅+⋅++⋅+ 则23412222324...2(1)n n T n +=⋅+⋅+⋅++⋅+ 两式相减,可整理得12n n T n +=⋅∴+12n n T n =,+12+1n n T n n T ⋅=,且141T =所以数列n T n ⎧⎫⎨⎬⎩⎭是以4为首项,2为公比的等比数列.②由①可知,12n n T n +=⋅,且由(1)知21322n S n n ==+,代入()()m m n nT m S T n S λλ+=+ 可得21121322213222m n m m m m n n n n λλ++⎛⎫++ ⎪⋅⎝⎭=⋅⎛⎫++ ⎪⎝⎭整理得22232232m n m m n n λλ++=++ 即:22323222n m n n m m λλ++++=,设2322n nn n c λ++=,则m n c c = 则222111(1)3(1)23224222n n n n n n n n n n n c c λλλ+++++++++---+-=-= 因为2λ≥-,所以当3n ≥时,2112402n n n n n c c λ++---+-=<,即1n n c c +< 因为1m n >>,且245143160288c c λλλ+++-=-=≥ 所以2(5)n c c n ≥>所以24c c =或23c c =,即n=2,m =4或3 当n =2,m =4时,λ=-2, 当n =2,m =3时,λ=-1. 【点睛】(1)错位相减法求和:能使用错位相减法的数列的通项公式必须满足:(等差数列)⨯(等比数列)的形式;(2)对于数列中探究等式成立的条件的问题解决方法:先将等式化简,得到一个容易直接证明或者可利用函数或数列性质分析的式子,对此进行分析,然后得出对应结论.21.已知二阶矩阵2331A ⎡⎤=⎢⎥⎣⎦(1)求1A -;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C':x 2一3y 2=1,求曲线C 的方程.【答案】(1)113441122A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;(2)22681y x -= 【解析】(1)求逆矩阵,直接利用逆矩阵计算公式计算即可;(2)设出C C '、上点的坐标,然后根据矩阵A 的对应变换得到坐标间的关系,最后利用C '的方程求解C 的方程. 【详解】解:(1)设a b A c d ⎡⎤=⎢⎥⎣⎦,代入数值则113441122db ad bc ad bc A c a ad bc ad bc --⎡⎤⎡⎤-⎢⎥⎢⎥--==⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦ (2)设C 上任意一点(x ,y ),对应C′上任意一点(x′,y′)2323212+x x y x y x y y '+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦ 得232x x yy x y=+⎧⎨=+''⎩ 又222231(23)3(2)1x y x y x y ''-=⇒+-+= 整理得C :22681y x -= 【点睛】(1)矩阵逆的计算可以选择公式法计算,也可以按照1AA -等于单位矩阵去计算; (2)对于坐标变换的问题,首先需要清楚已知点坐标和待求点坐标的关系,不能将二者弄混淆了,其次就是根据已知的方程求解未知的方程.22.在平面直角坐标系xoy 中,直线l :41x ty at =⎧⎨=+⎩(t 为参数,a 为常数),曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数).若曲线C 上的点P 到直线l 的距离的最大值为3,求a 的值.【答案】3a =【解析】根据圆上点到直线的最大距离等于圆心到直线的距离加上半径. 【详解】解:由条件可知l :440ax y -+=,C :22(2)1x y -+=则圆心到直线的距离:224312316C l a d a a -+==-=⇒=+【点睛】直线的参数方程化为一般方程:消去参数;圆的参数方程化为直角坐标方程:根据22sin cos 1θθ+=化简.23.解不等式22|1|6x x +-< 【答案】{}152x x -<<【解析】分析绝对值部分,采用零点分段的方法求解不等式. 【详解】 解:①21(15,1)226x x x x ⎧⇒∈-⎨-+⎩<< ②[)211,2226x x x x ≥⎧⇒∈⎨-+⎩< 故不等式的解集为:{}152x x -<<. 【点睛】解含绝对值的不等式的方法:(1)零点分段法;(2)几何意义法;(3)函数图象法. 24.如图,四棱锥P-ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA =AD =2,E ,F 分别为PA ,AB 的中点,且DF ⊥CE .(1)求AB 的长;(2)求直线CF 与平面DEF 所成角的正弦值. 【答案】(1)AB =22(2242【解析】(1)建立合适空间直角坐标系,设出B 点坐标,根据DF CE ⊥求解AB 的值; (2)求出平面DEF 的法向量n ,根据|cos ,|sin CF n θ<>=计算线面角的正弦值. 【详解】解:(1)以A 为原点,AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系P (0,0,2),D (0,2,0),设B (2a ,0,0),则C (2a ,2,0),E (0,0,1),F (A ,0,0),0a >.(,2,0)DF a =-,(2,2,1)CE a =--∵DF ⊥CE∴2240DF CE a ⋅=-+=∴a =AB=(2)由(1)知,(2,2,0)DF =-,(2,0,1)EF =-,(2,0)CF =--设平面DEF 的法向量(,,)n x y z =22020n DF x y n EF x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ 解得212x y z ⎧=⎪=⎨⎪=⎩∴(2,1,2)n =设直线CF 与平面DEF 所成角为θ2sin cos ,21CF n CF n CF nθ⋅===【点睛】求解线面角的正弦值时,当求解完已知向量和法向量夹角的余弦后,需要对结果增加一个绝对值,这样才能保证线面角的正弦值是正值,这一点需要注意.25.已知集合A ={1,2,3,4}和集合B ={1,2,3,…,n },其中n ≥5,*n N ∈.从集合A 中任取三个不同的元素,其中最小的元素用S 表示;从集合B 中任取三个不同的元素,其中最大的元素用T 表示.记X =T -S.(1)当n =5时,求随机变量X 的概率分布和数学期望()E X ; (2)求(3)P X n =-.【答案】(1)概率分布见解析,13()4E X =(2)3(3)(27)(3)2(1)(2)n n P X n n n n --=-=-- 【解析】(1)当5n =时,分别考虑T S 、的取值情况,再分析X T S =-的概率分布; (2)考虑3X n =-的可能组成情况,对每一种情况进行概率计算然后概率结果相加得到(3)P X n =-. 【详解】解:(1)当n=5时,B={1,2,3,4,5} 由题意可知,A =1或2,T=3或4或5 则X=T-S=1或2或3或4.则随机变量X 的概率分布为334511(1)40P X C C ===⋅ 23334523(2)20C P X C C ===⋅22233433453(3)8C C C P X C C ⋅+===⋅ 223433459(4)20C C P X C C ⋅===⋅随机变量X 的数学期望113913()123410408204E X =⨯+⨯+⨯+⨯=. (2)因为X=T-S=n -3,所以S=1,T=n-2或S =2,T=n -1 所以222332334(3)(4)(2)(3)33(3)(27)22(3)(1)(2)2(1)(2)42n n nn n n n C C Cn n P X n n n n C C n n n ------⋅+⋅+--=-===--⋅--⋅. 【点睛】本题考查离散型随机变量的概率分布以及排列组合中的概率计算,难度较大.分析随机变量的分布列,一定要考虑到所有的情况,针对每种情况进行概率计算;组合事件的概率计算,可先考虑事件可拆分成哪些基本事件,先分析基本事件的概率,然后求和即可.。

2020届江苏省南京十校上学期12月高三联合调研数学试题(解析版)

2020届江苏省南京十校上学期12月高三联合调研数学试题(解析版)

2020届江苏省南京十校上学期12月高三联合调研数学试题一、填空题1.已知集合{}1,2A =,{}1,2,3B =-,则集合A B =U ______. 【答案】{}1,1,2,3-【解析】利用并集定义直接求解. 【详解】∵集合{}1,2A =,{}1,2,3B =- ∴集合{}1,1,2,3A B ⋃=-. 故答案为:{}1,1,2,3-. 【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题. 2.已知复数21iz i=+,(i 为虚数单位)则复数z 的实部为 . 【答案】1【解析】试题分析:22(1)=112i i i z i i -==++,所以实部为1 【考点】复数概念3.根据如图所示的伪代码,则输出I 的值为______.【答案】10【解析】模拟程序的运行,依次写出每次循环得到的S ,I 的值,直到S 不满足条件跳出循环,输出I 的值即可. 【详解】模拟程序的运行,可得1S =,1I =.满足条件12S ≤,执行循环体,2S =,4I =; 满足条件12S ≤,执行循环体,6S =,7I =; 满足条件12S ≤,执行循环体,13S =,10I =; 不满足条件12S ≤,退出循环,输出I 的值为10. 故答案为:10. 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S ,I 的值是解题的关键,属于基础题.4.某校高一、高二、高三年级的学生人数比为3:3:2,为调查该校学生每天用于课外阅读的时间,现按照分层抽样的方法取若干人,若抽取的高一年级人数为45人,则抽取的样本容量为______. 【答案】120【解析】设样本容量为n ,由抽取的高一年级人数为45人,利用分层抽样的性质能求出抽取的样本容量. 【详解】某校高一、高二、高三年级的学生人数比为3:3:2,为调查该校学生每天用于课外阅读的时间,现按照分层抽样的方法取若干人,设样本容量为n . ∵抽取的高一年级人数为45人 ∴332451203n ++=⨯=. 故答案为;120. 【点睛】本题考查样本容量的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.5.函数f(x)=ln(1)x +____________. 【答案】(]1,2-.【解析】由题意得到关于x 的不等式组,解不等式组可得函数的定义域. 【详解】 由题意得21040x x +>⎧⎨-≥⎩,解得12x -<≤, 所以函数的定义域为(]1,2-. 【点睛】已知函数的解析式求函数的定义域时,可根据解析式的特征得到关于自变量x 的不等式(组),解不等式(组)后可得函数的定义域.6.甲、乙两人依次从标有数字1,2,3的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字3的卡片的概率为______. 【答案】13【解析】先求出基本事件总数326n =⨯=,两人均未抽到标有数字3的卡片包含的基本事件个数212m =⨯=,由此能求出两人均未抽到标有数字3的卡片的概率. 【详解】甲、乙两人依次从标有数字1,2,3的三张卡片中各抽取一张(不放回),基本事件总数326n =⨯=,两人均未抽到标有数字3的卡片包含的基本事件个数212m =⨯=,则两人均未抽到标有数字3的卡片的概率为2163m p n ===. 故答案为:13. 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.7.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.【答案】y x = 【解析】利用双曲线的离心率求出a ,b 关系,然后求解渐近线方程即可. 【详解】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =. ∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即2y x =±.故答案为:y x =. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查. 8.已知函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭,若函数()y f x ϕ=-(02πϕ<<)是偶函数,则ϕ=______. 【答案】512π 【解析】直接利用正弦型函数的性质的应用和函数的对称性的应用求出结果. 【详解】∵函数()sin 23f x x π⎛⎫=+⎪⎝⎭∴函数()sin 223y f x x πϕϕ⎛⎫=-=-+ ⎪⎝⎭∵函数()y f x ϕ=-(02πϕ<<)是偶函数∴232k ππϕπ-+=+,k Z ∈ ∴212k ππϕ=--,k Z ∈ ∵02πϕ<<∴当1k =-时,512πϕ=. 故答案为:512π. 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.已知数列{}n a 是首项为1,公差为正数的等差数列,其前n 项和为n S ,若2a ,6a ,22a 成等比数列,则10S =______.【答案】145【解析】设等差数列的公差为d ,0d >,运用等比数列的中项性质和等差数列的通项公式,解方程可得d ,由等差数列的求和公式,计算可得所求和. 【详解】设等差数列{}n a 的公差为d ,0d >. ∵2a ,6a ,22a 成等比数列∴26222a a a =,即()()()2111521a d a d a d +=++.∴133d a ==∴101104510453145S a d =+=+⨯=. 故答案为:145. 【点睛】本题考查等差数列的通项公式和求和公式,等比数列的中项性质,考查方程思想和运算能力,属于基础题.10.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省. 【答案】12【解析】设圆柱的高为h ,底面半径为r ,根据容积为128π个立方单位可得2128r h ππ=,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值. 【详解】设圆柱的高为h ,底面半径为r .∵该圆柱形的如罐的容积为128π个立方单位 ∴2128r h ππ=,即2128h r =. ∴该圆柱形的表面积为222212825622222S r rh r r r r rππππππ=+=+⋅=+. 令()22562g r r r ππ=+,则()22564g r r r ππ'=-. 令()0g r '>,得4r >; 令()0g r '<,得04r <<.∴()g r 在()0,4上单调递减,在()4,+∞上单调递增. ∴当4r =时,()g r 取得最小值,即材料最省,此时12r h =. 故答案为:12. 【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.11.在平面直角坐标系xOy 中,已知直线l :30xy m +-=,点()3,0A ,动点P 满足2227PO PA -=.若P 点到直线l 的距离恒小于8,则实数m 的取值范围______. 【答案】()9,3-【解析】设(),P x y ,由已知列式求得点P 的轨迹方程,可得P 在以()3,0-为圆心,以5为半径的圆上,把P 点到直线l 的距离恒小于8,转化为圆心到直线的距离小于3列式求解,即可得到m 的取值范围. 【详解】 设(),P x y .∵()3,0A ,动点P 满足2227PO PA -=∴()()2222237x y x y ⎡⎤+--+=⎣⎦,即()22325x y ++=.∴P 在以()3,0-为圆心,以5为半径的圆上 ∵P 点到直线l :30x y m +-=的距离恒小于8∴()223313m--<+,解得93m -<<.故答案为:()9,3-. 【点睛】本题考查轨迹方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题. 12.如图,在ABC ∆中,3AB =,2AC =,2BD DC =u u u r u u u r,E 为AC 的中点,AD 与BE 交于点F ,G 为EF 的中点.AG CF ⋅=u u u r u u u r______.【答案】34-【解析】根据2BD DC =u u u r u u u r ,设2133AF AD AB AC λλ⎛⎫==+ ⎪⎝⎭u u u r u u u r u u ur u u u r ,再根据B ,F ,E 三点共线,设()112AF AB AE AB AC μμμμ-=+-=+u u u r u u u r u u u r u u u r u u u r ,即可求出λ,从而得出AF u u u r,CFuuu r,进而求出AG CF ⋅u u u r u u u r 的值. 【详解】根据2BD DC =u u u r u u u r ,设2133AF AD AB AC λλ⎛⎫==+ ⎪⎝⎭u u u r u u u r u u ur u u u r∵F ,E ,B 三点共线∴设()112AF AB AE AB AC μμμμ-=+-=+u u u r u u u r u u u r u u u r u u u r ∴23132λμλμ⎧=⎪⎪⎨-⎪=⎪⎩,解得34λ=∴1124AF AB AC =+u u u r u u u r u u u r ,11132448AG AF AE AB AC =+=+u u u r u u u r u u u r u u u r u u u r ,1324CF CA AF AB AC =+=-u u u r u u u r u u u r u u u r u u u r∴2211313119224242416AG CF AB AC AB AC AB AC ⎛⎫⎛⎫⎛⎫⋅=+-=-⎪⎪ ⎪⎝⎭⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r∵AB =2AC =,∴11933424164AG CF ⎛⎫⋅=⨯-⨯=- ⎪⎝⎭u u u r u u u r故答案为:34-. 【点睛】本题考查了向量数乘的几何意义,向量减法的几何意义,向量数量积的运算,考查了计算和推理能力,属于中档题.13.已知0a >,0b >,且31126a b a b ++≤+,则3ab a b+的最大值为______. 【答案】19【解析】将不等式两边同乘以31a b+,再将不等式两边化简,然后利用基本不等式即可求得最大值. 【详解】∵0a >,0b >,且31126a b a b++≤+∴()23131126a b a b a b ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭∵()31361863631126312156b a b a a b a b a a b b a b a b ⎛⎫⎛⎫⎛⎫+++=+++++=++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ∴()313131126156276a b a b a b a b ⎛⎫⎛⎫⎛⎫+++≥++=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当6a b =时取等号.令()310t t a b+=>,原不等式转化为2276t t +≤,解得9t ≥. ∴1113139ab a b t a b ==≤++故答案为:19.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).14.已知偶函数()f x 满足()()44f x f x +=-,且当[]0,4x ∈时,()()xxf x =,关于x 的不等式()()20fx af x +>在区间[]400,400-上有且仅有400个整数解,则实数a 的取值范围______.【答案】31223e ,e --⎛⎤-- ⎥⎝⎦【解析】由已知条件可知函数()f x 关于直线4x =对称,周期为8,故不等式()()20f x af x +>在区间[]0,8上有且仅有4个整数解,作出函数图象,进而得解.【详解】∵()f x 满足()()44f x f x +=- ∴函数()f x 关于直线4x =对称 ∵函数()f x 为偶函数∴()()()8f x f x f x +=-=∴()f x 周期为8,则在区间[]400,400-上有100个周期 ∵()()20f x af x +>在[]400,400-上有且仅有400个整数解 ∴()()20fx af x +>在[]0,8有且仅有4个整数解当04x ≤≤时,()()xxf x e=,则()()112xx f x e -'=.∴令()0f x '>,则02x ≤<,()f x 在[)0,2上单调递增;令()0f x '<,则24x <≤,()f x 在(]2,4上单调递减,其中()22f e=. 做出函数在区间[]0,8上的图象如图所示:∵()1f e =,()()31f f e e=>,()()20f x af x +>在[]0,8上有4个整数解,则()f x a >-在[]0,8上有4个整数解.a e e e ≤-<∴a e ee<≤. 故答案为:31223e ,e --⎛⎤-- ⎥⎝⎦.【点睛】本题考查函数性质的运用及导数在解决函数问题中的应用,考查数形结合思想及转化能力,属于较难题目.二、解答题15.已知分别为ABC ∆三个内角A 、B 、C 的对边,且3tan 4A = (1)若65a =,2b =,求边c 的长; (2)若()sin A B -=,求tan B 的值 【答案】(1)85c =;(2)13【解析】(1)由正切值可得0,2A π⎛⎫∈ ⎪⎝⎭,进而可求得sin A 与cos A ,再由余弦定理即可求得边c 的值; (2)根据()sin 10A B -=,求得()cos A B -,进而求得()tan A B -,从而可求出tan B 的值.【详解】(1)在ABC ∆中,由3tan 4A =可知0,2A π⎛⎫∈ ⎪⎝⎭,由22sin 3cos 4sin cos 1A A A A ⎧=⎪⎨⎪+=⎩解得3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩由余弦定理,2222cos a b c bc A =+-得2226422255c c ⎛⎫=+-⋅⋅⋅ ⎪⎝⎭,即216640525c c -+=,解得85c =. (2)由0,2A π⎛⎫∈ ⎪⎝⎭且()0,B π∈,得,2A B ππ⎛⎫-∈- ⎪⎝⎭. 又()sin 010A B -=>,则0,2A B π⎛⎫-∈ ⎪⎝⎭,则()cos 0A B ->. 所以()cos A B -==,所以()()()sin 1tan cos 3A B A B A B --==-所以()() ()31tan tan143tan tan311tan tan3143A A BB A A BA A B---=--===⎡⎤⎣⎦+⋅-+⋅.【点睛】考查余弦定理及两角差的正弦公式,给出一个角的三角函数值,求其他三角函数值,属于简单题.16.如图,在斜三棱柱111ABC A B C-中,已知ABC∆为正三角形,D,E分别是AC,1CC的中点,平面11AA C C⊥平面ABC,11A E AC⊥.(1)求证://DE平面11AB C;(2)求证:1A E⊥平面BDE.【答案】(1)见解析;(2)见解析【解析】(1)根据D,E分别是AC,1CC的中点,即可证明1//DE AC,从而可证//DE平面11AB C;(2)先根据ABC∆为正三角形,且D是AC的中点,证出BD AC⊥,再根据平面11AA C C⊥平面ABC,得到BD⊥平面11AAC C,从而得到1BD A E⊥,结合11A E AC⊥,即可得证.【详解】(1)∵D,E分别是AC,1CC的中点∴1//DE AC∵DE⊄平面11AB C,1AC⊂平面11AB C∴//DE平面11AB C.(2)∵ABC ∆为正三角形,且D 是AC 的中点 ∴BD AC ⊥∵平面11AA C C ⊥平面ABC ,且平面11AAC C I 平面ABC AC =,BD ⊂平面ABC ∴BD ⊥平面11AAC C ∵1A E ⊂平面11AAC C ∴1BD A E ⊥∵11A E AC ⊥且1//DE AC ∴1A E DE ⊥∵DE ,BD ⊂平面BDE ,且DE BD D ⋂= ∴1A E ⊥平面BDE . 【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题. 17.如图,已知椭圆22221x y a b+=(0a b >>)的焦点到相应准线的距离为3,离心率为12,过右焦点F 作两条互相垂直的弦AB 、CD ,设AB ,CD 的中点分别为M 、N .(1)求椭圆的标准方程;(2)若弦AB ,CD 的斜率均存在,且OMF ∆和ONF ∆的面积分别为1S ,2S ,试求当12S S 最大时的方程.【答案】(1)22143x y +=;(2)10x y +-=或10x y --= 【解析】(1)直接根据椭圆的几何性质得到a ,b 的值;(2)设出直线AB 的方程与椭圆方程联立,求出OMF ∆的面的表达式,同理求出ONF ∆的面积不等式,从而可求出12S S ,利用基本不等式即可求其最大值,从而得解.【详解】(1)由题意:23a c c-=,12c e a ==,则2a =,1c =,b =为22143x y +=.(2)由题意可得()1,0F .∵AB ,CD 斜率均存在,设直线AB 方程为:()1y k x =-(0k ≠),()11,A x y ,()22,B x y ,则1212,122x x x x M k ⎛++⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.∴由()221,3412,y k x x y ⎧=-⎨+=⎩得()22223484120kxk x k +-+-=.∴2122834k x x k +=+,212241234k x x k -=+,则22243,3434k k M k k ⎛⎫- ⎪++⎝⎭. ∴同理可得2243,3434k N k k ⎛⎫⎪++⎝⎭∴()12312234M k S OF y k =⋅⋅=+,()22312234Nk S OF y k =⋅⋅=+ ∴()21242229911441225121225k S S k k k k ==⋅⎛⎫++++ ⎪⎝⎭,∵2212k k +≥,当且仅当221k k =即1k =±时取等号 ∴当1k =±时,12S S 最大,此时直线AB 的方程为10x y +-=或10x y --=. 【点睛】本题考查椭圆的几何性质,椭圆方程,直线与椭圆的位置关系,三角形的面积的最值等,考查函数最值,重要不等式,属于难题.18.如图,某湿地公园的鸟瞰图是一个直角梯形,其中:AB CD ∥,AB BC ⊥,75DAB ∠=︒,AD 长1千米,AB千米,公园内有一个形状是扇形的天然湖泊DAE ,扇形DAE 以AD 长为半径,弧DE 为湖岸,其余部分为滩地,B ,D 点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段BQ -线段QP -弧PD,其中Q在线段BC上(异于线段端点),QP与弧DE相切于P点(异于弧端点]根据市场行情BQ,OP段的建造费用是每千米10万元,湖岸段弧PD的建造费用是每千米()20213+万元(步行道的宽度不计),设PAE∠为θ弧度观光步行道的建造费用为w万元.(1)求步行道的建造费用w关于θ的函数关系式,并求其走义域;(2)当θ为何值时,步行道的建造费用最低?【答案】(1)()1cos251021sin312wθπθθ⎡-⎤⎛⎫=++-⎪⎢⎥⎝⎭⎣⎦,定义域:5,412ππθ⎛⎫∈ ⎪⎝⎭;(2)当3πθ=时,步行道的建造费用最低.【解析】(1)以A为坐标原点,以AB所在直线为x轴建立平面直角坐标系,可得»DE 所在圆的方程为221x y+=,可得()cos,sinPθθ,从而求得PQ所在直线方程,与BC 所在直线方程联立求得Q坐标,即可得到BQ与PQ,再由弧长公式求»DP的长,再根据QP与»DE相切于P点(异于弧端点)与512DABπ=∠,即可求得函数关系式与其定义域;(2)令()1cos25sin312fθπθθθ-⎛⎫=+-⎪⎝⎭,利用导数求使步行道的建造费用最低时的θ值.【详解】(1)以A为坐标原点,以AB所在直线为x轴建立平面直角坐标系,如图所示:则»DE所在圆的方程为221x y +=,()cos ,sin P θθ,)2,0B ,直线PQ :cos sin 1x y θθ+=.∵直线BC 的方程为2x =∴122,sin Q θθ⎫⎪⎪⎭. 所以12sin BQ θθ-=,2cos sin PQ θθ=,弧PD 长512πθ=-, 所以)202112cos 2cos 510312w θθπθ--⎛⎫=+- ⎪⎝⎭⎝⎭,化简得)1cos 251021sin 312w θπθθ⎡-⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦.∵QP 与»DE 相切于P 点(异于弧端点),512DAB π=∠ ∴定义域:5,412ππθ⎛⎫∈⎪⎝⎭. (2)令()1cos 25sin 312fθπθθθ-⎛⎫=+- ⎪⎝⎭,求导得()21cos 2sin 3f θθθ-'=-,令()21cos 20sin 3f θθθ-'=-=, cos 1θ=(舍去),1cos 2θ=,3πθ=,θ,43ππ⎛⎫ ⎪⎝⎭ 3π5,312ππ⎛⎫ ⎪⎝⎭()f θ'-+所以当3πθ=时,()fθ最小,即w 最小,当3πθ=时,步行道的建造费用最低.【点睛】本题考查根据实际问题选择函数模型,考查直线与圆位置关系的应用,利用导数求最值,是中档题.19.已知函数()3232f x x x x =-+,()g x tx =,t R ∈.(1)求函数()()x f x e x xϕ⋅=的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0,m ,n ,其中m n <.①若12m n =,求函数()h x 在 x m =处的切线方程; ②若对[],x m n ∀∈,()16h x t ≤-恒成立,求实数t 的去取值范围.【答案】(1)单调增区间是⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭;(2)①1y x =-+,②124t -<<或211t <≤ 【解析】(1)先求得函数()()xf x e x xϕ⋅=,对函数()x ϕ求导,令()x ϕ'大于零,解不等式即可求得单调增区间;(2)易知3m n +=,2mn t =-,①求出m ,n 的值,进而求得切线方程;②由对[],x m n ∀∈,()16h x t ≤-恒成立,可得()max 16h x t ≤-,分302m n <<<与0m n <<两种情况讨论,从而可求得t 的取值范围.【详解】(1)∵()()x f x e x xϕ⋅=,()3232f x x x x =-+∴()()232xx x x e ϕ=-+∴()()21xx x x e ϕ'=--,令()0x ϕ'>,得x <x >∴()x ϕ的单调增区间是⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭. (2)由方程()0h x =,得m ,n 是方程()2320x x t -+-=的两实根,故3m n +=,2mn t =-,且由判别式得14t >-.①若12m n =,得1m =,2n =,故22mn t =-=,得0t =,因此()11h '=-,故函数()h x 在1x =处的切线方程为1y x =-+. ②若对任意的[],x m n ∈,都有()16h x t ≤-成立,所以()max 16h x t ≤-. 因为3m n +=,m n <,所以302m n <<<或0m n <<. 当302m n <<<时,对[],x m n ∈有()max 0h x =,所以016t ≤-,解得16t ≤.又因为20mn t =->,得2t <,则有124t -<<;当0m n <<时,()()2362h x x x t '=-+-,则存在()h x 的极大值点()1,0x m ∈,且211362t x x =-+.由题意得()()3211113216h x x x t x t =-+-≤-,将211362t x x =-+代入得321113370x x x -++≥进而得到()3118x -≥-,得110x -≤<. 又因为211362t x x =-+,得211t <≤.综上可知t 的取值范围是124t -<<或211t <≤. 【点睛】本题考查利用导数研究函数的单调性,极值及最值,考查导数的几何意义,考查运算求解能力及分类讨论思想,属于中档题.本题覆盖面广,对考生计算能力要求较高,是一道难题,解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出,本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.20.已知等差数列{}n a 的前n 项和n S ,且满足23a =,2420S S +=,数列{}n b 是首项为2,公比为q (0q ≠)的等比数列. (1)求数列{}n a 的通项公式;(2)设正整数k ,t ,r 成等差数列,且k t r <<,若11k r r k a b a b a b +=+=+,求实数q 的最大值;(3)若数列{}n c 满足,21,2k n k a n k c b n k=-⎧=⎨=⎩,k *∈N ,其前n 项和为n T ,当3q =时,是否存在正整数m ,使得221mm T T -恰好是数列{}n c 中的项?若存在,求岀m 的值;若不存在,说明理由.【答案】(1)21n a n =-;(2)12-;(3)存在,1m =或2m = 【解析】(1)根据等差数列{}n a 的前n 项和为n S ,且满足23a =,2420S S +=,可得数列{}n a 的通项公式;(2)根据k ,t ,r 成等差数列与11k r r k a b a b a b +=+=+,推导出2t k r q q q +=,从而得出()2r k t k -=-,令t k n -=,则2210n nq q --=,从而可得q 的最大值;(3)根据题设条件可得()2221212212131333131m m m m m m T m T m m ----+-==-≤+-+-,再利用221m m T T -恰好是数列{}n c 中的项,可得只能为1c ,2c ,3c ,利用分类思想,即可求出m 的值. 【详解】(1)等差数列中,23a =,2420S S +=,111324620a d a d a +=⎧∴⎨+++=⎩解得11a =,2d =,21n a n ∴=-. (2)正整数k ,t ,r 成等差数列,且k t r <<,若k t t r r k ab a b a b +=+=+,111212212212t r k k q t q r q ---∴-+=-+=-+,11t r t k q q --∴-=-,11r k r t q q ---=-又t k r t -=-1111t r r k qq q q ----∴-=-整理可得2t k r q q q +=.210r k t k q q --∴--=.又t k r t -=-,()2r k t k ∴-=-,令t k n -=,则2210n nq q --=,12n q ∴=-或1.又1q ≠±,12nq ∴=-.∴n 为奇数,10q -<<,112n q ⎛⎫=- ⎪⎝⎭为递减数列∴当1n =时,q 取最大值12-.(3)由题意得()()2221312131213mmmm m Tm -+-=+=+--,2112212312331m m m m m m T T c m m ---=-=+--⋅=+-.()2221212212131333131m m m m m m T m T m m ----+-∴==-≤+-+- 若221mm T T -恰好是数列{}n c 中的项只能为1c ,2c ,3c , 第一类:若21211mm T c T -==,则130m -=,所以m 无解; 第二类:若221212mm T c b T -===,则12310m m --+=.由题意1m =不符合题意,2m =符合题意.当3m ≥时,令()1231x f x x -=-+(3x ≥),则()13ln32x f x x -'=-,设()13ln32x g x x -=-,则()()213ln320x g x -'=->,即()f x ¢为增函数,故()()30f x f ''≥>,()f x \为增函数.故()()310f x f ≥=>, 即当3m ≥时,12310m m --+=无解,即2m =是方程唯一解.第三类:若232213mm T c a T -===,则21m =,即1m = 综上所述,1m =或2m =. 【点睛】本题考查等差数列的通项公式的求法,考查运算求解能力,考查函数与方程思想,是难题.21.已知点()2,2P ,在矩阵21a M b ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为点()4,6Q . (1)求a 和b 的值;(2)若直线l 在M 对应的变换作用下变为直线20x y +=,求直线l 的方程. 【答案】(1)0a =,2b =;(2)30x y +=【解析】(1)由矩阵的点变换可得a ,b 的方程组,解方程可得a ,b 的值; (2)设直线l 上任意一点()00,P x y 经矩阵M 变换为(),P x y ''',由点变换可得方程,即可得到所求直线l 的方程. 【详解】 (1)224126a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,424226a b +=⎧⎨+=⎩解得02a b =⎧⎨=⎩,∴0a =;2b =. (2)由(1)知2021M ⎡⎤=⎢⎥⎣⎦,M T :202212x x x y y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'+⎣⎦⎣⎦⎣⎦⎣⎦,设直线l 上任意一点()00,P x y 经矩阵M 变换为(),P x y ''',则00022x x y x y ='=+'⎧⎨⎩.∵20x y ''+=,∴()0002220x x y ++=即0030x y +=, ∴直线l 的方程为30x y +=. 【点睛】本题考查矩阵的点变换,考查方程思想和运算能力,属于基础题.22.在平面直角坐标系xOy 中,已知直线l的参数方程为1,22,2x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于两点A ,B ,求线段AB 的长.【答案】(1)l20y -+=,C :()()22228x y -+-=;(2)【解析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换; (2)由(1)可得曲线C 是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得AB 的长. 【详解】(1)由题意可得直线l20y -+=,由4πρθ⎛⎫=+⎪⎝⎭,得24cos 4sin ρρθρθ=+,即2244x y x y +=+,所以曲线C :()()22228x y -+-=.(2)由(1)知,圆()2,2C,半径r =∴圆心到直线l 的距离为:d ==∴AB ===【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题.23.设函数()22f x x x =-++,若不等式242a b a b a --+≤()f x 对任意a ,b R ∈,且0a ≠恒成立,求实数x 的取值范围.【答案】52x ≤-或52x ≥ 【解析】先由()()2422425a b a b a b a b a --+≤-++=,可得()5f x ≥,从而可得实数x 的范围. 【详解】()()2422425a b a b a b a b a --+≤-++=Q又0a ≠Q0a ∴>,由题意,得()5a a f x ≤.∴()5f x ≥,则225x x -++≥,解得52x ≤-或52x ≥. ∴x 的取值范围是52x ≤-或52x ≥ 【点睛】本题主要考查绝对值不等式的几何性质及求解方法,考查学生对基础知识的掌握情况. 24.在平面直角坐标系xOy 中,已知抛物线C :22y px =(0p >)的焦点F 在直线10x y +-=上,平行于x 轴的两条直线1l ,2l 分别交抛物线C 于A ,B 两点,交该抛物线的准线于D ,E 两点.(1)求抛物线C 的方程;(2)若F 在线段AB 上,P 是DE 的中点,证明:AP EF P . 【答案】(1)24y x =;(2)见解析【解析】(1)根据抛物线的焦点在直线10x y +-=上,可求得p 的值,从而求得抛物线的方程;(2)法一:设直线1l ,2l 的方程分别为y a =和y b =且0a ≠,0b ≠,a b ¹,可得A ,B ,D ,E 的坐标,进而可得直线AB 的方程,根据F 在直线AB 上,可得4ab =-,再分别求得AP k ,EF k ,即可得证;法二:设()11,A x y ,()22,B x y ,则121,2y y P +⎛⎫- ⎪⎝⎭,根据直线AB 的斜率不为0,设出直线AB 的方程为1x my -=,联立直线AB 和抛物线C 的方程,结合韦达定理,分别求出AP k ,EF k ,化简AP EF k k -,即可得证. 【详解】(1)抛物线C 的焦点F 坐标为,02p ⎛⎫⎪⎝⎭,且该点在直线10x y +-=上, 所以102p-=,解得2p =,故所求抛物线C 的方程为24y x = (2)法一:由点F 在线段AB 上,可设直线1l ,2l 的方程分别为y a =和y b =且0a ≠,0b ≠,a b ¹,则2,4a A a ⎛⎫⎪⎝⎭,2,4b B b ⎛⎫ ⎪⎝⎭,()1,D a -,()1,E b -.∴直线AB 的方程为222444b a a y a x b a ⎛⎫--=- ⎪⎝⎭-,即()40x a b y ab -++=.又点()1,0F 在线段AB 上,∴4ab =-. ∵P 是DE 的中点,∴1,2a b P +⎛⎫- ⎪⎝⎭∴224224142APa ba a a k a a a ++-===++,4222EFAP b a k k a -====--. 由于AP ,EF 不重合,所以//AP EF 法二:设()11,A x y ,()22,B x y ,则121,2y y P +⎛⎫- ⎪⎝⎭当直线AB 的斜率为0时,不符合题意,故可设直线AB 的方程为1x my -= 联立直线AB 和抛物线C 的方程214x my y x-=⎧⎨=⎩,得2440y my --= 又1y ,2y 为该方程两根,所以124y y m +=,124y y =-,()()112121112121AP y y y y y k x x -+-==++,22EF y k =-. ()()()()()211121122112111114144021111AP EFy y y y y y y y x y y x k k x x x x -++-+++-=====++++,EF AP k k = 由于AP ,EF 不重合,所以//AP EF 【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.25.甲、乙两人用一颗均匀的骰子(一种正方体玩具,六个面分别标有数字1,2,3,4,5,6)做抛掷游戏,并制定如下规则:若掷出的点数不大于4,则由原掷骰子的人继续掷,否则,轮到对方掷.已知甲先掷.(1)若共抛掷4次,求甲抛掷次数的概率分布列和数学期望; (2)求第n 次(2n ≥,n *∈N )由乙抛掷的概率.【答案】(1)分布列见解析,()7427E ξ=;(2)2111263n n P -⎛⎫=-⋅ ⎪⎝⎭【解析】(1)分别求出点数不大于4的概率和大于4的概率,设甲抛掷次数为ξ,ξ的可能取值为1,2,3,4,进而可得甲抛掷次数的概率分布列和数学期望;(2)设第n 次(2n ≥,n *∈N )由乙抛掷的概率为n P ,则第n 次(2n ≥,n *∈N )由乙抛掷这个事件包含第1n -次由乙抛掷,第n 次仍由乙抛掷和第1n -次由甲抛掷,第n 次由乙抛掷这两个互斥的事件,进而得出()1121133n n n P P P --=⋅+-⋅,从而可得1112213n n P P -⎛⎫-- ⎪⎝⎭=,根据213P =,结合等比数列,即可得到n P . 【详解】(1)由已知,掷出的点数不大于4的概率为23,大于4的概率为13,抛掷4次,设甲抛掷次数为ξ,ξ的可能取值为1,2,3,4.()1224133327P ξ==⋅⋅=,()2121111217233333333327P ξ==⋅⋅+⋅⋅+⋅⋅=,()2212111128333333333327P ξ==⋅⋅+⋅⋅+⋅⋅=,()2228433327P ξ==⋅⋅=,分布列:则()47887412342727272727E ξ=⋅+⋅+⋅+⋅= (2)设第n 次(2n ≥,n *∈N )由乙抛掷的概率为n P ,则第n 次(2n ≥,n *∈N )由乙抛掷这个事件包含第1n -次由乙抛掷,第n 次仍由乙抛掷和第1n -次由甲抛掷,第n 次由乙抛掷这两个互斥的事件, 所以,()111211113333n n n n P P P P ---=⋅+-⋅=+(3n ≥), 所以,1112213n n P P -⎛⎫-- ⎪⎝⎭=(3n ≥),又213P =,所以,21126P -=-所以,当2n ≥,n *∈N 时,12n P ⎧-⎫⎨⎬⎩⎭为等比数列,则2111263n n P -⎛⎫-=-⋅ ⎪⎝⎭,所以,2111263n n P -⎛⎫=-⋅ ⎪⎝⎭,第n 次(2n ≥,n *∈N )由乙抛掷的概率2111263n n P -⎛⎫=-⋅ ⎪⎝⎭.【点睛】本题考查的知识点是随机变量的分布列和数学期望,互斥事件概率加法公式,关键是对题意的理解,是难题.。

2020届江苏省南京市高三数学上学期期初学情调研考试试题Word版含解析

2020届江苏省南京市高三数学上学期期初学情调研考试试题Word版含解析

2020届江苏省南京市高三上学期期初学情调研考试数学试题一、填空题1.若集合P ={-1,0,1,2},Q ={0,2,3},则P ∩Q =__________. 【答案】{0,2}【解析】因为交集就是由两个集合的公共元素组成的集合,集合P ={-1,0,1,2},Q ={0,2,3},所以{}0,2P Q ⋂=,故答案为{}0,2.2.若(a +b i)(3-4i)=25 (a ,b ∈R ,i 为虚数单位),则a +b 的值为__________. 【答案】7【解析】()()()()i 34i 3434i=25a b a b b a +-=++-, 34253{{ 3404a b a b a b +==∴⇒-==, 7a b +=,故答案为7.3.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为__________. 【答案】16 【解析】试题分析:因为高校甲乙丙丁四个专业分别有150150400300,,,名学生,所以本校共有学生1000名,因为用分层抽样的方法从该校四个专业共抽取40名学生进行调查,所以每个个体被抽到的概率是401100025=,因为丙专业有400人,所以要抽取14001625⨯=人.【考点】分层抽样.4.如图所示的算法流程图,若输出y 的值为,则输入x 的值为__________.【解析】该程序框图表示的是函数()()22,0{log ,0x x f x x x <=-≥,若()21log 2x -=,则0x =≥,不合题意,若1log22x =,则0x =<合题意,故输入的x值为,故答案为. 5.记函数f (x )=的定义域为D .若在区间[-5,5]上随机取一个数x ,则x ∈D 的概率为__________. 【答案】12【解析】由2430x x --≥,得23x -≤≤,因为[]4,1D =-,所以由几何概型概率公式得,在区间上随机取一个数x ,则x D ∈的概率()()411552P --==--,故答案为12.【方法点睛】本题題主要考查“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型,求与区间有关的几何概型问题关鍵是计算问题题的总区间以及事件的区间;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.6.在平面直角坐标系xOy 中,双曲线-=1的焦点到其渐近线的距离为__________. 【答案】3【解析】双曲线方程为221169x y -=, 216925c ∴=+=,焦点坐标为()5,0,渐近线方程为 340x y -=,由点到直线距离公式得双曲线221169x y -=的焦点到其渐近线的距离为: 15035d -==,故答案为3.7.已知实数x ,y 满足条件则z =3x -2y 的最大值为__________.【答案】6【解析】画出24{3 8x y x y ≤≤≥+≤表示的可行域如图,平移直线3122y x z =+,由图知,当直线过点()4,3A 时, 32z x y=-有最大值6,故答案为6.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm 3,则该圆柱的侧面积为___________cm 2. 【答案】18【解析】设正方体棱长为a ,则正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为2327,3a a a a πππ⨯===,圆柱侧面积22218S a a a πππ=⨯==,故答案为18π.9.若函数f (x )=A sin(x +)(A >0,>0,||)的部分图象如图所示,则f (-π)的值为__________.【答案】-1【解析】由图可知, 2A =,322,34443T T πππππωω=-===⇒=,又由2034πϕ⨯+=,得6πϕ=-, ()()222,213636f x sin x f sin ππππ⎛⎫⎛⎫∴=--=--=- ⎪ ⎪⎝⎭⎝⎭,故答案为1-.【方法点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,正确求ωϕ,使解题的关键.求解析时求参数ϕ是确定函数解析式的关键,由特殊点求ϕ时,一定要分清特殊点是“五点法”的第几个点, 用五点法求ϕ值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与x 轴的交点) 时0x ωϕ+=;“第二点”(即图象的“峰点”) 时2x πωϕ+=;“第三点”(即图象下降时与x 轴的交点) 时x ωϕπ+=;“第四点”(即图象的“谷点”) 时32x πωϕ+=;“第五点”时2x ωϕπ+=.10.记等差数列{a n }前n 项和为S n .若a m =10,S 2m -1=110, 则m 的值为__________.【答案】6 【解析】{}n a 是等差数列,()()()2112212110211102m m m a a S m m a m -+∴=⨯-=-=-=,可得6m =,故答案为6.11.已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是__________. 【答案】(-∞,2] 【解析】()f x 是定义在R 上的奇函数,且在(-∞,0]上为单调增函数, ()f x ∴在()0,+∞也是增函数,即()f x 在R 上递增,又()()()()12,12,2321f f f x f -=-∴=∴-≤=, 231,2x x -≤≤,即满足()232f x -≤的x 的取值范围是(],2-∞,故答案为(],2-∞.12.在△ABC 中,AB =3,AC =2,∠BAC =120=λ.若·=-,则实数λ的值为__________.【答案】13【解析】3,2,120A B A C B A C ==∠=,∴由余弦定理可得BC =,又根据余弦定理可得cosABC ∠=, ()2AM BC BM BA BC BC BA BC λ⋅=-⋅=-⋅ 171933λ=-=-,解得13λ=,故答案为13. 13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为__________. 【答案】-43【解析】M 在()()22221x y -+-=, ∴可设()2cos ,2M sin θθ++,可得()2cos ,2N sin θθ+--,将N 的坐标代入30kx y ++=,可得cos 21sin k k θθ-=+, 21k +≤,化为得24340,03k k k +≤-≤≤, k 的最小值为43-,故答案为43-.14.已知函数f (x )=若存在唯一的整数x ,使得>0成立,则实数a 的取值范围为__________.【答案】[0,2]∪[3,8]【解析】()()0f x a f x a xx --=-表示()y f x =上的点()(),x f x 与()0,a 在线的斜率,做出()y f x =的图象,由图可知, []0,2a ∈时,有一个点整数点()()1,1f 满足()00f x a x ->-,符合题意, ()2,3a ∈时,有两个整数点()()()()1,1,1,1f f --满足()00f x a x ->-,不合题意, []3,8a ∈时,只有一个点()()1,1f --满足()00f x a x ->-符合题意,当8a >时,至少存在两点()()()()1,1,2,2f f ----满足()00f x a x ->-不合题意,故答案为[][]0,23,8⋃.【方法点睛】本题主要考查不等式的整数解、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.二、解答题 15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .【答案】(1)见解析(2)见解析【解析】试题分析:(1)先根据直棱柱的性质,可得AE ⊥平面ABC ,可得1CC AE ⊥,再根据等腰三角形性质可得AE BC ⊥,从而可得AE ⊥平面11B BCC ,进而得出结果;(2)连接1A B ,设11A B AB F ⋂=,连接EF ,由平行四边形的性质结合中位线定理可得1//EF A C .根据线面平行的判定定理可得结果. 试题解析:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1ABC .因为AE ⊥平面ABC ,所以CC 1⊥AE .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为BC 在平面B 1BCC 1,内,CC 1在平面B 1BCC 1内 且BC ∩CC 1=C ,所以AE ⊥平面B 1BCC 1. 因为AE 在平面AB 1E 内所以平面AB 1E ⊥平面B 1BCC 1. (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形, 所以F 为A 1B 的中点. 又因为E 是BC 的中点,所以EF ∥A 1C .因为EF 在平面AB 1E 内,A 1C 不在平面AB 1E 内, 所以A 1C ∥平面AB 1E .【方法点晴】本题主要考查线面平行的判定定理以及线面垂直、面面垂直的判定,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(2)是就是利用方法①证明的. 16.(本小题满分14分) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =. (Ⅰ)若c =2a ,求的值;(Ⅱ)若C -B =,求sin A 的值.【答案】(1(2【解析】试题分析:(1)由余弦定理结合2c a =;可得10,再由正弦定理可得结果;(2)先由4cos 5B =,根据二倍角公式可得73cos2,2255B sin B ==,则3s i n 24A s i n B π⎛⎫=- ⎪⎝⎭,根据两角差的正弦公式可得结果. 试题解析:(1)解法1在△ABC 中,因为cos B =,所以=.因为c =2a ,所以=,即=,所以=.又由正弦定理得=,所以=.解法2因为cos B =,B ∈(0),所以sin B ==.因为c =2a ,由正弦定理得sin C =2sin A ,所以sin C =2sin(B +C )=cos C +sin C , 即-sin C =2cos C . 又因为sin 2C +cos 2C =1,sin C >0,解得sin C =,所以=.(2)因为cos B =,所以cos2B =2cos 2B -1=. 又0<B <π,所以sin B ==,所以sin2B =2sin B cos B =2××=. 因为C -B =,即C =B +,所以A =π-(B +C )=-2B ,所以sin A =sin(-2B ) =sin cos2B -cossin2B=×-(-)×=.17.(本小题满分14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时. 设f (x )=t 1+t 2.(Ⅰ)求f (x )的解析式,并写出其定义域; (Ⅱ)当x 等于多少时,f (x )取得最小值? 【答案】(1)f (x )=t 1+t 2=9000x +1000100x-,定义域为{x |1≤x ≤99,x ∈N}(2)75 【解析】试题分析:(1)由19000t x =且()2300010003100100t x x ==--, 可得()1290001000100f x t t x x=+=+-,根据实际意义可得定义域;(2)()f x 化为()()910091101001010100100x x x x x x x x ⎡⎤-⎛⎫⎡⎤+-+=++⎢⎥ ⎪⎣⎦--⎝⎭⎣⎦,根据基本不等式可得结果. 试题解析:(1)因为t 1=,t 2==, 所以f (x )=t 1+t 2=+,定义域为{x |1≤x ≤99,x ∈N}. (2)f (x )=1000(+)=10[x +(100-x )](+)=10[10++].因为1≤x ≤99,x ∈N ,所以>0,>0,所以+≥2=6,当且仅当=,即当x =75时取等号.答:当x =75时,f (x )取得最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :+=1(a >b >0)的离心率为,且过点(1,).过椭圆C的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N .(Ⅰ)求椭圆C 的方程;(Ⅱ)若MB 是线段PN 的垂直平分线,求实数m 的值.【答案】(1)24x +y 2=1(2【解析】试题分析:(1)根据题意列出关于a 、b 、c 的方程组,结合性质222a b c =+ , 222a c b =+ ,求出a 、b 、c ,即可得结果;(2)设()00,P x y ,则()002,N x y --,所以02x m -=.可得直线AP 的方程为()0022y y x x =++,根据1PB MB k k ⋅=-可得231040m m -+=,解方程即可得结果. 试题解析:(1)因为椭圆C 的离心率为,所以a 2=4b 2.又因为椭圆C 过点(1,),所以+=1,解得a 2=4,b 2=1.所以椭圆C 的方程为+y 2=1. (2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y = (x +2),令x =m ,得y =,即M (m ,).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =·=-1, 即=-1.因为+y 02=1.所以=1.因为x 0=2-m ,所以化简得3m 2-10m +4=0, 解得m =.因为m >2,所以m =.解法2①当AP 的斜率不存在或为0时,不满足条件. ②设AP 斜率为k ,则AP :y =k (x +2),联立消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =,所以y P =,所以P (,).因为PN 的中点为B ,所以m =2-=.()因为AP 交直线l 于点M ,所以M (m ,k (m +2)), 因为直线PB 与x 轴不垂直,所以≠1,即k 2≠,所以k PB ==,k MB =.因为PB ⊥MB ,所以k PB ·k MB =-1, 所以·=-1.()将()代入(),化简得48k 4-32k 2+1=0, 解得k 2=,所以m ==.又因为m >2,所以m =.19.(本小题满分16分) 已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值. 【答案】(1)12(2)(-∞,-1-1e ](3)827【解析】试题分析:(1)求出()'f x ,由()'063f a==可得结果;(2)对于任意()()()0,,12ln x f x f x x ∈+∞+-≥恒成立等价于()()22ln 1xa g x x -+≥=,利用导数研究函数的单调性,求得()max 1g x ge ==,从而可得结果;(3)分三种情况讨论:①当513a <≤,②当523a <<,③当2a ≥分别求出()h a 的最小值,再比较大小即可得结果.试题解析:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a , 所以6a =3,所以a =.(2)f(x)+f(-x)=-6(a+1)x2≥12ln x对任意x∈(0,+∞)恒成立,所以-(a+1)≥.令g(x)=,x>0,则g(x)=.令g(x)=0,解得x=.当x∈(0,)时,g(x)>0,所以g(x)在(0,)上单调递增;当x∈(,+∞)时,g(x)<0,所以g(x)在(,+∞)上单调递减.所以g(x)max=g()=,所以-(a+1)≥,即a≤-1-,所以a的取值范围为(-∞,-1-].(3)因为f(x)=2x3-3(a+1)x2+6ax,所以f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),f(1)=3a-1,f(2)=4.令f′(x)=0,则x=1或a.f(1)=3a-1,f(2)=4.①当1<a≤时,当x∈(1,a)时,f (x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f (x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=4-(-a3+3a2)=a3-3a2+4.因为h (a)=3a2-6a=3a(a-2)<0,所以h(a)在(1,]上单调递减,所以当a∈(1,]时,h(a)最小值为h()=.②当<a<2时,当x∈(1,a)时,f (x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f (x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h (a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(,2)上单调递增,所以当a∈(,2)时,h(a)>h()=.③当a≥2时,当x ∈(1,2)时,f (x )<0,所以f (x )在(1,2)上单调递减, 所以M (a )=f (1)=3a -1,m (a )=f (2)=4, 所以h (a )=M (a )-m (a )=3a -1-4=3a -5, 所以h (a )在[2,+∞)上的最小值为h (2)=1. 综上,h (a )的最小值为.【方法点晴】本题主要考查导数的几何意义、利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.20.(本小题满分16分)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a n 2}的前n 项和为T n ,且3T n =S n 2+2S n ,n ∈N .(Ⅰ)求a 1的值;(Ⅱ)求数列{a n }的通项公式;(Ⅲ)若k ,t ∈N ,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值.【答案】(1)1(2)a n =2n -1,n ∈N(3) k =2,t =3【解析】试题分析:(1)由211132T S S =+,得2211132a a a =+,解方程即可得结果;(2)因为2211132,32n n n n n n T S S T S S +++=+=+,两式相减可得1132n n n a S S ++=++再得22132n n n a S S +++=++,再相减可得{}n a 是等差数列,从而可得结果;(3)由(2)可知21nn S =-,根据11,,k t k S S S S S --成等比数列可得()221222321t k k ---=-⨯+,只需证明以上等式无整数解即可.试题解析:(1)由3T 1=S 12+2S 1,得3a 12=a 12+2a 1,即a 12-a 1=0. 因为a 1>0,所以a 1=1.(2)因为3T n =S n 2+2S n , ①所以3T n +1=S n +12+2S n +1,②②-①,得3a n +12=S n +12-S n 2+2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1, 所以当n ≥2时,=2.又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以=2,所以对n ∈N ,都有=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N .(3)由(2)可知S n =2n-1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k,所以2t =(2k )2-32k +4,即2t -2=(2k -1)2-32k -2+1(). 由于S k -S 1≠0,所以k ≠1,即k ≥2.当k =2时,2t=8,得t =3.当k ≥3时,由(),得(2k -1)2-32k -2+1为奇数,所以t -2=0,即t =2,代入()得22k -2-32k -2=0,即2k=3,此时k 无正整数解. 综上,k =2,t =3. 21.(1).选修4—1:几何证明选讲如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B ,DA =DC .求证: CA =3CB .(2).选修4—2:矩阵与变换 设二阶矩阵A =.(Ⅰ)求A -1;(Ⅱ)若曲线C 在矩阵A 对应的变换作用下得到曲线C 6x 2-y 2=1,求曲线C 的方程.(3).选修4—4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l 的参数方程为(t 为参数),圆C 的参数方程为(θ为参数).若直线l 与圆C 相切,求实数a 的值.(4).选修4—5:不等式选讲 解不等式:|x -2|+|x +1|≥5.【答案】(1)见解析(2)(Ⅰ)213122-⎡⎤⎢⎥-⎢⎥⎣⎦(Ⅱ)8y 2-3x 2=1(3)14)(-∞,-2]∪[3,+∞). 【解析】试题分析:(1)连接OD ,,DA DC DAO C =∴∠=∠, CD 为圆O 的切线,90ODC ∴∠=, 从而90DOC C +=,可得,3CB OB CA CB =∴=,进而可得结果;(2)曲线C 上任意一点(),P x y 在矩阵A 对应的变换作用下得到点(),P x y , 2{ 34x x yy x y=+=+,代入2261x y -=,即可得结果;(3)先求直线l 的普通方程与圆C 的普通方程,利用圆心到直线的距离等于半径可得结果;(4)分三种情况讨论,分别求解不等式组,然后求并集即可得结果.试题解析:(1)证明:连接OD ,因为DA =DC ,所以∠DAO=∠C.在圆O中,AO=DO,所以∠DAO=∠ADO,所以∠DOC=2∠DAO=2∠C.因为CD为圆O的切线,所以∠ODC=90°,DOC C=90°,即2∠C+∠C=90°,故∠C=30°,所以OC=2OD=2OB,所以CB=OB,所以CA=3CB.(2)(Ⅰ)根据逆矩阵公式,可得A-1=.(Ⅱ)设曲线C上任意一点P(x,y)在矩阵A对应的变换作用下得到点P (x,y),则==,所以因为(x y)在曲线C6x2-y2=1,代入6(x+2y)2-(3x+4y)2=1,化简得8y2-3x2=1,所以曲线C的方程为8y2-3x2=1(3)由直线l的参数方程为,得直线l的普通方程为x-y+1=0.由圆C的参数方程为,得圆C的普通方程为(x-a)2+(y-2a)2=1.因为直线l与圆C相切,所以=1,解得a=1±.所以实数a的值为1±.(4)(1)当x<-1时,不等式可化为-x+2-x-1≥5,解得x≤-2;(2)当-1≤x≤2时,不等式可化为-x+2+x+1≥5,此时不等式无解;(3)当x>2时,不等式可化为x-2+x+1≥5,解得x≥3;所以原不等式的解集为(-∞,-2]∪[3,+∞).22.(本小题满分10分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;(Ⅱ)求二面角B-PD-A的余弦值.【答案】(1)2(2【解析】试题分析:(1)以{},,AB AD AP 为单位正交基底,建立空间直角坐标系A xyz -.设()1,,0C y ,则()()1,0,1,1,1,0PB CD y =-=--,利用空间向量夹角余弦公式列方程求解即可;(2)分别求出平面PBD 与平面PAD 的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:以{},,AB AD AP 为单位正交基底,建立如图所示的空间直角坐标系A -xyz .因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1).设C (1,y ,0),则=(1,0,-1),=(-1,1-y ,0). …………………2分因为直线PB 与CD 所成角大小为,所以|cos <,>|=||=,即=,解得y =2或y =0(舍), 所以C (1,2,0),所以BC 的长为2.(2)设平面PBD 的一个法向量为n 1=(x ,y ,z ). 因为=(1,0,-1),=(0,1,-1),则即令x =1,则y =1,z =1,所以n 1=(1,1,1). 因为平面PAD 的一个法向量为n 2=(1,0,0), 所以cos <n 1,n 2>==,所以,由图可知二面角B -PD -A 的余弦值为.23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(Ⅰ)若两个球颜色不同,求不同取法的种数;(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望. 【答案】(1)96(2)见解析 【解析】试题分析:(1)利用组合知识及分步计数乘法原理可得结果;(2)随机变量X 所有可能的值为0,1,2,3.分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果. 试题解析:(1)两个球颜色不同的情况共有C 42=96(种).(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)==,P (X =1)==,P (X =2)==,P (X =3)==.所以随机变量X 的概率分布列为:所以E (X )=0+1+2+3=.。

南京市2020届高三年级学情调研卷(定稿)

南京市2020届高三年级学情调研卷(定稿)

南京市2020届高三年级学情调研数 学 2019.09注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 球的体积公式:V =43πR 3,其中R 为球体的半径.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答.题卡..相应位置....上. 1.函数f (x )=x -1的定义域为 ▲ .2.已知复数z 满足(z -2)i =1+i ,其中i 是虚数单位,则复数z 的模为 ▲ . 3.某算法的流程图如图所示,则输出的n 的值为 ▲ .4.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值为 ▲ .(第3题图) (第4题图)5.有3个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组的可能性相同,则这两位同学参加了不同的兴趣小组的概率为 ▲ .6.把一个底面半径为3 cm ,高为4 cm 的钢质实心圆柱熔化,然后铸成一个实心钢球(不计损耗),则该钢球的半径为 ▲ cm .7.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为 ▲ .8.若函数f (x )=2sin(ωx -π6)(ω>0)的最小正周期为π,则当x ∈[0,π2]时,f (x )的值域为 ▲ .9.若锐角α满足tan(α+π4)=3tan α+1,则tan2α的值为 ▲ .10.已知函数f (x )=x1+|x |,则不等式f (x -3)+f (2x )>0的解集为 ▲ .11.等差数列{a n }的前n 项和记为S n .已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若存在正整数k ,使得对任意n ∈N *,都有S n ≤S k 恒成立,则k 的值为 ▲ .12.在△ABC 中,P 是边AB 的中点,已知CA =4,CP =3,∠ACB =2π3,则CP →·CA →的值为 ▲ .13.在平面直角坐标系xOy 中,已知圆M :(x -a )2+(y -2a )2=4,圆N :(x -2)2+(y +1)2=4.若圆M 上存在一点P ,使得以点P 为圆心,1为半径的圆与圆N 有公共点,则实数a 的取值范围为 ▲ .14. 已知函数f (x )=x 3-3x 2+1,g (x )=⎩⎪⎨⎪⎧|2x -1|+1, x >0,-14x 2-x , x ≤0.若函数y =g [f (x )]-a 有6个零点(互不相同),则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答.题卡..指定区域内.....作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin2B =2b sin A . (1)求B 的大小; (2)若cos C =55,求sin(A -C )的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AC =BC ,E ,F 分别为AB ,A 1B 1的中点. (1)求证:AF ∥平面B 1CE ;(2)若A 1B 1⊥B 1C ,求证:平面B 1CE ⊥平面ABC .17.(本小题满分14分)随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t (单位:分钟)满足:4≤t ≤15,t ∈N ,平均每趟地铁的载客人数p (t )(单位:人)与发车时间间隔t 近似地满足下列函数关系:p (t )=⎩⎨⎧1800-15(9-t )2, 4≤t <9,1800, 9≤t ≤15,其中t ∈N .(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t 的值;(2)若平均每趟地铁每分钟的净收益为Q =6p (t )-7920t -100(单位:元),问当发车时间间隔t 为多少时,平均每趟地铁每分钟的净收益最大?并求出最大净收益.1(第16题图)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点(a2,3e )和(b ,3e )都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的标准方程;(2)若点C 是椭圆上异于左、右顶点的任一点,线段BC 的垂直平分线与直线BC ,AC 分别交于点P ,Q ,求证:→OB ·→PQ 为定值.19.(本小题满分16分)已知函数f (x )=2ln x +ax 2-bx ,a ,b ∈R .(1)若曲线y =f (x )在x =1处的切线为y =2x -3,求实数a ,b 的值; (2)若a =0,且f (x )≤-2对一切正实数x 恒成立,求实数b 的取值范围; (3)若b =4,求函数f (x )的单调区间.20.(本小题满分16分)已知数列{a n }的首项a 1=2,前n 项和为S n ,且数列{S n n }是以12为公差的等差数列.(1)求数列{a n }的通项公式;(2)设b n =2n a n ,n ∈N *,数列{b n }的前n 项和为T n , ①求证:数列{T nn}为等比数列;②若存在整数m ,n (m >n >1),使得T m T n =m (S m +λ)n (S n +λ),其中λ为常数,且λ≥-2,求λ的所有可能值.(第18题图)。

江苏省南京市13校2020届高三12月联合调研测试数学试题Word版含解析

江苏省南京市13校2020届高三12月联合调研测试数学试题Word版含解析

江苏省南京市13校2020届12月联合调研测试高三数学试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.全集,集合,,则_______.2.复数(为虚数单位)的模为_______.3.在平面直角坐标系中,已知是双曲线的一条渐近线方程,则此双曲线的离心率为.4.已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是_______.5.如图程序运行的结果是.6.如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在内的频数为.7.设等比数列的前项积为,若,则的值是_______.8.已知直线、与平面、,,,则下列命题中正确的是_______(填写正确命题对应的序号).①若,则②若,则③若,则④若,则9.已知,,则_______.10.在等腰三角形中,底边,,,若,则_______.11.已知,若过轴上的一点可以作一直线与相交于,两点,且满足,则的取值范围为_______.12.如图,在三棱锥中,、、两两垂直,且.设是底面内一点,定义,其中、、分别是三棱锥、三棱锥、三棱锥的体积.若,且恒成立,则正实数的最小值为________.13.已知的三边长,,成等差数列,且,则实数的取值范围是_______.14.已知函数,若给定非零实数,对于任意实数,总存在非零常数,使得恒成立,则称函数是上的级类周期函数,若函数是上的2级2类周期函数,且当时,,又函数.若,,使成立,则实数的取值范围是_______.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),=1,且∠AOC=x,其中O为坐标原点.(Ⅰ)若x=π,设点D为线段OA上的动点,求的最小值和最大值;(Ⅱ)若,向量=,=(1-cosx,sinx-2cosx),求的最小值及对应的x值.16.如图,在正三棱柱中,点在棱上,,点分别是的中点.(1)求证:为的中点;(2)求证:平面.17.某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距的,两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.(1)设,写出关于的函数表达式;(2)当最小时,集合地点离点多远?18.如图,、分别为椭圆的焦点,椭圆的右准线与轴交于点,若,且.(Ⅰ)求椭圆的方程;(Ⅱ)过、作互相垂直的两直线分别与椭圆交于、、、四点,求四边形面积的取值范围.19.已知函数,,设.(Ⅰ)若在处取得极值,且,求函数的单调区间;(Ⅱ)若时函数有两个不同的零点、.①求的取值范围;②求证:.20.已知数列的前项和为,把满足条件的所有数列构成的集合记为.(1)若数列通项为,求证:;(2)若数列是等差数列,且,求的取值范围;(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.数学Ⅱ(附加题)【选做题】本题包括21,22,23三小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.21.选修4-2:矩阵与变换---求曲线在矩阵对应的变换作用下得到的曲线所围成图形的面积.22.在平面直角坐标系中,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标,直线的极坐标方程为,试求直线与曲线的交点的极坐标.23.若正数,,满足,求的最小值.【必做题】第24题、第25题,每题10分,共计20分.解答时应写出文字说明,证明过程或演算步骤.24.在某次活动中,有5名幸运之星.这5名幸运之星可获得、两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得奖品,抛掷点数不小于3的获得奖品.(1)求这5名幸运之星中获得奖品的人数大于获得奖品的人数的概率;(2)设、分别为获得、两种奖品的人数,并记,求随机变量的分布列及数学期望.25.在数学上,常用符号来表示算式,如记=,其中,.(1)若,,,…,成等差数列,且,求证:;(2)若,,记,且不等式恒成立,求实数的取值范围.江苏省南京市13校2020届12月联合调研测试高三数学试题参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.全集,集合,,则_______.【答案】【解析】【分析】根据集合的基本运算,先求出A∩B,再求其补集即可.【详解】∵全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},∴A∩B={3},则∁U(A∩B)={1,2,4,5},故答案为:{1,2,4,5}.【点睛】本题主要考查了集合的交集和补集的基本运算,属于基础题.2.复数(为虚数单位)的模为_______.【答案】【解析】【分析】由复数代数形式的乘除运算化简,再利用模的公式计算即可.【详解】∵∴复数的模为.故答案为:.【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,属于基础题.3.在平面直角坐标系中,已知是双曲线的一条渐近线方程,则此双曲线的离心率为.【答案】2【解析】试题分析:由题意,∴.考点:双曲线的标准方程及其几何性质.4.已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是_______.【答案】【解析】【分析】先求出从4瓶饮料中随机抽出2瓶的所有的抽法种数,再求出取出的2瓶不是果汁类饮料的种数,利用对立事件的概率即可求得.【详解】从4瓶饮料中随机抽出2瓶,所有的抽法种数为=6(种),取出的2瓶不是果汁类饮料的种数为=1(种).所以所取2瓶中至少有一瓶是果汁类饮料的概率为P=1﹣=.故答案为:.【点睛】本题考查了古典概型及其概率计算公式,考查了对立事件的概率,解答的关键是掌握对立事件的概率和等于1,属于基础题.5.如图程序运行的结果是.【答案】【解析】试题分析:初始条件,;运行第一次,,;运行第二次,,;运行第三次,,.满足条件,停止运行,所以输出的,所以答案应填:.考点:程序框图.6.如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在内的频数为.【答案】64【解析】试题分析:样本数据落在内的频率为,所以样本数据落在内的频数为.考点:频率分布直方图.7.设等比数列的前项积为,若,则的值是_______.【答案】2【解析】【分析】由P12=32P7,得a8•a9•…•a12=32,再利用等比数列的性质,可求a10.【详解】∵等比数列{a n}的前n项积为P n,且P12=32P7,∴a1•a2•a3•…•a12=32a1•a2•a3•…•a7,即a8•a9•…•a12=32,由等比数列的性质,得(a10)5=32,解得a10=2.故答案为:2.【点睛】本题考查等比数列{a n}的前n项积,考查等比数列的性质,属于基础题.8.已知直线、与平面、,,,则下列命题中正确的是_______(填写正确命题对应的序号).①若,则②若,则③若,则④若,则【答案】③【解析】【分析】①②列举反例,③利用面面垂直的判定定理,④利用面面垂直的性质定理,即可判断.【详解】①如图所示,设α∩β=c,l∥c,m∥c满足条件,但是α与β不平行,故①不正确;②假设α∥β,l′⊂β,l′∥l,l′⊥m,则满足条件,但是α与β不垂直,故②不正确;③由面面垂直的判定定理,若l⊥β,则α⊥β,故③正确;④若α⊥β,α∩β=n,由面面垂直的性质定理知,m⊥n时,m⊥α,故④不正确.综上可知:只有③正确.故答案为:③.【点睛】熟练掌握线面、面面垂直与平行的判定与性质定理是解题的关键.否定一个命题,只要举出一个反例即可,属于中档题.9.已知,,则_______.【答案】【解析】【分析】由二倍角公式和同角三角函数基本关系可得cos2θ和sin2θ,代入sin(2θ﹣)=sin2θ﹣cos2θ,计算可得.【详解】∵cos(θ+)=﹣,且θ∈(0,),∴θ+∈(,),sin(θ+)=,∴sin2θ=﹣cos(2θ+)=1﹣2=,cos2θ=sin2(θ+)=2sin(θ+)cos(θ+)=﹣,sin(2θ﹣)=sin2θcos﹣cos2θsin=,故答案为:.【点睛】本题考查两角和与差的三角函数公式,涉及二倍角公式和同角三角函数基本关系,属于中档题.10.在等腰三角形中,底边,,,若,则_______.【答案】【解析】【分析】由,得D是AC的中点,利用已知条件求出BA的长度,求出cosB,即可的值.【详解】因为⇒D是AC的中点⇒,且⇒所以,因为在等腰三角形中,底边,得AB=所以cosB= =.且所以= ==2••﹣×5=2﹣=﹣.故答案为:﹣.【点睛】本题考查了向量加减法的几何中的应用和平面向量的数量积的应用,也考查计算能力,属于基础题.11.已知,若过轴上的一点可以作一直线与相交于,两点,且满足,则的取值范围为_______.【答案】【解析】【分析】由圆的方程,可得M(1,4)且半径为2,由PA=BA,利用圆的几何性质得动点P到圆M的最近的点的距离小于或等于4,由此建立关于a的不等式,解得即可.【详解】∵圆M:(x﹣1)2+(y﹣4)2=4,∴圆心为M(1,4),半径r=2,直径为4,故弦长BA的范围是(0,4].又∵PA=BA,∴动点P到圆M的最近的点的距离小于或等于4,∵圆与x轴相离,可得P到圆上的点的距离恒大于0.∴P到M的距离小于或等于6,根据两点间的距离公式有:,解之得1﹣2≤a≤1+2,即a的取值范围为[1﹣2,1+2]故答案为:[1﹣2,1+2]【点睛】本题主要考查直线和圆相交的性质,两点间的距离公式和直线与圆的位置关系等知识,转化为数形结合的数学思想,属于中档题.12.如图,在三棱锥中,、、两两垂直,且.设是底面内一点,定义,其中、、分别是三棱锥、三棱锥、三棱锥的体积.若,且恒成立,则正实数的最小值为________.【答案】1【解析】∵PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.∴=+x+y即x+y=则2x+2y=1,又,解得a≥1∴正实数a的最小值为113.已知的三边长,,成等差数列,且,则实数的取值范围是_______.【答案】 .【解析】【分析】由a,b,c成等差数列,设公差为d,则有a=b﹣d,c=b+d,代入已知等式求出b的最大值,由三角形三边关系列出不等式,整理后求出b的范围,即可确定出满足题意b的范围.【详解】设公差为d,则有a=b﹣d,c=b+d,代入a2+b2+c2=63,化简可得3b2+2d2=63,当d=0时,b有最大值为,由三角形任意两边之和大于第三边,得到较小的两边之和大于最大边,即a+b>c,整理得:b>2d,可得:3b2+2()2>63,解得:b>3,则实数b的取值范围是(3,].故答案为:(3,].【点睛】本题考查了余弦定理,等差数列的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.14.已知函数,若给定非零实数,对于任意实数,总存在非零常数,使得恒成立,则称函数是上的级类周期函数,若函数是上的2级2类周期函数,且当时,,又函数.若,,使成立,则实数的取值范围是_______.【答案】【解析】【分析】由函数f(x)在[0,2)上的解析式,可得函数f(x)在[0,2)上的最值,结合a级类周期函数的含义,可得f(x)在[6,8]上的最大值,对于函数g(x),对其求导分析可得g(x)在区间(0,+∞)上的最小值,将原问题转化为g(x)min≤f(x)max的问题求解.【详解】根据题意,对于函数,当时,,可得:当时,,有最大值,最小值,当时,,函数的图像关于直线对称,则此时有,又由函数是定义在区间内的2级类周期函数,且;则在上,,则有,则,则函数在区间上的最大值为8,最小值为0;对于函数,有,得在上,,函数为减函数,在上,,函数为增函数,则函数在上,由最小值.若,,使成立,必有,即,解可得,即的取值范围为.故答案为:.【点睛】本题考查了函数的最值问题,数学转化思想方法,利用了导数求函数的最值,属于中档题.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),=1,且∠AOC=x,其中O为坐标原点.(Ⅰ)若x=π,设点D为线段OA上的动点,求的最小值和最大值;(Ⅱ)若,向量=,=(1-cosx,sinx-2cosx),求的最小值及对应的x值.【答案】(Ⅰ)(Ⅱ),此时.【解析】试题分析:(Ⅰ)设(),又所以所以所以当时,最小值为(Ⅱ)由题意得,则因为,所以所以当,即时,取得最大值所以时,取得最小值所以的最小值为,此时.考点:三角函数中的恒等变换应用;平面向量的综合题.点评:本题主要考查三角函数的恒等变换及化简求值,两个向量的数量积的公式,正弦函数的定义域和值域,属于中档题.16.如图,在正三棱柱中,点在棱上,,点分别是的中点.(1)求证:为的中点;(2)求证:平面.【答案】(1)见解析(2)见解析【解析】试题分析:(1)要证为的中点,又AB=AC,即证AD⊥BC即可;(2)连接,连接交于点,连接,由(1)易证,从而问题得证.试题解析:(1)正三棱柱,平面,又平面,,又,平面,又正三棱柱,平面平面,,为的中点.(2)连接,连接交于点,连接矩形,为的中点,又由(1)得为的中点,△中,又点,分别是,的中点,△中,,,又平面,平面平面点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距的,两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.(1)设,写出关于的函数表达式;(2)当最小时,集合地点离点多远?【答案】(1),(2)集合地点离出发点的距离为时,总路程最短,其最短总路程为.【解析】【分析】(1)△AOD中,由正弦定理求得AD、OD,再计算S=300AD+100BD的值;(2)令函数y=,求导判断函数单调性与最值,从而求出y的最小值以及对应AD的值和S的最小值.【详解】(1)因为在中,,,所以由正弦定理可知,解得,,且,故,(2)令,则有,令得记,,列表得可知,当且仅当时,有极小值也是最小值为,当时,此时总路程有最小值.答:当集合点离出发点的距离为时,总路程最短,其最短总路程为.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的应用问题,是中档题.18.如图,、分别为椭圆的焦点,椭圆的右准线与轴交于点,若,且.(Ⅰ)求椭圆的方程;(Ⅱ)过、作互相垂直的两直线分别与椭圆交于、、、四点,求四边形面积的取值范围. 【答案】(Ⅰ);(Ⅱ).【解析】【分析】(I)先确定A点坐标为(a2,0),利用,可得F2是AF1的中点,由此可求椭圆方程;(II)当直线MN与PQ中有一条与x轴垂直时,四边形PMQN面积;当直线PQ,MN均与x轴不垂直时,设直线PQ、MN的方程与椭圆方程联立,求得|PQ|,|MN|,表示出四边形PMQN面积,再换元,即可求得四边形PMQN面积的取值范围.【详解】(Ⅰ)由得,∴点坐标为;∵∴是的中点∴,∴椭圆方程为(Ⅱ)当直线与之一与轴垂直时,四边形面积;当直线,均与轴不垂直时,不妨设,联立代入消去得设,则,∴,同理∴四边形面积令,则,,易知是以为变量的增函数所以当,时,,∴综上可知,,∴四边形面积的取值范围为【点睛】本题考查求椭圆的标准方程,考查直线与椭圆的位置关系和四边形面积的计算,正确表示四边形的面积是关键,属于中档题.19.已知函数,,设.(Ⅰ)若在处取得极值,且,求函数的单调区间;(Ⅱ)若时函数有两个不同的零点、.①求的取值范围;②求证:.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(,0)②详见解析【解析】试题分析:(1)先确定参数:由可得a=b-3. 由函数极值定义知所以a=" -2,b=1" .再根据导函数求单调区间(2)①当时,,原题转化为函数与直线有两个交点,先研究函数图像,再确定b的取值范围是(,0).②,由题意得,所以,因此须证,构造函数,即可证明试题解析:(1)因为,所以,由可得a=b-3.又因为在处取得极值,所以,所以a=" -2,b=1" .所以,其定义域为(0,+)令得,当(0,1)时,,当(1,+),所以函数h(x)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当时,,其定义域为(0,+).①由得,记,则,所以在单调减,在单调增,所以当时取得最小值.又,所以时,而时,所以b的取值范围是(,0).②由题意得,所以,所以,不妨设x1<x2,要证, 只需要证.即证,设,则,所以,所以函数在(1,+)上单调增,而,所以即,所以.考点:函数极值,构造函数利用导数证明不等式20.已知数列的前项和为,把满足条件的所有数列构成的集合记为.(1)若数列通项为,求证:;(2)若数列是等差数列,且,求的取值范围;(3)若数列的各项均为正数,且,数列中是否存在无穷多项依次成等差数列,若存在,给出一个数列的通项;若不存在,说明理由.【答案】(1)见解析;(2);(3)数列中不存在无穷多项依次成等差数列.【解析】【分析】(1)由,得和,再证明,即可满足题意;(2)设的公差为,由,得,又,即,所以d=1,的取值范围;(3)假设数列中存在无穷多项依次成等差数列,不妨设该等差数列的第项为(为常数),由,得到当时,关于的不等式有无穷多个解,推出矛盾,所以不存在.【详解】(1)因为,所以,所以,所以,即.(2)设的公差为,因为,所以特别的当时,,即,由得,整理得,因为上述不等式对一切恒成立,所以必有,解得,又,所以,于是,即,所以,即,所以,因此的取值范围是.(3)由得,所以,即,所以,从而有,又,所以,即,又,,所以有,所以,假设数列中存在无穷多项依次成等差数列,不妨设该等差数列的第项为(为常数),则存在,,使得,即,设,,,则即,于是当时,,从而有:当时,即,于是当时,关于的不等式有无穷多个解,显然不成立,因此数列中是不存在无穷多项依次成等差数列.【点睛】本题考查的是数列定义的应用和等差数列的性质应用,运用反证法解决存在问题是本题的关键,属于中档题.数学Ⅱ(附加题)【选做题】本题包括21,22,23三小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.21.选修4-2:矩阵与变换---求曲线在矩阵对应的变换作用下得到的曲线所围成图形的面积.【答案】【解析】试题分析:先由矩阵变换得到曲线方程:,再根据曲线形状:菱形,计算其面积:.试题解析:设点为曲线上的任一点,在矩阵对应的变换作用下得到的点为,则由, 3分得:即5分所以曲线在矩阵对应的变换作用下得到的曲线为, 8分所围成的图形为菱形,其面积为. 10分考点:矩阵变换22.在平面直角坐标系中,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标,直线的极坐标方程为,试求直线与曲线的交点的极坐标.【答案】【解析】【分析】将两方程化为普通方程,联立,即可求出直线l与曲线C的交点的直角坐标,进而即可得解.【详解】将直线的极坐标方程化直角坐标系方程为将曲线的参数方程化为普通方程可得:由得,解得或,又,所以,所以直线与曲线的交点的直角坐标为.所以直线与曲线的交点的极坐标为.【点睛】本题考查了参数方程,极坐标方程,普通方程的互化,注意自变量的范围,属于基础题.23.若正数,,满足,求的最小值.【答案】.【解析】【分析】由a+2b+4c=3,可得(a+1)+2(b+1)+4(c+1)=10,由柯西不等式可得的最小值. 【详解】因为正数,,满足,所以,所以,即.当且仅当,,时,取最小值.【点睛】本题考查三元柯西不等式及其应用,考查基本的运算能力,属于基础题.【必做题】第24题、第25题,每题10分,共计20分.解答时应写出文字说明,证明过程或演算步骤. 24.在某次活动中,有5名幸运之星.这5名幸运之星可获得、两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得奖品,抛掷点数不小于3的获得奖品.(1)求这5名幸运之星中获得奖品的人数大于获得奖品的人数的概率;(2)设、分别为获得、两种奖品的人数,并记,求随机变量的分布列及数学期望.【答案】(1);(2),的分布列见解析.【解析】【分析】首先求出5名幸运之星中,每人获得A奖品的概率和B奖品的概率.(1)获得A奖品的人数大于获得B奖品的人数,得到获得A奖品的人数可能为3,4,5,利用独立重复试验求得概率;(2)由ξ=|X﹣Y|,可得ξ的可能取值为1,3,5,同样利用独立重复试验求得概率,然后列出频率分布表,代入期望公式求期望.【详解】这5名幸运之星中,每人获得奖品的概率为,奖品的概率为.(1)要获得奖品的人数大于获得奖品的人数,则奖品的人数可能为3,4,5,则所求概率为.(2)的可能取值为1,3,5,且,,,所以的分布列是:故随机变量的数学期望.【点睛】本题考查了离散型随机变量的期望的应用,也考查了独立重复试验,属于中档题.25.在数学上,常用符号来表示算式,如记=,其中,.(1)若,,,…,成等差数列,且,求证:;(2)若,,记,且不等式恒成立,求实数的取值范围.【答案】(1)详见解析(2)【解析】试题分析:(Ⅰ)由题意求出等差数列的通项公式,然后结合二项式系数的性质证明;(Ⅱ)在二项式展开式中分别取x=-1,x=1,求出bn,再借助于二项式系数的性质化简可得,代入不等式,分n为奇数和偶数求得t的取值范围试题解析:(1)设等差数列的通项公式为,其中为公差则因为,所以所以=.注:第(1)问也可以用倒序相加法证明.(酌情给分)(2)令,则令,则,所以根据已知条件可知,,所以将、代入不等式得,当为偶数时,,所以;当为奇数,,所以;综上所述,所以实数的取值范围是.考点:数列的求和,二项式系数的性质。

江苏省南京市13校2020届高三数学12月联合调研测试试题(含解析)

江苏省南京市13校2020届高三数学12月联合调研测试试题(含解析)

2020 届高三 12 月联合调研测试数学试题一、填空题:本大题共 14 小题,每题 5 分,合计 70分 . 请把答案填写在答题卡相应地点上.1. 全集,会合,,则_______.【答案】【分析】【剖析】依据会合的基本运算,先求出A∩B,再求其补集即可.【详解】∵全集U= {1 , 2, 3, 4,5} ,会合 A= {1 , 3,4} , B={3 , 5} ,∴ A∩B= {3} ,则 ?U(A∩B)= {1 , 2,4, 5} ,故答案为: {1 , 2, 4, 5} .【点睛】此题主要考察了会合的交集和补集的基本运算,属于基础题.2. 复数(为虚数单位)的模为_______.【答案】【分析】【剖析】由复数代数形式的乘除运算化简,再利用模的公式计算即可.【详解】∵∴复数的模为.故答案为:.【点睛】此题考察了复数代数形式的乘除运算,考察了复数模的求法,属于基础题.3. 在平面直角坐标系中,已知是双曲线的一条渐近线方程,则此双曲线的离心率为.【答案】 2【分析】试题剖析:由题意,∴.考点:双曲线的标准方程及其几何性质.4. 已知4 瓶饮猜中有且仅有 2 瓶是果汁饮料,从这 4 瓶饮猜中随机取 2 瓶,则所取两瓶中至罕有一瓶是果汁饮料的概率是_______.【答案】【分析】【剖析】先求出从 4 瓶饮猜中随机抽出 2 瓶的全部的抽法种数,再求出拿出的 2 瓶不是果汁类饮料的种数,利用对峙事件的概率即可求得.【详解】从 4 瓶饮猜中随机抽出 2 瓶,全部的抽法种数为=6(种),拿出的 2 瓶不是果汁类饮料的种数为=1(种).所以所取 2 瓶中起码有一瓶是果汁类饮料的概率为P=1﹣=.故答案为:.【点睛】此题考察了古典概型及其概率计算公式,考察了对峙事件的概率,解答的重点是掌握对峙事件的概率和等于1, 属于基础题 .5. 如图程序运转的结果是.【答案】【分析】试题剖析:初始条件,;运转第一次,,;运转第二次,,;运转第三次,,.知足条件,停止运转,所以输出的,所以答案应填:.考点:程序框图.6.如图是样本容量为 200 的频次散布直方图.依据此样本的频次散布直方图预计,样本数据落在内的频数为.【答案】 64【分析】试题剖析:样本数据落在内的频次为,所以样本数据落在内的频数为.考点:频次散布直方图 .7. 设等比数列的前项积为,若,则的值是 _______.【答案】 2【分析】【剖析】由 P12=32P7,得 a8?a9? ?a 12=32,再利用等比数列的性质,可求a10.【详解】∵等比数列 {a} 的前 n 项积为 P ,且 P =32P ,∴a?a ?a? ?a=32a1?a ?a? ?a,n n12712312237即 a8?a9? ?a12 =32,由等比数列的性质,得( a10)5=32,解得 a10=2.故答案为: 2.【点睛】此题考察等比数列 {a n} 的前 n 项积,考察等比数列的性质,属于基础题.8. 已知直线、与平面、,,,则以下命题中正确的选项是_______(填写正确命题对应的序号) .①若③若,则,则②若④若,则,则【答案】③【分析】【剖析】①②列举反例,③利用面面垂直的判断定理,④利用面面垂直的性质定理,即可判断.【详解】①如下图,设α∩β= c,l ∥c,m∥c知足条件,可是α 与β 不平行,故①不正确;②假定α∥β, l ′ ? β,l ′∥ l , l ′⊥ m,则知足条件,可是α与β不垂直,故②不正确;③由面面垂直的判断定理,若 l ⊥β,则α⊥β,故③正确;④若α⊥β,α∩β=n,由面面垂直的性质定理知,m⊥n时, m⊥α,故④不正确.综上可知:只有③正确.故答案为:③.【点睛】娴熟掌握线面、面面垂直与平行的判断与性质定理是解题的重点.否认一个命题,只需举出一个反例即可,属于中档题.9. 已知,,则_______.【答案】【分析】【剖析】由二倍角公式和同角三角函数基本关系可得cos2θ和 sin2 θ,代入 sin (2θ﹣)=sin2θ﹣cos2θ,计算可得.),sin(θ+ )=,【详解】∵ cos(θ+ )=﹣,且θ∈(0,),∴θ+ ∈(,∴sin2 θ=﹣ cos(2θ+)= 1﹣2=,cos2θ= sin2 (θ+ )= 2sin (θ+ ) cos (θ+ )=﹣,sin (2θ﹣)=sin2θcos﹣cos2θsin=,故答案为:.【点睛】此题考察两角和与差的三角函数公式,波及二倍角公式和同角三角函数基本关系,属于中档题.10. 在等腰三角形中,底边,,,若,则_______.【答案】【分析】【剖析】由,得 D 是 AC的中点,利用已知条件求出BA的长度,求出 cosB,即可的值.【详解】由于? D是 AC的中点 ?,且?所以,由于在等腰三角形中,底边,得AB=所以 cosB==.且所以===2??﹣×5=2﹣=﹣.故答案为:﹣.【点睛】此题考察了向量加减法的几何中的应用和平面向量的数目积的应用,也考察计算能力,属于基础题 .11. 已知,若过轴上的一点能够作向来线与订交于,两点,且知足,则的取值范围为_______.【答案】【分析】【剖析】由圆的方程,可得M( 1, 4)且半径为2,由 PA=BA,利用圆的几何性质得动点P 到圆 M的最近的点的距离小于或等于4,由此成立对于 a 的不等式,解得即可.【详解】∵圆M:( x﹣ 1)2+( y﹣ 4)2= 4,∴圆心为M(1, 4),半径r = 2,直径为4,故弦长 BA 的范围是( 0, 4] .又∵ PA= BA,∴动点 P 到圆 M的近来的点的距离小于或等于4,∵圆与 x 轴相离,可得P 到圆上的点的距离恒大于0.∴P到 M的距离小于或等于6,依据两点间的距离公式有:,解之得 1﹣ 2≤a≤1+2,即a的取值范围为[1﹣2,1+2]故答案为: [1 ﹣2,1+2]【点睛】此题主要考察直线和圆订交的性质,两点间的距离公式和直线与圆的地点关系等知识,转变为数形联合的数学思想,属于中档题.12. 如图 , 在三棱锥一点,定义体积.若中 ,, 此中, 且、、两两垂直,且、、分别是三棱锥、三棱锥恒成立 , 则正实数的最小值为.设是底面、三棱锥内的________.【答案】【分析】1∵PA、 PB、 PC两两垂直,且PA=3. PB=2, PC=1.∴= +x+y即x+y=则 2x+2y=1 ,又,解得a≥1∴正实数 a 的最小值为113. 已知的三边长,,成等差数列,且,则实数的取值范围是_______.【答案】.【分析】【剖析】由 a,b,c 成等差数列,设公差为 d,则有由三角形三边关系列出不等式,整理后求出a= b﹣ d,c=b+d,代入已知等式求出b 的最大值 b 的范围,即可确立出知足题意 b 的范围.,【详解】设公差为 d,则有 a= b﹣ d, c= b+d,代入 a2+b2+c2= 63,化简可得3b2+2d2= 63,当 d= 0 时, b 有最大值为,由三角形随意两边之和大于第三边,获取较小的两边之和大于最大边,即a+b> c,整理得:b> 2d,可得: 3b2+2()2> 63,解得:b> 3,则实数 b 的取值范围是(3,] .故答案为:( 3,] .【点睛】此题考察了余弦定理,等差数列的性质,以及特别角的三角函数值,娴熟掌握余弦定理是解此题的重点,属于中档题.14. 已知函数,若给定非零实数恒成立,则称函数2 级 2 类周期函数,且当时,,对于随意实数,总存在非零常数是上的级类周期函数,若函数,又函数,使得是上的.若,,使成立,则实数的取值范围是_______.【答案】【分析】【剖析】由函数 f ( x)在 [0, 2)上的分析式,可得函数 f ( x)在 [0 , 2)上的最值,联合 a 级类周期函数的含义,可得 f ( x)在 [6 , 8] 上的最大值,对于函数g(x),对其求导剖析可得g( x)在区间( 0, +∞)上的最小值,将原问题转变为g( x)min≤f ( x)max的问题求解.【详解】依据题意,对于函数,当时,,可得:当时,,有最大值,最小值,当时,,函数的图像关于直线对称,则此时有,又由函数是定义在区间内的 2 级类周期函数,且;则在上,,则有,则,则函数在区间上的最大值为 8,最小值为0;对于函数,有,得在上,,函数为减函数,在上,,函数为增函数,则函数在上,由最小值.若,,使成立,必有,即,解可得,即的取值范围为.故答案为:.【点睛】此题考察了函数的最值问题,数学转变思想方法,利用了导数求函数的最值,属于中档题.二、解答题:本大题共 6 小题,共90 分 . 解答时应写出必需的文字说明、证明过程或演算步骤 .15. 在如下图的平面直角坐标系中,已知点A(1,0)和点B( - 1,0) ,= 1,且∠ AOC=x,此中 O为坐标原点.(Ⅰ)若x=π,设点(Ⅱ)若,向量【答案】(Ⅰ)(Ⅱ)【分析】试题剖析:(Ⅰ)设所以所以D 为线段 OA上的动点,求=,= (1 - cosx ,sinx,此时.(),又- 2cosx)的最小值和最大值;,求的最小值及对应的x 值.所以当时,最小值为(Ⅱ)由题意得,则由于, 所以所以当,即时,获得最大值所以时,获得最小值所以的最小值为,此时.考点:三角函数中的恒等变换应用;平面向量的综合题.评论:此题主要考察三角函数的恒等变换及化简求值,两个向量的数目积的公式,正弦函数的定义域和值域,属于中档题.16. 如图,在正三棱柱中,点在棱上,( 1)求证:为的中点;, 点分别是的中点.( 2)求证:平面.【答案】 (1) 看法析 (2)【分析】试题剖析:( 1)要证(2)连结,连结看法析为的中点,又交于点AB=AC,即证AD⊥BC即可;,连结,由(1)易证,从而问题得证.试题分析:( 1)正三棱柱,平面,又平面,,又,平面,又正三棱柱,平面(2)连结矩形平面,连结,为,交于点的中点,,为,连结的中点.又由 (1) 得为的中点,△中,又点,分别是,的中点,△中,,,又平面,平面平面点睛:垂直、平行关系证明中应用转变与化归思想的常有种类.(1) 证明线面、面面平行,需转变为证明线线平行.(2) 证明线面垂直,需转变为证明线线垂直.(3) 证明线线垂直,需转变为证明线面垂直.17. 某校在圆心角为直角,半径为的扇形地区内进行野外生计训练,两个地点分别为300,100 名学生,在道路上设置会合地址径到点会合,记全部学生进行的总行程为.. 如下图,在相距,要求全部学生沿最短路的( 1)设,写出对于的函数表达式;( 2)当最小时,会合地址离点多远?【答案】( 1),( 2)会合地址离出发点的距离为时,总行程最短,其最短总行程为.【分析】【剖析】(1)△ AOD中,由正弦定理求得 AD、 OD,再计算 S= 300AD+100BD的值;( 2)令函数 y=,求导判断函数单一性与最值,从而求出y 的最小值以及对应AD的值和 S 的最小值.【详解】( 1)由于在中,,,所以由正弦定理可知,解得,,且,故,( 2)令,则有,令得记,,列表得↘极小值↗可知,当且仅当时,有极小值也是最小值为,当时,此时总行程有最小值.答:当会合点离出发点的距离为时,总行程最短,其最短总行程为.【点睛】此题考察认识三角形的应用问题,也考察了三角函数图象与性质的应用问题,是中档题.18. 如图,、分别为椭圆的焦点,椭圆的右准线与轴交于点,若,且.(Ⅰ)求椭圆的方程;(Ⅱ)过、作相互垂直的两直线分别与椭圆交于、、、四点,求四边形面积的取值范围 .【答案】(Ⅰ);(Ⅱ).【分析】【剖析】( I )先确立 A 点坐标为( a2, 0),利用,可得F2是 AF1的中点,由此可求椭圆方程;( II )当直线 MN与 PQ中有一条与 x 轴垂直时,四边形PMQN面积;当直线 PQ, MN均与 x 轴不垂直时,设直线PQ、 MN的方程与椭圆方程联立,求得|PQ| ,|MN| ,表示出四边形PMQN面积,再换元,即可求得四边形PMQN面积的取值范围.【详解】(Ⅰ)由得,∴点坐标为;∵∴是的中点∴,∴椭圆方程为(Ⅱ)当直线与之一与轴垂直时,四边形面积;当直线,均与轴不垂直时,不如设,联立代入消去得设,则,∴,同理∴四边形面积令,则,,易知是以为变量的增函数所以当,时,,∴综上可知,,∴四边形面积的取值范围为【点睛】此题考察求椭圆的标准方程,考察直线与椭圆的地点关系和四边形面积的计算,正确表示四边形的面积是重点,属于中档题.19. 已知函数,,设.(Ⅰ)若在处获得极值,且,求函数的单一区间;(Ⅱ)若时函数有两个不一样的零点、.①求的取值范围;②求证:.【答案】( 1)在区间( 0,1 )上单一增;在区间(1,+分析【分析】试题剖析:( 1)先确立参数:由可得a=b-3.所以 a=" -2,b=1" . 再依据导函数求单一区间(2)①当数与直线有两个交点,先研究函数)上单一减 . ( 2)①(,0)②详见由函数极值定义知时,,原题转变为函图像,再确立 b 的取值范围是(,0) .②,由题意得所以须证,结构函数试题分析:( 1)由于,所以由可得 a=b-3.又由于在处获得极值,所以,所以 a=" -2,b=1" .所以,其定义域为(0, +),,即可证明, 所以,令得,当( 0,1 )时,,当(1,+),所以函数h( x)在区间( 0,1 )上单一增;在区间(1,+ )上单一减 .( 2)当时,,其定义域为(0, +) .①由得,记,则,所以在单一减,在单一增,所以当时获得最小值.又,所以时,而时,所以 b 的取值范围是(, 0).②由题意得,所以,所以,不如设 x1<x2,要证, 只需要证.即证,设,则,所以,所以函数在( 1, +)上单一增,而,所以即,所以.考点:函数极值,结构函数利用导数证明不等式20. 已知数列的前项和为,把知足条件的全部数列组成的会合记为.( 1)若数列通项为,求证:;( 2)若数列是等差数列,且,求的取值范围;( 3)若数列的各项均为正数,且,数列中能否存在无量多项挨次成等差数列,若存在,给出一个数列的通项;若不存在,说明原因.【答案】( 1)看法析;( 2);(3)数列中不存在无量多项挨次成等差数列.【分析】【剖析】(1) 由,得和,再证明,即可知足题意;(2)设的公差为,由,得,又,即,所以d=1,的取值范围;(3)假定数列中存在无量多项挨次成等差数列,不如设该等差数列的第项为(为常数),由,获取当时,对于的不等式有无量多个解,推出矛盾,所以不存在.【详解】(1)由于,所以,所以,所以,即.( 2)设的公差为,由于,所以特其他当时,,即,由得,整理得,由于上述不等式对全部恒成立,所以必有,解得,又,所以,于是,即,所以,即,所以,所以的取值范围是.( 3)由得,所以,即,所以,从而有,又,所以,即,又,,所以有,所以,假定数列中存在无量多项挨次成等差数列,不如设该等差数列的第项为(为常数),则存在,,使得,即,设,,,则即,于是当时,,从而有:当时,即,于是当时,对于的不等式有无量多个解,明显不可立,所以数列中是不存在无量多项挨次成等差数列.【点睛】此题考察的是数列定义的应用和等差数列的性质应用,运用反证法解决存在问题是此题的重点,属于中档题 .数学Ⅱ(附带题)【选做题】此题包含21,22, 23 三小题,请选定此中两题作答,每题10 分,合计20 分,解答时应写出文字说明,证明过程或演算步骤.21. 选修 4-2 :矩阵与变换 --- 求曲线在矩阵对应的变换作用下获取的曲线所围成图形的面积.【答案】【分析】试题剖析:先由矩阵变换获取曲线方程:,再依据曲线形状:菱形,计算其面积:.试题分析:设点为曲线上的任一点,在矩阵对应的变换作用下获取的点为,则由, 3分得:即 5 分所以曲线在矩阵对应的变换作用下获取的曲线为, 8 分所围成的图形为菱形,其面积为.10分考点:矩阵变换22. 在平面直角坐标系中,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴成立极坐标,直线的极坐标方程为,试求直线与曲线的交点的极坐标 .【答案】【分析】【剖析】将双方程化为一般方程,联立,即可求出直线l 与曲线 C的交点的直角坐标 , 从而即可得解 .【详解】将直线的极坐标方程化直角坐标系方程为将曲线的参数方程化为一般方程可得:由得,解得或,又,所以,所以直线与曲线的交点的直角坐标为.所以直线与曲线的交点的极坐标为.【点睛】此题考察了参数方程,极坐标方程,一般方程的互化,注意自变量的范围,属于基础题 .23. 若正数,,知足,求的最小值 .【答案】.【分析】【剖析】由 a+2b+4c= 3,可得( a+1) +2( b+1)+4( c+1)= 10,由柯西不等式可得的最小值.【详解】由于正数,,知足,所以,所以,即.当且仅当,,时,取最小值.【点睛】此题考察三元柯西不等式及其应用,考察基本的运算能力,属于基础题.【必做题】第24 题、第 25 题,每题 10 分,合计20 分 . 解答时应写出文字说明,证明过程或演算步骤 .24. 在某次活动中,有 5 名好运之星 . 这 5 名好运之星可获取、两种奖品中的一种,并规定:每一个人经过投掷一枚质地均为的骰子决定自己最后获取哪一种奖品(骰子的六个面上的点数分别为 1 点、 2 点、 3 点、 4 点、 5 点、 6 点),投掷点数小于 3 的获取奖品,投掷点数不小于3 的获取奖品 .( 1)求这 5 名好运之星中获取奖品的人数大于获取奖品的人数的概率;( 2)设、分别为获取、两种奖品的人数,并记,求随机变量的散布列及数学希望 .【答案】( 1);(2),的散布列看法析 .【分析】【剖析】第一求出 5 名好运之星中,每人获取 A 奖品的概率和 B 奖品的概率.(1)获取 A 奖品的人数大于获取 B 奖品的人数,获取获取 A 奖品的人数可能为 3,4,5,利用独立重复试验求得概率;(2)由ξ= |X ﹣Y| ,可得ξ的可能取值为 1, 3, 5,相同利用独立重复试验求得概率,而后列出频次散布表,代入希望公式求希望.【详解】这 5 名好运之星中,每人获取奖品的概率为,奖品的概率为.( 1)要获取奖品的人数大于获取奖品的人数,则奖品的人数可能为3, 4, 5,则所求概率为.( 2)的可能取值为1,3, 5,且,,,所以的散布列是:135故随机变量的数学希望.【点睛】此题考察了失散型随机变量的希望的应用,也考察了独立重复试验,属于中档题.25. 在数学上,常用符号来表示算式,如记=,此中,.( 1)若,,,,成等差数列,且,求证:;( 2)若,,记,且不等式恒成立,务实数的取值范围 .【答案】( 1)详看法析(2)【分析】试题剖析:(Ⅰ)由题意求出等差数列的通项公式,而后联合二项式系数的性质证明;(Ⅱ)在二项式睁开式中分别取x=-1 , x=1,求出 bn,再借助于二项式系数的性质化简可得,代入不等式,分n为奇数和偶数求得t 的取值范围试题分析:( 1)设等差数列的通项公式为,此中为公差则由于,所以所以=注:第( 1)问也能够用倒序相加法证明( 2)令,则令,则,所以.. (酌情给分)依据已知条件可知,将、当为偶数时,当为奇数,综上所述,所以实数,所以代入不等式,所以,所以的取值范围是.;得,;考点:数列的乞降,二项式系数的性质。

南京市2020届高三年级学情调研数学附加卷(定稿)

南京市2020届高三年级学情调研数学附加卷(定稿)

南京市2020届高三年级学情调研数学附加题 2019.09 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区......域内..作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换已知二阶矩阵A =⎣⎢⎡⎦⎥⎤2 321.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ′:x 2-3y 2=1,求曲线C 的方程.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l :⎩⎨⎧x =4t ,y =1+at (t 为参数,a 为常数),曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(θ为参数).若曲线C 上的点P 到直线l 的距离的最大值为3,求a 的值.C .选修4—5:不等式选讲解不等式x 2+2|x -1|<6.(第22题图) A C D PE F 【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,四棱锥P -ABCD 的底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,E ,F 分别为P A ,AB 的中点,且DF ⊥CE .(1)求AB 的长;(2)求直线CF 与平面DEF 所成角的正弦值.23.(本小题满分10分)已知集合A ={1,2,3,4}和集合B ={1,2,3,…,n },其中n ≥5,n ∈N *.从集合A 中任取三个不同的元素,其中最小的元素用S 表示;从集合B 中任取三个不同的元素,其中最大的元素用T 表示.记X =T -S .(1)当n =5时,求随机变量X 的概率分布和数学期望E (X );(2)求P (X =n -3).。

江苏省南京市2020届高三数学9月学情调研试题(含解析)

江苏省南京市2020届高三数学9月学情调研试题(含解析)

江苏省南京市2020届高三数学9月学情调研试题(含解析)一、填空题: (本大题共14小题,每小题5分,共70分 .请将答案写在答题卡相应位置. ) 1、函数()1f x x =-的定义域为 ▲【答案】[1,+∞)【解析】被开方式大于等于 0【点评】考查函数定义域的求解,该题属于基础题型.2、已知复数z 满足(2)1z i i -=+,其中i 是虚数单位,则复数z 的模为 ▲ . 【答案】10【解析】z a bi =+,(2)13z i i a -=+⇒=,110b z =-⇒=, 【点评】考查复数的运算,属于基础题型.3、某算法的流程图如图所示,则物出的n 的值为 ▲ .【答案】4【解析】n =2,p =4;n =3,p =9;n =4,p =16. 【点评】考查流程图,属于基础题型.4、某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是: [40,50),[50,60),[60,70),[70,80),[80,90),[90,100〕,则图中x 的值为 ▲【答案】0.018【解析】0.1(0.0060.0060.010.0540.006)0.018x =-++++=【点评】考查统计知识的基本运用,属于基础题型.5、有3个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组的可能性相同,则这两位同学参加了不同的兴趣小组的概率为 ▲ 【答案】23【解析】322333P ⨯==⨯ 【点评】考查组合,属于基础题型.6、把一个底面半径为3 cm ,高为4 cm 的钢质实心圆柱熔化,然后铸成一个实心钢球(不计损 耗),则该钢球的半径为 ▲ cm. 【答案】 3【解析】由圆柱和球的体积相等得:2343433R R ππ⨯⨯=⇒= 【点评】考查圆柱和球的体积计算,属于基础题型.7、在平面直角坐标系xoy 中,若双曲线22221(0,0)x y a b a b-=>>的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为 ▲ .【答案】3【解析】由渐近线与准线的交点构成等边三角形,可得22tan 303b a b a c a a c⨯︒===,得e ==【点评】考查双曲线的离心率计算,属于基础题型. 8、若函数()2sin()(0)6f x x πωω=->的最小正周期为π,则当[0,]2x π∈时,()f x 的值域为▲ . 【答案】[﹣1,2]【解析】由周期为π,得2ω=,则()2sin(2)6f x x π=-,x ∈[0,2π]时,()f x ∈[﹣1,2]【点评】考查三角函数的图像和性质,属于基础题型. 9、若锐角α满足tan (α+4π)=3tan α+1,则tan2α的值为 ▲ .【答案】34【解析】由题意化简得:tan (3tan 1)0αα-=,解得tan 0α=或1tan 3α= ∵α为锐角,∴1tan 3α=,∴tan2α=34【点评】考查三角函数的图像和性质,属于基础题型. 10、已知函数()1||xf x x =+,则不等式(3)(2)0f x f x -+>的解集为 ▲ . 【答案】x >1【解析】由题意得()f x 为奇函数,通过分离常数法得()f x 是R 上的增函数转换可得(3)(2)f x f x ->-,即32x x ->-,x >1【点评】考查通过函数的奇偶性和单调性解决不等式的问题11、等差数列{n a }的前n 项和记为Sn ,已知147a a a ++=99,258a a a ++=93,若存在正整数k ,使得对任意n *N ∈,都有n k S S ≤恒成立,则k 的值为 ▲ . 【答案】20【解析】由等差数列,可得4399a =,∴433a =;5393a =,∴531a =;∴2d =-,139a = 240n S n n =-+,n S 最大值为20S ,所以k =20.【点评】此题考查的是对等差数列求n 项和的表达式配方求最值的题型,该题属于基础题型.12、在△ABC 中,点P 是边AB 的中点,已知CA =4,CP =3,∠ACB =23π,则CP CA u u u r u u u r g的值为 ▲ . 【答案】6【解析】∵1()2CP CA CB =+u u u r u u u r u u u r∴222111cos 442CP CA CB CA CB ACB =++∠u u u r u u u r u u u r u u u r u u u r∴21344CB CB =+-u u ur u u u r ,解得CB u u u r =2∴21111111()1642()62222222CP CA CA CB CA CA CA CB ⋅=+⋅=+⋅=⨯+⨯⨯⨯-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r【点评】向量的数量积,考察向量的中点公式和模长;另外还可通过建系去做. 难度适中.13、在平面直角坐标系xoy 中,已知圆若圆M 上存在一点P ,使得以点P 为圆心,1为半径的圆与圆N 有公共点,则实数a 的取值范围为 ▲ . 【答案】[﹣2,2]【解析】设P(x ,y ),因为以P 为圆心,半径为1的圆与圆N 有公共点所以1≤22(2)(1)x y -++≤3,又P 在圆M ,可得22(2)(21)a a -++≤5 可得:实数a 的取值范围为﹣2≤a ≤2.【点评】圆的存在性问题,考察圆与圆的位置关系. 难度适中,14、已知函数若函数有6个零点(互不相同),则实数a 的取值范围为 ▲ .【答案】(34,2) 【解析】作出()f x 与()g x 的图像由题知,(())g f x a =有6个解,令()f x t =当a <0时,()g t a =只有一个解,且t <﹣4,对应()f x t =只有一个解,舍去; 当0≤a ≤34时,()g t a =有两个解,且143t -≤≤-,210t -≤≤,结合图像可知()f x t = 没有6个解,舍去;当34<a <2时,()g t a =有两个解,且1t ,2t ∈(﹣3,1),结合图像可知()f x t =有6个解;当a ≥2时,()g t a =只有一个解,且t >1,对应()f x t =只有一个解,舍去. 综上得 a 的取值范围是34<a <2.【点评】本题主要考查根的个数,利用换元法转化为两个函数的焦点问题个数问题,利用分类讨论和数形结合时解决本题的关键,综合性较大.二、解答题:本大题共5小题,共计90分。

江苏省南京市2020高三数学9月学情调研试题(含解析)

江苏省南京市2020高三数学9月学情调研试题(含解析)

江苏省南京市2020届高三数学9月学情调研试题(含解析)一、填空题: (本大题共14小题,每小题5分,共70分 .请将答案写在答题卡相应位置. ) 1、函数()1f x x =-的定义域为 ▲【答案】[1,+∞)【解析】被开方式大于等于 0【点评】考查函数定义域的求解,该题属于基础题型.2、已知复数z 满足(2)1z i i -=+,其中i 是虚数单位,则复数z 的模为 ▲ . 【答案】10【解析】z a bi =+,(2)13z i i a -=+⇒=,110b z =-⇒=, 【点评】考查复数的运算,属于基础题型.3、某算法的流程图如图所示,则物出的n 的值为 ▲ .【答案】4【解析】n =2,p =4;n =3,p =9;n =4,p =16. 【点评】考查流程图,属于基础题型.4、某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是: [40,50),[50,60),[60,70),[70,80),[80,90),[90,100〕,则图中x 的值为 ▲【答案】0.018【解析】0.1(0.0060.0060.010.0540.006)0.018x =-++++=【点评】考查统计知识的基本运用,属于基础题型.5、有3个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组的可能性相同,则这两位同学参加了不同的兴趣小组的概率为 ▲ 【答案】23【解析】322333P ⨯==⨯ 【点评】考查组合,属于基础题型.6、把一个底面半径为3 cm ,高为4 cm 的钢质实心圆柱熔化,然后铸成一个实心钢球(不计损 耗),则该钢球的半径为 ▲ cm. 【答案】 3【解析】由圆柱和球的体积相等得:2343433R R ππ⨯⨯=⇒= 【点评】考查圆柱和球的体积计算,属于基础题型.7、在平面直角坐标系xoy 中,若双曲线22221(0,0)x y a b a b-=>>的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为 ▲ .【答案】3【解析】由渐近线与准线的交点构成等边三角形,可得22tan 303b a b a c a a c⨯︒===,得e ==【点评】考查双曲线的离心率计算,属于基础题型. 8、若函数()2sin()(0)6f x x πωω=->的最小正周期为π,则当[0,]2x π∈时,()f x 的值域为▲ . 【答案】[﹣1,2]【解析】由周期为π,得2ω=,则()2sin(2)6f x x π=-,x ∈[0,2π]时,()f x ∈[﹣1,2]【点评】考查三角函数的图像和性质,属于基础题型. 9、若锐角α满足tan (α+4π)=3tan α+1,则tan2α的值为 ▲ .【答案】34【解析】由题意化简得:tan (3tan 1)0αα-=,解得tan 0α=或1tan 3α= ∵α为锐角,∴1tan 3α=,∴tan2α=34【点评】考查三角函数的图像和性质,属于基础题型. 10、已知函数()1||xf x x =+,则不等式(3)(2)0f x f x -+>的解集为 ▲ . 【答案】x >1【解析】由题意得()f x 为奇函数,通过分离常数法得()f x 是R 上的增函数转换可得(3)(2)f x f x ->-,即32x x ->-,x >1【点评】考查通过函数的奇偶性和单调性解决不等式的问题11、等差数列{n a }的前n 项和记为Sn ,已知147a a a ++=99,258a a a ++=93,若存在正整数k ,使得对任意n *N ∈,都有n k S S ≤恒成立,则k 的值为 ▲ . 【答案】20【解析】由等差数列,可得4399a =,∴433a =;5393a =,∴531a =;∴2d =-,139a = 240n S n n =-+,n S 最大值为20S ,所以k =20.【点评】此题考查的是对等差数列求n 项和的表达式配方求最值的题型,该题属于基础题型.12、在△ABC 中,点P 是边AB 的中点,已知CA =4,CP =3,∠ACB =23π,则CP CA u u u r u u u r g的值为 ▲ . 【答案】6【解析】∵1()2CP CA CB =+u u u r u u u r u u u r∴222111cos 442CP CA CB CA CB ACB =++∠u u u r u u u r u u u r u u u r u u u r∴21344CB CB =+-u u ur u u u r ,解得CB u u u r =2∴21111111()1642()62222222CP CA CA CB CA CA CA CB ⋅=+⋅=+⋅=⨯+⨯⨯⨯-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r【点评】向量的数量积,考察向量的中点公式和模长;另外还可通过建系去做. 难度适中.13、在平面直角坐标系xoy 中,已知圆若圆M 上存在一点P ,使得以点P 为圆心,1为半径的圆与圆N 有公共点,则实数a 的取值范围为 ▲ . 【答案】[﹣2,2]【解析】设P(x ,y ),因为以P 为圆心,半径为1的圆与圆N 有公共点所以1≤22(2)(1)x y -++≤3,又P 在圆M ,可得22(2)(21)a a -++≤5 可得:实数a 的取值范围为﹣2≤a ≤2.【点评】圆的存在性问题,考察圆与圆的位置关系. 难度适中,14、已知函数若函数有6个零点(互不相同),则实数a 的取值范围为 ▲ .【答案】(34,2) 【解析】作出()f x 与()g x 的图像由题知,(())g f x a =有6个解,令()f x t =当a <0时,()g t a =只有一个解,且t <﹣4,对应()f x t =只有一个解,舍去; 当0≤a ≤34时,()g t a =有两个解,且143t -≤≤-,210t -≤≤,结合图像可知()f x t = 没有6个解,舍去;当34<a <2时,()g t a =有两个解,且1t ,2t ∈(﹣3,1),结合图像可知()f x t =有6个解;当a ≥2时,()g t a =只有一个解,且t >1,对应()f x t =只有一个解,舍去. 综上得 a 的取值范围是34<a <2.【点评】本题主要考查根的个数,利用换元法转化为两个函数的焦点问题个数问题,利用分类讨论和数形结合时解决本题的关键,综合性较大.二、解答题:本大题共5小题,共计90分。

2020届江苏省南京十校上学期12月高三联合调研数学试题(带答案)

2020届江苏省南京十校上学期12月高三联合调研数学试题(带答案)

2020届江苏省南京十校上学期12月高三联合调研数学试题第I 卷(选择题)第II 卷(非选择题)一、填空题1.已知集合{}1,2A =,{}1,2,3B =-,则集合A B =U ______.2.已知复数21i z i=+,(i 为虚数单位)则复数z 的实部为 . 3.根据如图所示的伪代码,则输出I 的值为______.4.某校高一、高二、高三年级的学生人数比为3:3:2,为调查该校学生每天用于课外阅读的时间,现按照分层抽样的方法取若干人,若抽取的高一年级人数为45人,则抽取的样本容量为______.5.函数f(x)=ln(1)x +____________.6.甲、乙两人依次从标有数字1,2,3的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字3的卡片的概率为______.7.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.8.已知函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭,若函数()y f x ϕ=-(02πϕ<<)是偶函数,则ϕ=______.9.已知数列{}n a 是首项为1,公差为正数的等差数列,其前n 项和为n S ,若2a ,6a ,22a 成等比数列,则10S =______.10.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.11.在平面直角坐标系xOy 中,已知直线l :0x m +-=,点()3,0A ,动点P 满足2227PO PA -=.若P 点到直线l 的距离恒小于8,则实数m 的取值范围______.12.如图,在ABC ∆中,AB =2AC =,2BD DC =u u u r u u u r ,E 为AC 的中点,AD 与BE 交于点F ,G 为EF 的中点.AG CF ⋅=u u u r u u u r______.13.已知0a >,0b >,且31126a b a b ++≤+,则3ab a b+的最大值为______. 14.已知偶函数()f x 满足()()44f x f x +=-,且当[]0,4x ∈时,()()x x f x =,关于x 的不等式()()20f x af x +>在区间[]400,400-上有且仅有400个整数解,则实数a 的取值范围______.二、解答题15.已知分别为ABC ∆三个内角A 、B 、C 的对边,且3tan 4A =(1)若65a =,2b =,求边c 的长;(2)若()sin 10A B -=,求tan B 的值 16.如图,在斜三棱柱111ABC A B C -中,已知ABC ∆为正三角形,D ,E 分别是AC ,1CC 的中点,平面11AA C C ⊥平面ABC ,11A E AC ⊥.(1)求证://DE 平面11AB C ;(2)求证:1A E ⊥平面BDE .17.如图,已知椭圆22221x y a b+=(0a b >>)的焦点到相应准线的距离为3,离心率为12,过右焦点F 作两条互相垂直的弦AB 、CD ,设AB ,CD 的中点分别为M 、N .(1)求椭圆的标准方程;(2)若弦AB ,CD 的斜率均存在,且OMF ∆和ONF ∆的面积分别为1S ,2S ,试求当12S S 最大时的方程.18.如图,某湿地公园的鸟瞰图是一个直角梯形,其中:AB CD ∥,AB BC ⊥,75DAB ∠=︒,AD 长1千米,AB千米,公园内有一个形状是扇形的天然湖泊DAE ,扇形DAE 以AD 长为半径,弧DE 为湖岸,其余部分为滩地,B ,D 点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段BQ -线段QP -弧PD ,其中Q 在线段BC 上(异于线段端点),QP 与弧DE 相切于P 点(异于弧端点]根据市场行情BQ ,OP 段的建造费用是每千米10万元,湖岸段弧PD 的建造费用是每千米)2013万元(步行道的宽度不计),设PAE ∠为θ弧度观光步行道的建造(1)求步行道的建造费用w 关于θ的函数关系式,并求其走义域;(2)当θ为何值时,步行道的建造费用最低?19.已知函数()3232f x x x x =-+,()g x tx =,t R ∈. (1)求函数()()xf x e x xϕ⋅=的单调增区间; (2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0,m ,n ,其中m n <. ①若12m n =,求函数()h x 在 x m =处的切线方程; ②若对[],x m n ∀∈,()16h x t ≤-恒成立,求实数t 的去取值范围.20.已知等差数列{}n a 的前n 项和n S ,且满足23a =,2420S S +=,数列{}n b 是首项为2,公比为q (0q ≠)的等比数列.(1)求数列{}n a 的通项公式;(2)设正整数k ,t ,r 成等差数列,且k t r <<,若11k r r k a b a b a b +=+=+,求实数q 的最大值;(3)若数列{}n c 满足,21,2k n k a n k c b n k=-⎧=⎨=⎩,k *∈N ,其前n 项和为n T ,当3q =时,是否存在正整数m ,使得221m m T T -恰好是数列{}n c 中的项?若存在,求岀m 的值;若不存在,说明理由. 21.已知点()2,2P ,在矩阵21a M b ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为点()4,6Q . (1)求a 和b 的值;(2)若直线l 在M 对应的变换作用下变为直线20x y +=,求直线l 的方程.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1,232,x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是42sin 4πρθ⎛⎫=+ ⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于两点A ,B ,求线段AB 的长.23.设函数()22f x x x =-++,若不等式242a b a b a --+≤()f x 对任意a ,b R ∈,且0a ≠恒成立,求实数x 的取值范围.24.在平面直角坐标系xOy 中,已知抛物线C :22y px =(0p >)的焦点F 在直线10x y +-=上,平行于x 轴的两条直线1l ,2l 分别交抛物线C 于A ,B 两点,交该抛物线的准线于D ,E 两点.(1)求抛物线C 的方程;(2)若F 在线段AB 上,P 是DE 的中点,证明:AP EF P .25.甲、乙两人用一颗均匀的骰子(一种正方体玩具,六个面分别标有数字1,2,3,4,5,6)做抛掷游戏,并制定如下规则:若掷出的点数不大于4,则由原掷骰子的人继续掷,否则,轮到对方掷.已知甲先掷.(1)若共抛掷4次,求甲抛掷次数的概率分布列和数学期望;(2)求第n 次(2n ≥,n *∈N )由乙抛掷的概率.参考答案1.{}1,1,2,3-【解析】【分析】利用并集定义直接求解.【详解】∵集合{}1,2A =,{}1,2,3B =-∴集合{}1,1,2,3A B ⋃=-.故答案为:{}1,1,2,3-.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题. 2.1【解析】 试题分析:22(1)=112i i i z i i -==++,所以实部为1 考点:复数概念3.10【解析】【分析】模拟程序的运行,依次写出每次循环得到的S ,I 的值,直到S 不满足条件跳出循环,输出I 的值即可.【详解】模拟程序的运行,可得1S =,1I =.满足条件12S ≤,执行循环体,2S =,4I =;满足条件12S ≤,执行循环体,6S =,7I =;满足条件12S ≤,执行循环体,13S =,10I =;不满足条件12S ≤,退出循环,输出I 的值为10.故答案为:10.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S ,I 的值是解题的关键,属于基础题.4.120【解析】【分析】设样本容量为n ,由抽取的高一年级人数为45人,利用分层抽样的性质能求出抽取的样本容量.【详解】某校高一、高二、高三年级的学生人数比为3:3:2,为调查该校学生每天用于课外阅读的时间,现按照分层抽样的方法取若干人,设样本容量为n .∵抽取的高一年级人数为45人 ∴332451203n ++=⨯=. 故答案为;120.【点睛】本题考查样本容量的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题. 5.(]1,2-.【解析】【分析】由题意得到关于x 的不等式组,解不等式组可得函数的定义域.【详解】由题意得21040x x +>⎧⎨-≥⎩,解得12x -<≤, 所以函数的定义域为(]1,2-.【点睛】已知函数的解析式求函数的定义域时,可根据解析式的特征得到关于自变量x 的不等式(组),解不等式(组)后可得函数的定义域.6.1 3【解析】【分析】先求出基本事件总数326n=⨯=,两人均未抽到标有数字3的卡片包含的基本事件个数212m=⨯=,由此能求出两人均未抽到标有数字3的卡片的概率.【详解】甲、乙两人依次从标有数字1,2,3的三张卡片中各抽取一张(不放回),基本事件总数326n=⨯=,两人均未抽到标有数字3的卡片包含的基本事件个数212m=⨯=,则两人均未抽到标有数字3的卡片的概率为2163mpn===.故答案为:13.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.7.y x=【解析】【分析】利用双曲线的离心率求出a,b关系,然后求解渐近线方程即可.【详解】由已知可知离心率32cea==,2222294c a ba a+==,即2254ba=.∵双曲线22221x ya b-=的焦点在x轴上∴该双曲线的渐近线方程为by xa=±,即y x=.故答案为:y x=.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查.8.512π 【解析】【分析】直接利用正弦型函数的性质的应用和函数的对称性的应用求出结果.【详解】∵函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭∴函数()sin 223y f x x πϕϕ⎛⎫=-=-+ ⎪⎝⎭ ∵函数()y f x ϕ=-(02πϕ<<)是偶函数 ∴232k ππϕπ-+=+,k Z ∈ ∴212k ππϕ=--,k Z ∈ ∵02πϕ<<∴当1k =-时,512πϕ=. 故答案为:512π. 【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.145【解析】【分析】设等差数列的公差为d ,0d >,运用等比数列的中项性质和等差数列的通项公式,解方程可得d ,由等差数列的求和公式,计算可得所求和.【详解】设等差数列{}n a 的公差为d ,0d >. ∵2a ,6a ,22a 成等比数列∴26222a a a =,即()()()2111521a d a d a d +=++.∴133d a ==∴101104510453145S a d =+=+⨯=. 故答案为:145. 【点睛】本题考查等差数列的通项公式和求和公式,等比数列的中项性质,考查方程思想和运算能力,属于基础题. 10.12【解析】 【分析】设圆柱的高为h ,底面半径为r ,根据容积为128π个立方单位可得2128r h ππ=,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值. 【详解】设圆柱的高为h ,底面半径为r .∵该圆柱形的如罐的容积为128π个立方单位 ∴2128r h ππ=,即2128h r=. ∴该圆柱形的表面积为222212825622222S r rh r r r r rππππππ=+=+⋅=+. 令()22562g r r r ππ=+,则()22564g r r r ππ'=-. 令()0g r '>,得4r >; 令()0g r '<,得04r <<.∴()g r 在()0,4上单调递减,在()4,+∞上单调递增. ∴当4r =时,()g r 取得最小值,即材料最省,此时12r h =.故答案为:12. 【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题. 11.()9,3- 【解析】 【分析】设(),P x y ,由已知列式求得点P 的轨迹方程,可得P 在以()3,0-为圆心,以5为半径的圆上,把P 点到直线l 的距离恒小于8,转化为圆心到直线的距离小于3列式求解,即可得到m 的取值范围. 【详解】 设(),P x y .∵()3,0A ,动点P 满足2227PO PA -=∴()()2222237x y x y ⎡⎤+--+=⎣⎦,即()22325x y ++=. ∴P 在以()3,0-为圆心,以5为半径的圆上 ∵P 点到直线l:0x m +-=的距离恒小于83<,解得93m -<<.故答案为:()9,3-. 【点睛】本题考查轨迹方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题. 12.34-【解析】 【分析】根据2BD DC =u u u r u u u r ,设2133AF AD AB AC λλ⎛⎫==+ ⎪⎝⎭u u u r u u u r u u ur u u u r ,再根据B ,F ,E 三点共线,设()112AF AB AE AB AC μμμμ-=+-=+u u u r u u u r u u u r u u u r u u u r ,即可求出λ,从而得出AF u u u r ,CF uuur ,进而求出AG CF ⋅u u u r u u u r的值.【详解】根据2BD DC =u u u r u u u r ,设2133AF AD AB AC λλ⎛⎫==+ ⎪⎝⎭u u u r u u u r u u ur u u u r∵F ,E ,B 三点共线∴设()112AF AB AE AB AC μμμμ-=+-=+u u u r u u u r u u u r u u u r u u u r ∴23132λμλμ⎧=⎪⎪⎨-⎪=⎪⎩,解得34λ=∴1124AF AB AC =+u u u r u u u r u u u r ,11132448AG AF AE AB AC =+=+u u u r u u u r u u u r u u u r u u u r ,1324CF CA AF AB AC =+=-u u u r u u u r u u u r u u u r u u u r∴2211313119224242416AG CF AB AC AB AC AB AC ⎛⎫⎛⎫⎛⎫⋅=+-=-⎪⎪ ⎪⎝⎭⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r∵AB =2AC =,∴11933424164AG CF ⎛⎫⋅=⨯-⨯=- ⎪⎝⎭u u u r u u u r故答案为:34-. 【点睛】本题考查了向量数乘的几何意义,向量减法的几何意义,向量数量积的运算,考查了计算和推理能力,属于中档题. 13.19【解析】 【分析】将不等式两边同乘以31a b+,再将不等式两边化简,然后利用基本不等式即可求得最大值. 【详解】∵0a >,0b >,且31126a b a b++≤+ ∴()23131126a b a b a b ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭∵()31361863631126312156b a b a a b a b a a b b ab a b ⎛⎫⎛⎫⎛⎫+++=+++++=++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴()313131126156276a b a b a b a b ⎛⎫⎛⎫⎛⎫+++≥++=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当6a b =时取等号.令()310t t a b+=>,原不等式转化为2276t t +≤,解得9t ≥. ∴1113139ab a b t a b ==≤++故答案为:19.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).14.31223e ,e --⎛⎤-- ⎥⎝⎦【解析】 【分析】由已知条件可知函数()f x 关于直线4x =对称,周期为8,故不等式()()20f x af x +>在区间[]0,8上有且仅有4个整数解,作出函数图象,进而得解. 【详解】∵()f x 满足()()44f x f x +=- ∴函数()f x 关于直线4x =对称 ∵函数()f x 为偶函数 ∴()()()8f x f x f x +=-=∴()f x 周期为8,则在区间[]400,400-上有100个周期 ∵()()20f x af x +>在[]400,400-上有且仅有400个整数解 ∴()()20fx af x +>在[]0,8有且仅有4个整数解当04x ≤≤时,()()xxf x =,则()()112xx f x -'=.∴令()0f x '>,则02x ≤<,()f x 在[)0,2上单调递增;令()0f x '<,则24x <≤,()f x 在(]2,4上单调递减,其中()22f e=. 做出函数在区间[]0,8上的图象如图所示:∵()1f =,()()31f f =>,()()20f x af x +>在[]0,8上有4个整数解,则()f x a >-在[]0,8上有4个整数解.a ≤-<∴a <≤. 故答案为:31223e ,e --⎛⎤-- ⎥⎝⎦.【点睛】本题考查函数性质的运用及导数在解决函数问题中的应用,考查数形结合思想及转化能力,属于较难题目. 15.(1)85c =;(2)13【解析】 【分析】(1)由正切值可得0,2A π⎛⎫∈ ⎪⎝⎭,进而可求得sin A 与cos A ,再由余弦定理即可求得边c 的值;(2)根据()sin A B -=,求得()cos A B -,进而求得()tan A B -,从而可求出tan B 的值. 【详解】(1)在ABC ∆中,由3tan 4A =可知0,2A π⎛⎫∈ ⎪⎝⎭,由22sin 3cos 4sin cos 1A A A A ⎧=⎪⎨⎪+=⎩解得3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩由余弦定理,2222cos a b c bc A =+-得2226422255c c ⎛⎫=+-⋅⋅⋅ ⎪⎝⎭,即216640525c c -+=,解得85c =. (2)由0,2A π⎛⎫∈ ⎪⎝⎭且()0,B π∈,得,2A B ππ⎛⎫-∈- ⎪⎝⎭. 又()sin 010A B -=>,则0,2A B π⎛⎫-∈ ⎪⎝⎭,则()cos 0A B ->.所以()cos A B -==,所以()()()sin 1tan cos 3A B A B A B --==- 所以()()()31tan tan 143tan tan 311tan tan 3143A AB B A A B A A B---=--===⎡⎤⎣⎦+⋅-+⋅. 【点睛】考查余弦定理及两角差的正弦公式,给出一个角的三角函数值,求其他三角函数值,属于简单题.16.(1)见解析;(2)见解析 【解析】 【分析】(1)根据D ,E 分别是AC ,1CC 的中点,即可证明1//DE AC ,从而可证//DE 平面11AB C ;(2)先根据ABC ∆为正三角形,且D 是AC 的中点,证出BD AC ⊥,再根据平面11AA C C ⊥平面ABC ,得到BD ⊥平面11AAC C ,从而得到1BD A E ⊥,结合11A E AC ⊥,即可得证. 【详解】(1)∵D ,E 分别是AC ,1CC 的中点 ∴1//DE AC∵DE ⊄平面11AB C ,1AC ⊂平面11AB C ∴//DE 平面11AB C .(2)∵ABC ∆为正三角形,且D 是AC 的中点 ∴BD AC ⊥∵平面11AA C C ⊥平面ABC ,且平面11AAC C I 平面ABC AC =,BD ⊂平面ABC ∴BD ⊥平面11AAC C ∵1A E ⊂平面11AAC C ∴1BD A E ⊥∵11A E AC ⊥且1//DE AC ∴1A E DE ⊥∵DE ,BD ⊂平面BDE ,且DE BD D ⋂= ∴1A E ⊥平面BDE . 【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.17.(1)22143x y +=;(2)10x y +-=或10x y --= 【解析】 【分析】(1)直接根据椭圆的几何性质得到a ,b 的值;(2)设出直线AB 的方程与椭圆方程联立,求出OMF ∆的面的表达式,同理求出ONF ∆的面积不等式,从而可求出12S S ,利用基本不等式即可求其最大值,从而得解. 【详解】(1)由题意:23a c c-=,12c e a ==,则2a =,1c =,b =22143x y +=. (2)由题意可得()1,0F .∵AB ,CD 斜率均存在,设直线AB 方程为:()1y k x =-(0k ≠),()11,A x y ,()22,B x y ,则1212,122x x x x M k ⎛++⎫⎛⎫- ⎪⎪⎝⎭⎝⎭. ∴由()221,3412,y k x x y ⎧=-⎨+=⎩得()22223484120k x k x k +-+-=. ∴2122834k x x k +=+,212241234k x x k -=+,则22243,3434k k M k k ⎛⎫- ⎪++⎝⎭.∴同理可得2243,3434k N k k ⎛⎫⎪++⎝⎭∴()12312234M k S OF y k =⋅⋅=+,()22312234Nk S OF y k =⋅⋅=+ ∴()21242229911441225121225k S S k k k k ==⋅⎛⎫++++ ⎪⎝⎭,∵2212k k +≥,当且仅当221k k=即1k =±时取等号 ∴当1k =±时,12S S 最大,此时直线AB 的方程为10x y +-=或10x y --=. 【点睛】本题考查椭圆的几何性质,椭圆方程,直线与椭圆的位置关系,三角形的面积的最值等,考查函数最值,重要不等式,属于难题. 18.(1))1cos 25101sin 312w θπθθ⎡-⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,定义域:5,412ππθ⎛⎫∈ ⎪⎝⎭;(2)当3πθ=时,步行道的建造费用最低. 【解析】 【分析】(1)以A 为坐标原点,以AB 所在直线为x 轴建立平面直角坐标系,可得»DE所在圆的方程为221x y +=,可得()cos ,sin P θθ,从而求得PQ 所在直线方程,与BC 所在直线方程联立求得Q 坐标,即可得到BQ 与PQ ,再由弧长公式求»DP的长,再根据QP 与»DE 相切于P 点(异于弧端点)与512DAB π=∠,即可求得函数关系式与其定义域; (2)令()1cos 25sin 312f θπθθθ-⎛⎫=+- ⎪⎝⎭,利用导数求使步行道的建造费用最低时的θ值.【详解】(1)以A 为坐标原点,以AB 所在直线为x 轴建立平面直角坐标系,如图所示:则»DE所在圆的方程为221x y +=,()cos ,sin P θθ,)B ,直线PQ :cos sin 1x y θθ+=.∵直线BC的方程为x =∴1sin Q θθ⎫⎪⎪⎭.所以BQ =,PQ =,弧PD 长512πθ=-,所以)2011cos 510sin sin 312w θθπθθθ⎛⎫⎛⎫=++- ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得)1cos 25101sin 312w θπθθ⎡-⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦.∵QP 与»DE 相切于P 点(异于弧端点),512DAB π=∠ ∴定义域:5,412ππθ⎛⎫∈⎪⎝⎭. (2)令()1cos 25sin 312fθπθθθ-⎛⎫=+- ⎪⎝⎭,求导得()21cos 2sin 3f θθθ-'=-,令()21cos 20sin 3f θθθ-'=-=, cos 1θ=(舍去),1cos 2θ=,3πθ=,所以当3πθ=时,()fθ最小,即w 最小,当3πθ=时,步行道的建造费用最低.【点睛】本题考查根据实际问题选择函数模型,考查直线与圆位置关系的应用,利用导数求最值,是中档题.19.(1)单调增区间是⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭;(2)①1y x =-+,②124t -<<或211t <≤ 【解析】 【分析】(1)先求得函数()()xf x e x xϕ⋅=,对函数()x ϕ求导,令()x ϕ'大于零,解不等式即可求得单调增区间;(2)易知3m n +=,2mn t =-,①求出m ,n 的值,进而求得切线方程;②由对[],x m n ∀∈,()16h x t ≤-恒成立,可得()max 16h x t ≤-,分302m n <<<与0m n <<两种情况讨论,从而可求得t 的取值范围. 【详解】(1)∵()()x f x e x xϕ⋅=,()3232f x x x x =-+∴()()232xx x x e ϕ=-+∴()()21xx x x e ϕ'=--,令()0x ϕ'>,得12x -<x >∴()x ϕ的单调增区间是⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭.(2)由方程()0h x =,得m ,n 是方程()2320x x t -+-=的两实根,故3m n +=,2mn t =-,且由判别式得14t >-.①若12m n =,得1m =,2n =,故22mn t =-=,得0t =,因此()11h '=-,故函数()h x 在1x =处的切线方程为1y x =-+. ②若对任意的[],x m n ∈,都有()16h x t ≤-成立,所以()max 16h x t ≤-. 因为3m n +=,m n <,所以302m n <<<或0m n <<. 当302m n <<<时,对[],x m n ∈有()max 0h x =,所以016t ≤-,解得16t ≤.又因为20mn t =->,得2t <,则有124t -<<;当0m n <<时,()()2362h x x x t '=-+-,则存在()h x 的极大值点()1,0x m ∈,且211362t x x =-+.由题意得()()3211113216h x x x t x t =-+-≤-,将211362t x x =-+代入得321113370x x x -++≥进而得到()3118x -≥-,得110x -≤<. 又因为211362t x x =-+,得211t <≤.综上可知t 的取值范围是124t -<<或211t <≤. 【点睛】本题考查利用导数研究函数的单调性,极值及最值,考查导数的几何意义,考查运算求解能力及分类讨论思想,属于中档题.本题覆盖面广,对考生计算能力要求较高,是一道难题,解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出,本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. 20.(1)21n a n =-;(2)12-;(3)存在,1m =或2m = 【解析】 【分析】(1)根据等差数列{}n a 的前n 项和为n S ,且满足23a =,2420S S +=,可得数列{}n a 的通项公式;(2)根据k ,t ,r 成等差数列与11k r r k a b a b a b +=+=+,推导出2t k rq q q +=,从而得出()2r k t k -=-,令t k n -=,则2210n nq q --=,从而可得q 的最大值;(3)根据题设条件可得()2221212212131333131m m m m m m T m T m m ----+-==-≤+-+-,再利用221m m T T -恰好是数列{}n c 中的项,可得只能为1c ,2c ,3c ,利用分类思想,即可求出m 的值. 【详解】(1)等差数列中,23a =,2420S S +=,111324620a d a d a +=⎧∴⎨+++=⎩解得11a =,2d =,21n a n ∴=-. (2)正整数k ,t ,r 成等差数列,且k t r <<,若k t t r r k ab a b a b +=+=+,111212212212t r k k q t q r q ---∴-+=-+=-+,11t r t k q q --∴-=-,11r k r t q q ---=-又t k r t -=-1111t r r k qq q q ----∴-=-整理可得2t k r q q q +=.210r k t k q q --∴--=.又t k r t -=-,()2r k t k ∴-=-,令t k n -=,则2210n nq q --=,12n q ∴=-或1. 又1q ≠±,12nq ∴=-.∴n 为奇数,10q -<<,112n q ⎛⎫=- ⎪⎝⎭为递减数列∴当1n =时,q 取最大值12-. (3)由题意得()()2221312131213mm mm m Tm -+-=+=+--,2112212312331m m m m m m T T c m m ---=-=+--⋅=+-.()2221212212131333131m m m m m m T m T m m ----+-∴==-≤+-+- 若221m m T T -恰好是数列{}n c 中的项只能为1c ,2c ,3c , 第一类:若21211mm T c T -==,则130m -=,所以m 无解;第二类:若221212mm T c b T -===,则12310m m --+=.由题意1m =不符合题意,2m =符合题意.当3m ≥时,令()1231x f x x -=-+(3x ≥),则()13ln32x f x x -'=-,设()13ln32x g x x -=-,则()()213ln320x g x -'=->,即()f x ¢为增函数,故()()30f x f ''≥>,()f x \为增函数.故()()310f x f ≥=>,即当3m ≥时,12310m m --+=无解,即2m =是方程唯一解.第三类:若232213mm T c a T -===,则21m =,即1m = 综上所述,1m =或2m =. 【点睛】本题考查等差数列的通项公式的求法,考查运算求解能力,考查函数与方程思想,是难题. 21.(1)0a =,2b =;(2)30x y += 【解析】 【分析】(1)由矩阵的点变换可得a ,b 的方程组,解方程可得a ,b 的值;(2)设直线l 上任意一点()00,P x y 经矩阵M 变换为(),P x y ''',由点变换可得方程,即可得到所求直线l 的方程. 【详解】(1)224126a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,424226a b +=⎧⎨+=⎩解得02a b =⎧⎨=⎩,∴0a =;2b =.(2)由(1)知2021M ⎡⎤=⎢⎥⎣⎦,M T :202212x x x y y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'+⎣⎦⎣⎦⎣⎦⎣⎦, 设直线l 上任意一点()00,P x y 经矩阵M 变换为(),P x y ''',则00022x x y x y ='=+'⎧⎨⎩.∵20x y ''+=,∴()0002220x x y ++=即0030x y +=, ∴直线l 的方程为30x y +=.【点睛】本题考查矩阵的点变换,考查方程思想和运算能力,属于基础题.22.(1)l 20y -+=,C :()()22228x y -+-=;(2)【解析】 【分析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换; (2)由(1)可得曲线C 是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得AB 的长. 【详解】(1)由题意可得直线l 20y -+=,由4πρθ⎛⎫=+⎪⎝⎭,得24cos 4sin ρρθρθ=+,即2244x y x y +=+,所以曲线C :()()22228x y -+-=.(2)由(1)知,圆()2,2C ,半径r =∴圆心到直线l 的距离为:d ==∴AB ===【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题. 23.52x ≤-或52x ≥ 【解析】 【分析】先由()()2422425a b a b a b a b a --+≤-++=,可得()5f x ≥,从而可得实数x 的范围. 【详解】()()2422425a b a b a b a b a --+≤-++=Q又0a ≠Q0a ∴>,由题意,得()5a a f x ≤.∴()5f x ≥,则225x x -++≥,解得52x ≤-或52x ≥. ∴x 的取值范围是52x ≤-或52x ≥ 【点睛】本题主要考查绝对值不等式的几何性质及求解方法,考查学生对基础知识的掌握情况.24.(1)24y x =;(2)见解析【解析】 【分析】(1)根据抛物线的焦点在直线10x y +-=上,可求得p 的值,从而求得抛物线的方程; (2)法一:设直线1l ,2l 的方程分别为y a =和y b =且0a ≠,0b ≠,a b ¹,可得A ,B ,D ,E 的坐标,进而可得直线AB 的方程,根据F 在直线AB 上,可得4ab =-,再分别求得AP k ,EF k ,即可得证;法二:设()11,A x y ,()22,B x y ,则121,2y y P +⎛⎫- ⎪⎝⎭,根据直线AB 的斜率不为0,设出直线AB 的方程为1x my -=,联立直线AB 和抛物线C 的方程,结合韦达定理,分别求出AP k ,EF k ,化简AP EF k k -,即可得证. 【详解】(1)抛物线C 的焦点F 坐标为,02p ⎛⎫⎪⎝⎭,且该点在直线10x y +-=上,所以102p-=,解得2p =,故所求抛物线C 的方程为24y x = (2)法一:由点F 在线段AB 上,可设直线1l ,2l 的方程分别为y a =和y b =且0a ≠,0b ≠,a b ¹,则2,4a A a ⎛⎫⎪⎝⎭,2,4b B b ⎛⎫ ⎪⎝⎭,()1,D a -,()1,E b -.∴直线AB 的方程为222444b aa y a xb a ⎛⎫--=- ⎪⎝⎭-,即()40x a b y ab -++=.又点()1,0F 在线段AB 上,∴4ab =-. ∵P 是DE 的中点,∴1,2a b P +⎛⎫- ⎪⎝⎭∴224224142APa ba a a k a a a ++-===++,4222EF AP b a k k a -====--.由于AP ,EF 不重合,所以//AP EF法二:设()11,A x y ,()22,B x y ,则121,2y y P +⎛⎫- ⎪⎝⎭当直线AB 的斜率为0时,不符合题意,故可设直线AB 的方程为1x my -=联立直线AB 和抛物线C 的方程214x my y x-=⎧⎨=⎩,得2440y my --=又1y ,2y 为该方程两根,所以124y y m +=,124y y =-,()()112121112121APy y y y y kx x -+-==++,22EF y k =-. ()()()()()211121122112111114144021111AP EFy y y y y y y y x y y x k k x x x x -++-+++-=====++++,EF AP k k = 由于AP ,EF 不重合,所以//AP EF 【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.25.(1)分布列见解析,()7427E ξ=;(2)2111263n n P -⎛⎫=-⋅ ⎪⎝⎭【解析】 【分析】(1)分别求出点数不大于4的概率和大于4的概率,设甲抛掷次数为ξ,ξ的可能取值为1,2,3,4,进而可得甲抛掷次数的概率分布列和数学期望;(2)设第n 次(2n ≥,n *∈N )由乙抛掷的概率为n P ,则第n 次(2n ≥,n *∈N )由乙抛掷这个事件包含第1n -次由乙抛掷,第n 次仍由乙抛掷和第1n -次由甲抛掷,第n 次由乙抛掷这两个互斥的事件,进而得出()1121133n n n P P P --=⋅+-⋅,从而可得1112213n n P P -⎛⎫-- ⎪⎝⎭=,根据213P =,结合等比数列,即可得到n P . 【详解】(1)由已知,掷出的点数不大于4的概率为23,大于4的概率为13,抛掷4次,设甲抛掷次数为ξ,ξ的可能取值为1,2,3,4.()1224133327P ξ==⋅⋅=,()2121111217233333333327P ξ==⋅⋅+⋅⋅+⋅⋅=,()2212111128333333333327P ξ==⋅⋅+⋅⋅+⋅⋅=,()2228433327P ξ==⋅⋅=,分布列:则()47887412342727272727E ξ=⋅+⋅+⋅+⋅= (2)设第n 次(2n ≥,n *∈N )由乙抛掷的概率为n P ,则第n 次(2n ≥,n *∈N )由乙抛掷这个事件包含第1n -次由乙抛掷,第n 次仍由乙抛掷和第1n -次由甲抛掷,第n 次由乙抛掷这两个互斥的事件,所以,()111211113333n n n n P P P P ---=⋅+-⋅=+(3n ≥), 所以,1112213n n P P -⎛⎫-- ⎪⎝⎭=(3n ≥),又213P =,所以,21126P -=- 所以,当2n ≥,n *∈N 时,12n P ⎧-⎫⎨⎬⎩⎭为等比数列,则2111263n n P -⎛⎫-=-⋅ ⎪⎝⎭,所以,2111263n n P -⎛⎫=-⋅ ⎪⎝⎭,第n 次(2n ≥,n *∈N )由乙抛掷的概率2111263n n P -⎛⎫=-⋅ ⎪⎝⎭.【点睛】本题考查的知识点是随机变量的分布列和数学期望,互斥事件概率加法公式,关键是对题意的理解,是难题.。

2020学年第一学期高三调研考试数学试题参考答案

2020学年第一学期高三调研考试数学试题参考答案

16. 13
16.
解:由题意知 ∠F1AF2 = 90
,
cos
∠F1BF2
=

3 5
,所以
cos
∠ABF1
=
3 5
,即
AB BF1
= 3, 5
易得 AB : AF1 : BF1 = 3 : 4 : 5 .设 AB = 3 , AF1 = 4 BF1 = 5 , BF2 = x .
由双曲线的定义得: 3 + x − 4 = 5 − x ,解得: x = 3 ,所以 | F1F2 |= 42 + 62 = 4 13 ⇒ c = 13 ,因为 2a = 5 − x = 2 ⇒ a = 1,所以离心率 e = 13 .
因为 AB 为圆 O1 的直径,所以 ∠ACB = 90 ,
中, , 在 Rt∆ABC ∠ABC = 60 AC = 3 ,
所以 BC = AC = 1 , tan 60
中, 所以在 Rt∆FBC FC = BC tan 45 = 1………………………7 分
(方法一)因为 BC ⊥ AC , BC ⊥ FC , AC ∩ FC = C , 所以 BC ⊥ 平面 FAC , 又 FA ⊂ 平面 FAC , 所以 BC ⊥ FA .
=
2
.
所以, an = a1qn−1 = 2 × 2n−1 = 2n .
………………………………4 分 ………………………………5 分
(2)解法一:因为 bn
=
an
log 2
1 2
n
=

n ⋅ 2n
………………………………6 分
所以, −Tn = 1× 2 + 2 × 22 + 3× 23 +⋯ + n × 2n ……①

南京市2020届高三年级学情调研数学附加卷(定稿)

南京市2020届高三年级学情调研数学附加卷(定稿)

南京市2020届高三年级学情调研数学附加题 2019.09 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区......域内..作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换已知二阶矩阵A =⎣⎢⎡⎦⎥⎤2 321.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ′:x 2-3y 2=1,求曲线C 的方程.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l :⎩⎨⎧x =4t ,y =1+at (t 为参数,a 为常数),曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(θ为参数).若曲线C 上的点P 到直线l 的距离的最大值为3,求a 的值.C .选修4—5:不等式选讲解不等式x 2+2|x -1|<6.(第22题图) A C DPE F 【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,四棱锥P -ABCD 的底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,E ,F 分别为P A ,AB 的中点,且DF ⊥CE .(1)求AB 的长;(2)求直线CF 与平面DEF 所成角的正弦值.23.(本小题满分10分)已知集合A ={1,2,3,4}和集合B ={1,2,3,…,n },其中n ≥5,n ∈N *.从集合A 中任取三个不同的元素,其中最小的元素用S 表示;从集合B 中任取三个不同的元素,其中最大的元素用T 表示.记X =T -S .(1)当n =5时,求随机变量X 的概率分布和数学期望E (X );(2)求P (X =n -3).。

2020届江苏省南京十三中、中华中学高三下学期联合调研数学试题解析

2020届江苏省南京十三中、中华中学高三下学期联合调研数学试题解析

绝密★启用前2020届江苏省南京十三中、中华中学高三下学期联合调研数学试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、填空题1.已知集合{}02,{1}M x x N x x =<<=>,则M N =I ________________. 答案:{|12}x x << 根据交集的定义,即得解. 解:集合{}02,{1}M x x N x x =<<=> 根据交集定义,{|12}M N x x =<<I 点评:本题考查了集合交集的运算,考查了学生概念理解,数学运算的能力,属于基础题. 2.已知复数21iz i+=-,则复数z 的虚部为______. 答案:32根据复数的除法运算,化简得1322z i =+,进而求得复数的虚部,得到答案. 解:由题意,复数()()()()2121311122i i i z i i i i +++===+--+,所以复数z 的虚部为32. 故答案为:32. 点评:本题主要考查了复数的运算,以及复数的概念的应用,其中解答中熟记复数的概念,熟练应用复数的除法运算法则化简是解答的关键,着重考查了推理与运算能力,属于基础题.3.某高级中学高一、高二、高三年级的学生人数分别为1100人、1000人、900人,为了解不同年级学生的视力情况,现用分层抽样的方法抽取了容量为30的样本,则高三年级应抽取的学生人数为____. 答案:9先求出抽样比,由此可求出高三年级应抽取的学生人数. 解:解:由题意可得:抽样比30111001000900100f ==++,故高三年级应抽取的学生人数为:19009100⨯=, 故答案为:9. 点评:本题主要考查分层抽样的相关知识,求出抽样比是解题的关键.4.如图是一个算法的程序框图,当输入的值x 为8时,则其输出的结果是__________.答案:2试题分析:x=8>0,不满足条件x ≤0,则执行循环体,依此类推,当x=-1<0,满足条件,退出循环体,从而求出最后的y 值即可.解:x=8>0,执行循环体,x=x-3=5-3=2>0,继续执行循环体, x=x-3=2-3=-1<0,满足条件,退出循环体,故输出y=0.5-1=(12)-1=2.故答案为2 【考点】当型循环结构点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.5.函数()1x f x +=的定义域是______. 答案:[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 解:由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞. 点评:本题考查了函数的定义域及其求法,是基础的会考题型.6.小明随机播放A ,B ,C ,D ,E 五首歌曲中的两首,则A ,B 两首歌曲至少有一首被播放的概率是______. 答案:710分析:先求出基本事件总数2510C =,A 、B,2首歌曲至少有1首被播放的对立事件是A 、B 2首歌曲都没有被播放,由此能求出A 、B ,2首歌曲至少有1首被播放的概率.详解:小明随机播放A ,B ,C ,D ,E 五首歌曲中的两首,基本事件总数2510C =,A 、B2首歌曲都没有被播放的概率为:2325310C C =,故A ,B 两首歌曲至少有一首被播放的概率是1-371010=,故答案为710点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.7.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的渐近线方程为______.答案:2y x =±求出抛物线的焦点坐标,根据题意可以知道双曲线的右焦点坐标,结合双曲线标准方程中,,a b c 之间的关系求出b 的值,最后利用双曲线的渐近线方程进行求解即可. 解:因为抛物线212y x =的焦点坐标为(3,0),所以双曲线22214x y b-=的右焦点也是(3,0),即3c =,而2222945c a b b b =+⇒=+⇒=,所以该双曲线的渐近线方程为52y x =±. 故答案为:52y x =± 点评:本题考查了求双曲线的渐近线方程,考查了抛物线的焦点,考查了数学运算能力. 8.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是_________答案:{|30x x -<<或}03x <<利用函数奇偶性和单调性之间的关系得到不等式()0f x >和()0f x <的解,然后将不等式()0x f x ⋅<转化为()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩进行求解.解:()f x Q 是奇函数,且在()0,∞+内是增函数,()f x ∴在(),0-∞内是增函数, ()()()330,30f f f -=-=∴=Q ,则当30x -<<或3x >时,()0f x >, 当03x <<或3x <-时,()0f x <,则不等式()0xf x <等价为:()00x f x >⎧⎨<⎩,①或()00x f x <⎧⎨>⎩,②由①得003,3x x x >⎧⎨<<<-⎩,解得03x <<,由②得得030,3x x x <⎧⎨-<⎩,解得30x -<<,综上,03x <<或30x -<<,故答案为{|30x x -<<或}03x <<. 点评:本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解. 9.若数列为等差数列,且18153120a a a ++=,则9102a a -的值等于 ________..答案:解:因为1815113535120724a a a a d a d ++=+=⇒+=, 所以91012724a a a d +==-,故答案为24.10.如图,正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+u u u v u u u v u u u v,则λμ+的值为__________.答案:12由题意正方形ABCD 中,E 为DC 的中点,可知:1122AE AC CE AC AB =+=-u u u v u u u v u u u v u u u v u u u v .则λμ+的值为:12.故答案为1211.已知圆O :221x y +=, 圆N :()()2221x a y a -++-=. 若圆N 上存在点Q ,过点Q 作圆O 的两条切线. 切点为,A B ,使得60AQB ∠=o,则实数a 的取值范围是_______答案:122⎡-+⎢⎣⎦由已知可得问题转化为圆N 和圆224x y +=有公共点,从而根据几何法即可求出答案. 解:解:已知有2QO =,即点Q 的轨迹方程为圆T :224x y +=,问题转化为圆N 和圆T 有公共点,则13≤≤,故1122a -≤≤+,故答案为:1⎡-+⎢⎣⎦. 点评:本题主要考查圆和圆的位置关系,属于基础题.12.已知x ,0y >,()29xy x y +=,则2x y +的最小值为______.答案:设x m =,x y n +=,由条件可得()29m n mn-=,而()()()2224x y m n m n mn +=+=-+代换后用均值不等式求最小值.解:解:令x m =,x y n +=,则已知得0m >,0n >,且()29mn n m -=.()()()()22229994412mn m n m n m n m n mn mn mn mn-=⇒-=⇒+=-+=+≥,当且仅当m =-,n =+时等号成立,此时2x y m n +=+≥.故答案为:点评:本题考查利用均值不等式求最小值,利用换元法化简变形是本题的难点,属于难题. 13.已知在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为__________.答案:3先用正弦定理边化角,得2tan tan B C =,再结合诱导公式和内角和代换tan A ,进而求得最值 解:由正弦定理2cos cos b C c B =可转化为2sin cos sin cos B C C B =,两边同时除以cos cos B C 可得2tan tan B C =,()()()tan tan tan A B C πA πB C A πB C B C ⎡⎤++=⇒=-+⇒=-+=-+⎣⎦,即()2tan tan 3tan tan tan 1tan tan 12tan B C BA B C B C B+=-+=-=---则21112tan 11127=tan tan tan tan 3tan tan 2tan 36tan 3B B A BC B B B B -++++=+≥,当且仅当tan B =时取到等号;点评:本题考查三角函数的化简求值,正弦定理、诱导公式的使用,基本不等式求最值,综合性强,属于中档题14.已知函数(),248,25xexx e f x x x x ⎧≤⎪⎪=⎨-⎪>⎪⎩,(其中e 为自然对数的底数),若关于x 的方程()()22320f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为________.答案:241,52e ⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭U 作出()f x 图象,求出方程的根,分类讨论()f x 的正负,数形结合即可. 解:当2x „时,令()10xef x e '=-=,解得1x =, 所以当1x „时,()0f x '>,则()f x 单调递增,当12x 剟时,()0f x '<,则()f x 单调递减,当2x>时,4848()555x f x x x -==-单调递减,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件; (2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e>⎧⎪⎨<⎪⎩„,解得245a e <„,故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意.综上:a 的范围是2[e ,4)51{}2⋃故答案为:2[e ,4)51{}2⋃点评:本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考。

江苏省南京市2020届高三数学第三次调研考试(5月)试题

江苏省南京市2020届高三数学第三次调研考试(5月)试题

江苏省南京市2020届高三数学第三次调研考试(5月)试题(满分160分,考试时间120分钟)2020.5一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合U ={x|1<x<6,x ∈N },A ={2,3},则∁U A =________.2. 若复数z 满足z(1+i)=1,其中i 为虚数单位,则z 在复平面内对应的点在第________象限.3. 已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为________.4. 一个算法的伪代码如图所示,执行此算法,输出S 的值为________.5. 若实数x ,y 满足⎩⎪⎨⎪⎧2x -y +1≥0,2x +y≥0,x ≤1,则x +3y 的最小值为________.6. 从1,2,3,4,5这5个数字中随机抽取3个不同的数字,则这3个数字经适当排序后能组成等差数列的概率为________.7. 若函数f(x)=⎩⎪⎨⎪⎧2x,x ≤0,f (x -2),x>0,则f(log 23)=________.8. 已知数列{a n }的前n 项和为S n ,且2S n =3n -1,n ∈N *.若b n =log 3a n ,则b 1+b 2+b 3+b 4的值为________.9. 已知函数f(x)=2sin (ωx+π6),其中ω>0.若x 1,x 2是方程f(x)=2的两个不同的实数根,且|x 1-x 2|的最小值为π,则当x∈[0,π2]时,f(x)的最小值为________. 10. 在平面直角坐标系xOy 中,过双曲线x 2a 2-y2b 2=1(a>0,b>0)的右焦点F 作一条渐近线的平行线,交另一条渐近线于点P.若线段PF 的中点恰好在此双曲线上,则此双曲线的离心率为________.11. 有一个体积为2的长方体,它的长、宽、高依次为a ,b ,1.现将它的长增加1,宽增加2,且体积不变,则所得新长方体高的最大值为________.12. 已知向量a ,b ,c 是同一平面内的三个向量,其中a ,b 是夹角为60°的两个单位向量.若向量c 满足c·(a +2b )=-5,则|c|的最小值为________.13. 在平面直角坐标系xOy 中,已知MN 是圆C :(x -1)2+(y -2)2=2的一条弦,且CM⊥CN,P 是MN 的中点.当弦MN 在圆C 上运动时,直线l :x -3y -5=0上存在两点A ,B ,使得∠APB≥π2恒成立,则线段AB 长度的最小值是________.14. 已知函数f(x)=12x 2-aln x +x -12,对任意x∈[1,+∞),当f(x)≥mx 恒成立时实数m的最大值为1,则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知a ,b ,c 分别是△ABC 三个角A ,B ,C 所对的边,且满足acos B +bcos A =ccos Acos C .(1) 求证:A =C ;(2) 若b =2,且BA →·BC →=1,求sin B 的值.16. (本小题满分14分)在四棱锥PABCD中,PA⊥平面ABCD,AD∥BC,AB=1,BC=2,∠ABC=60°.(1) 求证:平面PAC⊥平面PAB;(2) 设平面PB C∩平面PAD=l,求证:BC∥l.如图,某摩天轮底座中心A与附近的景观内某点B之间的距离AB为160 m.摩天轮与景观之间有一建筑物,此建筑物由一个底面半径为15 m的圆柱体与一个半径为15 m的半球体组成.圆柱的底面中心P在线段AB上,且PB为45 m.半球体球心Q到地面的距离PQ为15 m.把摩天轮看作一个半径为72 m的圆C,且圆C在平面BPQ内,点C到地面的距离CA为75 m.该摩天轮匀速旋转一周需要30 min,若某游客乘坐该摩天轮(把游客看作圆C上一点)旋转一周,求该游客能看到点B 的时长.(只考虑此建筑物对游客视线的遮挡)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点(1,22),离心率为22.A ,B分别是椭圆C 的上、下顶点,M 是椭圆C 上异于A ,B 的一点.(1) 求椭圆C 的方程;(2) 若点P 在直线x -y +2=0上,且BP →=3BM →,求△PMA 的面积;(3) 过点M 作斜率为1的直线分别交椭圆C 于另一点N ,交y 轴于点D ,且点D 在线段OA 上(不包括端点O ,A),直线NA 与直线BM 交于点P ,求OD →·OP →的值.已知函数f(x)=ln x +ax+1,a ∈R .(1) 若函数f(x)在x =1处的切线为y =2x +b ,求a ,b 的值;(2) 记g(x)=f(x)+ax ,若函数g(x)在区间(0,12)上有最小值,求实数a 的取值范围;(3) 当a =0时,关于x 的方程f(x)=bx 2有两个不相等的实数根,求实数b 的取值范围.已知数列{a n }的前n 项和为S n .若存在正整数r ,t ,且r<t ,使得S r =t ,S t =r 同时成立,则称数列{a n }为“M(r,t)数列”.(1) 若首项为3,公差为d 的等差数列{a n }是“M(r,2r)数列”,求d 的值; (2) 已知数列{a n }为等比数列,公比为q.①若数列{a n }为“M(r,2r)数列”,r ≤4,求q 的值;②若数列{a n }为“M(r,t)数列”,q ∈(-1,0),求证:r 为奇数,t 为偶数.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤2112.(1) 求M 2;(2) 求矩阵M 的特征值和特征向量.B. (选修44:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为ρcos (θ+π3)=1,以极点O 为坐标原点,极轴Ox 所在的直线为x 轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =rcos α+2,y =rsin α-1(其中α为参数,r>0).若直线l 与曲线C 相交于A ,B 两点,且AB =3,求r 的值.C. (选修45:不等式选讲)若x ,y ,z 为实数,且x 2+4y 2+9z 2=6,求x +2y +6z 的最大值.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直线坐标系xOy 中,已知抛物线y 2=2px(p>0)及点M(2,0),动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,AB =4.(1) 求p 的值;(2) 若l 与x 轴不垂直,设线段AB 中点为C ,直线l 1经过点C 且垂直于y 轴,直线l 2经过点M 且垂直于直线l ,记l 1,l 2相交于点P ,求证:点P 在定直线上.23. 对由0和1这两个数字组成的字符串,作如下规定:按从左向右的顺序,当第一个子串“010”的最后一个0所在数位是第k(k∈N*,且k≥3)位,则称子串“010”在第k位出现;再继续从第k+1位按从左往右的顺序找子串“010”,若第二个子串“010”的最后一个0所在数位是第k+m位(其中m≥3,且m∈N*),则称子串“010”在第k+m位出现;……;如此不断地重复下去.如:在字符串1 1 0 1 0 1 0 1 0 1 0中,子串“010”在第5位和第9位出现,而不是在第7位和第11位出现.记在n位由0,1组成的所有字符串中,子串“010”在第n位出现的字符串的个数为f(n).(1) 求f(3),f(4)的值;(2) 求证:对任意的正整数n,f(4n+1)是3的倍数.2020届高三模拟考试试卷(南京)数学参考答案及评分标准1. {4,5}2. 四3. 304. 345. -56. 257. 348. 69. -1 10. 2 11. 1412. 57713. 210+2 14. (-∞,1]15. (1) 证明:由正弦定理a sin A =b sin B =csin C=2R ,得a =2Rsin A ,b =2Rsin B ,c =2Rsin C ,代入acos B +bcos A =ccos Acos C ,得(sin Acos B +sin Bcos A)cos C =sin Ccos A ,(2分)即sin(A +B)cos C =sin Ccos A.因为A +B =π-C ,所以sin (A +B)=sin C ,所以sin Ccos C =sin Ccos A .(4分) 因为C 是△ABC 的内角,所以sin C ≠0,所以cos C =cos A. 因为A ,C 是△ABC 的内角,所以A =C.(6分)(2) 解:由(1)知A =C ,所以a =c ,所以cos B =a 2+c 2-b 22ac =a 2-2a 2.(8分)因为BA →·BC →=1,所以a 2cos B =a 2-2=1,所以a 2=3.(10分) 所以cos B =13.(12分)因为B∈(0,π),所以sin B =1-cos 2B =223.(14分)16.证明:(1) 因为PA⊥平面ABCD ,AC 平面ABCD ,所以PA⊥AC.(2分)因为AB =1,BC =2,∠ABC =60°,由余弦定理,得AC =AB 2+BC 2-2AB·BC cos ∠ABC =12+22-2×1×2cos 60°= 3.(4分)因为12+(3)2=22,即AB 2+AC 2=BC 2,所以AC⊥AB.(6分)因为AC⊥PA,且PA∩AB=A ,PA 平面PAB ,AB 平面PAB ,所以AC⊥平面PAB.又AC 平面PAC ,所以平面PAC⊥平面PAB.(8分)(2) 因为BC∥AD,AD 平面PAD ,BC 平面PAD ,所以BC∥平面PAD.(10分)因为BC 平面PBC ,且平面PBC∩平面PAD =l ,所以BC∥l.(14分)17. 解:以点B 为坐标原点,BP 所在直线为x 轴,建立如图所示平面直角坐标系,则B(0,0),Q(45,15),C(160,75).过点B 作直线l 与圆Q 相切,与圆C 交于点M ,N , 设直线l 的方程为y =kx ,即kx -y =0,则点Q 到l 的距离为|45k -15|k 2+1=15, 解得k =34或k =0(舍去).所以直线l 的方程为y =34x ,即3x -4y =0.(4分)点C(160,75)到直线l 的距离CH =|3×160-4×75|32+(-4)2=36.(6分) 在Rt △CHM 中,因为CH =36,CM =72,所以cos ∠MCH =3672=12.(8分)因为∠MCH∈(0,π2),所以∠MCH=π3,所以∠MCN=2∠MCH=2π3,(12分)所以所用时长为30×2π32π=10 min.(13分)答:该游客能看到点B 的时长为10 min.(14分)18. 解:(1) 因为椭圆过点(1,22),离心率为22, 所以1a 2+12b 2=1,b 2a 2=1-e 2=12,解得a 2=2,b 2=1,所以椭圆C 的方程为x 22+y 2=1.(2分)(2) 由(1)知B(0,-1),设M(x 0,y 0),P(x ,y).由BP →=3BM →,得(x ,y +1)=3(x 0,y 0+1),则x =3x 0,y =3y 0+2. 因为P 在直线x -y +2=0上,所以y 0=x 0 ①.(4分)因为M 在椭圆C 上,所以x 202+y 20=1,将①代入上式,得x 20=23.(6分)所以|x 0|=63,从而|x P |=6, 所以S △PMA =S △PAB -S △MAB =12×2×6-12×2×63=263.(8分)(3) (解法1)由(1)知,A(0,1),B(0,-1). 设D(0,m),0<m <1,M(x 1,y 1),N(x 2,y 2). 因为MN 的斜率为1,所以直线MN 的方程为y =x +m. 联立方程组⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,消去y ,得3x 2+4mx +2m 2-2=0, 所以x 1+x 2=-4m 3,x 1·x 2=2m 2-23. (10分)直线MB 的方程为y =y 1+1x 1x -1,直线NA 的方程为y =y 2-1x 2x +1,联立解得y P =(y 1+1)x 2+(y 2-1)x 1(y 1+1)x 2-(y 2-1)x 1.(12分)将y 1=x 1+m ,y 2=x 2+m 代入,得y P =2x 1x 2+m (x 1+x 2)+x 2-x 1x 1+x 2+m (x 2-x 1)=2·2m 2-23-4m 23+(x 2-x 1)-4m 3+m (x 2-x 1)=-43+(x 2-x 1)-4m 3+m (x 2-x 1)=1m.(14分)所以OD →·OP →=(0,m )·(x P ,y P )=my P =m·1m=1.(16分)(解法2)由(1)知,A(0,1),B(0,-1).设M(x 0,y 0),则x 202+y 20=1.因为直线MN 的斜率为1,所以直线MN 的方程为y =x -x 0+y 0,则D(0,y 0-x 0). 联立方程⎩⎪⎨⎪⎧y =x -x 0+y 0,x 22+y 2=1,消去y ,得3x 2-4(x 0-y 0)x +2(x 0-y 0)2-2=0, 所以x N +x 0=4(x 0-y 0)3,(10分)所以x N =x 0-4y 03,y N =-2x 0+y 03, 所以直线NA 的方程为y =y N -1x N x +1=2x 0+y 0+34y 0-x 0x +1, 直线MB 的方程为y =y 0+1x 0x -1, 联立解得y P =2y 20+x 20+x 0+2y 02y 20-x 20-x 0y 0-2x 0+2y 0.(12分) 因为x 202+y 20=1,所以y P =2+x 0+2y 0(2+x 0+2y 0)(y 0-x 0)=1y 0-x 0,(14分)所以OD →·OP →=(0,y 0-x 0)·(x P ,y P )=(y 0-x 0)1y 0-x 0=1.(16分)19. 解:(1) f′(x)=1x -a x 2,则f′(1)=1-a =2,解得a =-1,则f(x)=ln x -1x +1,此时f(1)=ln 1-1+1=0,则切点坐标为(1,0),代入切线方程,得b =-2, 所以a =-1,b =-2.(2分)(2) g(x)=f(x)+ax =ln x +a x +ax +1,g ′(x)=1x -a x 2+a =ax 2+x -ax2. ①当a =0时,g ′(x)=1x >0,则g(x)在区间(0,12)上为增函数,则g(x)在区间(0,12)上无最小值.(4分)②当a≠0时,方程ax 2+x -a =0的判别式Δ=1+4a 2>0, 则方程有两个不相等的实数根,设为x 1,x 2,由韦达定理得x 1x 2=-1,则两根一正一负,不妨设x 1<0<x 2. 设函数m(x)=ax 2+x -a(x >0), (i) 若a >0,当x 2∈(0,12)时,m(0)=-a <0,m(12)=a 4+12-a >0,解得0<a <23.此时当x∈(0,x 2)时,m(x)<0,则g(x)递减;当x∈(x 2,12)时,m(x)>0,则g(x)递增,当x =x 2时,g(x)取极小值,即为最小值.当x 2≥12时,x ∈(0,12),m(x)<0,则g(x)在(0,12)上单调递减,无最小值.(6分)(ii) 若a <0,当x∈(0,x 2)时,m(x)>0,则g(x)递增; 当x∈(x 2,+∞)时,m(x)<0,则g(x)递减, 在区间(0,12)上,g(x)不会有最小值.所以a <0不满足条件.综上,当0<a <23时,g(x)在区间(0,12)上有最小值.(8分)(3) 当a =0时,由方程f(x)=bx 2,得ln x +1-bx 2=0. 记h(x)=ln x +1-bx 2,x >0,则h′(x)=1x -2bx =-2bx 2+1x.①当b≤0时,h′(x)>0恒成立,即h(x)在(0,+∞)上为增函数, 则函数h(x)至多只有一个零点,即方程f(x)=bx 2至多只有一个实数根, 所以b≤0不符合题意.(10分) ②当b >0时,当x∈(0,12b)时,h ′(x)>0,所以函数h(x)递增; 当x∈(12b,+∞)时,h ′(x)<0,所以函数h(x)递减, 则h(x)max =h(12b)=ln 12b +12. 要使方程f(x)=bx 2有两个不相等的实数根,则h(12b)=ln 12b +12>0,解得0<b <e2.(12分) (i) 当0<b <e 2时,h(1e )=-be 2<0.又(1e)2-(12b )2=2b -e 22be 2<0,则1e<12b, 所以存在唯一的x 1∈(1e ,12b),使得h(x 1)=0.(14分) (ii) h(1b )=ln 1b +1-1b =-ln b +1-1b ,记k(b)=-ln b +1-1b ,0<b <e2.因为k′(b)=-1b +1b 2=1-b b 2,则k(b)在(0,1)上为增函数,在(1,e2)上为减函数,则k(b)max =k(1)=0,则h(1b)≤0.又(1b )2-(12b )2=2-b 2b 2>0,即1b >12b, 所以存在唯一的x 2∈(12b ,1b],使得h(x 2)=0. 综上,当0<b <e 2时,方程f(x)=bx 2有两个不相等的实数根.(16分)20. (1) 解:因为{a n }是M(r ,2r)数列,所以S r =2r ,且S 2r =r.由S r =2r ,得3r +r (r -1)2d =2r.因为r >0,所以(r -1)d =-2 (*). 由S 2r =r ,得6r +2r (2r -1)2d =r.因为r >0,所以(2r -1)d =-5 (**).由(*)和(**),解得r =3,d =-1.(2分) (2) ①解:(i) 若q =1,则S r =ra 1,S t =ta 1.因为{a n }是M(r ,2r)数列,所以ra 1=2r (*),2ra 1=r (**). 由(*)和(**),得a 1=2且a 1=12,矛盾,所以q≠1.(3分)(ii) 当q≠1,因为{a n }是M(r ,2r)数列,所以S r =2r ,且S 2r =r , 即a 1(1-q r)1-q =2r (*),a 1(1-q 2r)1-q =r (**).由(*)和(**),得q r=-12.(5分)当r =1时,q =-12;当r =2,4时,无解;当r =3时,q =-132.综上,q =-12或q =-132.(6分)②证明:因为{a n }是M(r ,t)数列,q ∈(-1,0),所以S r =t ,且S t =r , 即a 1(1-q r)1-q =t ,且a 1(1-q t)1-q=r ,两式作商,得1-q r1-q t=tr,即r(1-q r)=t(1-q t).(8分)(i) 若r为偶数,t为奇数,则r(1-|q|r)=t(1+|q|t).因为r<t,0<1-|q|r<1,1+|q|t>1,所以r(1-|q|r)<t(1+|q|t),这与r(1-|q|r)=t(1+|q|t)矛盾,所以假设不成立.(10分)(ii) 若r为偶数,t为偶数,则r(1-|q|r)=t(1-|q|t).设函数y=x(1-a x),0<a<1,则y′=1-a x-xa x ln a.当x>0时,1-a x>0,-xa x ln a>0,所以y=x(1-a x)在(0,+∞)上递增.因为r<t,所以r(1-|q|r)<t(1-|q|t),这与r(1-|q|r)=t(1-|q|t)矛盾,所以假设不成立.(12分)(iii) 若r为奇数,t为奇数,则r(1+|q|r)=t(1+|q|t).设函数y=x(1+a x),0<a<1,则y′=1+a x+xa x ln a.设g(x)=1+a x+xa x ln a,则g′(x)=a x ln a(2+xln a).令g′(x)=0,得x=-2ln a.因为a x>0,ln a<0,所以当x>-2ln a,g′(x)>0,则g(x)在区间(-2ln a,+∞)上递增;当0<x<-2ln a,g′(x)<0,则g(x)在区间(0,-2ln a)上递减,所以g(x)min=g(-2ln a)=1-a-2ln a.因为-2ln a>0,所以a-2ln a<1, 所以g(x)min>0,从而g(x)>0在(0,+∞)上恒成立,所以y=x(1+a x),0<a<1在(0,+∞)上单调递增.因为r<t,所以r(1+|q|r)<t(1+|q|t),这与r(1-|q|r)=t(1-|q|t)矛盾,所以假设不成立.(14分)(iv) 若r为奇数,t为偶数.由①知,存在等比数列{a n}为“M(1,2)数列”.综上,r为奇数,t为偶数.(16分)2020届高三模拟考试试卷(南京) 数学附加题参考答案及评分标准21. A. 解:(1) M 2=⎣⎢⎡⎦⎥⎤2112⎣⎢⎡⎦⎥⎤2112=⎣⎢⎡⎦⎥⎤5445.(4分)(2) 矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=(λ-1)(λ-3). 令f(λ)=0,解得M 的特征值为λ1=1,λ2=3.(6分)①当λ=1时,⎣⎢⎡⎦⎥⎤2112⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x +y =0,x +y =0. 令x =1,则y =-1,于是矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.(8分) ②当λ=3时,⎣⎢⎡⎦⎥⎤2112⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x -y =0,x -y =0. 令x =1,则y =1,于是矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤11.因此,矩阵M 的特征值为1,3,分别对应一个特征向量为⎣⎢⎡⎦⎥⎤ 1-1,⎣⎢⎡⎦⎥⎤11.(10分)B. 解:直线l 的直角坐标方程为x -3y -2=0.(2分) 曲线C 的普通方程为(x -2)2+(y +1)2=r 2.(4分)因为圆心C(2,-1)到直线l 的距离d =|2+3-2|1+3=32,(6分) 所以r =d 2+(AB 2)2= 3.(10分) C. 解:由柯西不等式,得[x 2+(2y)2+(3z)2](12+12+22)≥(x+2y +6z)2.(4分) 因为x 2+4y 2+9z 2=6,所以(x +2y +6z)2≤36,(6分)所以-6≤x+2y +6z≤6.当且仅当x 1=2y 1=3z2时,不等式取等号,此时x =1,y =12,z =23或 x =-1,y =-12,z =-23,(8分)所以x +2y +6z 的最大值为6.(10分)22. (1) 解:因为l 过M(2,0),且当l 垂直于x 轴时,AB =4,所以抛物线经过点(2,2),代入抛物线方程,得4=2p×2,解得p =1.(2分) (2) 证明:设直线l 的方程为y =k(x -2)(k≠0),A(x 1,y 1),B(x 2,y 2).联立⎩⎪⎨⎪⎧y 2=2x ,y =k (x -2),消去x ,得ky 2-2y -4k =0,则y 1+y 2=2k,y 1y 2=-4.(4分)因为点C 为AB 中点,所以y C =y 1+y 22=1k ,则直线l 1的方程为y =1k.(6分) 因为直线l 2过点M 且与l 垂直,则直线l 2的方程为y =-1k (x -2).联立⎩⎨⎧y =1k,y =-1k (x -2),(8分)解得⎩⎪⎨⎪⎧x =1,y =1k,即P(1,1k ),所以点P 在定直线x =1上.(10分)23. (1) 解:在3位数字符串中,子串“010”在第3位出现有且只有1个,即010, 所以 f(3)=1.(2分)在4位数字符串中,子串“010”在第4位出现有2个,即0010与1010, 所以 f(4)=2.(4分)(2) 证明:当n≥5且n∈N*时,当最后3位是010时,前n-3个数位上,每个数位上的数字都有两种可能,即0和1,所以共有2n-3种可能.由于当最后3位是010时,若最后5位是01010,且前n-2位形成的字符串中是子串“010”是在第n-2位出现,此时不满足条件.所以 f(n)=2n-3-f(n-2),n≥5且n∈N*.(6分)因为f(3)=1,所以f(5)=3.下面用数学归纳法证明f(4n+1)是3的倍数.①当n=1时,f(5)=3是3的倍数;②假设当n=k(k∈N*)时,f(4k+1)是3的倍数,那么当n=k+1时,f(4(k+1)+1)=f(4k+5)=24k+2-f(4k+3) =24k+2-[24k-f(4k+1)]=3×24k+f(4k+1).(8分)因为f(4k+1)是3的倍数,且3×24k也是3的倍数,所以f(4k+5)是3的倍数.这就是说,当n=k+1时,f(4(k+1)+5)是3的倍数.由①②可知,对任意的正整数n,f(4n+1)是3的倍数.(10分)。

南京市2020届高三零模数学卷

南京市2020届高三零模数学卷



0
的最小正周期为

,则当 x [0, ] 时, 2
f
x 的值域

.
【答案】 1, 2
【解析】由周期为
,得

2
,则
f
(x)

2 sin(2 x

) 6

x

0,
2

时,
f
(x) 1, 2
【点评】考查三角函数的图像和性质,属于基础题型.
5பைடு நூலகம்
柱体的体积公式:V Sh ,其中 S 为柱体的底面积, h 为柱体的高. 球的体积公式:V 4 R3 ,其中 R 为球体的半径.
3
一、 填空题:本大题共 14 小题,每小题 5 分,共 70 分.请把答案填写在答题卡相应位置 上.
1. 函数 f x x 1 的定义域为
.
【答案】 1,
损耗),则该钢球的半径为
cm .
【答案】 3
【解析】由圆柱和球的体积相等得: 32 4 4 R3 R 3 3
【点评】考查圆柱和球的体积计算,属于基础题型.
7.
在平面直角坐标系
xOy
中,若双曲线
x2 a2
y2 b2
1(a 0,b 0) 的一条准线与两条渐近线恰
[40,50) , [50,60) ,[60,70) ,[70,80) ,[80,90) ,[90,100] ,则图中 x 的值为
.
【答案】 0.018
【解析】 x 0.1 (0.006 0.006 0.01 0.054 0.006) 0.018
【点评】考查统计知识的基本运用,属于基础题型.

2020届江苏省南京市十校高三下学期5月调研考试数学试卷及解析

2020届江苏省南京市十校高三下学期5月调研考试数学试卷及解析

2020届江苏省南京市十校高三下学期5月调研考试数学试卷★祝考试顺利★(解析版)一、填空题1. 已知集合{}2|20,{|1}A x x x B x x =-<=<,则A B =______________.【答案】(,2)-∞【解析】利用一元二次不等式解法求得集合A ,根据并集定义可求得结果.【详解】(){}()200,2A x x x =-<=,{}()1,1B x x =<=-∞,(),2A B ∴=-∞.故答案为:(),2-∞.2. 已知复数(2)(1)z a i i =++的实部为0,其中i 为虚数单位,a 为实数,则z =_____________.【答案】4i -【解析】根据复数乘法运算和实部定义可构造方程求得a ,进而根据共轭复数定义得到结果.【详解】()()()()2122z a i i a a i =++=-++的实部为0,20a ∴-=,解得:2a =,4z i ∴=,4z i ∴=-.故答案为:4i -.3. 如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为________.【答案】143试题分析:因为方差越小成绩越稳定,所以方差较小为乙组同学,方差为2222(2)(1)(3)1492,33x s -+-+=== 4. 运行如图所示的伪代码,则输出的S 的值为_____________.【答案】25【解析】运行代码,根据循环结构依次运算即可得到结果.【详解】运行代码,输入0S =,1I =,满足10I <,循环;则011S =+=,123I =+=,满足10I <,循环;则134S =+=,325I =+=,满足10I <,循环;则459S =+=,527I =+=,满足10I <,循环;则9716S =+=,729I =+=,满足10I <,循环;则16925S =+=,9211I =+=,不满足10I <,结束循环,输出25S =.故答案为:25.5. 某兴趣小组有2名女生和3名男生,现从中任选2名学生去参加活动,则至多有一名男生的。

南京市2020届高三年级学情调研卷参考答案和评分标准(答案)

南京市2020届高三年级学情调研卷参考答案和评分标准(答案)

南京市2020届高三年级学情调研数学参考答案及评分标准 2019.09一、填空题:本大题共14小题,每小题5分,计70分.1.[1,+∞) 2.10 3.4 4.0.018 5.236.3 7.23 3 8.[-1,2] 9.3410.(1,+∞)11.20 12.6 13.[-2,2] 14.(34,2)二、解答题:本大题共6小题,共90分. 15.解:(1)因为a sin2B =2b sin A ,由正弦定理a sin A =bsin B得 2sin A sin B cos B =2sin B sin A . ………………… 3分 因为A ,B 为△ABC 的内角,所以sin A ≠0,sin B ≠0, 所以cos B =22. …………………………… 5分 又因为B 为△ABC 的内角,所以0<B <π,所以B =π4. …………………………… 7分(2)因为cos C =55,C ∈(0,π), 所以sin C =1-cos 2C =1-(55)2=255, …………………………… 9分 所以sin2C =2sin C cos C =2×255×55=45, cos2C =2cos 2C -1=2×(55)2-1=-35. ………………………… 11分 因为B =π4,所以A +C =3π4,从而A -C =(3π4-C )-C =3π4-2C ,因此 sin(A -C )=sin(3π4-2C )=sin 3π4cos2C -cos 3π4sin2C=22×(-35)-(-22)×45=210.…………………………… 14分16.证明:(1)在三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1,AB =A 1B 1.因为E ,F 分别为AB 和A 1B 1的中点, 所以AE ∥FB 1,AE =FB 1,所以四边形AEB 1F 是平行四边形, 所以AF ∥EB 1. ………………………… 4分 因为AF ⊄平面B 1CE ,B 1E ⊂平面B 1CE , 所以AF ∥平面B 1CE .……………………… 7分 (2)因为AB ∥A 1B 1,A 1B 1⊥B 1C ,所以AB ⊥B 1C .在△ABC 中,因为AC =BC ,E 为AB 的中点,所以AB ⊥CE . …………………………… 10分 因为AB ⊥B 1C ,AB ⊥CE ,B 1C ∩CE =C ,B 1C ⊂平面B 1CE ,CE ⊂平面B 1CE , 所以AB ⊥平面B 1CE . …………………………… 12分 因为AB ⊂平面ABC ,所以平面B 1CE ⊥平面ABC . …………………………… 14分17.解:(1)因为p (t )=⎩⎨⎧1800-15(9-t )2, 4≤t <9,1800, 9≤t ≤15,其中t ∈N .所以当载客人数不超过1500人时,4≤t <9, 此时p (t )=1800-15(9-t )2随着t 的增大而增大.当t =4时,p (4)=1800-15(9-4)2=1425<1500,符合题意;当5≤t <9时,p (t )≥p (5)=1800-15(9-5)2=1560>1500,不符合题意. 因此,发车时间间隔t 的值为4. …………………………… 5分 (2)因为Q =6p (t )-7920t-100,所以当9≤t ≤15时,Q =6×1800-7920t -100=2880t -100.由于Q 的值随着t 的增大而减少,故t =9时Q 取得最大值,此时Q max =220. …………………………… 7分1(第16题图)当4≤t <9时,Q =6p (t )-7920t-100=6[1800-15(9-t )2]-7920t -100=-90t 2+1620t -4410t-100=1520-90(t +49t ) …………………………… 9分≤1520-90×2t ×49t=260,当且仅当t =49t ,即t =7时取得最大值. …………………………… 11分由于260>220,故t =7时Q 取得最大值.答:当发车时间间隔为7分钟时,平均每趟地铁每分钟的净收益最大,最大净收益为260元. …………………………… 14分18.解:(1)因为(a 2,3e )和(b ,3e )都在椭圆x 2a 2+y 2b2=1上,所以 ⎩⎨⎧14+9e 2b 2=1, ①b 2a 2+3e 2b 2=1. ② …………………………… 2分 由①整理得,e 2b 2=112.代入②得,b 2a 2=1-3×112=34. …………………………… 4分因为e =ca,其中c 2=a 2-b 2,可得b 2=3c ,a 2=4c ,从而c 2=a 2-b 2=c ,解得c =1,即a 2=4,b 2=3, 故椭圆的标准方程为x 24+y 23=1. …………………………… 6分(2)由(1)可知A (-2,0),B (2,0).解法一:因为C 是椭圆上异于A ,B 的任意一点,所以直线BC 的斜率存在且不为0.设直线BC 的方程为y =k (x -2),k ≠0.联立⎩⎪⎨⎪⎧x 24+y 23=1y =k (x -2),消去y ,得 (3+4k 2)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-63+4k 2,从而C (8k 2-63+4k 2,-12k 3+4k 2). …………………… 9分因为P 是BC 的中点,所以P (8k 23+4k 2,-6k3+4k 2). 因为PQ ⊥BC ,所以直线PQ 的方程为y -(-6k 3+4k 2)=-1k (x -8k 23+4k 2),化简得y =-x k +2k3+4k 2. ③由A (-2,0),C (8k 2-63+4k 2,-12k 3+4k 2),可得直线AC 的斜率为-12k 3+4k 28k 2-63+4k 2+2=-34k , 从而直线AC 的方程为y =-34k(x +2). ④联立直线PQ ,AC 的方程③④,消去y 得-x k +2k 3+4k 2=-34k (x +2),解得x =32k 2+183+4k 2,即点Q 的横坐标为32k 2+183+4k 2. …………………… 14分因为→OB =(2,0),所以→OB ·→PQ =2(32k 2+183+4k 2-8k 23+4k 2)=12,即→OB ·→PQ 为定值12. …………………………… 16分解法二:设C (x 0,y 0),其中x 0≠±2,y 0≠0,则由P 是BC 的中点,得P (x 0+22,y 02).直线AC ,BC 的斜率均存在且不为0,直线BC 的斜率为y 0x 0-2.因为PQ ⊥BC ,所以直线PQ 的方程为y -y 02=-x 0-2y 0(x -x 0+22),即y =-x 0-2y 0x +x 02-42y 0+y 02.③ …………………………… 9分又直线AC 的斜率为y 0x 0+2,从而直线AC 的方程为y =y 0x 0+2(x +2).④联立直线PQ ,AC 的方程③④,消去y ,得 -x 0-2y 0x +x 02-42y 0+y 02=y 0x 0+2(x +2),两边同乘以y 0,得 (2-x 0)x +x 02-42+y 022=y 02x 0+2(x +2).由x 024+y 023=1,得y 02=3-3x 024, 代入化简得(2-x 0)x +x 02-48=34(2-x 0)(x +2).因为x 0≠2,解得x =x 0+142,即点Q 的横坐标为x 0+142. …………… 14分因为→OB =(2,0),所以→OB ·→PQ =2(x 0+142-x 0+22)=12,即→OB ·→PQ 为定值. …………………………… 16分19.解:(1)由f (x )=2ln x +ax 2-bx ,得f ′(x )=2ax 2-bx +2x,因为曲线y =f (x )在x =1处的切线为y =2x -3, 所以f (1)=a -b =-1, f ′(1)=2a -b +2=2,解得a =1,b =2. …………………………… 3分 (2)因为a =0,所以f (x )=2ln x -bx ,x ∈(0,+∞);由f (x )≤-2得2ln x -bx ≤-2,即b ≥2+2ln xx . …………………………… 5分设g (x )=2+2ln x x ,x >0,则g ′(x )=-2ln xx 2,由g ′(x )=0得x =1.当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0, 则g (x )在(0,1)单调递增,在(1,+∞)单调递减, 所以当x =1时,g (x )有最大值g (1)=2.于是b ≥2,即实数b 的取值范围为[2,+∞) . ……………………… 8分 (3)函数f (x )的定义域为(0,+∞),当b =4时f ′(x )=2ax 2-4x +2x.①当a =0时,f ′(x )=x,由f ′(x )>0得0<x <12;由f ′(x )<0得x >12,所以f (x )的增区间为(0,12),减区间为(12,+∞); ……………………… 9分②当a <0时,由f ′(x )>0得0<x <1-1-a a ;由f ′(x )<0得x >1-1-aa ,所以f (x )的增区间为(0,1-1-a a ),减区间为(1-1-aa,+∞);……………………………11分③当0<a <1时,由f ′(x )>0,得0<x <1-1-a a 或x >1+1-aa ;由f ′(x )<0,得1-1-a a <x <1+1-aa,所以f (x )的增区间为(0,1-1-a a )和(1+1-aa,+∞),减区间为(1-1-a a ,1+1-aa); ……………………… 13分④当a ≥1时,f ′(x )≥0恒成立,于是f (x )的增区间为(0,+∞),无减区间; 综上,当a <0时,f (x )的增区间为(0,1-1-a a ),减区间为(1-1-aa,+∞);当a =0时,f (x )的增区间为(0,12),减区间为(12,+∞);当0<a <1时,f (x )的增区间为(0,1-1-a a )和(1+1-aa,+∞),减区间为(1-1-a a ,1+1-aa);当a ≥1时,f (x )的增区间为(0,+∞),无减区间.…………………………… 16分20.解:(1)因为数列{n n }是以2为公差的等差数列,所以S n n =S 11+12(n -1)=a 1+12(n -1)=n +32,即S n =n (n +3)2.…………… 2分所以当n ≥2时,a n =S n -S n -1=n (n +3)2-(n -1)(n +2)2=n +1, 又a 1=2=1+1,所以a n =n +1,n ∈N *. …………………………… 4分 (2)①因为b n =2n a n =(n +1)2n ,所以T n =2×21+3×22+…+(n +1)2n , 因此2T n =2×22+3×23+…+(n +1)2n +1, 两式相减,得-T n =2×21+22+23+…+2n -(n +1)2n +1 =2+2×1-2n 1-2-(n +1)2n +1=-n·2n +1, …………………… 6分 所以T n =n·2n +1,因此T n n =2n +1,从而T n +1n +1T nn=2,故数列{T nn }是以4为首项,2为公比的等比数列. …………………… 8分② 因为T m T n =m (S m +λ)n (S n +λ),所以m·2m +1n·2n +1=m [m (m +3)2+λ]n [n (n +3)2+λ],即m 2+3m +2λ2m =n 2+3n +2λ2n ,…………… 10分设f (n )=n 2+3n +2λ2n,n ∈N *,则f (n +1)-f (n )=n 2+5n +4+2λ2n +1-n 2+3n +2λ2n =-n 2-n +4-2λ2n +1, 当n ≥3时,-n 2-n +4-2λ≤-32-3+4-2λ=-8-2λ≤-8-2(-2)=-4<0, 所以当n ≥3时,f (n +1)<f (n ),因此当m >n ≥3时,f (n )>f (m ),与f (n )=f (m )相矛盾,又n >1,于是n =2, 所以m 2+3m +2λ2m =5+λ2. ………………… 12分当m ≥5时,m 2+3m +2λ2m ≤52+3×5+2λ25=20+λ16,又20+λ16-5+λ2=-20-7λ16≤-20-7×(-2)16=-38<0,即20+λ16<5+λ2, 所以当m ≥5时,m 2+3m +2λ2m <5+λ2,与m 2+3m +2λ2m =5+λ2相矛盾.又m >n =2,所以m =3或4. ………………… 14分 当m =3时,32+3×3+2λ23=5+λ2,解得λ=-1;当m =4时,42+3×4+2λ24=5+λ2,解得λ=-2;因此λ的所有可能值为-1和-2. …………………………… 16分南京市2020届高三学情调研考试数学附加题参考答案及评分标准 2019.0921.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共20分. A .选修4—2:矩阵与变换 解:(1)解法一:因为A =⎣⎢⎡⎦⎥⎤2 321,设A -1=⎣⎢⎡⎦⎥⎤a b c d ,则由A -1A =E ,得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 32 1=⎣⎢⎡⎦⎥⎤1001,所以⎩⎨⎧2a +2b =1,3a +b =0,2c +2d =0,3c +d =1. …………………………… 2分解得a =-14,b =34,c =12,d =-12,从而A-1=⎣⎢⎡⎦⎥⎤-14 34 12 -12. …………………………… 4分解法二:因为矩阵⎣⎢⎡⎦⎥⎤a b c d (ad -bc ≠0)的逆矩阵为⎣⎢⎡⎦⎥⎤dad -bc -bad -bc -c ad -bc a ad -bc , ………………………… 2分又A =⎣⎢⎡⎦⎥⎤2 321,所以A-1=⎣⎢⎡⎦⎥⎤-14 3412 -12. …………………………… 4分(2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2 321 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x +3y 2x +y ,所以⎩⎪⎨⎪⎧x ′=2x +3y ,y ′=2x +y . ……………………7分 因为(x ′,y ′)在曲线C ′上,所以x ′2-3y ′2=1, 代入得(2x +3y )2-3(2x +y )2=1,化简得6y 2-8x 2=1,即曲线C 的方程为6y 2-8x 2=1. ………………… 10分B .选修4—4:坐标系与参数方程解:将直线l 的参数方程化为普通方程,得ax -4y =-4,即ax -4y +4=0.…………………………… 2分将曲线C 的参数方程化为普通方程得(x -2)2+y 2=1, …………………… 4分 所以曲线C 是以(2,0)为圆心,1为半径的圆, 所以曲线C 上的点P 到直线l 的距离的最大值为|2a +4|a 2+16+1.…………… 6分又因为曲线C 上的点P 到直线l 的距离的最大值为3, 所以|2a +4|a 2+16+1=3,即(a +2)2=a 2+16, ………………………… 8分所以4a +4=16,解得a =3. ………………………… 10分 C .选修4—5:不等式选讲解:当x ≥1时,原不等式化为x 2+2(x -1)<6,即x 2+2x -8<0,解得-4<x <2,所以1≤x <2; …………………………… 4分 当x <1时,原不等式化为x 2-2(x -1)<6, 即x 2-2x -4<0,解得1-5<x <1+5,所以1-5<x <1. ………………………… 8分 综上1-5<x <2.所以不等式的解集为(1-5,2). …………………………… 10分【必做题】第22题、第23题,每题10分,共20分. 22.解:(1)因为底面ABCD 是矩形,且P A ⊥平面ABCD ,故以{→AB ,→AD ,→AP }为正交基底建立空间直角坐标系A -xyz .设AB =a . 因为P A =AD =2,E ,F 分别为P A ,AB 的中点,所以C (a ,2,0),D (0,2,0),F (a2,0,0),E (0,0,1),所以DF →=(a 2,-2,0),CE →=(-a ,-2,1), ………………………… 2分因为DF ⊥CE ,所以DF →·CE →=0, 即 a2×(-a )+(-2)×(-2)+0×1=0, 解得a =22,所以AB 的长为22.………………… 4分 (2)因为a =22,所以DF →=(2,-2,0), EF →=(2,0,-1).设平面DEF 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=0,n ·DF →=0,即⎩⎪⎨⎪⎧2x -z =0,2x -2y =0,取n =(2,1,2). …………………………… 6分 又CF →=(-2,-2,0),所以cos <CF →,n >=CF →·n |CF →||n |=-2×2-2×1+0×26×7=-24221.………………………… 8分记直线CF 与平面DEF 所成角为α, 则sin α=| cos <CF →,n >|=24221,即直线CF 与平面DEF 所成角的正弦值为24221. ……………………… 10分23.解:(1)当n =5时,B ={1,2,3,4,5}.随机变量X 的所有可能取值为1,2,3,4. P (X =1)=1C 34C 35=140; P (X =2)=3+3C 34C 35=320;P (X =3)=9+6C 34C 35=38; P (X =4)=18C 34C 35=920.…………………………… 4分因此随机变量X 的概率分布如下表:随机变量X E (X )=1×140+2×320+3×38+4×920=134. …………………………… 6分(2)由题意知,当S =1时,T =n -2,此时,符合要求的取法共有C 23C 2n -3种;当S =2时,T =n -1,此时,符合要求的取法共有C 22C 2n -2种.………… 8分 故P (X =n -3)= C 23C 2n -3+C 22C 2n -2 C 34C 3n=3(n -3)(2n -7)2n (n -1)(n -2). …………… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

159
1800,
t
2
,
4t 9t
9, 15,
其中
t
N
(1)若平均每趟地铁的载客人数不超过 1500 人,试求发车时间间隔 t 的值;
(2)若平均每趟地铁每分钟的净收益为 Q 6 p t 7920 100(单位:元),问当发车时间
t 间隔 t 为多少时,平均每趟地铁每分钟的净收益最大?并求出最大净收益.
3
tan
1 ,则 tan 2 的值为
.
10. 已知函数 f x x ,则不等式 f x 3 f 2x 0 的解集为
.
1 x
11. 等差数列an 的前 n 项和记为 Sn ,已知 a1 a4 a7 =99,a2 a5 a8 93 ,若存在正整
数 k ,使得对任意 n N* ,都有 Sn Sk 恒成立,则 k 的值为__________
3a4 99 ,∴ a4 33 , 3a5 93,∴ a5 31,∴ d 2 , a1 39 ,
Sn n2 40n , Sn 最大值为 S20 ,所以 k 20 .
【点评】此题考查的是对等差数列求 n 项和的表达式配方求最值的题型,该题属于基础题
南京市 2020 届高三年级学情调研 数学
2019.09 注意事项:
1.本试卷共 4 页,包括填空题(第 1 题~第 14 题)、解答题(第 15 题~第 20 题)两 部分.本试卷满分为 160 分,考试时间为 120 分钟.
2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡上对应 题目的答案空格内.考试结束后,交回答题卡. 参考公式: 柱体的体积公式:V Sh ,其中 S 为柱体的底面积, h 为柱体的高. 球的体积公式:V 4 R3 ,其中 R 为球体的半径.
Tn
为等比数列;
n
②若存在整数 m, nm n
1 ,使得 Tm
Tn
mSm nSn
,其中
为常数,且
2 ,求
的所
有可能值.
南京市 2019 届高三年级第一次模拟考试 数学附加题
2019.09
21.【选做题】在 A、B、C 三小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答卷 卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
12. 在 ABC 中,点 P 是边 AB 的中点,已知 CA 4,CP
3,ACB
2
uuur uuur ,则 CP CA 的值
3
为____________
13. 在平面直角坐标系 xOy 中,已知圆 M : x a2 y 2a2 4 ,圆
N : x 22 y 12 4 ,若圆 M 上存在一点 P ,使得以点 P 为圆心,1 为半径的圆与圆
N 有公共点,则实数 a 的取值范围为___________
2x 1 1, x 0
14.
已知函数
f
x
x3
3x2
1,
g
x
1 4
x2
x,
x
0
,若函数有
y
g
f
x
a

6

零点(互不相同),则实数 a 的取值范围为____________
二、解答题:本大题共 6 小题,共 90 分.解答题写出必要的文字说明,证明过程或演算 步骤,请把答案填写在答题卡相应位置上. 15.(本小题满分 14 分) 已知 ABC 的内角 A, B,C 所对的边分别为 a,b,c ,且 asin 2B 2bsin A (1)求 B 的大小;
3
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.请把答案填写在答题卡相应位置 上.
1. 函数 f x x 1 的定义域为
.
【答案】1,
【解析】被开方式大于等于 0 【点评】考查函数定义域的求解,该题属于基础题型.
2. 已知复数 z 满足 z 2i 1 i ,其中 i 是虚数单位,则复数 z 的模为
40,50 , 50,60 ,60,70 , 70,80 ,80,90 , 90,100 ,则图中 x 的值为
.
5. 有 3 个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组
的可能性相同,则这两位同学参加了不同的兴趣小组的概率为
.
6. 把一个底面半径为 3cm ,高为 4cm 的钢质实心圆柱熔化,然后铸成一个实心钢球(不计损
南京市 2020 届高三年级学情调研 数学
2019.09 注意事项:
1.本试卷共 4 页,包括填空题(第 1 题~第 14 题)、解答题(第 15 题~第 20 题)两 部分.本试卷满分为 160 分,考试时间为 120 分钟.
2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡上对应 题目的答案空格内.考试结束后,交回答题卡. 参考公式: 柱体的体积公式:V Sh ,其中 S 为柱体的底面积, h 为柱体的高. 球的体积公式:V 4 R3 ,其中 R 为球体的半径.
(3)若 b 4 ,求函数 f x 的单调区间.
20. (本小题满分 16 分)
已知数列 an
的首项
a1
2
,前
n
项和为
Sn
,且数列
Sn
n
是以
1 2
为公差的等差数列.
(1)求数列an 的通项公式;
(2)设 bn 2n an , n N ,数列bn 的前 n 项和为 Tn ,
①证:数列
23.(本小题满分 10 分)
已知集合 A 1, 2,3, 4 和集合 B 1, 2,3,L , n ,其中 n 5, n N* ,从集合 A 中任取三个不
同的元素,其中最小的元素用 S 表示,从集合 B 中任取三个不同的元素,其中最大的元素 用 T 表示,记 X T S .
(1)当 n 5 ,求随机变量 X 的概率分布和数学期望 E X ; (2)求 P X n 3
转换可得 f x 3 f 2x ,即 x 3 2x , x 1
【点评】考查通过函数的奇偶性和单调性解决不等式的问题,新东方高中数学教研组
11. 等差数列an 的前 n 项和记为 Sn ,已知 a1 a4 a7 =99,a2 a5 a8 93 ,若存在正整
数 k ,使得对任意 n N* ,都有 Sn Sk 恒成立,则 k 的值为__________ 【答案】 20 【解析】由等差数列,可得
能围成一个等边三角形,则该双曲线的离心率为
.
【答案】 2 3 3
b a2
【解析】由渐近线与准线的交点构成等边三角形,可得
tan 30
a
c a2
b a
3 ,得 3
c
e 1 b2 2 3 a2 3
【点评】考查双曲线的离心率计算,属于基础题型.
8.
若函数
f
x
2
sin
x
6
0 的最小正周期为
,则当
17. (本小题满分 14 分) 随着城市地铁建设的持续推进,市民的出行也越来越便利. 根据大数据统计,某条地铁线 路运行时,发车时间间隔 t (单位:分钟)满足: 4 t 15,t N ,平均每趟地铁的载客人
数 p t (单位:人)与发车时间间隔 t 近似地满足下列函数关系:
p
t
1800
C:xy
2 cos sin
,
( 为参数). 若曲线 C 上的点 P 到直线 l 的距离最大值为 3,求 a 的值.
C.选修 4-5:不等式选讲
解不等式 x2 2 | x 1| 6. 22.(本小题满分 10 分) 如图,四棱锥 P ABCD 的底面 ABCD 是矩形, PA 平面 ABCD , PA AD 2, E, F 分别 为 PA, AB 的中点,且 DF CE. (1)求 AB 的长; (2)求直线 CF 与平面 DEF 所成角的正弦值.
别交于点 P,Q ,求证: OB PQ 为定值.
19. (本小题满分 16 分)
已知函数 f x 2ln x ax2 bx,a,b R.
(1)若曲线 y f (x) 在 x 1处的切线为 y 2x 3 ,求实数 a,b 的值; (2)若 a 0 ,且 f (x) 2 对一切正实数 x 恒成立,求实数 b 的取值范围;
3
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.请把答案填写在答题卡相应位置 上.
1. 函数 f x x 1 的定义域为
.
2. 已知复数 z 满足 z 2i 1 i ,其中 i 是虚数单位,则复数 z 的模为
.
3. 某算法的流程图如图所示,则输出的 n 的值为
.
4. 某班 50 位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:
A. 选修 4-2:矩阵与变换
已知二阶矩阵
A
2 2
3 1
.
(1)求 A1;
(2)若曲线 C 在矩阵 A 对应的变换作用下得到曲线 C' : x2 3y2 1, 求曲线 C 的方程.
B. 选修 4-4:坐标系与参数方程
ห้องสมุดไป่ตู้在平面直角坐标系
xOy
中,直线
l
:
x
y
4t, 1
at
(
t
为参数,
a
为常数)曲线
.
【答案】 10
【解析】 z a bi , z 2i 1 i a 3,b 1 z 10
【点评】考查复数的运算,属于基础题型.
3. 某算法的流程图如图所示,则输出的 n 的值为
.
【答案】 4 【解析】 n 2, p 4;n 3, p 9;n 4, p 16
【点评】考查流程图,属于基础题型.
(2)若 cosC 5 ,求 sin A C 的值.
相关文档
最新文档