解析几何经典例题
高中解析几何典型题
高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
解析几何经典例题及解析
解析几何经典例题及解析题目:已知三点A(1,2)、B(3,4)、C(4,5),判断是否共线。
解析:为了判断这三个点是否共线,我们可以算出它们的斜率是否相等。
斜率公式为k=(y2-y1)/(x2-x1)。
我们先算出AB、AC两条线段的斜率,如果它们相等,则这三个点共线。
k_AB=(4-2)/(3-1)=1k_AC=(5-2)/(4-1)=1因为k_AB=k_AC,所以这三个点共线。
2. 点到直线距离问题:题目:已知直线L:2x-y+1=0,点P(3,4)到直线L的距离是多少?解析:点P到直线L的距离可以通过求点P到直线L的垂线的长度来计算。
我们先求出直线L的斜率k,因为与L垂直的直线的斜率为-k的倒数。
直线L的一般式表示为Ax+By+C=0,所以斜率k=-A/B。
将直线L的一般式转化为斜截式y=kx+b的形式,可以得到直线L的斜率为k=2/1=2。
所以与L垂直的直线的斜率为-1/2。
接下来我们求出与L垂直的直线的截距b。
因为点P在这条直线上,所以直线的表达式可以写为y=-1/2x+b,将点P代入这个方程组中可得b=5。
因此与点P到直线L的垂线的方程为y=-1/2x+5,求出点P到这条直线的垂足Q的坐标为(2,3)。
所以点P到直线L的距离为PQ的长度,即√((3-2)+(4-3))=1.41。
3. 直线交点问题:题目:已知直线L1:2x-y+1=0,直线L2:x+y-3=0,求出它们的交点。
解析:求出两条直线的交点,可以将两条直线的方程联立起来解方程组。
将L1的方程改写成x=(y-1)/2的形式,将其代入L2的方程中,得到:((y-1)/2)+y-3=0,即y=2,代入L1的方程中可以得到x=1。
因此两条直线的交点为(1,2)。
高中数学解析几何大题精选
解析几何大量精选1.在直角坐标系xOy中,点M到点F13,0,F23,0的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线l:y kx b与轨迹C交于不同的两点P和Q.⑴求轨迹C的方程;⑵当AP AQ0时,求k与b的关系,并证明直线l过定点.【解析】⑴2x421y.y⑵将y kx b代入曲线C的方程,整理得222(14k)x8kbx4b40,P因为直线l与曲线C交于不同的两点P和Q,A Ox所以22222264k b4(14k)(4b4)16(4k b1)0①Q且28kb4b4设P x1,y1,Q x2,y2,则12,x x x x212214k14k22b4k22y y(kx b)(kx b)k x x kb(x x)b,12121212214k②显然,曲线C与x轴的负半轴交于点A2,0,所以A P x12,y1,AQ x22,y2.由AP AQ0,得(x2)(x2)y y0.1212将②、③代入上式,整理得2212k16kb5b0.所以(2k b)(6k5b)0,即b2k或6b k.经检验,都符合条件①5当b2k时,直线l的方程为y kx2k.显然,此时直线l经过定点2,0点.即直线l经过点A,与题意不符.当6b k时,直线l的方程为566y kx k k x.55显然,此时直线l经过定点65,0点,满足题意.综上,k与b的关系是6b k,且直线l经过定点565,02.已知椭圆C22x y:122a b(a b0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线x y60相切.⑴求椭圆C的方程;⑵设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;⑶在⑵的条件下,过点Q的直线与椭圆C交于M,N两点,求OM ON的取值范围.【解析】⑴22x y431.⑵由题意知直线PB的斜率存在,设直线PB的方程为y k(x4).y k(x4),由x2y2得1.432222(4k3)x32k x64k120.①设点B(x1,y1),E(x2,y2),则A(x1,y1).直线AE的方程为y y21y y(x x)22x x21.令y0,得x x2y(x x)221y y21.将y1k(x14),y2k(x24)代入整理,得x 2x x4(x x)1212x x128.②2232k64k12由①得x xx x,1221224k34k3所以直线AE与x轴相交于定点Q(1,0).代入②整理,得x1.⑶5 4,4.3.设椭圆22x yC:1(a b0)22a b的一个顶点与抛物线2C:x43y的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率点.1e,过椭圆右焦点F2的直线l与椭圆C交于M、N两2⑴求椭圆C的方程;⑵是否存在直线l,使得OM ON2.若存在,求出直线l的方程;若不存在,说明理由.【解析】⑴22x y431.⑵由题意知,直线l与椭圆必有两个不同交点.①当直线斜率不存在时,经检验不合题意.②设存在直线l为y k(x1)(k0),且M(x1,y1),N(x2,y2).22x y1由,得43y k(x1)2222(34k)x8k x4k120,28kx x12234k ,24k12x x12234k,2OM ON x1x2y1y2x1x2k[x1x2(x1x2)1]2224k128k5k12222(1k)k k222234k34k34k,所以k2,故直线l的方程为y2(x1)或y2(x1).本题直线l的方程也可设为my x1,此时m一定存在,不能讨论,且计算时数据更简单.4.如图,椭圆2 2x yC1 : 2 2 1 a b 0a b的离心率为32,x 轴被曲线 2C2 : y x b 截得的线段长等于C的长半轴长.1⑴求C1 ,C2 的方程;⑵设C与y 轴的交点为M ,过坐标原点O 的直线l 与C2 相交于点A,B ,直线2MA ,MB分别与C相交与 D ,E .1①证明:MD⊥ME ;②记△MAB ,△MDE 的面积分别是S1 ,S2 .问是否存在直线l ,使得S1S21732?请说明理由.【解析】⑴2x42 1 2 1y ,y x .y⑵①由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y kx .A由y kx得2 1y x2 1 0x kx ,E DOx设A xy Bx yx x ,,,,则,是上述方程的两1 21122个实根,于是x1 x2 k ,x1 x2 1.BM又点M 的坐标为0, 1 ,所以k kMA MB2y 1 y 1kx 1 kx 1 k x x k x x 11 2 1 2 1 21 2x x x x x x1 2 1 2 1 21 ,故MA MB ,即MD⊥ME .②设直线KM 的斜率为k1 ,则直线的方程为y k1x 1,由y k x12y x11,解得xy1或x k12y k1 1,则点A的坐标为 2k1 ,k1 1 .又直线MB的斜率为1k1,同理可得点 B 的坐标为1 1,.12k k1 1于是21 1 1 1 1 k2 1S | MA | |MB | 1 k |k| 1 | |1 1 1 22 2 k k 2 |k |1 1 1.由y k x112 2x 4y 4 0得 2 21 4k x 8k x 0,1 1解得xy1或xy8k121 4k124k 1121 4k1,则点 D 的坐标为28k 4k 11 1,;2 21 4k 1 4k1 1又直线MB的斜率为1k1,同理可得点 E 的坐标28k 4 k1 1,.2 24 k 4 k1 1于是232 1 k | k |11 1S |MD | |ME |2 2 22 1 4k 4 k1 1.因此2 2S (1 4k )(4 k ) 1 41 1 1 24k 172 1 2S 64k 64 k2 1 1,由题意知,141724k171264k321解得2k14或12k.14又由点A,B的坐标可知,21k12k1k k11k1k11k1,所以3k.2故满足条件的直线l存在,且有两条,其方程分别为3y x和23y x.25.在直角坐标系xOy中,点M到点F13,0,F23,0的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线l:y kx b与轨迹C交于不同的两点P和Q.⑴求轨迹C的方程;⑵当AP AQ0时,求k与b的关系,并证明直线l过定点.2x21【解析】⑴y.4⑵将y kx b代入曲线C的方程,整理得222(14k)x8kbx4b40,y P因为直线l与曲线C交于不同的两点P和Q,OA x所以22222264k b4(14k)(4b4)16(4k b1)0①Q28kb4b4设P x1,y1,Q x2,y2,则12x xx x,212214k14k22b4k22且y y(kx b)(kx b)k x x kb(x x)b,12121212214k显然,曲线C与x轴的负半轴交于点A2,0,②所以A P x12,y1,AQ x22,y2.由AP AQ0,得(x2)(x2)y y0.1212将②、③代入上式,整理得2212k16kb5b0.所以(2k b)(6k5b)0,即b2k或6b k.经检验,都符合条件①5当b2k时,直线l的方程为y kx2k.显然,此时直线l经过定点2,0点.即直线l经过点A,与题意不符.当6b k时,直线l的方程为566y kx k k x.55显然,此时直线l经过定点65,0点,满足题意.综上,k与b的关系是6b k,且直线l经过定点565,0.。
解析几何 典型例题
解析几何典型例题
题目:已知圆心为 $(0,0)$,半径为 $2$ 的圆,圆上一点 $A$ 的极角为$frac{pi}{4}$,求 $AB$ 的中点 $B$ 的坐标。
答案:
首先,我们可以利用圆的性质得到 $AB$ 的中点 $B$ 的坐标。
由于 $AB$ 的斜率为 $frac{AB}{AB^2-AC}=frac{3}{5}$,因此可以得到 $AB^2-AC=5AB$。
由于圆心为 $(0,0)$,半径为 $2$,因此可以得到 $AC=2$,代入上式得到 $AB^2=10$。
进一步代入极角为 $frac{pi}{4}$,得到 $AB=sqrt{10}$。
接下来,我们可以利用三角函数得到 $AB$ 的中点 $B$ 的坐标。
由于$angle BAC=frac{pi}{4}$,因此可以得到 $sin angle BAC =
frac{AB}{AC}=frac{sqrt{10}}{2}$。
因此,$AB$ 的中点 $B$ 的坐标为$(0,frac{1}{sqrt{2}}}sin angle BAC)$。
拓展:
在解决这道题时,我们利用了圆的性质和三角函数的知识,这些知识在解析几何中是非常重要的。
此外,这道题也展示了解析几何中的一种常见题型,即求圆上一点的特殊坐标。
在日常生活中,解析几何中的一些概念和公式也经常被用来解决各种问题,因此掌握解析几何的知识是非常重要的。
解析几何典型例题含答案
1. 已知动点P 到点A (-2,0)与点B (2,0)的斜率之积为14-,点P 的轨迹为曲线C 。
(Ⅰ)求曲线C 的方程;(Ⅱ)若点Q 为曲线C 上的一点,直线AQ ,BQ 与直线x =4分别交于M 、N 两点,直线BM 与椭圆的交点为D 。
求证,A 、D 、N 三点共线。
解:(I )设P 点坐标(,)x y ,则2AP y k x =+(2x ≠-),2BP yk x =-(2x ≠), 由已知1224y y x x ⋅=-+-,化简得:2214x y +=.所求曲线C 的方程为2214x y +=(2x ≠±)。
(II )由已知直线AQ 的斜率存在, 且不等于0,设方程为(2)y k x =+,由2244(2)x y y k x ⎧+=⎨=+⎩,消去y 得: 2222(14)161640k x k x k +++-=⋅⋅⋅(1).因为2-,Q x 是方程(1)的两个根, 所以22164214Q k x k --⨯=+,得222814Q k x k -=+,又222284(2)(2)1414Q Q k ky k x k k k -=+=+=++,所以222284(,)1414k k Q k k -++。
当4x =,得6M y k =,即(4,6)M k 。
又直线BQ 的斜率为14k -,方程为1(2)4y x k =--,当4x =时,得12N y k =-,即1(4,)2N k-。
直线BM 的斜率为3k ,方程为3(2)y k x =-。
由22443(2)x y y k x ⎧+=⎨=-⎩,消去y 得:2222(136)14414440k x k x k +-+-=⋅⋅⋅(2).因为2,D x 是方程(2)的两个根,所以 2214442136D k x k-⋅=+,得22722136D k x k -=+,又2123(2)136D Dky k x k =-=-+,即22272212(,)136136k k D k k --++。
数学 解析几何 经典例题 附带答案
数学解析几何经典例题~一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 22-y 21=1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1)C .(3,0),(-3,0)D .(0,3),(0,-3)解析: c 2=a 2+b 2=2+1,∴c = 3.∴焦点为(3,0),(-3,0),选C.答案: C2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件.答案: C3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D.答案: D4.方程mx 2+y 2=1所表示的所有可能的曲线是( )A .椭圆、双曲线、圆B .椭圆、双曲线、抛物线C .两条直线、椭圆、圆、双曲线D .两条直线、椭圆、圆、双曲线、抛物线解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线.答案: C5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析: 由题意知所求直线与直线2x -y -2=0垂直.又2x -y -2=0与y 轴交点为(0,-2).故所求直线方程为y +2=-12(x -0), 即x +2y +4=0.答案: D6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( )A.32B.34C .2 5 D.355解析: 圆心(2,-3)到EF 的距离d =|2+6-3|5= 5. 又|EF |=29-5=4,∴S △ECF =12×4×5=2 5. 答案: C 7.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3C .2 2D .2 3解析: 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.答案: A8.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=0解析: 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直,设圆心为O ,则O (2,0),∴k OM =2-01-2=-2. ∴直线l 的斜率k =12, ∴l 的方程为y -2=12(x -1), 即x -2y +3=0.答案: D9.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( )A .大于0且小于1B .大于1C .小于0D .等于0解析: 由题意,得e 1=a 2-b 2a ,e 2=a 2+b 2a (a >b >0), ∴e 1e 2=a 4-b 4a 2=1-b 4a4<1, ∴lg e 1+lg e 2=lg(e 1e 2)=lga 4-b 4a 2<0. 答案: C10.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0D.⎝⎛⎭⎫0,225 解析: 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.答案: B11.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977 D.94解析: 设椭圆短轴的一个端点为M .由于a =4,b =3,∴c =7<b .∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°.令x =±7得y 2=9⎝⎛⎭⎫1-716=9216, ∴|y |=94. 即P 到x 轴的距离为94. 答案: D12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=16xD .y 2=42x解析: 由AF →=FB →及|AF →|=|AC →|知在Rt △ACB 中,∠CBF =30°,|DF |=p 2+p 2=p , ∴AC =2p ,BC =23p ,BA →·BC →=4p ·23p ·cos 30°=48,∴p =2. 抛物线方程为y 2=4x .答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若抛物线y 2=2px 的焦点与双曲线x 2-y 23=1的右焦点重合,则p 的值为________. 解析: 双曲线x 2-y 23=1的右焦点为(2,0), 由题意,p 2=2,∴p =4.答案: 414.两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P 、Q 两点,若点P 坐标为(1,2),则点Q 的坐标为______.解析: ∵两圆的圆心分别为(-1,1),(2,-2),∴两圆连心线的方程为y =-x .∵两圆的连心线垂直平分公共弦,∴P (1,2),Q 关于直线y =-x 对称,∴Q (-2,-1).答案: (-2,-1)15.设M 是椭圆x 24+y 23=1上的动点,A 1和A 2分别是椭圆的左、右顶点,则MA 1→·MA 2→的最小值等于________.解析: 设M (x 0,y 0),则MA 1→=(-2-x 0,-y 0),MA 2→=(2-x 0,-y 0)⇒MA 1→·MA 2→=x 20+y 20-4=x 20+⎝⎛⎭⎫3-34x 20-4=14x 20-1, 显然当x 0=0时,MA 1→·MA 2→取最小值为-1.答案: -116.已知双曲线x 216-y 29=1的左、右焦点为F 1、F 2,P 是双曲线右支上一点,且PF 1的中点在y 轴上,则△PF 1F 2的面积为________.解析: 如图,设PF 1的中点为M ,则MO ∥PF 2,故∠PF 2F 1=90°.∵a =4,b =3,c =5,∴|F 1F 2|=10,|PF 1|=8+|PF 2|.由|PF 1|2=|PF 2|2+|F 1F 2|2得(8+|PF 2|)2=|PF 2|2+100,∴|PF 2|=94,S △PF 1F 2=12·|F 1F 2|·|PF 2|=454. 答案: 454三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)双曲线的两条渐近线方程为x +y =0和x -y =0,直线2x -y -3=0与双曲线交于A ,B 两点,若|AB |=5,求此双曲线的方程.解析: ∵双曲线渐近线为x ±y =0,∴双曲线为等轴双曲线.设双曲线方程为x 2-y 2=m (m ≠0),直线与双曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧2x -y -3=0,x 2-y 2=m , 得3x 2-12x +m +9=0,则x 1+x 2=4,x 1x 2=m +93. 又|AB |2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(2x 1-3)-(2x 2-3)]2=(x 1-x 2)2+4(x 1-x 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2], ∴(5)2=5⎣⎢⎡⎦⎥⎤42-4·⎝ ⎛⎭⎪⎫m +93, 解得m =94. 故双曲线的方程为x 2-y 2=94. 18.(12分)已知圆C 的方程为(x -m )2+(y +m -4)2=2.(1)求圆心C 的轨迹方程;(2)当|OC |最小时,求圆C 的一般方程(O 为坐标原点).解析: (1)设C (x ,y ),则⎩⎪⎨⎪⎧x =m ,y =4-m .消去m ,得y =4-x ,∴圆心C 的轨迹方程为x +y -4=0.(2)当|OC |最小时,OC 与直线x +y -4=0垂直,∴直线OC 的方程为x -y =0. 由⎩⎪⎨⎪⎧x +y -4=0,x -y =0,得x =y =2. 即|OC |最小时,圆心的坐标为(2,2),∴m =2.圆C 的方程为(x -2)2+(y -2)2=2.其一般方程为x 2+y 2-4x -4y +6=0.19.(12分)(盐城市三星级高中20XX 届第一次联考)已知圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),且C 2的离心率为22,如果C 1、C 2相交于A 、B 两点,且线段AB 恰好为C 1的直径,求直线AB 的方程和椭圆C 2的方程.解析: 设A (x 1,y 1)、B (x 2,y 2).A 、B 在椭圆上,∴b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2. ∴b 2(x 2+x 1)(x 2-x 1)+a 2(y 2+y 1)(y 2-y 1)=0.又线段AB 的中点是圆的圆心(2,1),∴x 2+x 1=4,y 2+y 1=2,∴k AB =-b 2(x 2+x 1)a 2(y 2+y 1)=-2b 2a 2, 椭圆的离心率为22,∴b 2a 2=1-e 2=12, k AB =-2b 2a2=-1, 直线AB 的方程为y -1=-1(x -2),即x +y -3=0.由(x -2)2+(y -1)2=203和x +y -3=0得 A ⎝⎛⎭⎫2+103,1-103. 代入椭圆方程得:a 2=16,b 2=8,∴椭圆方程为:x 216+y 28=1. 20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e . (1)若半焦距c =22,且23、e 、43成等比数列,求椭圆C 的方程; (2)在(1)的条件下,直线l :y =ex +a 与x 轴、y 轴分别交于M 、N 两点,P 是直线l 与椭圆C 的一个交点,且M P →=λMN →,求λ的值;(3)若不考虑(1),在(2)中,求证:λ=1-e 2.【解析方法代码108001121】解析: (1)∵e 2=23×43,∴e =223, ∴a =3,b =1,∴椭圆C 的方程为x 29+y 2=1. (2)设P (x ,y ),则⎩⎨⎧ y =223x +3x 29+y 2=1,解得P ⎝⎛⎭⎫-22,13. ∵M ⎝⎛⎭⎫-924,0,N (0,3),M P →=λMN →, ∴λ=19. (3)证明:∵M 、N 的坐标分别为M ⎝⎛⎭⎫-a e ,0,N (0,a ), 由⎩⎪⎨⎪⎧ y =ex +ax 2a 2+y 2b 2=1, 解得⎩⎪⎨⎪⎧x =-cy =b 2a (其中c =a 2-b 2),∴P ⎝⎛⎭⎫-c ,b 2a . 由M P →=λMN →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a , ∴⎩⎨⎧ a e -c =λ·a eb 2a =λa ,∴ λ=1-e 2. 21.(12分)设椭圆C :x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,且AF 2→·F 1F 2→=0,坐标原点O 到直线AF 1的距离为13|OF 1|. (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点P (-1,0),交y 轴于点M ,若M Q →=2QP →,求直线l 的方程.解析: (1)由题设知F 1(-a 2-2,0),F 2(a 2-2,0),由于AF 2→·F 1F 2→=0,则有AF 2→⊥F 1F 2→,所以点A 的坐标为⎝⎛⎭⎫a 2-2,±2a , 故AF 1所在直线方程为y =±⎝ ⎛⎭⎪⎫x a a 2-2+1a , 所以坐标原点O 到直线AF 1的距离为a 2-2a 2-1(a >2), 又|OF 1|=a 2-2,所以a 2-2a 2-1=13a 2-2,解得a =2(a >2),所求椭圆的方程为x 24+y 22=1. (2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则有M (0,k ),设Q (x 1,y 1),由于M Q →=2QP →,∴(x 1,y 1-k )=2(-1-x 1,-y 1),解得x 1=-23,y 1=k 3. 又Q 在椭圆C 上,得⎝⎛⎭⎫-2324+⎝⎛⎭⎫k 322=1, 解得k =±4,故直线l 的方程为y =4(x +1)或y =-4(x +1),即4x -y +4=0或4x +y +4=0.22.(14分)已知椭圆y 2a 2+x 2b 2=1的一个焦点为F (0,22),与两坐标轴正半轴分别交于A ,B 两点(如图),向量A B →与向量m =(-1,2)共线.(1)求椭圆的方程;(2)若斜率为k 的直线过点C (0,2),且与椭圆交于P ,Q 两点,求△POC 与△QOC 面积之比的取值范围.【解析方法代码108001122】解析: (1)y 216+x 28=1. (2)设P (x 1,y 1),Q (x 2,y 2),且x 1<0,x 2>0.PQ 方程为y =kx +2,代入椭圆方程并消去y ,得(2+k 2)x 2+4kx -12=0,x 1+x 2=-4k 2+k 2,① x 1x 2=-122+k 2.② 设S △QOC S △POC =|x 2||x 1|=-x 2x 1=λ,结合①②得 (1-λ)x 1=-4k 2+k 2,λx 21=122+k 2. 消去x 1得λ(1-λ)2=34⎝⎛⎭⎫1+2k 2>34,解不等式λ(1-λ)2>34,得13<λ<3. ∴△POC 与△QOC 面积之比的取值范围为⎝⎛⎭⎫13,3.。
解析几何例题
解析几何例题解析几何是数学中的一个重要分支,它研究的是几何图形在坐标平面上的性质和变换规律。
通过解析几何的方法,我们可以更加直观地理解和推导几何图形的性质。
下面我们来分析一些典型的解析几何例题,以便更好地掌握这一知识点。
例题一:直线的方程已知直线L过点A(1,2)和点B(3,4),求直线L的方程。
解析:设直线L的方程为y=ax+b,其中a为斜率,b为截距。
由于直线L 过点A和点B,代入相应的点坐标得到两个方程:2=a+b (1)4=3a+b (2)解这个方程组,可以求得a=1/2,b=3/2。
所以直线L的方程为y=x/2+3/2。
例题二:直线的垂直平分线已知直线L的方程为y=2x+1,求直线L的垂直平分线的方程。
解析:直线L的斜率为2,垂直平分线的斜率为-1/2(斜率互为倒数且符号相反),设垂直平分线的方程为y=ax+b。
由于垂直平分线过直线L的中点M,求中点M的坐标。
直线L上任意两点的横坐标和纵坐标分别求平均,得到中点M的坐标为:x=(1+3)/2=2,y=(2+4)/2=3。
代入直线L的方程,得到3=2*2+1=5,所以点M的坐标为(2,3)。
垂直平分线通过点M,代入点坐标得到方程:3=a*2+b,所以b=1-4a。
垂直平分线的方程为y=-1/2*x+1-2a。
例题三:圆的方程已知圆C的圆心为点O(2,3),半径为r=4,求圆C的方程。
解析:圆C上任意一点P(x,y)到圆心O的距离等于半径r,可以得到方程:sqrt((x-2)^2+(y-3)^2)=4对上式进行平方处理得到:(x-2)^2+(y-3)^2=16所以圆C的方程为(x-2)^2+(y-3)^2=16。
例题四:两条直线的交点已知直线L1的方程为y=2x+1,直线L2的方程为y-3=3(x-2),求直线L1和L2的交点坐标。
解析:将直线L2的方程变形为y=3x-3+3=3x,得到y=3x。
将L1的方程和L2的方程联立,解这个方程组即可求出交点的坐标。
高中解析几何试题及答案
高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
(完整版)解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
解析几何大题集合(34题)
1. 已知椭圆C :14522=+y x 的左右焦点分别为21,F F(1)若P 是椭圆上的一点,且∠︒=3021PF F ,求△的面积;(2)过椭圆的左焦点作一条倾斜角为45°的直线l 与椭圆交于A.B 两点,求AB 的长.2.已知点P 为圆A:8)1(22=++y x 的动点,点B (1,0),线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为C 。
(1)求曲线C 的方程;(2)当P 在第一象限,且322cos =∠BAP 时,求点M 的坐标3.已知椭圆E :)0(,12222>>=+b a by a x 的离心率为21,点A,B 分别为椭圆E 的左右顶点,点C 在E 上,且△ABC 面积的最大值为32, 求(1)椭圆E 的方程;(3)设F 为E 的左焦点,点D 在直线x=-4上,过F 作DF 的垂线交椭圆E 与M,N 两点。
证明:直线OD 平分线段MN 。
4. 已知椭圆)0(,12222>>=+b a by a x 的左右焦点分别为21,F F ,A为上顶点,P 为椭圆上任一点(与左右顶点不重合)。
(1)若21AF AF ⊥,求椭圆的离心率; (2)若P (-4,3),且021=∙PF PF ,求椭圆的方程;(3)若存在一点P 使∠21PF F 为钝角,求椭圆的离心率的取值范围。
21PF F5. 如图,A,B,C 是椭圆M :上的三点,其中A 是椭圆的右顶点,BC 过椭圆M 的中心,且满足AC ⊥BC,BC=2AC. (1) 求椭圆M 的离心率(2)若y 轴被△ABC 的外接圆所截得的弦长为9,求椭圆M 的方程。
6. 设椭圆C :)0(,1222>=+a y a x 的两个焦点)0,(),0,-(21c F c F (c>0),且椭圆C 与圆222c y x =+有公共点。
(1)求a 的取值范围;(2)若椭圆上的点到焦点的最短距离是2-3,求椭圆的方程。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
高三数学解析几何专题(含解析)
高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
解析几何经典例题
解析几何经典例题圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。
这里就探讨一下圆锥曲线定义的深层及其综合运用。
一、椭圆定义的深层运用例1. 如图1,P 为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P 的延长线于N,求M的轨迹方程。
图1解析:易知故在中,则点M的轨迹方程为。
二、双曲线定义的深层运用例2. 如图2,为双曲线的两焦点,P 为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。
图2解析:不妨设P 点在双曲线的右支上,延长F1M交PF2 的延长线于N,则,即在故点M的轨迹方程为三、抛物线定义的深层运用例3. 如图3,AB为抛物线的一条弦,|AB| =4,F 为其焦点,求AB的中点M到直线y=-1 的最短距离。
图3解析:易知抛物线的准线l :,作AA”⊥l ,BB”⊥l ,MM”⊥l ,垂足分别为A”、B”、M”则即M到直线的最短距离为 2故M到直线y=-1 的最短距离为。
评注:上述解法中,当且仅当A、B、F 共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。
一般地,求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。
四、圆与椭圆、圆与双曲线定义的综合运用例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()图4②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()A. 圆B. 椭圆C. 双曲线D. 抛物线解析:①如图4,由垂直平分线的性质,知|QM|=|QP| ,而|QM|=|OM|-|OQ|=2-|OQ|即|OQ|+|QP| =2>|OP| =故Q的轨迹是以O(0,0)、P 为焦点长轴长为 2 的椭圆。
应选B。
②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。
五、椭圆与双曲线定义的综合运用例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。
(完整版)解析几何题库
解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。
【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1(直接法):设圆心坐标为(0,)b1=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-=解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。
【答案】A4.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是( )A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y+2)2=4,整理,得:22(2)(1)1x y -++=【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或2【解析】当k =3时,两直线平行,当k ≠3k -3,解得:k =5,故选C 。
全国高考数学解析几何大题精选50题(完美编辑、含答案、知识卡片)
20.(2018•江苏)如图,在平面直角坐标系 xOy 中,椭圆 C 过点(
),焦点 F1
试卷第 9 页,总 25 页
(﹣ ,0),F2( ,0),圆 O 的直径为 F1F2. (1)求椭圆 C 及圆 O 的方程; (2)设直线 l 与圆 O 相切于第一象限内的点 P. ①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标; ②直线 l 与椭圆 C 交于 A,B 两点.若△OAB 的面积为 ,求直线 l 的方程.
试卷第 1 页,总 25 页
线型道路 PB,QA,规划要求:线段 PB,QA 上的所有点到点 O 的距离均不.小.于.圆 O 的半径.已知点 A,B 到直线 l 的距离分别为 AC 和 BD(C,D 为垂足),测得 AB =10,AC=6,BD=12(单位:百米). (1)若道路 PB 与桥 AB 垂直,求道路 PB 的长; (2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由; (3)在规划要求下,若道路 PB 和 QA 的长度均为 d(单位:百米),求当 d 最小时, P、Q 两点间的距离.
点的圆. (1)求 C 的轨迹方程; (2)动点 P 在 C 上运动,M 满足
=2 ,求 M 的轨迹方程.
试卷第 8 页,总 25 页
18.(2018•浙江)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上 存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上. (Ⅰ)设 AB 中点为 M,证明:PM 垂直于 y 轴;
22.(2018•上海)设常数 t>2.在平面直角坐标系 xOy 中,已知点 F(2,0),直线 l: x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点. (1)用 t 表示点 B 到点 F 的距离; (2)设 t=3,|FQ|=2,线段 OQ 的中点在直线 FP 上,求△AQP 的面积; (3)设 t=8,是否存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上?若存在, 求点 P 的坐标;若不存在,说明理由.
解析几何基础100题
解析几何基础100题一、选择题:1. 若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义.2. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B —3〈k<2C k<—3或k>2D 以上皆不对 解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为A 2B 2或233C 2D 233解 答:D易错原因:忽略条件0a b >>对离心率范围的限制.5.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D 解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。
6.若曲线24y x =-(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤ C 314k -<≤ D 10k -<≤ 解 答:C易错原因:将曲线24y x =-转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,—3)且与渐近线y x =平行的直线与双曲线的位置关系。
解析几何初中试题及答案
解析几何初中试题及答案1. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
答案:线段AB的中点坐标为(\(\frac{2+(-1)}{2}, \frac{3+(-2)}{2}\)),即(\(\frac{1}{2}, \frac{1}{2}\))。
2. 已知直线l的方程为y=2x+3,求直线l与x轴的交点坐标。
答案:当直线l与x轴相交时,y=0,代入方程得2x+3=0,解得x=-\(\frac{3}{2}\)。
因此,交点坐标为(-\(\frac{3}{2}\), 0)。
3. 已知圆C的方程为(x-1)^2 + (y+2)^2 = 9,求圆C的半径和圆心坐标。
答案:圆C的半径为3,圆心坐标为(1, -2)。
4. 已知直线l1: y=x+1与直线l2: y=-2x+4相交,求两直线的交点坐标。
答案:将两个方程联立,得到x+1=-2x+4,解得x=1。
将x=1代入任一方程得y=2。
因此,两直线的交点坐标为(1, 2)。
5. 已知抛物线y^2=4px(p>0)的焦点坐标为(2,0),求抛物线的方程。
答案:由焦点坐标(2,0)可得p=2,因此抛物线的方程为y^2=8x。
6. 已知椭圆的长轴为10,短轴为6,求椭圆的方程。
答案:设椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a为长轴的一半,b为短轴的一半。
由题意得a=5,b=3,因此椭圆的方程为\(\frac{x^2}{25} + \frac{y^2}{9} = 1\)。
7. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的方程。
答案:设双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中a为实轴的一半,b为虚轴的一半。
由题意得a=4,b=3,因此双曲线的方程为\(\frac{x^2}{16} - \frac{y^2}{9} = 1\)。
解析几何试题及答案
解析几何试题及答案1、试题分析本文将为大家解析几个典型的解析几何试题,并给出详细的答案解析。
这些试题涵盖了解析几何的基本概念和常见解题方法,有助于提高解析几何的应用能力。
2、试题一已知平面直角坐标系中,直线L的方程为2x+3y=6,直线L与x轴、y轴分别交于点A、B。
求证:点A、B和原点O构成等边三角形。
解答:首先,求直线L与x轴的交点,令y=0,得到x=3。
所以,点A的坐标为(3,0)。
然后,求直线L与y轴的交点,令x=0,得到y=2。
所以,点B的坐标为(0,2)。
接着,计算OA的长度,用两点间距离公式可得:OA = √[(3-0)²+(0-0)²] = 3同理,计算OB的长度得到OB = √[(0-0)²+(2-0)²] = 2最后,计算AB的长度得到AB = √[(3-0)²+(2-0)²] = √13由于OA = OB = AB,所以点A、B和原点O构成等边三角形。
证毕。
3、试题二在平面直角坐标系中,一条直线L与x轴的交点为A,与y轴的交点为B。
已知A点坐标为(3,0),且直线L与另一条直线M:2x+y=6平行。
求直线L的方程。
解答:由题可知,直线L与x轴的交点为A(3,0),与y轴的交点为B。
设直线L的斜率为k。
由于直线L与直线M平行,所以L的斜率与M的斜率相等。
而M的斜率为2,所以L的斜率也为2。
斜率为k的直线通过点A(3,0),即可得到直线L的方程为y=k(x-3)。
至此,直线L的方程为y=2(x-3),即L的方程为y=2x-6。
4、试题三已知直线L1过点A(1,2),斜率为k。
直线L2过点B(-2,3),斜率为-2。
若直线L1与L2相互垂直,求直线L1的方程。
解答:设直线L1的方程为y=kx+b,代入点A(1,2)的坐标可得2=k+b。
由于L1与L2相互垂直,所以L1的斜率与L2的斜率之积为-1。
即k*(-2)=-1,解得k=1/2。
解析几何大题精选四套(答案)
解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何经典例题圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。
这里就探讨一下圆锥曲线定义的深层及其综合运用。
一、椭圆定义的深层运用例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。
图1解析:易知故在中,则点M的轨迹方程为。
二、双曲线定义的深层运用例2、如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。
图2解析:不妨设P点在双曲线的右支上,延长F1M交PF2的延长线于N,则,即在故点M的轨迹方程为三、抛物线定义的深层运用例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。
图3解析:易知抛物线的准线l:,作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M”则即M到直线的最短距离为2故M到直线y=-1的最短距离为。
评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。
一般地,求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。
四、圆与椭圆、圆与双曲线定义的综合运用例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( )图4②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( )A、圆B、椭圆C、双曲线D、抛物线解析:①如图4,由垂直平分线的性质,知|QM|=|QP|,而|QM|=|OM|-|OQ|=2-|OQ|即|OQ|+|QP|=2>|OP|=故Q的轨迹就是以O(0,0)、P为焦点长轴长为2的椭圆。
应选B。
②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。
五、椭圆与双曲线定义的综合运用例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。
①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。
图5解析:①由椭圆定义知,|AP|+|AC|=|BP|+|BC|, 即故P 的轨迹为A(-7,0)、B(7,0)为焦点 实轴长为2的双曲线的一支,其方程为;②经讨论知,无论A 在双曲线的哪一支上总有|QA|+|QB|=|AC|+|BC|=28>|AB|=14 故点Q 的轨迹为以A(-7,0)、B(7,0)为焦点长轴长为28的椭圆,其方程为。
[练习]1、 已知椭圆E 的离心率为e,左、右焦点为F 1、F 2,抛物线C 以为焦点,为其顶点,若P 为两曲线的公共点,且,则e =__________。
答案:2、 已知⊙O:,一动抛物线过A(-1,0)、B(1,0)两点,且以圆的切线为准线,求动抛物线的焦点F 的轨迹方程。
答案:圆锥曲线中的方法与运算1. (与名师对话第51练) 已知抛物线221y x =-,点(2,0)A , 问就是否存在过点A 的直线l ,使抛物线上存在不同的两点关于直线l 对称,如果存在, 求出直线l 的斜率k 的取值范围; 如果不存在,请说明理由、分析: 这就是一个求变量(斜率k )的取值范围问题, 我们必须给出与变量(斜率k )相关的变量(根据题设寻找)的关系式(组), 显然,这个关系式(组)应由按题设揭示出的几何条件转换得到、我们由题设揭示出的几何条件就是: 抛物线上关于直线l 对称的不同的两点所在直线必须与抛物线有两个不同的交点,并且交点为端点的线段的中点在直线l 上、 相应得到一个不等式与一个等式组成的变量关系式(组)、 解这个关于式组即可得变量k 的取值范围、 解: 设直线l 的方程为(2)y k x =-,若0k =,则结论显然成立,即0k =可取、若0k ≠,则直线PQ 的方程为1y x m k =-+, 由方程组21,21,y x m ky x ⎧=-+⎪⎨⎪=-⎩可得,22210y y kb +-+=、∵ 直线PQ 与抛物线有两个不同的交点, ∴244(21)0,k kb =--+>即 2120k kb -+>、设线段PQ 的中点为G(00,x y ), 则1202y y y k +==-, ∴ 212()()2y y x k km k k km k km +=-+=--+=+, ∵ 点G(00,x y )在直线l 上, ∴ k -=2(2)k k km +-, 由 0k ≠可得,21k m k-=,∴ 212k k -+21k k-0>, 21k < (0k ≠) , ∴ 10k -<<或01k <<、综上所述, 直线l 的斜率k 的取值范围为1-1k <<、2. (与名师对话第51练)已知M 直线l 过点(1,0),且与抛物线22x y =交于,A B 两点,O 为原点,点 P 在y 轴的右侧且满足:1122OP OA OB =+、(1)求点P 的轨迹C 的方程;(2) 若曲线C 的切线的斜率为λ,满足:MB MA λ=,点A 到y 轴的距离为a ,求a 的取值范围、分析:由1122OPOA OB =+可知,点P 的轨迹C 就就是弦AB 的中点的轨迹、 解(1) 显然直线l的斜率存在,设为k,则直线l的方程为:1y k x =-(),由方程组212y k x x y =-⎧⎨=⎩(),,消去y 整理得2220x kx k -+=,设1122(,),(,)A x y B x y , 122x x k +=,∴122p x x x k +==,21p y k k k k =-=-(), 消去k得点P 的轨迹C 的轨迹方程为:2y x x =-、∵ 2480kk ->, ∴ 0k <或2k >,∵ 点P 在y 轴的右侧, ∴ 2x k =>,故点P 的轨迹C 为抛物线2y x x =-上的一段弧、分析: 点A 到y 轴的距离为a 就就是点A 的横坐标的绝对值、因为曲线C 的切线的斜率为λ,所以λ='21y x =-,由2x >知,3λ>,由此可知,我们必须建立点A 的横坐标的绝对值关于λ的关系、解(2): 设1122(,),(,)A x y B x y ,则由MB MA λ=可知,22(,)(1,0)x y -=λ[11(,)(1,0)x y -],∴211(1)x x λ-=-,21y y λ= ,∴ 211x x λλ=-+, 2221x x λ=, ∴ 2211[(1)]x x λλλ--=∵ 1λ≠,∴ 211210x x λλλ-+-=,方法(一) 11x ==3λ>),∴11(3)ax λ==>,∴ a∈(1-(1,1⋃+、 方法(二)211(1)x λ-=, (3λ>),∴ 1103λ<<, 0<21(1)x -13<, ∴ 11x ≠且11133x -<<+ ∴ a∈(13-(1,13⋃+、 3. (与名师对话第51练) 已知抛物线的方程为22x py = (0)p >,过点M (0,)m 且倾斜角为θ(0<θ<2π)的直线交抛物线于1122(,),(,)A x y B x y 两点,且212x x p =-、 (1)求m 的值; (2)若点M 分AB 所成的比为λ,求λ关于θ的函数关系式、分析: 要求m 的值,必须给出关于m 的方程、 解(1): 设过点M(0,)m 且倾斜角为θ(0<θ<2π)的直线的方程为y kx m =+、 由方程组22y kx m x py =+⎧⎨=⎩,,消去y 整理得2220x pkx pm --=, 则122x x pm =-,∵ 212x x p =-, ∴ 2pm -2p =-, 2p m =、 分析: 由2p m =可知过点M (0,)m 且倾斜角为θ(0<θ<2π)的直线为2py kx =+、先建立关于k 的函数关系式,再转换为关于θ的函数关系式、解(2): ∵ 关于θ的函数关系式,∴ AM MB λ=, 1122(0,)(,)[(,)(0,)]22p p x y x y λ-=-, 1212,(),22x x p p y y λλ=-⎧⎪⎨-=-⎪⎩由(1)可知212122,x x pk x x p +==-,由方程组1212212,2,,x x x x pk x x p λ⎧=-⎪+=⎨⎪=-⎩可消去12,,x x p 得,222(21)10k λλ-++=、∵ 0<θ<2π, ∴ 1λ<, 故222121k k k λ=+-+=2222(1sin )2tan 12tan tan 1cos θθθθθ-+-+==1sin 1sin θθ-+、4. (与名师对话第51练) 已知方向向量为(1,3)v=的直线l 过点(0,-2)与椭圆C:22221x y a b+= (0)a b >>的焦点, 且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上、(1)求椭圆C 的方程;(2)就是否存在过点E(-2,0)的直线m 交椭圆C 于,M N ,满足:OMON ⋅=463cot MON ∠ 0(O ≠为原点)? 若存在,求出直线m 的方程;若不存在,请说明理由、6.(与名师对话第52练20) 椭圆C 的方程为221189x y +=,F 就是它的左焦点,M 就是椭圆C 上的一个动点,O 为坐标原点、(1) 求OFM 的重心G 的轨迹方程;(2) 若OFM 的重心G 对原点与点P(-2,0)的张角OGP ∠最大, 求点G 的坐标、解(1): 设点)y ,x (G (y ≠0) , M(x 1,y 1)由题设可知,F(320-,)则11333x yxy -==,, ∴ 1333x x y =+=1,y ,∴OFM 的重心G 的轨迹方程为22112x y ++=()(0y ≠)、 (2) 由(1)可知, 原点与点P(-2,0)就是椭圆22112x y ++=()的两个焦点、下面证明当点M 与椭圆22112x y ++=()的短轴的端点重合时张角OGP ∠最大、 方法(一) 用椭圆的定义设椭圆C 上的一个动点M 到椭圆的两个焦点的距离为1r 、2r ,则由椭圆的定义可知1r +2r =22、在MOP ∆中,21222212r r OP r r OGP COS -+=∠=21222124r r r r -+=2121221224)(r r r r r r --+=21212224)22(r r r r --=2142r r +-≥4)(42221r r ++- (当且仅当21r r =时,等于号成立)=0∴ 当21r r =,即点M 与短轴的端点重合时张角OGP ∠最大, 最大角为090,这时点M 的坐标为(-1,1)、(-1,-1)、方法(二) 用椭圆的焦半径公式将椭圆22112x y ++=()平移到中心在原点的位置,这时椭圆的方程为2212x y +=,原张角OGP∠就就是在点P 处的两条焦半径的夹角、设点P 的坐标为(00x y ,),则22001200222422cos 2222222x x F PF x x ++--∠=+-(2)()()()=220002011[02]12122222x x x x =⋅∈--2,() 当00x =时,12cos 0F PF ∠=, 当2002]x ∈(,时, 12cos 01]F PF ∠∈(,,故12cos [01]F PF ∠∈,, 12F PF ∠的最大值为090,这时相应点P 的坐标为(0,±1),在椭圆的原位置相应点P 的坐标为(-1,±1)、7. (与名师对话第52练21) 已知动点P 与双曲线22123x y -=的两个焦点12F F ,的距离之与为定值,且12cos F PF ∠的最小值为19-、 (1) 求动点P 的轨迹方程;(2) 若已知点D (0,3),点M N ,在动点P 的轨迹上,且DMDNλ=,求实数λ的取值范围;(3) 若已知点D (1,1), 点M N ,在动点P 的轨迹上,且MDDN =,求直线MN 的方程、分析: 由题设可知, 动点P 的轨迹就是以双曲线22123x y -=的两个焦点12F F ,为其焦点 的椭圆,因此动点P 的轨迹方程可以用待定系数法求得、解(1): 由题设可知, 动点P 的轨迹就是以双曲线22123x y -=的两个焦点12F F ,为其焦点 的椭圆,设其方程为22221x y a b+= (0a b >>)、可以证明(仿例6)当动点P在椭圆的短轴的端点时12cos F PF ∠的值最小,这时2122222010cos 12a F PF a a -∠==-, ∴ 210119a -=-, 29a =、 ∴ 24b =, ∴ 动点P 的轨迹方程为22194x y +=、 分析: 由DMDN λ=可知, 点,,D M N 共线, 直线MN 的变化可以用其斜率表示(直线的方程为3,y kx =+这时要k 作讨论),也可以用t 表44z 示(直线的方程为(3)x t y =-,这时不需要对t 作讨论)、下面用直线方程3y kx =+求解、解法(一): 由DMDNλ=可知, 点,,D M N 共线、若直线MN 的斜率不存在,则155λλ==或、 若直线MN 的斜率存在,设直线MN 的方程为3,y kx =+则由方程组223,4936,y kx x y =+⎧⎨+=⎩可得,22(94)54450k x kx +++=,设1122(,),(,)M x y N x y ,则1212225445,9494k x x x x k k -+==++、 又由DM DNλ=可得,12x x λ=,∴ 12225454,(1)94(1)94k k x x k k λλλ--==++++, ∴ 2222(54)(1)(94)k k λλ=++24594k +∴2(1)λλ=+22259454(9)324324k k k +⋅=⋅+、 ∵ 22(54)445(94)0k k ∆=-⨯+≥, ∴ 259k ≥、 ∴25136(1)4λλ<≤+, ∴ 115,555λλ<<≠且, 综上所述,155λ≤≤、 分析:用点,M N 的坐标表示直线MN 的变化、 解法(二): 由DMDN λ=可知, 点,,D M N 共线、设1122(,),(,)M x y N x y ,则2211194x y +=,2222194x y +=、 ∵ DMDN λ=, ∴ 12x x λ= , 1233y y λλ=-+, ∴22222(33)194x y λλλ-++=,222222294x y λλλ+=、 ∴ 22(33)4y λλ-+-222214y λλ=-, 223(233)(1)14y λλλλ-+-=-,∴ 1λ=或23(233)14y λλλ-+=+, 213522,06y λλλ--≤=≤>解得155λ≤≤、8. 抛物线C 的方程为2(0)y ax a =<,过抛物线C 上一点00Px y (,) (00x ≠)作斜率 为12k k ,的两条直线分别交抛物线C 于1122(,),(,)A x y B x y 两点(P A B 、、三点各不相同),且满足210k k λλλ+=≠≠(0且-1)、(1) 求抛物线C 的焦点坐标与准线方程; (2) 设直线AB 上一点M 满足:BM MA λ=,证明线段PM 的中点在y 轴上;(3)当1λ=时,若点P 的坐标为(1,-1),求PAB ∠为钝角时点A 的纵坐标1y 的取值范围、分析: 将a 瞧作常量、 解(1): 抛物线C 的方程为21(0)x y a a=<, 故抛物线C 的焦点坐标为(104a,),准线方程为14y a=-、 分析: 从形式上瞧, 线段PM 的中点坐标与12k k λ、、相关,而实际上肯定横坐标可以消元为0、解(2): 由题设可知,直线PA 的方程为:100y k x x y =-+(),由方程组1002y k x x y y ax =-+⎧⎨=⎩(),,可得,211000axk x k x y -+-=,即2211000ax k x k x ax -+-=,∴ 110k x x a =-, 同理 220kx x a=-, ∵ BM MA λ=, ∴ 21M M x x x x λ-=-(), 121M x x x λλ+=+=12001k kx x a a λλ-+-+()()∵ 210k k λλλ+=≠≠(0且-1), ∴ M x =-0x ,∴ 线段PM 的中点横坐标为0, 即线段PM 的中点在y 轴上、分析:解(3): 由题设与题(2)可知, 抛物线C 的方程为2y x =-,111x k =-+(),又1λ=,故211x k =-,∴21111A k k -++((),-()), 21111B k k --(,-())∴1124AB k k =(,),211122AP k k k =++(,), ∵PAB∠为钝角,P A B、、三点各不相同, ∴0,AP AB ⋅<即有1124k k ⋅(,)211122k k k ++(,)0<,112(2)k k ++21114(2)0k k k +<,111(2)(21)0k k k ++<∴ 111202k k <--<<或, ∴ 211(1)y k =+, 111202k k <--<<或, ∴111114y y <--<<-或、 9、已知椭圆C 的中心在原点,焦点在X 轴上,一条经过点3-(,且方向向量为25a =-(,的直线l交椭圆C 于A,B 两点,交X 轴于M 点,又2AM MB =、(1) 求直线l 的方程;(2) 求椭圆C 的长轴长的取值范围、 解(1): 直线l的方程为3y x =--) 分析: “直线l 与椭圆C 有两个不同的交点”可以转化为一个关于a b ,的不等式, 向量等式2AM MB =可以转化为一个关于a b ,的等式、解(2):由方程组222222535,2,y x b x a y a b ⎧=---⎪⎨⎪+=⎩()可得222222244055b a y b y b a b +-+-=()、 设设1122(,),(,)A x y B x y , 则222212122222454455b b a b y y y y b a b a -+==++,、 由2AM MB =可知, 122y y = ,∴ 21224545b y b a -=+,22228545b y b a =+, ∴ 222232545b b a =+()2222245b a b b a -+,∴ 222251409a a b a -=>-()∵222222244()4()()055b b a b a b =--+->, ∴ 22545a b +>,∴ 222225(1)0,9545,a a a a b ⎧->⎪-⎨⎪+>⎩ ∴ 22222225(1)0,95(1)55,9a a a a a a a ⎧->⎪⎪-⎨-⎪+>⎪-⎩219a <<、∵ 22,b a < ∴ 2222251449a a b a a -=<-(), ∴ 224199a a <>或, ∴ 24119a<<, 4113a <<,∴ 241223a <<,即椭圆C 的长轴长的取值范围为241(2,)3、 10、自点(0,1)A -向抛物线C:2y x =作切线AB,切点为B ,且点B 在第一象限,再过线段AB 的中点M 作直线l 与抛物线C 交于不同的两点E,F,直线AE,AF 分别交抛物线C 于P,Q 两点、 (1) 求切线AB 的方程及切点B 的坐标; (2) 证明()PQAB R λλ=∈、解(1): 设切点B 的坐标为00(,)x y ,过点B 的切线的方程为20002()y x x x x =-+,∵ 切线过点(0,1)A -, ∴ 200012()x x x -=-+, 01x =,∵ 点B 在抛物线上, ∴ 01y =,∴ 切线AB 的方程为21y x =-, 切点B 的坐标为(1,1)、分析: 即证明AB ∥PQ 、(2) 证明: 由(1)可知, 线段AB 的中点M的坐标为1(,0)2,设直线l 的方程为1()2y k x =-, 222211223344(,),(,),(,),(,)E x x F x x P x x Q x x 、由方程组21(),2,y k x y x ⎧=-⎪⎨⎪=⎩可得2102x mx m -+=, 故12121,2x x m x x m +==、2243434343(,)()(1,)PQ x x x x x x x x =--=-+、∵ A,E,P 三点共线, ∴ 2331x x +=2111x x +,131x x = , 同理241x x =,∴ 21211111()(1,)PQx x x x =-+=12121212122()(1,)(1,2)x xx x x x x x x x m-+-= 由(1,2)AB =可知, 122()()x x PQ AB R mλλ-==∈其中、11、 设双曲线22221(0,0)x y a b a b-=>>的右顶点为A, P 为双曲线上异于点A 的一个动点, 从A 引双曲线的渐近线的两条平行线与直线OP 分别交于Q 与R 两点、(1) 证明:无论P 点在什么位置,总有2OP OQ OR=⋅(O 为坐标原点);(2) 若以OP 为边长的正方形的面积等于双曲线的实,虚轴围成的矩形的面积,求双曲线的离心率的取值范围、(1) 证明: 设直线OP 的方程为y kx=, 直线AR 的方程为()by x a a=-, AQ 的方程为()by x a a=--、由方程组(),,b y x a ay kx ⎧=-⎪⎨⎪=⎩得 (,)ab kab R ak b ak b ----, ∴ OR =(,)ab kab ak b ak b ----,同理OQ =(,)ab kabak b ak b++,∴OQ OR⋅=(,)ab kab ak b ak b ----⋅(,)ab kab ak b ak b----=222222(1)a b k a k b +-、设(,)P m n ,由方程组22221,,x y a b y kx ⎧-=⎪⎨⎪=⎩得2m =22222a b b a k -,2n =222222k a b b a k -∴ 2OP =222222(1)a b k b a k+-、 ∵ 直线OP 过原点, ∴ 2220ba k ->, ∴ 2OP OQ OR=⋅、(2) 解: 由题设知,222222(1)a b k b a k +-=4ab , 22240,4b ab k ab a -=>+又222b k a<, ∴ 2244b ab ab a -+22b a<, (恒成立))解得4a b <,∴ e>圆锥曲线的一个统一性质———由一道高考题引发出的思考题(2001年全国·理):设抛物线y 2=2px(p>0)的一个焦点为F,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴。