重积分部分练习题答案
考研数学二(重积分)模拟试卷1(题后含答案及解析)
考研数学二(重积分)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x,y)连续,且,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于A.xy.B.2xy.C..D.xy+1.正确答案:C 涉及知识点:重积分2.设f(x)为连续函数,出,则F’(2)等于A.2f(2).B.f(2).C.-f(2).D.0正确答案:B 涉及知识点:重积分3.设,其中D={(x,y)|x2+y2≤1),则A.I3>I2>I1.B.I1>I2>I3.C.I2>I1>I3.D.I3>I1>I2正确答案:A 涉及知识点:重积分4.设D是xOy平面以上(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则等于A..B..C..D.0正确答案:A 涉及知识点:重积分5.累次积分可以写成A..B..C..D..正确答案:D 涉及知识点:重积分填空题6.积分的值等于_______.正确答案:涉及知识点:重积分7.交换积分次序=_______。
正确答案:涉及知识点:重积分8.交换二次积分的积分次序=_______。
正确答案:涉及知识点:重积分9.设区域D为x2+y2≤R2,则=_______。
正确答案:涉及知识点:重积分解答题解答应写出文字说明、证明过程或演算步骤。
10.求二重积,其中D是x2+y2=1,x=0和y=0。
所围成的区域在第一象限部分.正确答案:涉及知识点:重积分11.计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b >0。
正确答案:涉及知识点:重积分12.计算二重积分,其中D={(x,y)|x2+y2≤x+y+1}。
正确答案:涉及知识点:重积分13.设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.正确答案:涉及知识点:重积分14.设D是以点0(0,0),A(1,2) B(2,1)为顶点的三角形区域,求.正确答案:涉及知识点:重积分15.设D={(x,y)|x2+y2≤x},求.正确答案:涉及知识点:重积分16.计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.正确答案:涉及知识点:重积分17.计算二重积分,其中D是由曲线和直线y=-x围成的区域.正确答案:涉及知识点:重积分18.设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z =h(t)-(设长度单位为厘米,时间单位为小时),已知体积减小的速率与侧面积成正比(比例系数为0.9),问高度为130厘米的雪堆全部融化需多少小时?正确答案:100小时;涉及知识点:重积分19.设闭区域D:x2+y2≤v,x≥0,f(x,y)为D上的连续函数,且求f(x,y).正确答案:涉及知识点:重积分20.计算二重积分,其中D是由直线y=x,y=1,x=0所围成的平面区域.正确答案:涉及知识点:重积分21.求二重积分的值,其中D是由直线y=x,Y=-1及x=1围成的平面区域.正确答案:涉及知识点:重积分22.计算二重积.其中积分区域D={(x,y)|x2+y2≤π).正确答案:涉及知识点:重积分23.求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1—5—13).正确答案:涉及知识点:重积分24.计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1).正确答案:e-1:涉及知识点:重积分25.设D=((x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分正确答案:涉及知识点:重积分。
西工大高数答案重积分
第九章 重积分第一节 重积分的概念与性质1.选择 设21()d DI x y =+σ⎰⎰,32()d DI x y =+σ⎰⎰, 1若D 由x 轴、y 轴与直线1x y +=围成,则在D 上B . A .23()()x y x y +≤+; B .23()()x y x y +≤+; 由二重积分的性质可知,A .A .12I I ≥;B .12I I ≤;C .12I I =; 2若D 由圆周22(2)(1)2x y -+-=围成,则B . A .12I I ≥; B .12I I ≤; C .12I I =; 2.填空 设(,)d DI f x y =σ⎰⎰,1若(,)1f x y x y =++,域D 为01x ≤≤,02y ≤≤,则在D 上,(,)f x y 的最小值为1,最大值为4;由二重积分的性质可知,28I ≤≤;2若22(,)49f x y x y =++,域D 为224x y +≤,则在D 上,(,)f x y 的最小值为9,最大值为25,因此36100I π≤≤π.3.设12231()d D I xy =+σ⎰⎰,其中1D 是矩形闭区域:11x -≤≤,22y -≤≤;22232()d D I x y =+σ⎰⎰,其中2D 是矩形闭区域:01x ≤≤,02y ≤≤,试利用二重积分的几何意义说明1I 与2I 之间的关系.解 设函数223(,)()f x y x y =+,则积分1(,)d D f x y σ⎰⎰的几何意义是在矩形域1D 上以曲面(,)z f x y =为曲顶的曲顶柱体体积. 由于域1D 关于0x =即y 轴对称,而函数(,)f x y 是x 的偶函数即曲面(,)z f x y =关于yOz 面对称,因此1(,)d D f x y σ⎰⎰=2(,)d D f x y *σ⎰⎰ ,其中域D *为01x ≤≤,2y ≤. 同理,D *关于0y =对称,(,)f x y 是y 的偶函数,因此,(,)d D f x y *σ⎰⎰=22(,)d D f x y σ⎰⎰于是1(,)d D f x y σ⎰⎰=42(,)d D f x y σ⎰⎰,即124II =.第二节 二重积分的计算1.填空 1改变积分次序e ln 1d (,)d x x f x y y ⎰⎰=14d (,)d y ey f x y x ⎰⎰.2改变积分次序 I =2220d (,)d x x f x y y ⎰⎰+2(,)d x f x y y ⎰⎰2 若(,)f x y xy =,则I =103. 3设D :15y ≤≤,5y x ≤≤,则应把二重积分d d ln Dx yI y x=⎰⎰化为先对y 后对x 的二次积分I =5111d d ln x x y y x⎰⎰=4. 4二重积分20d xx f y ⎰⎰=π2sec 3π04d ()d f r r r θθ⎰⎰.5二重积分211222d ()d xxx x y y -+⎰⎰=2πsin 4cos 01d d r r rθθθ⋅⎰⎰=π420sin d cos θθθ⎰1. 2.画出积分区域,并计算下列二重积分. 122()d Dxy -σ⎰⎰,其中D 是闭区域0sin y x ≤≤,0πx ≤≤.解 原式=πsin 22d ()d x x x y y -⎰⎰=3π2sin (sin )d 3xx x x -⎰=2πππ3π000011cos 2sin 2cos [cos cos ]33x x x x x x x -+++-=240π9-.2d Dx y ⎰⎰,其中D 是由直线y x =,1x =-,1y =所围成的闭区域.解 将D 视为X -型区域,则D :1x y ≤≤,11x -≤≤. 原式=111d xx y -⎰⎰=31222111(1)d 3xx y x --+-⎰=1302(1)d 3x x --⎰=12. 3e d d x yDx y +⎰⎰,其中D 是由不等式1x y +≤,0x ≥所确定的闭区域.解 原式=1101d ed x x yx x y -++-⎰⎰=111d x y y x y x ex +=-+=-⎰=1210(e e )d x x --⎰=e 122e+.易犯的错误是:认为积分区域D 是关于x 轴对称的,因此原积分等于在域D 内第一象限 部分域上积分的2倍,即原式=21e d x yD +σ⎰⎰ , 1D =01,01.x y x ≤≤⎧⎨≤≤-⎩ 此解错在没有被积函数的奇偶性,只有积分区域的对称性,就乱用对称性简化计算. 4cos d Dx x σ⎰⎰,其中D 是由曲线0y =,y x =和π6x =围成的闭区域. 解 cos d Dx x σ⎰⎰=π600cos d d x x x y x ⎰⎰=π60cos d x x ⎰=12. 3.计算积分222d ed y x x y -⎰⎰的值.解 由于函数2e y -的原函数不是初等函数,故需交换积分次序,积分区域D 为由0,2,x y y x ===所围成的区域,故原式=2e d d y Dx y -⎰⎰=2200d e d y y y x -⎰⎰=220e d y y y -⎰=221e 2y --=41(1e )2--. 4.设D 为以点(1,1),(1,1),(1,1)---为顶点的三角形,1D 为D 在第一象限部分,试将(cos sin )d d Dxy x y x y +⎰⎰化为1D 上的积分.解 如图所示,将积分区域分为1D '与2D '两部分,其中1D '为三角形AOB ,2D '为三角形BOC .显然1D '关于y 轴对称,2D '关于x 轴对称,又因为 函数xy 关于x ,y 均为奇函数,所以1d d D xy x y '⎰⎰=0, 2d d D xy x y '⎰⎰=0.故d d Dxy x y ⎰⎰=1d d D xy x y '⎰⎰+2d d D xy x y '⎰⎰=0.又函数cos sin x y 关于x 为偶函数,关于y 为奇函 数, 所以1cos sin d d D x y x y '⎰⎰=21cos sin d d D x y x y ⎰⎰,2cos sin d d D x y x y '⎰⎰=0.综上所述,(cos sin )d d Dxy x y x y +⎰⎰=21cos sin d d D x y x y ⎰⎰.5.证明:()0d e ()d a y m a x y f x x -⎰⎰=()0()e ()d am a x a x f x x --⎰.分析 因为欲证等式的左端为累次积分,等式右端为定积分,因此,应从左端出发证明, 作一次积分,化为定积分,使之与右端定积分相等. 但原累次积分的被积函数含有抽象函数,无法关于x 先积分,故考虑改变积分次序.解()0d e ()d a y m a x y f x x -⎰⎰=()0e ()d d a a m a x xf x x y -⎰⎰=()0()e ()d am a x a x f x x --⎰.6.求下列空间域Ω的体积.1由四个平面0,0,1,1x y x y ====所围成的柱体被平面0z =及236x y z ++=截得的立体.解 曲顶柱体以{(,)|01,01}D x y x y =≤≤≤≤为底,以623z x y =--为顶面,故所求立体体积 (623)d d DV x y x y =--⎰⎰=1100d (623)d x x y y --⎰⎰=103(62)d 2x x --⎰=6-1-32=72. 2由曲面222z x y =+及2262z x y =--围成的立体. 解 两曲面的交线满足方程组 消去z ,得222x y +=.所求立体的体积 21()d DV z z =-σ⎰⎰=2222[(62)(2)]d Dx y x y ---+σ⎰⎰ =322(2)d Dx y --σ⎰⎰=32π20d )d θ-ρρρ⎰⎰=426π(4ρ⋅ρ-=6π.7.画出积分区域,并且把积分(,)d d Df x y x y ⎰⎰表示为极坐标形式的二次积分,其中积分区域D 是:图1 20y x ≤≤, 01x ≤≤;解 积分区域如图a 所示,其边界曲线2y x =及1x =在极坐标下的方程分别为2sin cos θρ=θ及1cos ρ=θ. 原积分=2π14cos sin 0cos d (cos ,sin )d f θθθθρθρθρρ⎰⎰易犯的错误是:积分区域如图b 所示.原积分=π14cos 0d (cos ,sin )d f θθρθρθρρ⎰⎰.此错误是由作图不准确造成的.2由曲线22y a x =-,2y ax x =-及y x =-围成的闭区域0a >.解 积分区域如图所示,曲线22y a x =-及2y ax x =-在极坐标下的方程分别为r a =及cos r a =θ. 原积分=π20cos d (cos ,sin )d a a f θθρθρθρρ⎰⎰+3π4π02d (cos ,sin )d af θρθρθρρ⎰⎰.易犯的错误是:原积分=3π40cos d (cos ,sin )a a f d θθρθρθρρ⎰⎰.8.计算()d d DI x y x y =+⎰⎰,其中D :224xy +≤.解 积分区域关于x 轴,y 轴均对称,被积函数x y +关于x ,y 均为偶函数,故 I =41()d d D x y x y +⎰⎰1D 为D 位于第一象限的部分图 a图 b图=4π2220d (cos sin )d θθ+θρρ⎰⎰=643. 9.选择适当的坐标计算下列各题. 122sin d d Dx y x y +⎰⎰,其中D 是圆环形闭区域:2222π4πx y ≤+≤. 解 原式=2π2ππd sin d θρ⋅ρρ⎰⎰=2ππ2[cos sin ]π-ρρ+ρ=26π-.22d d yDxe x y -⎰⎰,其中D 是由曲线24y x =和29y x =在第一象限所围成的区域. 解2d d y Dxex y -⎰⎰=2203d d y y y y xe x +∞-⎰⎰=201()d 249y y y e y +∞--⎰ =205d 72y ye y +∞-⎰=5144. 3arctan d d Dy x y x ⎰⎰,D 是由圆周22224,1x y x y +=+=,及直线0,y y x ==所围成的在第一象限内的区域.解 arctan d d Dy x y x ⎰⎰=2401d d πθθ⋅ρρ⎰⎰=23π64.422()d d Dx y x y +⎰⎰,其中D 是由直线y x =,y x a =+,y a =,3(0)y a a =>所围成的闭区域. 解 原式=322d ()d a y ay ay x y x -+⎰⎰=232d []3a a y a ax y y x -+⎰=23321[()]d 33a ay y a y a y --+⎰=4433()[]12123aa y y a a y --+ =414a . 易犯的错误时:认为积分区域如图 所示. 原式=220d ()d a x a ax x y y ++⎰⎰+3322d ()d a aaxx x y y +⎰⎰.此错误是由画图不准确造成的. 5d d Dy x y ⎰⎰,其中D 是直线2x =-,0y =,2y =及曲线22x y y =--所围成的平面图区域.解1 区域D 及1D 如图所示,有d d Dy x y ⎰⎰=1d d D D y x y +⎰⎰-1d d D y x y ⎰⎰ =02π2sin π22d d d sin x y y d θ--θρθ⋅ρρ⎰⎰⎰⎰=4-428sin d 3ππθθ⎰=4-2811cos 4(1cos 2)d 342ππ+θ⋅-θ+θ⎰ =4-2π. 解2 如图所示,{(,)|22}D x y x y =-≤≤≤≤,d d Dy x y ⎰⎰=202d y y x -⎰⎰=222d y y y -⎰⎰=4-2y ⎰令y-1=s i nt π22π24(1sin )cos d t t t --+⎰=4-π2.10.求由圆2ρ=和心形线2(1cos )ρ=+θ所围图形在圆外部分的面积.解 由2(1cos )2ρ=+θ⎧⎨ρ=⎩得交点:0π2θ=±,02ρ=.面积A =d d Dρρθ⎰⎰=π2(1+cos θ)2π22d d -θρρ⎰⎰=π22π22[cos θ+2cos ]d -θθ⎰=1π4[2]22⋅+=8π+.11.设平面薄片所占的闭区域D 是由螺线2ρ=θ上一段弧π(0)2≤θ≤与直线π2θ=所围成,它的面密度22(,)x y x y μ=+.求此薄片的质量.解 质量M =(,)d Dx y μσ⎰⎰=22()d Dxy +σ⎰⎰=π2320d d θθρρ⎰⎰=π4204d θθ⎰=5π40.第三节 三重积分的计算1.化(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是:图1由双曲抛物面xy z =及平面10x y +-=,0z =所围成的闭区域. 2由曲面22z x y =+,2y x =及平面1y =,0z =所围成的闭区域.解 1由0z xy z =⎧⎨=⎩消去z ,得0xy =,即0x =或0y =.因此空间域是以0z =为下曲面,z xy =为上曲面,侧面是柱面0x =,0y =,10x y +-=.因此原式=110d d (,,)d x xy x y f x y z z -⎰⎰⎰.2积分区域Ω可表示为220z x y ≤≤+,21x y ≤≤,11x -≤≤ 所以222111(,,)d d d d d (,,)d x y xf x y z x y z x y f x y z z +-Ω=⎰⎰⎰⎰⎰⎰.2.计算cos()d d d y x z x y z Ω+⎰⎰⎰,其中Ω由y =0y =,0z =和π2x z +=所围成的闭区域.解 将积分区域Ω向xOy 平面投影得xy D :π02x ≤≤,0y ≤≤则Ω可表示成π02z x ≤≤-,(,)xy x y D ∈,故 cos()d d d y x z x y z Ω+⎰⎰⎰=π20d d cos()d xyx D x y y x z z -+⎰⎰⎰=(1sin )d d xyD y x x y -⎰⎰=π20d (1sin )d x y x y -⎰⎰=π201(1sin )d 2x x x -⎰=2π1162-.3.计算d d d z x y z Ω⎰⎰⎰,其中Ω是由锥面z =(0,0)z h R h =>>所围成的闭区域.解1 积分区域Ω如图所示,用竖 坐标为z 的平面截域Ω,得圆域22222():R z D z x y h+≤,其面积为222πR z h,采用“先二后一法”计算.d d d z x y z Ω⎰⎰⎰=0()d d h D z z z σ⎰⎰⎰=2220πd h R z z z h⋅⎰=242π4hR z h ⋅=22π4R h .解2 积分域Ω的边界曲面在柱面坐标下的方程分别为z h =及h z R=ρ. 利用柱面坐标计算.原式=2π0d d d R h h R z z ρθρρ⎰⎰⎰=2222012π[]d 2R h h Rρ-ρρ⎰=224202π[]24R h h R ρρ-⋅=22π4R h . 易犯的错误是: 1在柱面坐标下,原式=2π0d d d hRR z z ρθρρ⎰⎰⎰.关于z 的积分上、下限错误.2采用“先二后一法”.d d d z x y z Ω⎰⎰⎰=222d d d hx y R z zx y +≤⎰⎰⎰=2d h Rz z π⎰=222R h π. 关于x ,y 积分的积分域错误,积分域应为22222R z x y h +≤. 特别注意,将被积函数z用表达式z =. 4.计算d d d xz x y z Ω⎰⎰⎰,其中Ω是由平面0z =,z y =,1y =以及抛物柱面2y x =所围成的闭区域.解1 按先z 再x 后y 积分. 原式=10d d d 0yy x z z =⎰⎰⎰其中⎰为奇函数再对称区间上的积分,其值为0.解2 按先x 再y 后z 积分. 原式=110d d d 0zz z y x x =⎰⎰⎰其中d 0x =⎰.解3 按先x 再z 后y 积分.图原式=10d d d 0y y z z x =⎰⎰⎰5填空题.设Ω由球面z =与锥面z =围成,则三重积分在三种坐标系下分别可化为三次积分如下: 直角坐标系下: 柱面坐标系下: 球面坐标系下:π2π240d d sin d I f r r θϕϕ=⎰⎰⎰.6.利用柱面坐标计算下列三重积分. 122e d d d x y x y z --Ω⎰⎰⎰,其中Ω为由221x y +≤,01z ≤≤所确定.解22e d d d xy x y z --Ω⎰⎰⎰=22π11ρ0d ρd ρd ez θ-⎰⎰⎰=21ρ02πρd ρe-⎰=21ρ20πe d ρ-⎰=21ρ0πe --=1π(e 1)---=1π(1)e-.2d z v Ω⎰⎰⎰,其中Ω为由曲面z =及223x y z +=所围成的闭区域.解由223z x y z⎧⎪=⎨+=⎪⎩z ,得223x y +=,zdv Ω⎰⎰⎰=d ρd d zr z θΩ⎰⎰⎰=22π03d d ρd r z z θ⎰⎰⎰=4212π(4ρ)d ρ29r ⋅--⎰=13π4.3d d x y z Ω⎰⎰⎰, 其中Ω为由曲面y =,0z =,z a = (0)a >,0y =所围成的闭区域.解 原式=π2cos 220d ρd ρd a z z θθ⎰⎰⎰=π23204cos d 3a θθ⎰=289a .7.利用球面坐标计算下列三重积分:1d d x y z Ω,其中Ω是由球面222x y z z ++=所围成的闭区域.解 球面222x y z z ++=在球面坐标下的方程为cos r ϕ=.原式=π2πcos 320d sin d d r r ϕθϕϕ⎰⎰⎰=π420πsin cos d 2ϕϕϕ⎰=π520πcos 10ϕ-=π10. 2d d d z x y z Ω⎰⎰⎰,其中Ω是由不等式:2222()xy z a a ++-≤,22x y +2(0)z a ≤>所确定.解 曲面2222()x y z a a ++-=及222(0)x y z a +=>在球面坐标下的方程分别为2cos r a ϕ=及π4ϕ=. 原式=π2π2cos 340d sin d cos d a r r ϕθϕϕϕ⎰⎰⎰=π45402π4cos sin d a ϕϕϕ⎰=π640cos 8π6ϕ-⋅=47π6a . 8.选择适当的坐标计算下列三重积分. 12(1)d x v Ω+⎰⎰⎰,其中Ω是由曲面222x z y =+,2x =,4x =所围成的闭区域. 解 采用“先二后一法”计算.2(1)d x v Ω+⎰⎰⎰=422d (1)d d Dxx x y z +⎰⎰⎰=422(1)d d d Dxx x y z +⎰⎰⎰=4222(1)(π)d x x x +⎰=3256π15.2d d x y z Ω⎰⎰⎰,其中Ω由不等式:2221x y z ++≤,z ≥定.解1 曲面2221x y z ++=及z =在球面坐标下的方程分别为1r =及π6ϕ=.原式=π2π12600d sin d r cos r r dr θϕϕϕ⋅⋅⎰⎰⎰=π125600sin ρ2π25ϕ⋅⋅π20=. 解2 曲面2221x y z ++=及z =z =z =.原式=12π20d rdr z θ⎰⎰=120r 2π2⎰π20=.32d d d z x y z Ω⎰⎰⎰,其中Ω是2222xy z R ++≤和2222(0)x y z Rz R ++≤>的公共部分.解1 球面2222x y z R ++=及2222x y z Rz ++=在球面坐标下的方程分别为r R =及2cos r R ϕ=.由2cos r R r Rϕ=⎧⎨=⎩解得 3πϕ=.原式=π2π22230d d cos sin d Rr r r θϕϕϕ⋅⎰⎰⎰+π2π2cos 2222π03d d cos sin d R r r r ϕθϕϕϕ⋅⎰⎰⎰=ππ525732π03232cos dcos 2πcos dcos 55R R πϕϕϕϕ--⋅⎰⎰=557ππ60160R R +559π480R =. 解2 采用“先二后一法”计算. 原式=2222222222022d d d d d d RRR x y Rz z x y R z z zx y z zx y +≤-+≤-+⎰⎰⎰⎰⎰⎰=22222202π(2)d π()d R RR z Rz z z z R z z -+-⎰⎰559π480R =. 第四节 重积分的应用1.求锥面z =被柱面22z x =所割下部分的曲面面积.解由22z z x⎧⎪=⎨=⎪⎩消去z ,得D 的边界:222x y x +=.所求曲面面积DS σ=⎰⎰=d Dx yd Dσ.2.求底圆半径相等的两个直交圆柱面222x y R +=及222x z R +=所围成立体的表面积.解1 所求曲面在第一卦限内的图形如图所示.面积为2016d 16R Rx R ==⎰⎰.解2 由222222x y R x z R⎧+=⎨+=⎩消去x ,得z y =±.对于曲面x =y x =,0z x =,所求曲面的面积为图8d 8R y R Ry z R y -==⎰⎰⎰12222082()|16RR R y R =-⋅-=.3.设平面薄片所占的闭区域D 由曲线2y x =,2x y +=围成,求该均匀薄片的重心. 解 y M x M=,xM y M=. 212120000229d d d (2)d 2x x DM x y x x x ρσρρρ---===--=⎰⎰⎰⎰⎰,212120000229d d d (2)d 4x y x DM x x x y x x x x ρσρρρ---===--=-⎰⎰⎰⎰⎰,2121240002236d d [(2)]d 25x x x M x y y x x x ρρρ---==--=⎰⎰⎰, 因此,12yM x M ==-,85x M y M ==,故重心坐标为(,)x y =18(,)25-. 4.设平面薄片所占的闭区域D 由直线2x y +=,y x =和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.解 质量为1222220()d d ()d y yDM xy y x y x σ-=+=+⎰⎰⎰⎰12323410088842(44)d [2]33333y y y y y y y y =-+-=-+-⎰43=. 5.利用三重积分计算.1由曲面z =224x y z +=所围成的立体体段.解 采用柱面坐标计算232242002π2π(5ρ)ρπ4)383=---=.2由曲面z =,0)z A a =>>,0z =所围匀质物体的重心.解 匀质物体的重心即形心,且形心在对称轴-z 轴上,因此0x =,0y =,d d z vz vΩΩ=⎰⎰⎰⎰⎰⎰.其中332d π()3v A a Ω=-⎰⎰⎰.d z v Ω⎰⎰⎰=π2π320d cos sin d d A ar r θϕϕϕ⎰⎰⎰=π24420sin 2π24A a ϕ-⋅⋅=44π()4A a -. 于是44333()8()A a z A a -=-.重心坐标为44333()0,0,8()A a A a --. 6.求半径为R 、高为h 的均匀圆柱体绕过中心而垂直于母线的轴的转动惯量设密度1ρ=.解 建立坐标系,使圆柱体的对称轴在z 轴上,且原点在其中心.则所求转动惯量为 y I =2π22222202()d d ρd ρ(ρcos )d hRh x y v z z θθ-Ω+=+⎰⎰⎰⎰⎰⎰4322π20[cos ]d 424hR h R θθ=+⎰=342ππ412h h R R + 22()43M h R =+ 其中2πM R h =为圆柱体质量 第九章 重积分总习题1.计算d D I x y =,22222:,D x y a x y ay +≤+≥.解1 2()d ρd D D I ρθ=+⎰⎰⎰⎰下上π2π220sin πd ρd ρd ρd ρa aa θθθ=+⎰⎰⎰⎰33π3(1sin )d π33a a θθ=-+⎰π3333202222πsin d (π)3333a a a θθ=+=-⎰.解222222x y a x y ayI σσ+≤+≤=-⎰⎰⎰⎰3π3330222πsin d (π)3333a a a θθ=-=-⎰. 2.计算()d DI x y σ=+⎰⎰,其中D 由2y x =,24y x =及1y =围成. 解11100d )d d )d I y x y x y x y x =+++⎰⎰13/202d 5y y ==⎰. 解2 ()()d D D I x y σ=-+⎰⎰⎰⎰大小14212221121116[(1)]d [(14)]d 22x x x x x x x x ----=-+--+⎰⎰25=.3.计算2101d d x y I y x x y ≤≤≤=-⎰⎰解1 1222()d ()d D D I y x x y σσ=-+-⎰⎰⎰⎰ 图 221112211d ()d d ()d x xx y x y x x y y --=-+-⎰⎰⎰⎰4411224111[(1)]d []d 22x x x x x x x ---=--+-⎰⎰1115=. 亦可利用对称性简化计算.由于1D 、2D 均关于0x =即y 轴对称,又(,)f x y 关于x 为偶函数即(,)(,)f x y f x y -=,因此 221112202d ()d 2d ()d x xI x y x y x x y y =-+-⎰⎰⎰⎰.4.计算2(369)d Dy x y σ+-+⎰⎰,其中D 是闭区域222x y R +≤. 解 原式222200d ρ[ρsin 3ρcos 6ρsin ]d ρ9πRR πθθθθ=+-+⎰⎰442π2229πsin d 009ππ44R R R R θθ=+++=+⎰.亦可利用对称性简化计算.由于积分Dxd σ⎰⎰及Dyd σ⎰⎰均为零,故原积分再利用极坐标计算.5.计算22()d d d y z x y z Ω+⎰⎰⎰,其中Ω是由xOy 平面上曲线22y x =绕x 轴旋转而成的曲面与平面5x =所围成的闭区域.解 Ω在yOz 面投影域yz D 为:2210y z +≤,所以22()d d d yz x y z Ω+⎰⎰⎰=22π522d ρd ρd r x θ⋅⎰⎰⎰51150010002502π[1001000]2ππ412123-=⨯-⨯==. 6.计算d d x y z Ω,其中Ω为由2221x y z ++≤,1z ≥所确定.解 投影区域D :2224()5x y +≤,用柱面坐标得d d x y z Ω=42π50212d ρd ρd ρr z z θ-⎰⎰⎰图42250642π[1ρ(2ρ1)]d ρπ75=---=⎰. 7.计算()d d d x z x y z Ω+⎰⎰⎰,其中Ω是由曲面z =与z =所围成的区域.解d d d 0x x y z Ω=⎰⎰⎰因为被积函数是x 的奇函数,积分区域Ω关于0x =对称,所以有()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰;又由于d d d z x y z Ω⎰⎰⎰的被积函数只是z 的函数,用平面z z =去截Ω所得闭区域()D z 的面积很容易求,因此可选用“先二后一”方法求解.()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰=1210()()d d d d d d D z D z z zx y z zx y +⎰⎰⎰⎰⎰=1220πd π(1)d z z z z z z +-⎰=π8.8.计算22()d I x y v Ω=+⎰⎰⎰,其中Ω是由222x y z +=,2z =,8z =围成的闭区域. 解1 22()()d I x y v ΩΩ=++⎰⎰⎰⎰⎰⎰外柱22π282π48330222d ρd ρd d ρd ρd z z ρθθ=+⎰⎰⎰⎰⎰⎰2432ρ62π42πρ(8)d ρ2=⋅⋅+-⎰48π288π336π=+=.解2 22()()d I xy v ΩΩ=-+⎰⎰⎰⎰⎰⎰大小222π482π2222ρρ022d ρd ρρd d ρd ρρd z z θθ=-⎰⎰⎰⎰⎰⎰42353500112π(8ρρ)d ρ2π(2ρρ)d ρ22=---⎰⎰336π=. 解3 采用“先二后一法”计算. I=22882π223222d ()d d d d d ρx y zzx y x y z θ+≤+=⎰⎰⎰⎰⎰⎰=8222πd z z ⎰336π=.易犯的错误是:将222x y z +=代入被积表达式,得 388222π2d 4π|672π3z z z z =⋅⋅==⎰.9.计算2221d xy z v Ω++-⎰⎰⎰,其中Ω是球体2224x y z ++≤.解 被积函数含有绝对值2221x y z ++-,用曲面22210x y z ++-=将Ω分成1Ω和2Ω,其中1Ω:2221x y z ++≤ ,2Ω:22214x y z ≤++≤. 于是采用球面坐标计算1222(1)d x y z v Ω---⎰⎰⎰=2ππ1220d d (1)sin d r r r θϕϕ-⎰⎰⎰=8π15, 2222(1)d x y z v Ω++-⎰⎰⎰=2ππ22201d d (1)sin d r r r θϕϕ-⎰⎰⎰=232π15, 所以2221d x y z v Ω++-⎰⎰⎰=8π15+232π15=16π. 10.半球面z =220x y Ry +-=,22x y +0(0)Ry R +=>割出两个窗口,求在这半球面上剩下部分的面积.解d d S x y σ==.sin 4d R R Rθθ=-⎰=π2204cos d 4R R R θθ=⎰.11.在底半径为R ,高为H 的圆柱体上面,拼加一个同半径的半球体,使整个立体的重心 位于球心处,求R 和H 的关系设体密度1μ=.解 建立坐标系如图所示,由题意知,物体重心的竖坐标 d 0d z vZ vΩΩ==⎰⎰⎰⎰⎰⎰,222π(2)02R R H =-=.R =.12.设一个上、下底半径各为b 、a ,高为H 的圆锥台,轴的转动惯量b a <. 解1 建立坐标系下如图432π2πρ(ρ)d ρ4a b b H H a a b=⋅⋅+--⎰=55π()10()H a b a b --.解2 采用“先二后一法”.用竖坐标为z 的平面截闭区域Ω,得到 圆域()D z ,设其半径为()z ρ,则ρ()z b H z a b H --=-,ρ()a bz a z H-=-.原式=2π2230()d ()d d d ρd ρa bH Ha z HD z z x y z σθ--+=⎰⎰⎰⎰⎰⎰45540π1π[()]d ()210()H H aH a b z z a b H a b =--=--⎰.。
数学分析二重积分的计算练习题解答
2009大专A 班数学分析第13章二重积分的计算练习题解答一、求下列二重积分: 1.22()d d Rx y x y +⎰⎰, 其中R :11x -≤≤,11y -≤≤. 解:13111222221111()d d d ()d d 3Ry x y x y x x y y x y x ----⎡⎤+=+=+⎢⎥⎣⎦⎰⎰⎰⎰⎰ 13121028(2)d 4()3333x x x x -=+=+=⎰.2.(32)d d Rx y x y +⎰⎰,其中R 是由坐标轴与2x y +=所围成的闭区域.解: 如图,积分区域可以表示为x 型区域: 02y x ≤≤-,02x ≤≤.于是有(32)d d Rx y x y +⎰⎰22222000d (32)d 3d xxx x y y xy y x --⎡⎤=+=+⎣⎦⎰⎰⎰ 220(422)d x x x =+-⎰2320220(4)33x x x =+-=. 3.cos()d d Rx x y x y +⎰⎰,其中R 是以(0,0)(π,0)(π,π)为顶点的三角形区域.解: 如图,积分区域可以表示为x 型区域: 0y x ≤≤,0x π≤≤.于是有cos()d d Rx x y x y +⎰⎰[]00d cos()d sin()d x xx x x y y x x y x ππ=+=+⎰⎰⎰001(sin 2sin )d d(cos cos 2)2x x x x x x x ππ=-=-⎰⎰ 001113(cos cos 2)(cos cos 2)d (102222x x x x x x ππππ⎡⎤=---=---=-⎢⎥⎣⎦⎰.4.d Rx y ⎰⎰,其中R 是由2y x =与y =所围成的闭区域. 解: 如图.积分区域可以表示为x型区域: 2x y ≤≤,01x ≤≤.于是有d Rx y⎰⎰311202d [3x x x y x y x ==⎰⎰714402()d 3x x x =-⎰111542416()311555x x =-=. xyπxy225.(+)d d Rx y x y ⎰⎰, 其中R :1x y +≤.解:如图,积分区域为两个x 型区域1R 与2R 之并,其中1R :11x y x --≤≤+, 10x -≤≤, 1R 2R2R :11x y x -≤≤-, 01x ≤≤.于是有12(+)d d (+)d d (+)d d RR R x y x y x y x y x y x y =-+⎰⎰⎰⎰⎰⎰01111101d ()d d ()d xxxx x y x y x x y y +-----=-++⎰⎰⎰⎰011122111011()d ()d 22x xx x y x x y x x +----+-=-++⎰⎰ 012210112[1(21)]d [1(21)]d 223x x x x -=-++--=⎰⎰. 6.22()d d Rxy x x y +-⎰⎰,其中R 是由直线2y =,y x =及2y x =所围成的闭区域.解: 如图,积分区域可以表示为y 型区域:2yx y ≤≤,02y ≤≤. 于是有22()d d Rx y x x y +-⎰⎰ 322222222d ()d d 32yy y y x x y x y x x y x y ⎡⎤=+-=+-⎢⎥⎣⎦⎰⎰⎰232019313()d 2486y y y =-=⎰. 7.d d 1Rxx y y +⎰⎰,其中R 是由21y x =+,2y x =及0x =所围成的闭区域. 解:如图,积分区域可以表示为x 型区域: 221x y x ≤≤+,01x ≤≤.于是有d d 1Rxx y y +⎰⎰22111120201d d [ln(1)]d 1x x x xx x y x y x y ++==++⎰⎰⎰ 1120ln(2)d ln(21)d x x x x x x =+-+⎰⎰91ln 3ln 282=--.xy1y 18.sin d d Rx x y x ⎰⎰,其中R 是由直线y x =,2xy =及2x =所围成的闭区域. 解:将二重积分化为先y 后x 的累次积分.积分区域可表示为x 型区域: 2xy x ≤≤,02x ≤≤(如图).故sin d d Rxx y x ⎰⎰22002sin 11d d sin d (1cos 2)22x x x x y x x x ===-⎰⎰⎰. 9.2sin d d Ry x y ⎰⎰,其中R 是由直线y x =,1y =及0x =所围成的闭区域.解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 0x y ≤≤,01y ≤≤(如图).故2sin d d Ry x y ⎰⎰11220001sin d d sin d (1cos1)2y y y x y y y ===-⎰⎰⎰. 10.2d d yRe x y -⎰⎰,其中R 是由直线1y x =-,2y =及1x =所围成的闭区域. 解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 11x y ≤≤+,02y ≤≤(如图).故2d d y Rex y -⎰⎰222124011d d d (1)2yy y ey x yey e +---===-⎰⎰⎰.二、将二重积分(,)d d Rf x y x y ⎰⎰化为不同次序的累次积分,其中区域R 分别是:1.由直线y x =及抛物线24y x =所围成. 解:积分区域如图.(1) 将二重积分化为先x 后y 的累次积分积分区域为y 型区域: 24y x y ≤≤,04y ≤≤,于是有(,)d d Rf x y x y ⎰⎰2404d (,)d yy y f x y x =⎰⎰.(2) 将二重积分化为先y 后x 的累次积分积分区域为x型区域: x y ≤≤,04x ≤≤,于是有(,)d d Rf x y x y⎰⎰4d (,)d xx f x y y =⎰⎰.y22xy11yy2312.由x 轴及半圆周222x y r +=(0)y ≥所围成. 解:积分区域如图,有(,)d d Rf x y x y⎰⎰0d (,)d rrx f x y y -=⎰d (,)d ry f x y x =⎰.3.环形闭区域:2214x y ≤+≤.解:积分区域如图.可分成4个小的x 型区域(或y 型区域),于是有(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d x f x y y x f x y y --=+⎰⎰⎰1221d (,)d d (,)d x f x y y x f x y y --++⎰⎰.或(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d y f x y x y f x y x --=+⎰⎰⎰1221d (,)d d (,)d y f x y x y f x y x --++⎰⎰.4.由双曲线2xy =,抛物线21y x =+及直线2x =所围成. 解:积分区域如图.表示为x 型区域:221y x x≤≤+,12x ≤≤, 有(,)d d Rf x y x y ⎰⎰22121d (,)d x xx f x y y +=⎰⎰.表示为两个y 型区域: 1R :22x y≤≤,12y ≤≤; 2R2x ≤≤,25y ≤≤,有(,)d d Rf x y x y⎰⎰2252212d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰.5.由圆222x y x +=,224x y x +=及直线y x =,0y =所围成. 解:积分区域如图.可以表示为两个x 型区域: 1Ry x ≤≤,12x ≤≤;2R:0y ≤≤24x ≤≤,xyxy15221x有(,)d d Rf x y x y⎰⎰2412d (,)d d (,)d x x f x y y x f x y y =+⎰⎰.可以表示为两个y 型区域:1R:12x +≤≤,01y ≤≤; 2R:2y x ≤≤, 12y ≤≤,有(,)d d R f x y x y ⎰⎰1222011d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰⎰.三、改变下列累次积分的积分次序: 1.1d (,)d yy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:0x y ≤≤,01y ≤≤,(如图).改变积分次序,积分区域可以表示为: 1x y ≤≤,01x ≤≤,于是有10d (,)d yy f x y x ⎰⎰(,)d d Df x y x y =⎰⎰11d (,)d xx f x y y =⎰⎰.2.2220d (,)d yyy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:22y x y ≤≤,02y ≤≤,(如图).改变积分次序,积分区域可以表示为:2xy ≤≤,04x ≤≤,于是有 2220d (,)d y yy f x y x ⎰⎰402d (,)d x x f x y y =⎰⎰.3.ln 1d (,)d exx f x y y ⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:0ln y x ≤≤,1x e ≤≤,(如图).x改变积分次序,积分区域可以表示为:ye x e ≤≤,01y ≤≤,于是有ln 1d (,)de xx f x y y ⎰⎰10d (,)d y eey f x y x =⎰⎰.4.πsin 0sin2d (,)d xx x f x y y -⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:sinsin 2xy x -≤≤,0x π≤≤,(如图). 改变积分次序, 积分区域为两个y 型区域1D 与2D 之并,其中1D :arcsin arcsin y x y π≤≤-, 01y ≤≤,2D :2arcsin y x π-≤≤, 10y -≤≤,于是有 πsin 0sin2d (,)d xx x f x y y -⎰⎰1arcsin 00arcsin 12arcsin d (,)d d (,)d yyyy f x y x y f x y x ππ---=+⎰⎰⎰⎰.5.12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰.解: 所给累次积分为两个先y 后x 的积分之和,故积分区域为两个x 型区域1D 与2D 之并,其中1D :0y x ≤≤, 01x ≤≤;2D :02y x ≤≤-, 12x ≤≤.改变积分次序,积分区域可以表示为:2y x y ≤≤-,01y ≤≤,于是有12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰120d (,)d y yy f x y x -=⎰⎰.6.11d (,)d x f x y y ⎰.解: 积分区域如图,有原式2121d (,)d d (,)d y y f x y x y f x y x =+⎰⎰⎰.7.12330010d(,)d d(,)dy yy f x y x y f x y x-+⎰⎰⎰⎰.解: 积分区域如图.原式232d(,)dxxx f x y y-=⎰⎰.8.14(4)d(,)dyy f x y x-⎰⎰.解: 积分区域如图.原式204224d(,)dxxx f x y y--+=⎰⎰.9.02222022d(,)d d(,)dx xx f x y y x f x y y +--+⎰⎰⎰⎰.解: 积分区域如图.原式1221200221d(,)d d(,)d d(,)dyyy f x y x y f x y x y f x y x--=++⎰⎰⎰⎰.10.21101d(,)dyyy f x y x+-⎰⎰.解: 积分区域如图.化为先y后x的累次积分,积分区域为两个x型区域1D与2D之并,其中1D:11x y-≤≤, 01x≤≤;2D1y≤≤, 12x≤≤.故原式1121011d(,)d d(,)dxx f x y y x f x y y-=+⎰⎰⎰.xy32y1xyyy=1y x=-。
三重积分题
三重积分题一、计算三重积分∫∫∫_V (x2 + y2 + z2) dV,其中V是由x2 + y2 ≤ 1, 0 ≤ z ≤ 1定义的圆柱体。
A. π/2B. πC. 3π/2D. 2π(答案:D)二、三重积分∫∫∫_V xyz dV,在区域V: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1内的值为?A. 0B. 1/2C. 1D. 3/2(答案:A)三、计算三重积分∫∫∫_V (x + y + z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1定义的立方体。
A. 0B. 1C. 3/2D. 2(答案:C)四、三重积分∫∫∫_V (sin(x)cos(y)z) dV,在区域V: 0 ≤ x ≤π, 0 ≤ y ≤π, 0 ≤ z ≤ 1内的值为?A. 0B. 1C. -1D. 2(答案:A)五、计算三重积分∫∫∫_V e(x+y+z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤z ≤ 1定义的立方体,并假设e的近似值为2.718。
A. e - 1B. e2 - 1C. e3 - 1D. e4 - 1(答案:C)注:此题需要用到e的幂次性质进行积分。
六、三重积分∫∫∫_V (x2y2z2) dV,在区域V: -1 ≤ x ≤ 1, -1 ≤ y ≤ 1, -1 ≤ z ≤ 1内的值为?A. 0B. 1/8C. 1/4D. 1(答案:A)七、计算三重积分∫∫∫_V (1/(1+x2+y2+z2)) dV,其中V是由x2 + y2 + z2 ≤ 1定义的球体。
A. π2/2B. π2C. 2π2D. 4π2(答案:A)注:此题需要用到球坐标变换进行积分。
八、三重积分∫∫∫_V (cos(x2+y2+z2)) dV,在区域V: 0 ≤ x ≤√π, 0 ≤ y ≤√π, 0 ≤ z ≤√π,且假设cos的近似值在积分中可直接使用,其值为?A. 0B. (π(3/2))/2 * (sin(π) - sin(0))C. π(3/2) * (cos(π) - cos(0))D. -π(3/2) * (sin(π) - sin(0))(答案:B)注:此题需要注意到cos函数的周期性,并正确计算积分上下限。
数学分析21.6重积分的应用(含习题及参考答案)
第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。
高数第六章重积分课堂练习题及答案
r O
图3
D {(r, ) | 0 r r( ), 0 2}
f
(r cos , r sin )rdrd
2
0
d r( ) 0
f
(r cos , r sin )rdr
D
2o 极点在区域 D 的边界上,如图 8-10 所示.
O
r
图4
D {(r, ) | 0 r r( ), }
r( )
D
D
大小. 先判断 f (x, y) 和 g(x, y) 在 D 上的大小关系,再应用二重积分的比较性质比较两个二
重积分的大小.
解: 由 (x 1)2 ( y 1)2 2 ,可得
y
x y 1 (x2 y2 2x 3) 1 [(x 1)2 y2 ] 1 1
2
2
x
如图 8-22.
o
图 8-22
成的在第一卦限内的立体体积. R3 arctan K
y
3
z x2 y2 z2 1
y
O Dxy
y
x
x2 y2 1
O
x
o
x
图6
2. 求由曲面 z x2 2 y2 及 z 6 2x2 y2 所围成的立体的体积. 6 3. 求由曲面 z x2 y 2 及 z x 2 y 2 所围成的立体的体积
D
[思路] 利用二重积分的估值性质估计二重积分,先计算被积函数在积分区域上的最大、 最小值和积分区域的面积,应用估值性质来估计二重积分的值.
解: 因为在积分区域 D 上, 0 x 1,0 y 2 ,所以 0 xy 2, 1 x y 1 4
于是可得 0 xy(x y 1) 8 ,而 D 的面积 1 2 2 ,应用估值性质有
数学分析21.6重积分的应用(含习题及参考答案)
第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。
重积分练习题答案
重积分部份练习题1.计算()⎰⎰⎰Ω+=dxdydz y x I 22,其中Ω是由曲线⎩⎨⎧==022x z y 绕z 轴旋转一周而成的曲面与平面2=z ,8=z 所围的立体。
2.一均匀物体(密度ρ为常量)占有的闭区域Ω是由曲面22y x z +=和平面0=z ,a x =||,a y =||所围成的。
(1) 求其体积;(2) 求物体的重心;(3) 求物体关于z 轴的转动质量。
3.设()y x f ,持续,且()()⎰⎰+=D dudv v u yf x y x f ,,,其中D 是由xy 1=,1=x ,2=y 所围区域,求()y x f ,。
4.设()()⎰⎰⎰≤++++=2222222t z y x dxdydz z y x f t F ,其中()u f 为持续函数,()0f '存在,且()00=f ,()10='f ,求()50lim t t F t →。
5.求锥面22y x z +=被柱面x z 22=所割下部份的曲面面积。
6.设半径为R 的球面∑的球心在定球面)0(2222>=++a a z y x 上,问当R 取何值时,球面∑在定球面内部的那部份面积最大?7.设有一半径为R 的球体,0P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 的距离的平方成正比(比例常数k>0),求球体的重心。
8.计算以下二重积分:(1)24212sinsin 22xx x I dx dy dx dy y y ππ=+⎰⎰;(2) ⎰⎰--=Dd y x I σ221, 其中:1,1D x y ≤≤.(3)计算2||,:11,01Dy x dxdy D x y --≤≤≤≤⎰⎰.(4)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+=D d y f x x f y y x I σ221,其中(){}222,D x y x y R =+≤。
9. 求极限4/2/)(2/00221lim x x t du u t x x e e dt ---→-⎰⎰+ .10. 设Ω是曲面与 所围成的立体,求Ω的体积V 与表面积S 。
数学分析21.7n重积分(含习题及参考答案)
第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。
高数习题答案二
2π
1
2π
2
1 2 1 4 1 1 4 1 2 2 = 2π ( r − r )|0 +2π ( r − r )|1 = 5π. 2 4 4 2 y r = cosθ 3.利用极坐标计算下列二重积分 (1) ∫∫ xdxdy, D: x2 + y2 ≤ x D 0 1 x 解: 画出D的图形:
y
7.交换下列积分次序,并计算: (1)
∫ dy∫ e dx
y 0 y
1
1
1 y=x
0
D
解: 由已给积分次序知
y ≤ x ≤1 D: 0 ≤ y ≤1 ,
x =1 x 1
画出D的图形:
机动 目录 上页 下页 返回 结束
x eydy = ey |0dx = ∫ dx ∫0 ∫ 0 0
1
x
1
y 1 y=x
x
1 x
机动 目录 上页 下页 返回 结束
u v
2.将二重积分
∫∫ f ( x, y) dxdy 化为二次积分:
D
(1) D 是由 y = 2, y = 2x 及 x = 0 所围成的区域; 解: 画D的图形: 1 2 ∫∫ f ( x, y)dxdy = ∫ dx∫ f ( x, y)dy
D
y
2D
0
D
x =1 1 x
(2) 解: 由已给积分次序知
0 ≤ x ≤1 D: 2 x ≤ y ≤1 ,
画出D的图形:
机动
目录
上页
下页
返回
结束
8. 计算下列二重积分
(1) I = ∫∫ yexy dxdy,其中D 是由直线 y = 2, x =1,
x = 2及曲线
重积分习题及答案
第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D 的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。
(3) 在极坐标系中,面积元素为 。
2.利用二重积分的性质,比较下列积分大小(1)()⎰⎰+D d y x σ2与()⎰⎰+D d y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。
(2)()⎰⎰+D d y x σ2与()⎰⎰+D d y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。
3.利用二重积分性质,估计积分()⎰⎰++=D d y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。
4.交换积分()⎰⎰--aa x ax x a dy y x f dx 2222,的积分次序。
5.交换积分()⎰⎰-2120,y dx y x f dy 的积分次序。
6.交换二次积分()⎰⎰+-a ay y a y x f dy 022,的积分次序。
7.计算()⎰⎰+D d y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。
8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。
9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。
10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。
11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。
12.计算⎰⎰+D y x d 22σ,其中D 是圆环域4122≤+≤y x 。
(整理)第九章重积分部分习题
精品文档精品文档二重积分的概念与性质四、设(,)f x y 为连续函数,求22221lim (,)x y I f x y d ρρσπρ+→+≤=⎰⎰.精品文档精品文档解:根据积分中值定理,则至少存在一点(,),D ξη∈使(,)(,)Df x y d f σξησ=⎰⎰,根据函数的连续性,所以精品文档精品文档二重积分的计算(1)一、计算下列二重积分: 1. ()sgn()Dx y x y dxdy +-⎰⎰,其中{(,)|01,01}.D x y x y =≤≤≤≤精品文档精品文档精品文档3.2||Dy x dxdy -⎰⎰,其中{(,)|01,01}.D x y x y =≤≤≤≤精品文档精品文档精品文档4.212y Dedxdy -⎰⎰,其中0,.D y y ==是由x=1,精品文档精品文档精品文档精品文档5. sin 0sin2(,)xx I dx f x y dy π-=⎰⎰精品文档精品文档精品文档精品文档三、设f (x ,y )在[a,b ]上连续, 证明:22[()]()().bbaaf x dx b a f x dx ≤-⎰⎰精品文档精品文档证明:令22()()()[()],()0,ttaaF t t a f x dx f x dx F a =--=⎰⎰22222()()()()2()()()2()()()[()()]0t taat t t taaaaF t f x dx t a f t f t f x dxf x dx f t f x dx f t dx f t f t dx '=+--=-+=-≥⎰⎰⎰⎰⎰⎰所以函数F(t)为单调不减函数,故结论成立。
精品文档精品文档二重积分的计算(2)三、求由平面,0z x y z =-=与柱面22x y ax +=所围成的立体的体积(a >0).精品文档精品文档解:设D 为xoy 坐标面的圆面22x y ax +=,则精品文档精品文档四、设闭区域22:,0,(,)D x y y x f x y +≤≥为D 上连续函数,且8(,)(,)Df x y f u v dudv π=⎰⎰, 求(,).f x y精品文档精品文档精品文档五、求22[1()]DI x yf x y dxdy =++⎰⎰, 其中D 是由3,1,1y x y x ===-所围成的,f是连续函数.精品文档精品文档解:因为被积函数在关于y 轴对称的区域D2上是奇函数,从而222[1()]0D x yf x y dxdy ++=⎰⎰在关于x 轴对称的区域D1上,122()=0D xyf x y dxdy +⎰⎰,精品文档精品文档二重积分的应用一、求由球面22224x y z a ++=和柱面222x y ax +=所围的且在柱面内部部分的体积.精品文档精品文档精品文档精品文档二、求由曲面z=和曲面22z x y=+所围成的立体的体积.精品文档精品文档精品文档精品文档三、求球面22225x y z ++=被平面3z =所分成的上半部分曲面的面积.精品文档精品文档精品文档精品文档四、求由z=224x y z+=所围立体的表面积.精品文档精品文档解:所围立体在xoy 坐标面的投影区域D 为228x y +≤,由曲面方程精品文档精品文档五、设有一半径为R的空球,另有一半径为r 的变球与空球相割,如果变球的球心在空球的表面上,问r 等于多少时,含在空球内变球的表面积最大?并求出最大表面积的值.精品文档精品文档解:变球与空球相交线为22222222()x y z Rx y z R r⎧++=⎪⎨++-=⎪⎩,它在xoy 面投影为:精品文档精品文档六、求坐标轴与26x y +=所围成三角形均匀薄片的重心.精品文档精品文档精品文档精品文档七、由螺线r θ=与直线2πθ=围成一平面薄片D ,面密度2(,)r r ρθ=,求它的质量.精品文档精品文档精品文档精品文档八、求均匀椭圆22221x y a b+≤关于直线y mx =的转动惯量,并求使转动惯量最小的m 值.转动惯量等于转动质量与其至转动中心距离的平方的积;刚体的转动惯量是由质量、质量分布、转轴位置三个因素决定的。
数学分析21.7n重积分(含习题及参考答案)
第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。
重积分习题(含答案)
x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
2 2 2 2
5.求由曲面 z x 2 y 及 z 6 2 x y 所围成的立体的体积. 6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z
x 2 y 2 与 z 1 x 2 y 2 所围成
注意到
2 0
cosd 0 ,因此
2
x z dv 0
d 4 d r 3 sin cos dr
0 0
1
2
4 0
sin cos d
sin 2
2 2
4 0
8
1 2 x y 0
xd z dx
1 2 0
1 2 x 0
1 1 2 x1 2 x y dy 2 x1 2 x dx 2 0 96
1
4.求锥面 z
x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
解 曲面 z x2 y 2 与 z22x 的交线在 xOy 面上的投影为 所求曲面在 xOy 在上的投影区域为 D{(x y)|x2y22x}
2
2
D
D
0
0
=3
2
0
d = 6
6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z
x 2 y 2 与 z 1 x 2 y 2 所围成
解:由于曲面 z
x 2 y 2 是一个圆锥面,曲面 z 1 x 2 y 2 是上半单位球面,
重积分习题与答案
第九章重积分A1、填空题1)交换下列二次积分的积分次序(1)______________________________________________ (2)______________________________________________ (3)_______________________________________________ (4)___________________________________________ (5)______________________________________________ (6)________________________________________2)积分的值等于__________________________________3)设,试利用二重积分的性质估计的值则。
4)设区域是有轴、轴与直线所围成,根据二重积分的性质,试比较积分与的大小________________________________5)设,则积分___________________________________________6)已知是由所围,按先后再的积分次序将化为累次积分,则7)设是由球面与锥面的围面,则三重积分在球面坐标系下的三次积分表达式为2、把下列积分化为极坐标形式,并计算积分值1)2)3、利用极坐标计算下列各题1),其中是由圆周及坐标轴所围成的在第一象限内的闭区域.2),其中是由圆周及坐标轴所围成的在第一象限的闭区域.3),其中是由圆周及直线所围成的在第一象限的闭区域.4、选用适当的坐标计算下列各题1),其中是直线及曲线所围成的闭区域.2),其中是顶点分别为和的梯形闭区域.3),其中是圆周所围成的闭区域.4),其中是圆环形闭区域.5、设平面薄片所占的闭区域由螺线上一段弧与直线所围成,它的面密度为,求这薄片的质量(图9-5).6、求平面,,,以及球心在原点、半径为的上半球面所围成的在第一卦限内的立体的体积(图9-6).7、设平面薄片所占的闭区域由直线,和轴所围成,它的面密度,求该薄片的质量.8、计算由四个平面,,,所围成的柱体被平面及截得的立体的体积.9、求由平面,,所围成的柱体被平面及抛物面截得的立体的体积.10、计算以面上的圆周围成的闭区域为底,而以曲面为顶的曲顶柱体的体积.11、化三重积分为三次积分,其中积分区域分别是1)由双曲抛物面及平面所围成的闭区域.2)由曲面及所围成的闭区域.12、设有一物体,占有空间闭区域,在点处的密度为,计算该物体的质量.13、计算,其中是由曲面,与平面和所围成的闭区域.14、计算,其中为球面及三个坐标面所围成的在第一卦限内的闭区域.15、算,其中是由锥面与平面所围成的闭区域.16、利用柱面坐标计算三重积分,其中是由曲面及所围成的闭区域.17、利用球面坐标计算三重积分,其中是由球面所围成的闭区域.18、选用适当的坐标计算下列三重积分1),其中为柱面及平面,,所围成的在第一卦限内的闭区域.2),其中是两个球和的公共部分.3),其中是由曲面及平面所围成的闭区域.4),其中闭区域由不等式,所确定.19、利用三重积分计算下列由曲面所围成的立体的体积1)及.2)及(含有轴的部分).20、球心在原点、半径为的球体,在其上任意一点的密度大小与这点到球心的距离成正比,求这球体的的质量.21、求球面含在圆柱面内部的那部分面积.22、求锥面被柱面所割下部分的曲面面积.23、求由抛物线及直线所围成的均匀薄片(面密度为常数)对于直线的转动惯量.24、设薄片所占的闭区域如下,求均匀薄片的质心是半椭圆形闭区域.25、设平面薄片所占的闭区域由抛物线及直线所围成,它在点处的面密度,求该薄片的质心.25、利用三重积分计算下列由曲面所围立体的质心(设密度)1),2),,26、求半径为高为的均匀圆柱体对于过中心而平行于母线的轴的转动惯量(设密度).B1、根据二重积分的性质,比较下列积分的大小1)与,其中积分区域是由圆周所围成.2)与,其中是三角形闭区域,三顶点分别为,.2、计算下列二重积分1),其中2),其中是由直线,及所围成的闭区域3),,其中3、化二重积分为而次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域1)由轴及半圆周所围成的闭区域2)环形闭区域4、求由曲面及所围成的立体的体积.5、计算,其中为平面,,,所围成的四面体.6、计算下列三重积分1),其中是两个球:和的公共部分.2),其中是由球面所围成的闭区域.3),其中是由平面上曲线绕轴旋转而成的曲面与平面所围成的闭区域.7、设球体占有闭区域,它在内部各点处的密度的大小等于该点到坐标原点的距离的平方,试求这球体的球心.8、一均匀物体(密度为常量)占有的闭区域由曲面和平面,所围成1)求物体的体积;2)求物体的质心;3)求物体关于轴的转动.C1、利用二重积分的性质,估计积分,其中是由圆周所围成.2、用二重积分计算立体的体积,其中由平面,,,和所围成.3、计算二重积分,其中是由直线,以及曲线所围成的平面区域.4、设在积分域上连续,更换二次积分的积分次序.5、计算二重积分,其中积分区域是由和确定.6、求二重积分的值,其中是由直线,及围成的平面区域.7、计算,其中由曲面及围成.8、计算,其中是由曲面与平面及所围成的闭区域.9、设有一半径为的球体,是此球表面上的一个定点,球体上任一点的密度与该点到的距离的平方成正比(比例常数),求球体的重心的位置.10、设有一高度为(为时间)的雪堆在融化过程中,其侧面满足方程(设长度单位为cm,时间单位为h),已知体积减少的速率与侧面积成正比例(比例系数),问高度为130(cm)的雪堆全部融化需多少时间?第九章重积分答案习题答案(A)1、填空题1)①②③④⑤⑥2)3)4)5)6)7)2、1)2)3、1)2)3)4、1)2)3)4)5、6、7、8、9、10、11、1)2)12、13、14、15、16、17、18、1)2)3)4)19、1)2)20、21、22、23、24、25、,26、27、(为圆柱体的质量)(B)1、 1)2)2、1)2)3)3、1),2)4、5、; 6、1)2)3); 7、8、1)2)3)(C)1、解:令,关键是求在上的最大值和最小值,在内部,,,因此在内部无驻点,最值点一定在边界上取得,作由方程组解得驻点为,,比较可得最小值,最大值为,而的面积为,由估值定理得。
数学分析21重积分总练习题
第二十一章 重积分总练习题1、求下列函数在所指定区域D 内的平均值: (1)f(x,y)=sin 2xcos 2y, D=[0,π]×[0,π];(2)f(x,y,z)=x 2+y 2+z 2, D={(x,y,z)|x 2+y 2+z 2≤x+y+z}. 解:(1)∵D 的面积为:π2, ∴平均值为:⎰⎰πππ02022cos sin 1ydy dx x =41. (2)由x 2+y 2+z 2=x+y+z 得(x-21)2+(y-21)2+(z-21)2=43, ∴V D =34π323⎪⎪⎭⎫ ⎝⎛=23π. 令x=21+rsin φcos θ, y=21+rsin φsin θ, z=21+rcos φ, 则平均值为:⎰⎰⎰++Ddxdydz z y x )(32222π=⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕϕθϕθϕϕθπ02302220sin )cos sin sin cos (sin 4332dr r r r d d =⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕθϕθϕϕϕθπ023043220)cos sin sin cos (sin 43sin 32dr r r r d d =⎰⎰⎥⎦⎤⎢⎣⎡+++ππϕϕϕθθϕϕθπ0220)cos sin )sin (cos sin 649sin 203332d d =⎰⎥⎦⎤⎢⎣⎡++πθθθππ20)sin (cos 1289103332d =53332ππ⋅=56.2、计算下列积分:(1)⎰⎰≤≤≤≤+2020][y x d y x σ;(2)⎰⎰≤++-42222)2sgn(y x d y x σ. 解:(1)如图,被积函数等价于[x+y]= ⎪⎪⎩⎪⎪⎨⎧∈∈∈∈4321),(3),(2),(1),(0D y x ,D y x ,D y x ,D y x ,,⎰⎰≤≤≤≤+2020][y x d y x σ=⎰⎰10D d σ+⎰⎰21D d σ+⎰⎰32D d σ+⎰⎰43D d σ=23+3+23=6. (2)如图被积函数为sgn(x 2-y 2+2)=⎩⎨⎧∈-∈321),(1),(1D D y x ,D y x , ,⎰⎰≤++-42222)2sgn(y x d y xσ=⎰⎰1D dxdy -⎰⎰2D dxdy -⎰⎰3D dxdy . 其中⎰⎰2D dxdy =⎰⎰-+-224211x x dy dx =⎰-+--1122)24(dx x x =32π-2ln 231+=⎰⎰3D dxdy . 又⎰⎰3D dxdy =4π-⎰⎰2D dxdy -⎰⎰3D dxdy ,∴⎰⎰≤++-42222)2sgn(y x d y x σ=4π-4 ⎝⎛32π-2ln ⎪⎪⎭⎫+231=34π+4ln )32(+.3、应用格林公式计算曲线积分:⎰-L ydx x dy xy 22, 其中 L 为上半圆周x 2+y 2=a 2从(a,0)到(-a,0)的一段. 解:由y ∂∂(-x 2y)=-x 2, x∂∂xy 2=y 2, 得 ⎰-Lydx x dy xy22=⎰⎰+Dd x y σ)(22=⎰⎰adr r d 030πθ=44a π.4、求⎰⎰≤+→222),(1lim2ρρσπρy x d y x f , 其中f(x,y)为连续函数.解:由中值定理知,存在(ξ,η), 使得⎰⎰≤+222),(ρσy x d y x f =f(ξ,η)πρ2, 其中(ξ,η)∈D={(x,y)|x 2+y 2≤ρ2}, ∴⎰⎰≤+→222),(1lim 2ρρσπρy x d y x f =22),(lim πρπρηξρf →=),(lim 0ηξρf →. 又f(x,y)为连续函数,∴⎰⎰≤+→222),(1lim2ρρσπρy x d y x f=f(0,0).5、求F ’(t),设(1)F(t)=⎰⎰≤≤≤≤ty t x ytxd e 1.01.02σ,(t>0);(2)F(t)=⎰⎰⎰≤++++2222)(222t z y x dV z y xf ,其中f(u)为可微函数;(3)F(t)=⎰⎰⎰≤≤≤≤≤≤tz t y t x dV xyz f 000)(,其中f(u)为可微函数.解:(1)令x=tu, y=tv, 则|J|=t 2, F(t)=t 2⎰⎰112dv e du v u.∴F ’(t)=2t ⎰⎰10102dv e du v u=t2F(t).(2)令x=rsin φcos θ, y=rsin φsin θ, z=rcos φ, 则F(t)=r d r f r d d t ⎰⎰⎰022020)(sin ϕϕθππ=4πr d r f r t⎰022)(, ∴F ’(t)=4πt 2f(t 2).(3)令x=tu, y=tv, z=tw, 则|J|=t 3,F(t)=⎰⎰⎰10331010)(dw uvw t f t dv du =⎰⎰⎰10310103)(dw uvw t f dv du t , ∴F ’(t)=⎰⎰⎰10310102)(3dw uvw t f dv du t +⎰⎰⎰'10310105)(3dw uvw t f uvw dv du t =)(3t F t+⎰⎰⎰≤≤≤≤≤≤'t z t y tx dV xyz f xyz t 000)(3.6、设f(t)=dx e t x ⎰-221, 求dt t tf ⎰10)(. 解:令dF(t)= 2x e-dx, 则f(t)=dx e t x ⎰-221=F(t 2)-F(1), f ’(t)=2tF ’(t 2)=2t 4t e -.dt t tf ⎰1)(=210)(21dt t f ⎰=21t 2f(t)|10-)(21102t df t ⎰=21f(1) -dt e t t ⎰-1034=-410441dt e t ⎰-=10441te -=41(e -1-1).7、证明:⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(, 其中V :222222cz b y a x ++≤1;Ω:x 2+y 2+z 2≤1.证法一:若令x=arsin φcos θ, y=brsin φsin θ, z=crcos φ. 则⎰⎰⎰VdV z y x f ),,(=r d cr br ar f abcr d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;若令x=rsin φcos θ, y=rsin φsin θ, r=rcos φ. 则⎰⎰⎰ΩΩd cz by ax f ),,(=r d cr br ar f r d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;∴⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.证法二:令x=au, y=bv, z=cw, 则|J|=abc,⎰⎰⎰Vdxdydz z y x f ),,(= abc ⎰⎰⎰≤++1222),,(w v u dudvdw cw bv au f = abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.8、试写出单位立方体为积分区域时,柱面坐标系和球面坐标系下的三重积分的上下限.解:在柱面坐标系下,用z=c 的平面截立方体,截口为正方形,∴单位立方体可表示为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤40cos 1010πθθr z 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤24sin 1010πθπθr z , ⎰⎰⎰11010),,(dzz y x f dy dx=⎰⎰⎰θπθθθcos 14010),sin ,cos (dr z r r rf d dz +⎰⎰⎰θππθθθsin 10241),sin ,cos (dr z r r rf d dz .在球面坐标系下,用θ=c 的平面截立方体,截口为长方形,∴单位立方体可表示为⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθcos 10cos tan 040r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθcos sin 102cos tan 40r arcc 和⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθπcos 10sin tan 024r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθπsin sin 102sin tan 24r arcc , ⎰⎰⎰1101),,(dzz y x f dy dx=⎰⎰⎰ϕπθϕθcos 140cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕππθϕθcos sin 10402cos tan ),,(drw v u kf d d arcc+⎰⎰⎰ϕππθϕθcos 1024cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕπππθϕθsin sin 10242cos tan ),,(dr w v u kf d d arcc ,其中k=r 2sin φ, u=rsin φcos θ, v=rsin φsin θ, w=rcos φ.9、证明:若函数f(x)和g(x)在[a,b]上可积, 则2)()(⎥⎦⎤⎢⎣⎡⎰b a dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.证:构造函数φ(t)=t2⎰badx x f )(2+2t ⎰b a dx x g x f )()(+⎰badxx g )(2=[⎰ba dx x f )(t 22+2tf(x)g(x)+]dx x g )(2=[]⎰+ba dx x g x f 2)()(t ≥0.∴函数φ(t)的图象与x 轴至多有一个交点,即△=2)()(2⎪⎭⎫ ⎝⎛⎰b a dx x g x f -4⎰⎰⋅ba b a dx x g dx x f )()(22≤0.∴2)()(⎥⎦⎤⎢⎣⎡⎰ba dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.注:当且仅当f(x)与g(x)线性相关时等号成立.10、设f(x,y)在[0,π]×[0,π]上连续,且恒取正值,试求:⎰⎰≤≤≤≤∞→ππσy x nn d y x f x00),(sin lim.解:∵f(x,y)在[0,π]×[0,π]上连续,∴存在最大值M 和最小值m ,即 0<m ≤f(x,y)≤M, (x,y)∈[0,π]×[0,π]. 从而⎰πdy m n≤⎰π),(dy y x f n≤⎰πdy M n→π (n →∞).∴⎰⎰≤≤≤≤∞→ππσy x n n d y x f x 00),(sin lim =⎰⎰∞→ππ00),(sin lim dy y x f xdx nn =2π.11、求由椭圆(a 1x+b 1y+c 1)2+(a 2x+b 2y+c 2)2=1所界面积, a 1b 2-a 2b 1≠0. 解1:令x=12212112)sin ()cos (b a b a c r b c r b ----θθ,y=12211221)cos ()sin (b a b a c r a c r a ----θθ,则J=122121122121122112122112sin cos cos sin cos sin sin cos b a b a r a r a b a b a a a b a b a r b r b b a b a b b -+-------θθθθθθθθ=1221b a b a r -.∴⎰⎰Dd σ=⎰⎰-⋅1122120dr b a b a rd πθ=1221b a b a -π. 解2:令u= a 1x+b 1y+c 1, v=a 2x+b 2y+c 2, 则),(),(v u y x ∂∂=),(),(/1y x v u ∂∂=12211b a b a -. ∴S=⎰⎰Dd σ=⎰⎰≤+-1122122v u b a b a dudv=1221b a b a -π.12、设△=333222111c b a c b a c b a ≠0, 求由平面a 1x+b 1y+c 1z=±h 1, a 2x+b 2y+c 2z=±h 2, a 3x+b 3y+c 3z=±h 3,所界平行六面体的体积.解:令u=a 1x+b 1y+c 1z, v=a 2x+b 2y+c 2z, w=a 3x+b 3y+c 3z, 则J=∆1. ∴V=⎰⎰⎰Ωdxdydz =⎰⎰⎰Ω∆dudvdw ||1=⎰⎰⎰---∆332211||1h h h h h h dw dv du =||8∆h 1h 2h 3.13、设有一质量分布不均匀的半圆弧x=rcos θ, y=rsin θ (0≤θ≤π), 其线密度为ρ=a θ(a 为常数), 求它对原点(0,0)处质量为m 的质点的引力. 解:r=(x,y), dF=k r r r ds m ⋅2ρ=km ⎪⎭⎫ ⎝⎛33,r y r x ρρds, (k 为引力常数) ∴dF x =3r x km ρds, dF y =3rykm ρds. F x =ds r x km L ⎰3ρ=θθθπd r ra km ⎰022cos =r amk 2-; F y =ds ry km L ⎰3ρ=θθθπd r a km ⎰0sin =r amkπ; ∴F=(F x ,F y )=⎪⎭⎫ ⎝⎛-r amk r amk π,2, 且|F|=24π+r amk .14、求螺旋线x=acost, y=asint, z=bt (0≤t ≤2π)对z 轴的转动惯量,设曲线的密度为1.解:ds=)()()(222t z t y t x '+'+'dt=22b a +dt. J z =ds y x L ⎰+)(22=dt b a a 22202+⎰π=2πa 222b a +.15、求摆线x=a(t-sint), y=a(1-cost) (0≤t ≤π)的质心,质量分布均匀. 解:由ds=)()(22t y t x '+'dt=t a t a 2222sin )cos 1(+-dt=2sin2ta dt ,得 ⎰L ds =2a dt t ⎰π02sin =4a;⎰L xds =2a 2dt t t t ⎰-π02sin )sin (=316a 2;∴⎰⎰=L L ds xds x /=34a .又⎰L yds =2a2dt t t ⎰-π2sin )cos 1(=316a 2;∴⎰⎰=L L ds yds y /=34a. ∴摆线质心的为⎪⎭⎫⎝⎛34,34a a .16、设u(x,y), v(x,y)是具有二阶连续偏导数的函数,证明:(1)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v σ2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D d y v y u x v x u σ+ds n uv L ∂∂⎰; (2)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n v u L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂, 其中D 为光滑曲线L 所围的平面区域,而n u ∂∂=),cos(∧∂∂x n x u +),sin(∧∂∂x n y u , n v ∂∂=),cos(∧∂∂x n xv+),sin(∧∂∂x n y v是u(x,y), v(x,y)沿曲线L 的外法线n 的方向导数. 证:在格林公式中,以P 代替Q ,-Q 代替P 得⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂D dxdy y Q x P =⎰-L Qdx Pdy =⎰∧∧+L ds x n Q x n P )],sin(),cos([. a 式(1)令P=vxu∂∂, Q=v y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u v 2222=⎰∧∧∂∂+∂∂L ds x n y uv x n x u v )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u v 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u v . b 式 (2)令P=uxu∂∂, Q=u y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u u 2222=⎰∧∧∂∂+∂∂L ds x n y uu x n x u u )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u u 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u u . c 式由c 式-b 式得:⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n vu L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂.17、求指数λ, 使得曲线积分k=dy r yx dx r y x y x y x λλ22),(),(0-⎰与路线无关(r 2=x 2+y 2), 并求k.解:设P=λr yx , Q=λr y x 22-, 则y P ∂∂=])([2222x y x y x r λλ++--, x Q ∂∂=-])(2[232222λλy x y x y x r ++-,由y P ∂∂=x Q ∂∂得 x y x yx λ++-)(222=λ23222)(2y x y x y x ++, 得λ=-1. 这时k 与路径无关,且P=22yx y x +, Q=2222y x y x +-. d(y y x 22+)=22yx y x+dx-2222y x y x +dy. ∴k=dy y x y xdx yx y xy x y x 2222),(),(220+-+⎰=()),(,2200y x y x y yx +=yy x 22++C.。
二重积分部分练习题
题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分Dxydxdy ⎰⎰ (其中D :0≤y ≤x 2,0≤x ≤1)的值为(A )16 (B )112 (C )12 (D )14答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2Dxy dxdy =⎰⎰=(A )0; (B )323 (C )643(D )256 答 ( )(3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分22(,)Df x y dxdy =⎰⎰__________122(,)D f x y dxdy ⎰⎰(A )2 (B )4 (C )8 (D )12答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分11(,)x dx f x y dy -+⎰(A)112111(,)(,)y dy f x y dx dy f x y dx ---+⎰⎰⎰(B)1101(,)y dy f x y dx --⎰⎰(C)11111(,)(,)y dy f x y dx f x y dx ---+⎰⎰⎰(D)21(,)dy f x y dx -⎰⎰答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)Df x y dxdy ⎰⎰可化累次积分为(A)201(,)x dx f x y dy -⎰(B)21(,)x dx f x y dy -⎰⎰(C)21(,)y dy f x y dx -⎰⎰(D)210(,)y dy f x y dx ⎰答 ( )(3分)[7]设f (x ,y )为连续函数,则二次积分21102(,)y dy f x y dx ⎰⎰可交换积分次序为(A)1010(,)(,)dx f x y dy f x y dy +⎰(B)112102(,)(,)(,)dx f x y dy f x y dy f x y dy ++⎰⎰⎰(C)1(,)dx f x y dy ⎰(D)222cos 0sin (cos ,sin )d f r r rdr πθθθθθ⎰⎰答 ( ) (3分)[8]设f (x ,y )为连续函数,则积分212201(,)(,)x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰可交换积分次序为 (A)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰(B)2122001(,)(,)x xdy f x y dx dy f x y dx -+⎰⎰⎰⎰(C)120(,)y dy f x y dx -⎰(D)2120(,)xxdy f x y dx -⎰⎰答 ( ) (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)Df x y dxdy ⎰⎰化成累次积分为(A)2cos 0(,)d F r dr πθθθ⎰⎰(B)2cos 0(,)d F r dr πθπθθ-⎰⎰(C)2cos 202(,)d F r dr πθπθθ-⎰⎰(D)2cos 202(,)d F r dr πθθθ⎰⎰其中F (r ,θ)=f (r cos θ,r sin θ)r .答 ( ) (3分)[10]若区域D 为x 2+y 2≤2x,则二重积分(Dx y +⎰⎰化成累次积分为(A)2cos 202(cos sin d πθπθθθ-+⎰⎰(B)2cos 30(cos sin )d r dr πθθθθ+⎰⎰(C)2cos 3202(cos sin )d r dr πθθθθ+⎰⎰(D)2cos 3222(cos sin )d r dr πθπθθθ-+⎰⎰答 ( ) (4分)[11]设777123[ln()],(),sin ()DDDI x y dxdy I x y dxdy I x y dxdy =+=+=+⎰⎰⎰⎰⎰⎰其中D 是由x =0,y =0,12x y +=,x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序是 (A)I 1<I 2<I 3; (B)I 3<I 2<I 1; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (5分)[12]设2211cos sin x y dxdyI x y +≤=++⎰⎰,则I 满足 (A)223I ≤≤ (B)23I ≤≤ (C)12D I ≤≤ (D)10I -≤≤答 ( ) (4分)[13]设12x y +=其中D 是由直线x =0,y =0,及x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序为(A)I 3<I 2<I 1; (B)I 1<I 2<I 3; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (3分)[14]设有界闭域D 1与D 2关于oy 轴对称,且D 1∩D 2=φ,f (x ,y )是定义在D 1∪D 2上的连续函数,则二重积分2(,)Df x y dxdy =⎰⎰(A)122(,)D f x y dxdy ⎰⎰(B)224(,)D f x y dxdy ⎰⎰(C)124(,)D f x y dxdy ⎰⎰(D)221(,)2D f x y dxdy ⎰⎰ 答 ( )(3分)[15]若区域D 为|x |≤1,|y |≤1,则cos()sin()xy Dxexy dxdy =⎰⎰(A) e; (B) e -1;(C) 0; (D)π.答 ( ) (4分)[16]设D :x 2+y 2≤a 2(a >0),当a =___________时,222.Da x y dxdy π--=(A)1答 ( ) 二、填空 (6小题,共21.0分)(4分)[1]设函数f (x ,y )在有界闭区域D 上有界,把D 任意分成n 个小区域Δσi (i =1,2,…,n ),在每一个小区域Δσi 任意选取一点(ξi ,ηi ),如果极限 01lim(,)niiii f λξησ→=∆∑(其中入是Δσi (i =1,2,…,n )的最大直径)存在,则称此极限值为______________的二重积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十、解答下列各题
4
f
(r 2
sin 2
ϕ
)r
2
sin
ϕ
d
r
+
2π
∫
d
θ
2
∫
d
ϕ
sin2
∫
ϕ
f
(r 2 sin2 ϕ)r 2
sinϕ d r
10
00
0
0π
0
4
七、解答下列各题
八、解答下列各题 Ω:0≤z≤1;0≤x≤y;0≤y≤1.
九、解答下列各题
亦可用柱面坐标解出如下:
十、解答下列各题
原式=
10
十一、解答下列各题
2
十二、解答下列各题
重积分部分练习题答案
一、单项选择题
1、
B.
2、
B.
3、
C.
4、
B.
5、
A.
6、
答D
7、
答 (B)
二、填空题
1、
函数 f(x,y)在 D 上
2、
3、
I=24
4、
π
5、
三、解答下列各题
原式=
10
四、解答下列各题
五、解答下列各题 答:
1
六、解答下列各题
π
1
π cosϕ
I
=
2π 4 cosϕ
∫ dθ ∫dϕ ∫
十三、解答下列各题 十四、解答下列各题 十五、解答下列各题 ( 本 大 题2分 )
十六、解答下列各题 F′(u)=32πu2ef(2u)
3
十七、解答下列各题 十八、解答下列各题
十九、解答下列各题 证:作 g(x,y,z)=
由此 g(x,y,z)≤g f(x+y+z-1)≤
,其值为(x,y,z)到平面 x+y+z-1=0 的有向距离 或