七年级数学去括号练习题.

合集下载

七年级数学去括号测试卷

七年级数学去括号测试卷

一、选择题(每题2分,共10分)1. 去括号后,下列各式中正确的是()A. 5x - (2x + 3) = 5x - 2x - 3B. -3(x - 4) = -3x + 12C. (3x - 5) + 2 = 3x - 3D. 2(x + 3) - 5 = 2x + 6 - 52. 去括号后,下列各式中正确的是()A. (a - b) × 3 = 3a - bB. (a + b) × 3 = 3a + 3bC. (a - b) × 3 = 3a - 3bD. (a + b) × 3 = 3a - 3b3. 去括号后,下列各式中正确的是()A. (2x - 3) ÷ 3 = 2x - 1B. (2x + 3) ÷ 3 = 2x + 1C. (2x - 3) ÷ 3 = 2x - 0.1D. (2x + 3) ÷ 3 = 2x - 0.14. 去括号后,下列各式中正确的是()A. (a + b) ÷ (a - b) = a + bB. (a + b) ÷ (a - b) = a - bC. (a - b) ÷ (a + b) = a - bD. (a - b) ÷ (a + b) = a + b5. 去括号后,下列各式中正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²二、填空题(每题2分,共10分)6. 去括号后,3(x - 2) + 5 = ______7. 去括号后,-2(x + 3) - 4 = ______8. 去括号后,(4x - 5) ÷ 2 = ______9. 去括号后,(a - b) × (a + b) = ______10. 去括号后,(a + b)² = ______三、解答题(每题5分,共20分)11. 去括号并合并同类项:3(x - 2) + 4(2x + 1) - 5x12. 去括号并合并同类项:-2(x - 3) + 5(2x + 1) - 3x13. 去括号并合并同类项:(4x - 5) ÷ 2 + (2x + 3) ÷ 214. 去括号并合并同类项:(a + 2b) × (a - 2b)四、应用题(10分)15. 小明去商店买文具,买了一个笔记本和一个钢笔,笔记本比钢笔贵2元。

七年级数学去括号(经典好用)

七年级数学去括号(经典好用)
解:原式 6 xy 3 y 2 xy
括号前有因数, 括号前有因数,利用乘法 分配律将因数分配到括号 里.
4 xy 3 y
课堂小结
1、 去括号法则: 括号前是“+ ”号,把括号和它前面
的“+ ”号去掉后,原括号里各项的符号都不改变;括号 前是“-”号,把括号和它前面的“-”号去掉后,原括 号里各项的符号都要改变.
是“+”号,不变号;是“-”号,全变号.
2、从特殊到一般的化归的重要数学思想.
课后作业
做一做
课本 P 122 习题3.6
16 (47 53)
= 16 47 53
去括号
a (b c ) a b c
从特殊到一般的思想方法
一天,懒洋洋带了a元钱去商店买学习用品, 他先花b元钱买了一个本子,再花c元钱买了一支 笔,请你帮他算出他现在还剩余多少钱?
a (b c )
=
去括号
abc
4a a 3b
3a 3b
例1
去括号,并合并同类项:
(2)a (5a 3b) (a 2b)
解:原式
a 5a 3b a 2b
5a b
小明
第一个正方形用4根,每增加一个正方形增加3根,那么 4 搭x个正方形就需要火柴棒 3( x 1) 根.
把每一个正方形都看成是用4根火柴棒搭成的,然后再 4x 减去多算的根数,得到的代数式是 ( x 1) .
第一个正方形可以看成是3根火柴棒加1根火柴棒搭成的.此
(3 后每增加一个正方形就增加3根,搭x个正方形共需x 1)
根.
例 2 去括号,并合并同类项:
3(2 xy y ) 2 xy;

去括号练习题及答案

去括号练习题及答案

去括号练习题及答案去括号练习题及答案【篇一:七年级数学去括号练习题.】纳出去括号的法则吗?2. 去括号:(1)a+(-b+c-d); (2)a-(-b+c-d) ;(3)-(p+q)+(m-n); (4)(r+s)-(p-q).3.下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c;=-x-y+xy-1.(3)(y-x) 2 =(x-y) 2(4) (-y-x) 2 =(x+y) 23 3 (5) (y-x)=(x-y)4.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。

1.根据去括号法则,在___上填上“+”号或“-”号:(1) a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;(3) ___(a-b)___(c+d)=c+d-a+b2.已知x+y=2,则,.3.去括号:(1)a+3(2b+c-d);(2)3x-2(3y+2z).(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)]; (2)3b-2c-[-4a+(c+3b)]+c.c1. 化简2-[2(x+3y)-3(x-2y)]的结果是().a.x+2;b.x-12y+2;c.-5x+12y+2; d.2-5x.2. 已知:x?1+x?2=3,求{x-[x2-(1-x)]}-1的值.第7课时去括号(1)1.下列各式中,与a-b-c的值不相等的是( )a.a-(b+c) b.a-(b-c)c.(a-b)+(-c) d.(-c)+(-b+a)2.化简-[0-(2p-q)]的结果是 ( )a.-2p-q b.-2p+q c.2p-q d.2p+q3.下列去括号中,正确的是 ( )a.a-(2b-3c)=a-2b-3cb.x3-(3x2+2x-1)=x3-3x2-2x-1c.2y2+(-2y+1)=2y2-2y+1d.-(2x-y)-(-x2+y2)=-2x+y+x2+y24.去括号:a+(b-c)=;(a-b)+(-c-d)=-(a-b)-(-c-d)=5x3-[3x2-(x-1)]=.5.判断题.(1)x-(y-z)=x-y-z ( )(2)-(x-y+z)=-x+y-z( )(3)x-2(y-z)=x-2y+z ( )(4)-(a-b)+(-c-d)=-a+b+c+d( )(5) ( )6.去括号:-(2m-3); n-3(4-2m);11 (1) 16a-8(3b+4c);(2)-(x+y)+(p+q); 24(3)-8(3a-2ab+4);(4) 4(rn+p)-7(n-2q).1(5)8 (y-x) 2-(x-y) 2 - 4(-y-x) 2 -3(x+y) 2+2(y-x) 227.先去括号,再合并同类项:-2n-(3n-1); a-(5a-3b)+(2b-a);-3(2s-5)+6s; 1-(2a-1)-(3a+3);3(-ab+2a)-(3a-b); 14(abc-2a)+3(6a-2abc).8.把-︱-[ a-(b-c)]︱去括号后的结果应为 ( )a.a+b+c b.a-b+c c.-a+b-c d.a-b-c9.化简(3-?)-︱?-3︱的结果为( )a.6 b.-2? c.2?-6 d.6-2?10.先去括号,再合并同类项:16a2-2ab-2(3a2-ab); 2(2a-b)-[4b-(-2a+b)] 229a3-[-6a2+2(a3-a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t +1). 311.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.【篇二:七年级数学去括号练习题.】>1. 去括号:(1)a+(-b+c-d); (2)a-(-b+c-d) ;(3)-(p+q)+(m-n); (4)(r+s)-(p-q).2.化简:(1)(2x-3y)+(-5x+4y);(2)(8a-7b)-(-4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。

去括号 专项练习- 苏科版七年级上学期数学

去括号 专项练习- 苏科版七年级上学期数学

去括号专项练习巩固练习:1.下列式子中去括号错误的是( )A .5(25)525x x y z x x y z --+=-+-B .()222(3)322332a a b c d a a b c d +----=---+C .2233(6)336x x x x -+=--D .()2222(2)2x y x y x y x y ----+=-++-2.下列去括号或添括号正确的是( )A .a 2﹣(2a ﹣b +c )=a 2﹣2a ﹣b +cB .a ﹣2(b ﹣c )=a ﹣2b ﹣cC .﹣3b +2c ﹣d =﹣(3b +2c ﹣d )D .2x ﹣x 2+y 2=2x +(﹣x 2+y 2)3.下列去括号或括号的变形中,正确的是( )A .2a ﹣(5b ﹣c )=2a ﹣5b ﹣cB .3a +5(2b ﹣1)=3a +10b ﹣1C .4a +3b ﹣2c =4a +(3b ﹣2c )D .m ﹣n +a ﹣2b =m ﹣(n +a ﹣2b )4.下列去括号的过程(1)a +(b ﹣c )=a +b ﹣c ;(2)a ﹣(b +c )=a ﹣b ﹣c ;((3)a ﹣(b ﹣c )=a ﹣b ﹣c ;(4)a ﹣(b ﹣c )=a ﹣b +c .其中,运算结果正确的个数为( )A .1B .2C .3D .45.已知6b ﹣a =﹣5,则(a +2b )﹣2(a ﹣2b )=( )A .5B .﹣5C .﹣10D .106.下列各式去括号正确的是( )A.4a-(3b-2c-d)=4a-3b-2c-dB.-(x-y)=-x-yC.(3a-5b)+(2m-n)=3a-5b-2m+nD.-(x-y)-(1-x 2+x 3)=-x+y-1+x 2-x 37.化简-{[-(2x-y)]}的结果是( )A.2x-yB.2x+yC.-2x+yD.-2x-y8.化简–[-(3x-2y)]的结果是 ( )A. 3x-2yB. 3x+2yC. -3x-2yD. -3x+2y9.在等式的括号内填上恰当的项,x 2﹣y 2+8y =x 2﹣( ).10.m ﹣[n ﹣2m ﹣(m ﹣n )]等于( )A .﹣2mB .2mC .4m ﹣2nD .2m ﹣2n 11.计算: 32243A x x x =-++ 226B x x =+- 323C x x =+-则:()_______A B C -+=12.先去括号,再合并同类项:(1)(5a 2+2b 2) -3(a 2-4b 2) (2)2x +(5x -3y )-(3x +y )(3)(4)223(2)2(3)a ab ab b ---+13.根据去括号法则,在横线上填上“+”或“﹣”.(1)a (﹣b +c )=a ﹣b +c(2)a (b ﹣c ﹣d )=a ﹣b +c +d(3)﹣(2x +3y ) (x ﹣3y )=﹣3x(4)(m +n ) [m ﹣(n +p )]=2m ﹣p .14..把(+5)﹣(+3)﹣(﹣1)+(﹣5)写成省略括号的和的形式是( )A .﹣5﹣3+1﹣5B .5﹣3﹣1﹣5C .5+3+1﹣5D .5﹣3+1﹣515.下列去括号正确的是( )A .2(3)23a b c a b c --=--B .3(23)()323a b c a a b c a +---=+--C .6(25)625a b a b --+=++D .(53)(2)532x y x y x y x y ----=-+-+16.下列去括号正确的是( )A .()a b c a b c +-=++B .()22a b c a b c --=-+C .()a b c a b c --=--D .()222a b c a b c --=-+17.先化简,再求值:(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中a =,b =,c =1.18.先化简,再求值:x ﹣[﹣2(x ﹣y 2)﹣(﹣x +y 2)﹣x ]﹣y 2,其中,.19.先化简,再求值:3(4mn ﹣m 2)﹣4mn ﹣2(3mn ﹣m 2),其中m=﹣2,n=.20.将式子4x +(3x ﹣x )=4x +3x ﹣x ,4x ﹣(3x ﹣x )=4x ﹣3x +x 分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x 5﹣4x 2+3x 3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.。

(完整版)人教版数学七年级上册2.2《去括号》训练(有答案)

(完整版)人教版数学七年级上册2.2《去括号》训练(有答案)

课时2去括号基础训练知识点1(去括号)1.下列去括号正确的是()A.﹣3a-(2b-c)=﹣3a+2b-cB.﹣3a-(2b-c)=﹣3a-2b-cC.﹣3a-(2b-c)=﹣3a+2b+cD.﹣3a-(2b-c)=﹣3a-2b+c2.下列运算正确的是()A.﹣2(3x-1)=﹣6x-1B.-2(3x-1)=-6x+1C.﹣2(3x-l)=-6x-2D.﹣2(3x-1)=-6x+23.化简-(2x-y)+(-y+3)的结果为()A.﹣2x-2y-3B.﹣2x+3C.2x+3D.﹣2x-2y+34.[2017四川泸州县石马中学期中]下列式子中去括号错误的是()A.5x-(x-2y+5z)=5x-x+2y-5zB.2a2+(﹣3a-b)-(3c-2d)=2a2-3a-b-3c+2dC.3x2-3(x+6)=3x2-3x-6D.-(x-2y)-(-x2+y2)=﹣x+2y+x2﹣y25.利用去括号法则化简求值.(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)-(a2-6ab+9)+2(a2+4ab+92),其中a=6,b=﹣23;(3)3x2y2-[5xy2-(4xy2-3)+2x2y2],其中x=-3,y=2.知识点2(去括号的应用)6.如果某三位数的百位数字是a-b+c,十位数字是b-c+a,个位数字是c-a+b. (1)列出这个三位数的式子,并化简;(2)当a=2,b=5,c=4时,求这个三位数.7.[2017河北承德丰宁期中]某工厂第一车间有x人,第二车间比第一车间人数的45少30人.(1)两个车间共有多少人?(2)如果从第二车间调出10人到第一车间,问第一车间的人数比第二车间的人数多多少人?参考答案1.D2.D3.B【解析】因为﹣(2x-y)+(-y+3)=﹣2x+y-y+3=﹣2x+3,所以B正确.故选B.4.C【解析】C项,3x2-3(x+6)=3x2-3x-18,故C错误.故选C.名师点睛本题考查去括号的方法:去括号时,运用乘法的分配律,把括号前的数字与括号里各项相乘,当括号前是“+”时,去括号后,括号里的各项都不改变符号;当括号前是“-”时,去括号后,括号里的各项都改变符号.5.【解析】(1)﹣(9x3-4x2+5)-(﹣3-8x3+3x2)=﹣9x3+4x2-5+3+8x3-3x2=-x3+x-2.当x=-2时,原式=﹣(-2)3+(-2)2-2=8+4-2=10.(2)﹣(a2-6ab+9)+2(a2+4ab+92)=﹣a2+6ab-9+2a2+8ab+9 =a2+14ab.当a=6,b=﹣23时,原式=62+14×6×(-23)=36-56=-20.(3)3x2y2-[5xy2-(4xy2-3)+2x2y2] =3x2y2-(5xy2-4xy2+3+2x2y2)=3x2y2-(xy2+3+2x2y2)=3x2z2-xy2-3-2x2y2当x=-3,y=2时,原式=(﹣3)2×22-(﹣3)×22-3=36+12-3=45.归纳总结解答此类题,先根据去括号法则去掉括号,再合并同类项,把结果化为没有括号和没有同类项的式子后,再把字母的取值代入这个式子求值.6.【解析】(1)100(a-b+c)+10(b-c+a)+(c-a+b)=100a-100b+100c+10b-10c+10a+c-a+b=109a-89b+91c.(2)当a=2,b=5,c=4时,百位数字是1,十位数字是3,个位数字是7,所以这个三位数是137.7.【解析】(1)第二车间有(45x-30)人,所以两个车间共有x+45x-30=(95x-30)(人).(2)(x+10)-( 45x-30-10)=x+10-(45x-40)=x+10-45x+40=15x+50.所以第一车间的人数比第二车间的人数多(15x+50)人.课时2去括号提升训练1.[2018湖北武汉二中课时作业]下列式子中去括号正确的是()A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c2.[2018天津市南开中学课时作业]当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是()A.3的倍数B.4的倍数C.5的倍数D.10的倍数3.[2018吉林东北师大附中课时作业]把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和为()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm4.[2018江西上饶二中课时作业]若式子(2x2+3ax-y)-2(bx2-3x+2y-1)的值与字母x的取值无关,则式子(a-b)-(2a+b)的值是________.5.[2018河北张家口五中课时作业]甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累积购买商品超过400元后,超过部分按原价的7折优惠;在乙超市购买商品全部按原价的8折优惠.设顾客累计购物x(x >400)元.(1)用含x的整式分别表示顾客在两家超市购物所付的费用;(2)当x=1100时,顾客到哪家超市购物更划算?6.[2018河南洛阳五中课时作业]有理数a,b,c在数轴上的位置如图所示,化简:|c -a|+|b-c|-|a-b|+|a+b|.7.[2018安徽芜湖二十七中课时作业]有这样一道题:(2x3-3x2y-2xy2+2y3)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1.甲同学把“x=12,y=-1”错抄成“x=-12,y=1”,但他计算的结果也是正确的.你说这是怎么回事?参考答案1.B【解析】选项A,﹣(a+b-c)=﹣a-b+c,所以A错误;选项B,﹣2(a+b-3c)=﹣2a -2b +6c ,所以B 正确;选项C ,﹣(﹣a -b -c)=a +b +c ,所以C 错误;选项D ,﹣(a -b -c)=﹣a +b +c ,所以D 错误.故选B.2.C 【解析】a 3-3a 2+7a +7+(3-2a +3a 2-a 3)=a 3-3a 2+7a +7+3-2a +3a 2-a 3=5a +10=5(a +2),所以该整式一定是5的倍数.故选C.3.B 【解析】设题图1中长方形的长为x cm ,宽为y cm ,则题图2中两块阴影部分的周长和为2[x +(n -2y)]+2[(m -x)+(n -x)]=[4n +2m -2(x +2y)](cm),由题图2,知x +2y=m ,所以4n +2m -2(x +2y)=4n.故选B.4.0【解析】(2x 2+3ax -y)-2(bx 2-3x +2y -1)=2x 2+3ax -y -2bx 2+6x -4y +2=(2-2b)x 2+(3a +6)x -5y +2,因为其值与字母x 的取值无关,所以2-2b=0,3a +6=0,所以a=﹣2,b=1,则(a -b)-(2a +b)=a -b -2a -b=﹣a -2b=﹣(-2)-2×1=0.5.【解析】(1)顾客在甲超市购物所付的费用是400+0.7(x -400)=(0.7x +120)(元), 顾客在乙超市购物所付的费用是0.8x 元(2)当x=1100时,0.7x +120=0.7×1100+120=890,0.8x=0.8×1100=880,因为880<890, 所以当x=1100时,顾客到乙超市购物更划算.6.【解析】由题中数轴,可得b <0<c <a ,∣b ∣<∣a ∣,所以c -a <0,b -c <0,a -b >0,a +b >0,则∣c -a ∣+∣b -c ∣-∣a -b ∣+∣a +b ∣=a -c -(b -c)-(a -b)+(a +b) =a -c -b +c -a +b +a +b=a +b.技巧点拨解答此类题,关键是根据数轴提供的信息,确定各个绝对值符号内式子的正负性,再根据绝对值的意义去掉绝对值符号,然后利用去括号和合并同类项进行化简.7.【解析】(2x 3-3x 2y -2xy 2+2y 3)-(x 3-2xy 2+y 3)+(﹣x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2+2y 3-x 3+2xy 2-y 3-x 3+3x 2y -y 3=(2x 3-x 3-x 3)+(-3x 2y +3x 2y)+(﹣2xy 2+2xy 2)+(2y 3-y 3-y 3)=0.可见原式的值与x ,y 的取值无关,所以甲同学计算的结果也是正确的技巧点拨通过换一种说法来考查学生是否真正形成了先化简再求值的意识,因此当遇到复杂的式子时,应先化简再来分析、解决剩下的有关问题.去括号的技巧在进行含有括号的整式加减运算时,若能根据算式的特点,灵活去括号,就能减少运算环节,提高解题效率.下面介绍几种技巧,供同学们学习时参考.一、先局部合并,再去括号例1.计算222222123(0.5)32a b ab a b ab a b a b ----+.解:原式22253()a b ab ab =---22253a b ab ab =-+2252a b ab =-.二、先整体合并,再去括号例2.计算223153(1)(1)(1)x x x x x x +---++-+-.分析:若按常规思路先去括号再合并,不但运算量很大,而且也容易出错.将2(1)x x -+看作一个整体,先合并,然后再去括号,则显得简捷明快.解:原式2231533(1)(1)x x x x x x =+---++-+-3183x x =--.三、由外向里去括号例3.计算23222318[6(12)]x y xy xy x y ---.分析:去括号通常是由里向外去括号,即先去掉小括号,再去掉中括号,最后再去掉大括号,但对于本题来说,若先去掉中括号,则小括号前的“-”变为“+”号,再去小括号时,括号内的各项都不用变号,这样就减少了某些项的反复变号,从而不易出错.解:原式232223186(12)x y xy xy x y =-+-23222318612x y xy xy x y =-+-23265x y xy =-.四、一次去掉多重括号例4.计算5{4[3(21)]}a a a a ----.分析:根据某项前面各层括号前“-”的个数来决定去掉括号后该项的符号.具体地说,若负号的个数是偶数个,则该项保持原来的符号,若负号的个数为奇数个,则改变该项原来的符号.只要掌握了这一法则,就可以一次去掉多重括号.解:原式54321a a a a =-+-+21a =+.。

人教版七年级数学 2.2.2去括号 同步测试题(含答案)

人教版七年级数学  2.2.2去括号 同步测试题(含答案)

人教版七年级数学第二章 2.2.2去括号 同步测试题一、选择题1.去括号的依据是(C )A .乘法交换律B .乘法结合律C .分配律D .乘法交换律与分配律2.下列计算中去括号正确的是(A)A .-(5-2x )=2x -5B .-(a +3)=-a +3C .-(a -b )=-a -bD .-(2x -5)=2x -53.化简-16(x -0.5)的结果是(D )A .-16x -0.5B .-16x +0.5C .16x -8D .-16x +84.化简13(9x -3)-2(x +1)的结果是(D ) A .2x -2 B .x +1 C .5x +3 D .x -35.长方形的一边等于3m +2n ,另一边比它大m -n ,则这个长方形的周长是(A )A .14m +6nB .7m +3nC .4m +nD .8m +2n6.化简5(2x -3)+4(3-2x)的结果为(A)A .2x -3B .2x +9C .8x -3D .18x -37.下列各组整式:①a -b 与-a -b ;②a +b 与-a -b ;③a +1与1-a ;④a -b 与b -a ,其中互为相反数的有(B )A .①②④B .②④C .①③D .③④8.若|x +3|+(y -12)2=0,则整式4x +(3x -5y)-2(7x -32y)的值为(C) A .-22 B .-20 C .20 D .22二、填空题9.去掉下列各式中的括号:(1)a -(-b +c)=a +b -c ; (2)a +(b -c)=a +b -c ;(3)(a -2b)-(b 2-2a 2)=a -2b -b 2+2a 2; (4)x +3(-2y +z)=x -6y +3z ;(5)x -5(2y -3z)=x -10y +15z .10.船在静水中的速度为a km/h ,水速为10 km/h ,船顺流航行5 h 的行程比逆流航行3 h 的行程多(80+2a)__km.11.计算:(1)3(2x +1)-6x =3;(2)(1+m 2)-(1-m 2)=2m 2.12.三个课外兴趣小组,A 组有x 人,B 组的人数比A 组人数的2倍多8人,C 组的人数比B 组人数的12少6人,则三个小组共有(4x +6)人. 13.如果a -b -2=0,那么式子1+2a -2b 的值是5.三、解答题14.化简下列各式:(1)-(x +y)+(3x -7y);解:原式=-x -y +3x -7y=(-x +3x)+(-y -7y)=2x -8y.(2)2a +2(a +1)-3(a -1).解:原式=2a +2a +2-3a +3=(2a +2a -3a)+(2+3)=a +5.15.一个三角形的第一条边长为(x +2)cm ,第二条边长比第一条边长小5 cm ,第三条边长是第二条边长的2倍.(1)用含x 的式子表示这个三角形的周长;(2)当x =6时,这个三角形的周长是多少?解:(1)第二条边长为(x +2)-5=(x -3)cm ,第三条边长为2(x -3)=(2x -6)cm ,则三角形的周长为(x +2)+(x -3)+(2x -6)=(4x -7)cm.(2)当x =6时,这个三角形的周长为4×6-7=17(cm).16.化简:4a 2-3a +3-3(-a 3+2a +1).解:原式=4a 2-3a +3+3a 3-6a -3=3a 3+4a 2+(-3a -6a)+(3-3)=3a 3+4a 2-9a.17.化简求值:(1)4x -[3x -2x -(x -3)],其中x =12; 解:原式=4x -(3x -2x -x +3)=4x -3.当x =12时,原式=-1.(2)2(a2-ab)-3(2a2-ab),其中a=-2,b=3.解:原式=2a2-2ab-6a2+3ab=-4a2+ab.当a=-2,b=3时,原式=-22.18.如图是两种长方形铝合金窗框.已知窗框的长都是y米,窗框的宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?解:由题意可得:做2个(1)型的窗框需要铝合金2(3x+2y)米;做5个(2)型的窗框需要铝合金5(2x+2y)米.所以共需铝合金:2(3x+2y)+5(2x+2y)=(16x+14y)米.19.有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x =2,y=-1.甲同学把x=2误抄成x=-2,但他计算的结果也是正确的,试说明理由,并求出这个结果.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简的结果中不含x,所以原式的值与x的取值无关.当y=-1时,原式=-2×(-1)3=2.20.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-1,求-1+a2+b+b2的值.解:因为a2+b2=5,1-b=-1,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-1)+5=6.。

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)课前练习一、知识回顾1、所含字母相同,并且相同字母的指数也相同的项叫做__________.把多项式中的同类项合并成一项,叫做____________.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数_________.二、学习新知识例12. 学校图书馆内起初有a位同学,后来某年级组织阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内共有______________位同学.我们还可以这样理解:后来两批一共来了________位同学,因而,图书馆内共有_____________位同学.由于________和________均表示同一个量,于是得到:a+(b+c)=a+b+c例23. 若学校图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,那么可以得到:____________.4. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.三、课前小练习5. 下列去括号中,正确的是()A. a2-(2a-1)=a2-2a-1B. a2+(-2a-3)=a2-2a+3C. 3a-[5b-(2c-1)]=3a-5b+2c-1D. -(a+b)+(c-d)=-a-b-c+d6. 下列各式中,与a-b-c的值不相等的是()A. a-(b+c)B. a-(b-c)C. (a-b)+(-c)D. (-c)+(-b+a)7. 已知a−b=−3,c+d=2,那么(b+c)−(a−d)的值为()B. 5C. -1D. 1A. 58. 去括号:(1)-(2m-3);(2)n-3(4-2m);(3)16a-8(3b+4c);(4)(2x2+x)−[4x2−(3x2−x)]课前练习参考答案1. ①. 同类项②. 合并同类项③. 和④. 不变2. ①. a+b+c②. b+c③. a+(b+c)④. a+(b+c)⑤. a+b+c3.a-(b+c)=a-b-c4. ①. 相同②. 相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为相同,相反.5.C【解析】根据添括号的法则,即可作出判断.【详解】A. a2-(2a-1)=a2-2a+1,故错误;B. a2+(-2a-3)=a2-2a-3,故错误;C. 3a-[5b-(2c-1)]= 3a-[5b-2c+1]=3a-5b+2c-1 ,正确;D. -(a+b)+(c-d)=-a-b+c-d,故错误;故选:C.6.B7.B【解析】先将代数式(b+c)−(a−d)化成只含有(a-b)和(c+d)的形式,最后代入求值即可.【详解】解:∵a−b=−3,c+d=2∴(b+c)−(a−d)=b+c−a+d=−(a−b)+(c+d)=−(−3)+2=3+2=5.故答案为B.8.(1)-2m+3;(2)n-12+6m;(3)16a-24b-32c;(4)2x【详解】(1)原式=-2m+3;(2)原式=n-12+6m;(3)原式=16a-24b-32c;(4)原式=(2x2+x)−(4x2−3x2+x)=2x2+x−(x2+x)=2x2+x−x2−x=2x课堂练习知识点1 去括号1.下列去括号正确的是( )A .﹣(a +b ﹣c )=a +b ﹣cB .﹣2(a +b ﹣3c )=﹣2a ﹣2b +6cC .﹣(﹣a ﹣b ﹣c )=﹣a +b +cD .﹣(a ﹣b ﹣c )=﹣a +b ﹣c2.式子a −(b −c +d )去括号后得___________.3.计算(1﹣2a )﹣(2﹣2a )=___.知识点2 添括号4.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“—”号的括号中,正确的是()A .3b 3−(2ab 2−4a 2b +a 3)B .3b 3−(2ab 2+4a 2b +a 3)C .3b 3−(−2ab 2+4a 2b −a 3)D .3b 3−(2ab 2+4a 2b −a 3)5.添括号:(1)−9a 2+16b 2=−(________);(2)b −a +3(a −b)2=−(________)+3(a −b)2.6.下列各式中,去括号或添括号正确的是( )A .a 2−(−b +c)=a 2−b +cB .−2x −t −a +1=−(2x −t)+(a −1)C .3[5(21)]3521x x x x x x ---=--+D .321(321)a x y a x y -+-=+-+-课堂练习7.下列去括号正确的是( )A .(2)2a b c a b c --=--B .(2m +n)−3(p −1)=2m +n +3p −1C .−(m +n)+(x −y)=−m −n +x −yD .a −(3x −y +z)=a −3x −y −z8.下列选项中,等式成立的是( )A .a −b −c −d =a −(b +c −d)B .2x +3y −4z =2x −(−3y +4z)C .3x −2y +4z =3x −2(y −4z)D .3m −n +2t =−(3m +n −2t)9.已知a 2+3a =1,则代数式2a 2+6a −3的值为( )A .−1B .0C .1D .210.化简:(1)3a 2+2a −4a 2−7a ;(2)13(9x −3)+2(x +1).11.已知|a +4|+(b ﹣2)2=0,数轴上A ,B 两点所对应的数分别是a 和b ,(1)填空:a = ,b = ;(2)化简求值2a 2b +3ab 2−2(−a 2b +3ab 2−2)+7ab 2.课堂练习参考答案1.B【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.2.a−b+c−d【分析】先去括号,再合并同类项即可得出答.【详解】解:a−(b−c+d)=a-b+c-d,故答案为:a-b+c-d.3.﹣1.【解析】原式去括号合并即可得到结果.【详解】原式=1﹣2a﹣2+2a=﹣1,故答案为﹣1.4.A【分析】根据添括号法则来具体分析.【详解】解:3b3-2ab2+4a2b-a3=3b3-(2ab2-4a2b+a3);故选:A.5.9a2−16b2a−b【分析】(1)(2)利用添括号法则计算得出答案.【详解】解:(1)−9a2+16b2=−(9a2−16b2),(2)b−a+3(a−b)2=−(a−b)+3(a−b)2,故答案为:(1)9a2−16b2;(2)a−b.6.D【分析】利用去括号法则和添括号法则即可作出判断.【详解】解:A、a2−(−b+c)=a2+b−c,故错误;B、−2x−t−a+1=−(2x+t)−(a−1),故错误;C、3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D 、321(321)a x y a x y -+-=+-+-,故正确;故选:D .7.C【分析】利用去括号添括号法则计算.根据去括号时,前面是负号的括号里的每项符号都改变,前面是正号的符号不变.【详解】解:A 、a -(2b -c )=a -2b +c ,故选项错误;B 、(2m +n )-3(p -1)=2m +n -3p +3,故选项错误;C 、正确;D 、a -(3x -y +z )=a -3x +y -z ,故选项错误.故选:C .8.B【分析】利用添括号的法则求解即可.【详解】解:A 、a −b −c −d =a −(b +c +d),故错误;B 、2x +3y −4z =2x −(−3y +4z),故正确;C 、3x −2y +4z =3x −2(y −2z),故错误;D 、3m −n +2t =−(−3m +n −2t),故错误;故选:B .9.A【分析】先化简原式,再整体代入求值即可.【详解】原式=2(a 2+3a )−3,将 a 2+3a =1代入,得原式=2×1−3=−1,故选:A .10.(1)−a 2−5a ;(2)51x +【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】解:(1)3a 2+2a −4a 2−7a=−a 2−5a ;(2)13(9x −3)+2(x +1)=3x −1+2x +2=51x +.11.(1)-4,2;(2)4a 2b +4ab 2+4,68.【分析】(1)直接利用绝对值及完全平方式的非负性求解即可;(2)先化简整式,再代入(1)的结论即可.【详解】(1)根据绝对值及完全平方式的非负性得:a +4=0,b −2=0,∴a =−4,b =2;(2)原式=2a 2b +3ab 2+2a 2b −6ab 2+4+7ab 2=4a 2b +4ab 2+4,将a =−4,b =2代入得:原式=4×(−4)2×2+4×(−4)×22+4=128−64+4=68.课后练习1.下列等式恒成立的是( )A .7x −2 =5B .m +n −2=m −(−n −2)C .x −2(y −1)=x −2y +1D .2x −3(13x −1)=x +3 2.要使等式4a −2b −c +3d =4a −( )成立,括号内应填上的项为A .2a −c +3dB .2b −c −3dC .2b +c −3dD .2b +c +3d3.下列变形正确的是( )A .−(a +2)=a −2B .−12(2a −1)=−2a +1C .−a +1=−(a −1)D .1−a =−(a +1)4.三个连续的奇数,中间的一个是2n +1,则三个数的和为( )A .6n −6B .3n +6C .66n +D .63n + 5.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2c −aB .2a −2bC .a -D .a6.去括号:a -(-2b +c )=____.添括号:-x -1=-____.7.计算:2a 2−(a 2+2)=__________.8.小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.9.已知下面5个式子:① x 2-x +1,② m 2n +mn -1,③x 4+1x +2, ④ 5-x 2, ⑤ -x 2. 回答下列问题:(1)上面5个式子中有 个多项式,次数最高的多项式为 (填序号);(2)选择2个二次多项式..运算......,并进行加法10.化简:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y);(2)2(2x﹣7y)﹣3(3x﹣10y).11.(1)化简:−(x2−2xy−y2)−2(5x2−2xy−3y2).(2)若关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,试求当x=−1时,这个多项式的值.12.已知A=2x2+xy+3y−1,B=x2−xy.(1)若A−2B的值与y的值无关,求x的值.(2)若A−mB−3x的值与x的值无关,求y的值.13.某水果批发市场苹果的价格如下表:千克(x超过20千克但不超过40千克)需要付费_______元(用含x的式子表示)(2)小强分两次共买100千克,第二次购买的数量多于第一次购买数量,且第一次购买的数量为a千克,请问两次购买水果共需要付费多少元?(用含a的式子表示)课后练习参考答案1.D【分析】根据合并同类项,添括号法则,去括号合并同类项的运算法则逐一进行计算,再判断.【详解】A:7x−2 =5x,原计算错误,故本选项不符合题意;B:m+n−2=m−(−n+2),原计算错误,故本选项不符合题意;C:x−2(y−1)=x−2y+2,原计算错误,故本选项不符合题意;x−1)=x+3,原计算正确,故本选项符合题意.D:2x−3(132.C【分析】根据添括号法则解答即可.【详解】解:根据添括号的法则可知,原式=4a-(2b+c-3d),故选:C.3.C【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.,故本选项变形错误.B、原式=−a+12C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.4.D【分析】三个连续的奇数,它们之间相隔的数为2,分别表示这三个奇数,列式化简即可.【详解】解:∵中间的一个是2n+1,∴第一个为2n-1,最后一个为2n+3,则三个数的和为(2n-1)+(2n+1)+(2n+3)=6n+3.故选:D.5.C【分析】首先利用数轴得出a+b<0,c-a>0,b+c<0,进而利用绝对值的性质化简求出即可.【详解】解:由数轴可得:b<a<0<c,∴a+b<0,c-a>0,b+c<0,∴|a|−|a+b|+|c−a|+|b+c|=−a+(a+b)+(c−a)−(b+c)=−a+a+b+c−a−b−c=a故选C.6.a+2b-c(x+1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b+c)=a+2b-c-x-1=-(1+x)故答案为:a+2b-c;(x+1)7.a2−2【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2a2−a2−2=a2−2,故答案是:a2−2.8.4yz+xy【分析】利用和减去(xy﹣2yz),运用去括号,合并同类项即可得到正确的结果.【详解】解:由题意得:2yz+2xy-(xy﹣2yz)=2yz+2xy-xy+2yz=4yz+xy故答案为:4yz+xy9.(1)3,②;(2)−x+6【分析】(1)根据多项式的概念和次数定义进行解答即可;(2)根据整式的加减法运算法则进行计算即可.【详解】解:(1)①是二次多项式,②是三次多项式,④二次多项式,③是分式,⑤是单项式,故答案为:3,②;(2)选择多项式①和④相加,得(x2−x+1)+(5−x2)=x2−x+1+5−x2=−x+6.10.(1)9x2y﹣9xy2;(2)﹣5x+16y【分析】(1)直接去括号,再合并同类项得出答案;(2)按照去括号,合并同类项的法则计算即可.【详解】解:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y)=4x2y﹣6xy2﹣3xy2+5x2y=9x2y﹣9xy2;(2)2(2x﹣7y)﹣3(3x﹣10y)=4x﹣14y﹣9x+30y=﹣5x+16y.11.(1)−11x2+6xy+7y2;(2)10【分析】(1)先去括号,再合并同类项,即可化简;(2)由题意可得a-2=0,b-1=0,求得a,b的值,进而确定多项式,再代入求值,即可求解.【详解】解:(1)原式=−x2+2xy+y2−10x2+4xy+6y2=−11x2+6xy+7y2;(2)∵关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,∴a-2=0,b-1=0,即:a=2,b=1,∴原式=x4−6x+3,当x=−1时,原式=(−1)4−6×(−1)+3=10.12.(1)x的值为−1;(2)y的值为1.【分析】(1)将A,B代入A-2B,再去括号,再由题意可得x+1=0,求解即可;(2)将A,B代入A−mB−3x,再去括号,再由题意可得2−m=0,y+my−3=0,求解即可;【详解】解:(1)∵A=2x2+xy+3y−1,B=x2−xy,∴A-2B=(2x2+xy+3y−1)−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1=3(x+1)y−1,∵A-2B的值与y的值无关,∴x+1=0,∴x=−1;∴x的值为−1;(2)∵A=2x2+xy+3y−1,B=x2−xy,∴A−mB−3x=(2x2+xy+3y−1)−m(x2−xy)−3x=2x2+xy+3y−1−mx2+mxy−3x=(2−m)x2+(y+my−3)x+3y−1∵A−mB−3x的值与x的值无关,∴2−m=0,y+my−3=0,∴m=2,y=1;∴y的值为1.13.(1)70,6x+20;(2)当a≤20时,2a+560(元);当20<a≤40时,a+580(元);当40<a<50时,620(元)【分析】(1)图中可以知道:10千克在“不超过20千克的总分”按7元/千克收费;x超过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,最后再把2个费用相加.(2)“小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量”可以知道第一次购买的数量要小于50千克;由于a的取值范围不确定,需要用分类讨论的思想进行解答,当a≤20时,分别算第一次和第二次的总费用;当20<a≤40时,注意第一次购买有2段费用,第二次购买有3段费用,然后再相加;当40<a<50时,注意第一次购买有3段费用,第二次购买也有3段费用,然后再相加;记得最后结果要化为最简的形式.【详解】解:(1)∵10千克在“不超过20千克的总分”按7元/千克收费,∴10×7=70元;∵过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,∴20×7+6(x-20)=(6x+20)元故答案为:70,6x+20;(2)∵再次共购买100千克,第二次购买的数量多于第一次购买的数量,∴a<50,当a≤20时,需要付费为:7a+20×7+20×6+5×(100-a-40)=2a+560(元);当20<a≤40时,需要付费为:7×20+6×(a-20)+20×7+20×6+5×(100-a-40)=a+580(元);当40<a<50时,需要付费为:7×20+6×20+5×(a-40)+20×7+20×6+5×(100-a-40)=620(元).第11页共11页。

七年级上《去括号》课时练习含答案

七年级上《去括号》课时练习含答案

七年级上《去括号》课时练习含答案能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,则空格中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.把3+[3a-2(a-1)]化简得.★7.某轮船顺水航行了5 h,逆水航行了3 h,已知船在静水中的速度为a km/h,水流速度为b km/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值.(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-16,b=1 000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.★10.由于看错了符号,某学生把一个多项式减去x2+6x-6误当成了加法计算,结果得到2x2-2x+3,则正确的结果应该是多少?创新应用★11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.参考答案能力提升1.B三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D由a-3b=-3,知-(a-3b)=3,即-a+3b=3.所以5-a+3b=5+3=8.3.C4.13x-1(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.5+a按照先去小括号,再去中括号的顺序,得3+[3a-2(a-1)]=3+(3a-2a+2)=3+3a-2a+2=5+a.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,所以轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-16,b=1000时,原式=2016.9.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k)xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:2x2-2x+3-2(x2+6x-6)=-14x+15.创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,所以原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.。

七年级数学上册去括号和绝对值专项练习

七年级数学上册去括号和绝对值专项练习

七年级数学上册去括号和绝对值专项练习七年级数学上册去括号和绝对值专项练习 1.先去括号,再合并同类项:(1)a-(2a+b)+2(a-2b) (2)3(5x+4)-(3x-5)(3)x+[x+(-2x-4y)] (4) (a+4b)- (3a-6b)〔5〕8x+2y+2〔5x-2y〕〔6〕〔x2-y2〕-4〔2x2-3y2〕2.如果关于字母x的代数-3x+mx+nx-x+10的值与x的取值无关,求m,n的值.2、求代数式的值:3m2n-mn2-1.2mn+mn2-0.8mn-3m2n,其中m=6,n=2.4.2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值.2(x?y)?3(y?x)25.:|x-y-3|+(a+b+4)=0,求2a?2b?(a?b)226.化简求值.〔1〕5a3-2a2+a-2(a3-3a2)-1,a=-1.〔2〕〔2〕4a2b-[3ab2-2〔3a2b-1〕],其中a=-0.1,b=1.357.先化简,再求值:m?(m?1)?3(4?m),其中m??3.228.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).9.a=1,b=2,c=1,计算2a-3b-[3abc-(2b-a)]+2abc的值. 210.2xmy2与-3xyn是同类项,计算m-(m2n+3m-4n)+(2nm2-3n)的值.11.如果关于x的多项式:-2x2+mx+nx2-5x-1的值与x的取值无关,求m、n的值.12.先化简,再求值114〔1〕4〔y+1〕+4〔1-x〕-4〔x+y〕,其中,x=,y=.73〔2〕4a2b-[3ab2-2〔3a2b-1〕],其中a=-0.1,b=1.2213.求值:〔1〕2x?5x?x?4x,其中x??3.12?(x?2y)?y3,其中x?6,y??1. (2) 先化简,后求值:314.如果|a|=4,|b|=3,且a>b,求a,b的值.15.假设|x-2|+|y+3|+|z-5|=0,计算:〔1〕x,y,z的值.〔2〕求|x|+|y|+|z|的值.16.假设217.〔1〕|x|=3 ,|y|=1,且x-y<0, 求x+y.〔2〕|a|=3, |b|=5 ,且a<b, 求a-b〔3〕∣a-4∣+∣B-2∣=0,求a,b的值〔4〕|4+a|+|2-5b|=8, 求a+b18.a<b<0<c,化简:〔1〕|2a-b|+2|b-c|-2|c-a|+3|b|〔2〕|a-b|+|b|+|c-a|19.c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|20.b<c<0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|。

【七年级数学】去括号测试题及答案

【七年级数学】去括号测试题及答案

去括号测试题及答案34整式的加减(3)去括号◆随堂检测1、下列各式去括号正确的是( )A、4a—(3b—2c—d)=4a—3b—2c—dB、—(x—)=—x—c、(3a—5b)+(2—n)=3a—5b—2+n D、—(x—)—(1—x2+x3)=—x+—1+x2—x32、化简—{[—(2x—)]}的结果是()A、2x—B、2x+ c、—2x+ D、—2x—3、下列去括号中错误的是()A、—2x2—(x+2—5z)=—2x2—x—2+5zB、5a2+(—3a—b)—(2c+3d)=5a2+3a—b—2c—3dc、2x2—3(x—)=2x2—3x+3 D、—(x—2)—(—x2+22)=—x+2+x2—224、化简a+(2b—3c—4d)=_________;a—(—2b—3c+4d)=________;3x—[5x—2(2x—1)]=________;4x2—[6x—(5x—8)—x2]=___________。

5、化简,求值。

,其中x=1◆典例分析例化简求值,其中x=3,。

解===当x=3,时,原式= =-1评析本例化简时应注意两个方面(1)准确运用去括号法则;(2)仔细寻找并合并同类项。

◆下作业●拓展提高1、将(2—3)—(n—2)去括号合并同类项是()A、4—n—3B、—3—n c、—3+n D、4—3+n2、下列各式中,错误的式子的个数有()①a—(c—b)=a—b—c ②(x2+)—2(x—2)=x2+—2x+2③—a+b+x—=—(a+b)—(—x+) ④—3(x—)+(x—)=—2x+2A、1个B、2个 c、3个 D、4个3、下列各题去括号所得结果正确的是()A、 B、c、 D、4、把多项式去括号后按字母的降幂排列为________________________。

5、某三角形第一条边长厘米,第二条边比第一条边长厘米,第三条边比第一条边的2倍少b厘米,那么这个三角形的周长是厘米。

6、化简求值(1),其中。

七年级数学上,解一元一次方程2——去括号与去分母练习题

七年级数学上,解一元一次方程2——去括号与去分母练习题

解一元一次方程 基础练习题2去括号去分母1.在解方程:()()312236x x --+=时,去括号正确的是A .31436x x --+=B .33466x x ---=C .31436x x +--=D .31466x x -+-=2.解方程342x x -+=()去括号正确的是A .3–x +2=xB .3–4x –8=xC .3–4x +8=xD .3–x –2=x 3.在解方程123123x x -+-=时,去分母正确的是 A .()()312231x x --+=B .()()312236x x --+=C .31431x x --+=D .31436x x --+= 4.解方程151412x x x +-=-时,去分母正确的是 A .3(x +1)=x –(5x –1)B .3(x +1)=12x –5x –1C .3(x +1)=12x –(5x –1)D .3x +1=12x –5x +1 5.在解方程1135x x -=-时,去分母后正确的是 A .()51531x x =--B .()131x x =--C .()5131x x =--D .()5331x x =-- 6.下列变形中: ①由方程1225x -=去分母,得x –12=10; ②由方程2992x =两边同除以29,得x =1; ③由方程6x –4=x +4移项,得7x =0; ④由方程53262x x -+-=两边同乘以6,得12–x –5=3(x +3). 错误变形的个数是 A .4个B .3个C .2个D .1个7.把方程2113332x x x -++=-去分母正确的是 A .3x +2(2x –1)=3–3(x +1)B .3x +(2x –1)=3–(x +1)C .18x +(2x –1)=18–(x +1)D .18x +2(2x –1)=18–3(x +1) 8.代数式12m +与m –14的值互为相反数,则m 的值为 A .32 B .–16 C .–13D .12 9.关于x 的方程2(x –2)–3(4x +1)=9,下面解答正确的是A .2x –4–12x +3=9,–10x =9+4–3=10,x =1B .2x –4–12x +3=9,–10x =10,x =–1C .2x –4–12x –3=9,–10x =16,x =–85D .2x –2–12x –3=9,–10x =2,x =–15 10.方程3x +2(1–x )=4的解是A .x =25B .x =65C .x =2D .x =111.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只?设鸡为x 只得方程A .2x +4(14–x )=44B .4x +2(14–x )=44C .4x +2(x –14)=44D .2x +4(x –14)=44 12.解方程21101136x x ++-=时,去分母正确的是 A .()211011x x +-+=B .411016x x +-+=C .()()2211011x x +-+=D .()()2211016x x +-+= 13.将方程21123x x -+-=去分母,得到的整式方程是 A .1–3(x –2)=2(x +1)B .6–2(x –2)=3(x +1)C .6–3(x –2)=2(x +1)D .6–3x –6=2x +2 14.在解方程14123x x -=+时,去分母后正确的是__________. 15.当y =__________时,1–256y -与36y -的值相等. 16.如果代数式16422x x ⎛⎫-+ ⎪⎝⎭与1713x ⎛⎫-- ⎪⎝⎭的值相等,那么x =__________.17.对于任意有理数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a –b ,例如:5⊗2=2×5–2=8,(–3)⊗4=2×(–3)–4=–10.若(x –3)⊗x =2011,则x 的值为__________.18.解方程:(1)4–3(2–x )=5x ;(2)2181236x x x -++-=-.19.解下列方程:(1)2(x +3)=5(x –3);(2)214335x x x --=-.20.已知关于x 的方程mx +2=2(m —x )的解满足|x –12|–1=0,求m 的值.21.对于非零的两个实数a 、b ,规定2a b b a ⊗=-,若111x ⊗+=(),则x 的值为A .1-B .1C .12D .022.解方程2x +3(2x –1)=16–(x +1)的第一步应是A .去分母B .去括号C .移项D .合并 23.解方程1–362x x +=,去分母,得 A .1–x –3=3xB .6–x –3=3xC .6–x +3=3xD .1–x +3=3x 24.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为A .2B .2-C .1D .1- 25.把方程213148x x --=-去分母后,正确的结果是 A .2x –1=1–(3–x )B .2(2x –1)=1–(3–x )C .2(2x –1)=8–3+xD .2(2x –1)=8–3–x26.对方程21512034x x---+=去分母,正确的是A.4(2x–1)–3(5x–1)+2=0 B.4(2x–1)–3(5x–1)+24=12C.3(2x–1)–4(5x–1)+24=0 D.4(2x–1)–3(5x–1)+24=027.汪涵同学在解方程7a+x=18时,误将+x看作–x,得方程的解为x=–4,那么原方程的解为A.x=4 B.x=2 C.x=0 D.x=–228.对于有理数a,b,规定一种新运算:a⊕b=ab+b,则方程(x–4)⊕3=–6的解为__________.29.对任意四个有理数a,b,c,d定义新运算:a bc d=ad–bc,已知241xx-=18,则x=__________.30.阅读材料:规定一种新的运算:a bc d=ad–bc.例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5624的值;(2)按照这个规定,当242122xx--+=5时,求x的值.31.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的: ()()421132x x -=-+…………………①84136x x -=--………………………②83164x x +=-+………………………③111x =-…………………………………④111x =-…………………………………⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)3(3x +5)=2(2x –1);(2)2157146y y ---=.32.已知关于x 的方程:()211x x -+=与()31x m m +=-有相同的解,求关于y 的方程3332my m y --=的解.A .2x –1+6x =3(3x +1)B .2(x –1)+6x =3(3x +1)C .2(x –1)+x =3(3x +1)D .(x –1)+x =3(x +1)35.(2017·武汉)解方程:432(1)x x -=-.参考答案1. B2. B3. B4. C5. A6. B7. D8. B9. C10. C11. A12. D13. C14. ()3186x x -=+.15. 816. 617. 201718. (1)x =–1.(2)x =3.19. (1)7;(2)1/220. 所以m 的值为10或25. 21. D22. B23. B24. D25. C26. D27. A28. 129. 330. (1)8;(2)1;31. ① 32. 1213y =-. 33. B34. -1735. 1/2。

暑期预习七年级数学上册《去括号与添括号》练习题及答案

暑期预习七年级数学上册《去括号与添括号》练习题及答案

(暑假一日一练)七年级数学上册第2章整式的加减2.2.2去括号与添括号习题学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c4.﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.下列计算中正确的是()A.﹣3(a+b)=﹣3a+b B.﹣3(a+b)=﹣3a﹣b C.﹣3(a+b)=﹣3a+3b D.﹣3(a+b)=﹣3a﹣3b6.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)7.下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1 B.2 C.3 D.48.下列去括号错误的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b﹣c C.2(a﹣b)=2a﹣b D.﹣(a﹣2b)=﹣a+2b9.把a﹣2(b﹣c)去括号正确的是()A.a﹣2b﹣c B.a﹣2b﹣2c C.a+2b﹣2c D.a﹣2b+2c10.下列各式:①a﹣(b﹣c)=a﹣b+c;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2;③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y;④﹣3(x﹣y)+(a+b)=﹣3x﹣3y+a﹣b由等号左边变到右边变形错误的有()A.1个B.2个C.3个D.4个11.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是()A.3b3﹣(2ab2+4a2b﹣a3) B.3b3﹣(2ab2+4a2b+a3)C.3b3﹣(﹣2ab2+4a2b﹣a3)D.3b3﹣(2ab2﹣4a2b+a3)12.下列变形中,不正确的是()A.a﹣b﹣( c﹣d )=a﹣b﹣c﹣d B.a﹣(b﹣c+d )=a﹣b+c﹣dC.a+b﹣(﹣c﹣d )=a+b+c+d D.a+(b+c﹣d )=a+b+c﹣d13.下列各式与代数式﹣b+c 不相等的是()A.﹣(﹣c﹣b)B.﹣b﹣(﹣c)C.+(c﹣b) D.+[﹣(b﹣c)]14.下列等式中成立的是()A.a﹣(b+c)=a﹣b+c B.a+(b+c)=a﹣b+cC.a+b﹣c=a+(b﹣c)D.a﹣b+c=a﹣(b+c)15.﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z二.填空题(共10小题)16.去括号a﹣(b﹣2)= .17.化简:﹣[﹣(﹣5)]= .18.化简(2xy)﹣(x+3y)的结果是.19.在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣().20.﹣[a﹣(b﹣c)]去括号应得.21.已知1﹣()=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是.22.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.23.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().24.x2﹣2x+y=x2﹣().25.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.三.解答题(共4小题)26.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣2,求﹣1+a2+b+b2的值.27.先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)28.阅读下面材料:计算:1+2+3+4+…+99+100 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)29.将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.参考答案与试题解析一.选择题(共15小题)1.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.2.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.3.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.4.解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.解:﹣3(a+b)=﹣3a﹣3b,故选:D.6.解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.7.解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.8.解:A、a﹣(b+c)=a﹣b﹣c,故本选项不符合题意;B、a+(b﹣c)=a+b﹣c,故本选项不符合题意;C、2(a﹣b)=2a﹣2b,故本选项符合题意;D、﹣(a﹣2b)=﹣a+2b,故本选项不符合题意;故选:C.9.解:a﹣2(b﹣c)=a﹣2b+2c.故选:D.10.解:①a﹣(b﹣c)=a﹣b+c,正确;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,故此选项错误;③﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,故此选项错误;④﹣3(x﹣y)+(a+b)=﹣3x+3y+a+b,故此选项错误;故选:C.11.解:因为3b3﹣2ab2+4a2b﹣a3=3b3﹣(2ab2﹣4a2b+a3);故选:D.12.解:A、a﹣b﹣( c﹣d )=a﹣b﹣c+d,此选项错误;B、a﹣(b﹣c+d )=a﹣b+c﹣d,此选项正确;C、a+b﹣(﹣c﹣d )=a+b+c+d,此选项正确;D、a+(b+c﹣d )=a+b+c﹣d,此选项正确;故选:A.13.解:因为﹣(﹣c﹣b)=c+b,与﹣b+c不相等,故选项A正确;﹣b﹣(﹣c)=﹣b+c,与﹣b+c相等,故选项B错误;+(c﹣b)=c﹣b,与﹣b+c相等,故选项C错误;+[﹣(b﹣c)]=﹣(b﹣c)=﹣b+c,与﹣b+c相等,故选项D错误;故选:A.14.解:A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为a+(b+c)=a+b+c,故本选项错误;C、a+b﹣c=a+(b﹣c),正确D、应为a﹣b+c=a﹣(b﹣c),故本选项错误.故选:C.15.解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.二.填空题(共10小题)16.解:原式=a﹣b+2.故答案为:a﹣b+2.17.解:﹣[﹣(﹣5)]=﹣5.故答案为:﹣5.18.解:原式=2xy﹣x﹣3y故答案为:2xy﹣x﹣3y.19.解:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by).故答案是:ay﹣by.20.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.21.解:1﹣(1﹣2x+xy﹣y2)=1﹣1+2x﹣xy+y2=2x﹣xy+y2,故答案为:2x﹣xy+y2.22.解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b ﹣c+2d).故答案为:a﹣(3b﹣c+2d).23.解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.24.解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.25.解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.三.解答题(共4小题)26.解:∵a2+b2=5,1﹣b=﹣2,∴﹣1+a2+b+b2=﹣(1﹣b)+(a2+b2)=﹣(﹣2)+5=7.27.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.28.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.29.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.。

七年级数学上册解一元一次方程去括号与去分母练习题

七年级数学上册解一元一次方程去括号与去分母练习题

七年级数学上册解一元一次方程去括号与去分母练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.有理数a 在数轴上的对应点的位置如图所示,化简2a a --的结果是______.2.把同类项的系数_______,所得的结果作为_____,字母和字母的指数______.3.有理数a 满足等式|-4|2|-1|a a =,则a 所有可能的值为____.4.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.5.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 6.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b -1.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-=_______;(2)当满足等式(5,32)5x m -+=的x 是正整数时,则m 的正整数值为_______.二、单选题7.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n 个图中有201张黑色正方形纸片,则n 的值为( )A .99B .100C .101D .1028.一本故事书,小明看了全书的14后,还剩90页没有看,这本故事书的总页数为( )A .360B .120C .72D .1509.若方程2(21)33x x +=+的解与关于x 的方程262(3)k x +=+的解相同,则k 的值为( )A .1B .1-C .7D .7-10.数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确11.下列说法中,不正确的个数是( ) ①若a +b =0,则有a ,b 互为相反数,且a b=﹣1;①若|a |>|b |,则有(a +b )(a ﹣b )是正数;①三个五次多项式的和也是五次多项式;①a +b +c <0,abc >0,则||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个;①方程ax +b =0(a ,b 为常数)是关于x 的一元一次方程.A .1个B .2个C .3个D .4个12.如图,已知数轴上点A 表示的数为a ,点B 表示的数为b,(a ﹣10)2+|b +6|=0.动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.若点P 、Q 同时出发,当P 、Q 两点相距4个单位长度时, t 的值为( )A .3B .5C .3或5D .1或53三、解答题13.解方程:(1)()()413217x x --+=; (2)12123x x -+-=. 14.求未知数x . (1)916x =1336(2)(1-23)x =20 (3)58+2x =7815.已知关于x 的方程2233x m x x ---=的解是非负数,m 是正整数,求m 的值.参考答案:1.2-【分析】由题意可得a >2,利用绝对值化简可求解.【详解】解:由题意可得:a >2,222,a a a a --=--=-∴故答案为:2-【点睛】本题考查绝对值的化简,利用数轴比较数的大小从而正确化简计算是解题关键.2. 相加 系数 保持不变【解析】略3.2±【分析】根据绝对值的性质分类讨论,去掉绝对值符号,即可求解.【详解】当4a ≥时,()421a a -=-,解得:2a =-,不合题意,舍去;当14a ≤<时,()421a a -=-,解得:2a =;当1a <时,()421a a -=--,解得:2a =-;综上,2a =±,故答案为:2±.【点睛】本题考查了绝对值的应用,对a 的取值分类讨论是解题的关键.4.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.5.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.6. 0 1或4##4或1【分析】(1)根据定义求解即可;(2)由定义可得53215x m -++-=,解方程得1123m x -=,再由题意,可得1123,1129m m -=-=,求出相应的m 值即可.【详解】解:(1)①(a ,b )=a +b -1①(2,1)=2+(1)1=11=0----故答案为:0;(2)①(5,32)5x m -+=①53215x m -++-= ①1123m x -= ①x 是正整数,m 的值也是正整数①1123,1129m m -=-=解得,41m m ==,故答案为:4或1【点睛】本题考查新定义,理解定义,将所求问题转化为一元一次方程进行求解即可.7.B【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律,第n 个图形中正方形的个数为201求解即可.【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8.B【分析】设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数,列方程运算即可.【详解】解:设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数, 列方程为1904x x -=, 解得120x =.故选:B .【点睛】本题主要考查一元一次方程的实际应用,属于基础题,比较简单,根据题意列出合适的方程是解题的关键.9.A【分析】先解方程2(21)33x x +=+可得1x =,再将1x =代入方程262(3)k x +=+,得262(13)k +=⨯+,由此即可求得k 的值.【详解】解:2(21)33x x +=+,去括号,得:4233x x +=+,移项,得:4332x x -=-,合并同类项,得:1x =,将1x =代入方程262(3)k x +=+,得:262(13)k +=⨯+,整理,得:268k +=,解得:1k =,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤(去分母、去括号、移项、合并同类项,系数化为1)是解决本题的关键.10.C【分析】设左下阴影矩形的宽为x ,则AB =CD =a +x , 分别表示出左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l ,根据已知条件即可求得3b =,进而即可求解.【详解】设左下阴影矩形的宽为x ,则AB =CD =a +x ,∴右上阴影矩形的宽为a +x -2b∴左下阴影矩形的周长l1=2(a +x ),右上阴影矩形的周长l 2=2(a +x -b )∴l 1-l 2=2(a +x )-2(a +x -b )=2b ,即2b =6,解得b =3,此时a 不确定,故选C.【点睛】本题考查了整式加减的应用,一元一次方程的应用,数形结合是解题的关键.11.C【分析】根据相反数的概念、平方差公式、合并同类项、一元一次方程的概念判断.【详解】解:①若a +b =0,则有a ,b 互为相反数,当a =b =0时,a b无意义,不正确; ①①|a |>|b |,①a 2>b 2,①(a +b )(a ﹣b )=a 2﹣b 2>0,是正数,正确;①(2a 5+a ﹣3)+(﹣a 5+2a ﹣3)+(﹣a 5+a 2﹣30)=a 2+3a ﹣36,则三个五次多项式的和不一定是五次多项式,不正确;①当a +b +c <0,abc >0时,a 、b 、c 有一个正数、两个负数,当a>0,b<0,c<0时,原式=-1-1-1-1=-4;当a<0,b>0,c<0时,原式=-1+1+1-1=0;当a<0,b<0,c>0时,原式=1+1-1-1=-2; ①||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个,正确; ①方程ax +b =0(a ,b 为常数),当a =0时,不是关于x 的一元一次方程,不正确;故选:C .【点评】本题考查了相反数的概念、绝对值的定义、平方差公式、整式的加减、一元一次方程的概念,熟练掌握定义是解答本题的关键.12.C【分析】根据(a ﹣10)2+|b +6|=0,得a =10,b =﹣6,由已知得P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣4t ,而P 、Q 两点相距4个单位长度,故可列方程|(10﹣8t )﹣(﹣6﹣4t )|=4,即可解得答案.【详解】解:①(a ﹣10)2+|b +6|=0,①a ﹣10=0,b +6=8,①a =10,b =﹣6,①动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,①P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣6t ,①|(10﹣8t )﹣(﹣6﹣6t )|=4,即|16﹣4t |=6,解得t =3或t =5,故选:C .【点睛】本题考查了数轴上两点间的距离,一次方程的应用,解题的关键是用含t 的代数式表示P 、Q 表示的数,再列方程解决问题.13.(1)x =-7;(2)x =1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,得:4x -4-6x -3=7,移项,得:4x -6x =7+4+3,合并同类项,得:-2x =14,系数化为1,得:x=-7.(2)解:去分母,得:6-3(x-1)=2(x+2),去括号,得:6-3x+3=2x+4,移项,得:-3x-2x=4-6-3,合并同类项,得:-5x=-5,系数化为1,得:x=1.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.14.(1)x=52 81(2)x=60(3)x=1 8【分析】(1)将系数化为1即可求出答案;(2)将系数化为1即可求出答案;(3)移项,将系数化为1即可求出答案.(1)解:916x=133613165236981x=⨯=;(2)解:(1-23)x=20120 3x=60x=;(3)解:58+2x=78 124 x=18x . 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的方法是解题的关键. 15.m 的值为1或2【分析】先求出方程2233x m x x ---=的解,再由x 为非负数,可得到关于m 的不等式,解出即可. 【详解】解:2233x m x x ---= 去分母得:()322x x m x --=- , 解得:x =22m -, 因为x 为非负数,所以22m -≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

去括号、添括号
1归纳出去括号的法则吗?
2. 去括号:
(1)a+(-b+c-d); (2)a-(-b+c-d) ;
(3)-(p+q)+(m-n); (4)(r+s)-(p-q).
3.下列去括号有没有错误?若有错,请改正:
(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)
=a2-2a-b+c; =-x-y+xy-1.
(3)(y-x) 2 =(x-y) 2
(4) (-y-x) 2 =(x+y) 2
(5) (y-x)3 =(x-y) 3
4.化简:
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);
(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);
(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;
(7)2-(1+x)+(1+x+x2-x2); (8)3a2+a2-(2a2-2a)+(3a-a2)。

1.根据去括号法则,在___上填上“+”号或“-”号:
(1) a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;
(3)___(a-b)___(c+d)=c+d-a+b
2.已知x+y=2,则x+y+3= ,5-x-y= .
3.去括号:
(1)a+3(2b+c-d); (2)3x-2(3y+2z).
(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).
4.化简:
(1)2a-3b+[4a-(3a-b)]; (2)3b-2c-[-4a+(c+3b)]+c.
C
1. 化简2-[2(x+3y)-3(x-2y)]的结果是( ).
A .x+2;
B .x-12y+2;
C .-5x+12y+2;
D .2-5x.
2. 已知:1-x +2-x =3,求{x-[x 2-(1-x)]}-1的值.
第7课时 去括号(1)
1.下列各式中,与a -b -c 的值不相等的是 ( )
A .a -(b +c)
B .a -(b -c)
C .(a -b)+(-c)
D .(-c)+(-b +a)
2.化简-[0-(2p -q)]的结果是 ( )
A .-2p -q
B .-2p +q
C .2p -q
D .2p +q
3.下列去括号中,正确的是 ( )
A .a -(2b -3c)=a -2b -3c
B .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1
C .2y 2+(-2y +1)=2y 2-2y +1
D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 2
4.去括号:
a +(
b -c)= ; (a -b)+(-
c -d)= ; -(a -b)-(-c -d)= ;
5x 3-[3x 2-(x -1)]= .
5.判断题.
(1)x -(y -z)=x -y -z ( )
(2)-(x -y +z)=-x +y -z ( )
(3)x -2(y -z)=x -2y +z ( )
(4)-(a -b)+(-c -d)=-a +b +c +d ( )
(5) ( )
6.去括号:
-(2m -3); n -3(4-2m);
(1) 16a -8(3b +4c); (2) -12(x +y)+14
(p +q);
(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).
(5)8 (y-x) 2 -1
2
(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 2
7.先去括号,再合并同类项:
-2n-(3n-1);a-(5a-3b)+(2b-a);
-3(2s-5)+6s;1-(2a-1)-(3a+3);
3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).
8.把-︱-[ a-(b-c)]︱去括号后的结果应为( ) A.a+b+c B.a-b+c C.-a+b-c D.a-b-c
9.化简(3-π)-︱π-3︱的结果为( ) A.6 B.-2πC.2π-6 D.6-2π
10.先去括号,再合并同类项:
6a2-2ab-2(3a2-1
2
ab);2(2a-b)-[4b-(-2a+b)]
9a3-[-6a2+2(a3-2
3
a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).
11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.。

相关文档
最新文档