卡尔曼滤波器及其简matlab仿真.
matlab 自适应卡尔曼滤波
matlab 自适应卡尔曼滤波自适应卡尔曼滤波是一种基于卡尔曼滤波算法的扩展,用于跟踪非线性系统的状态。
在传统的卡尔曼滤波中,假设系统是线性的,并且系统的噪声和测量噪声是已知的。
然而,在实际应用中,往往会遇到非线性系统或未知的噪声情况,这就需要使用自适应卡尔曼滤波方法来处理。
自适应卡尔曼滤波的基本思想是通过一种递归算法,根据系统的状态和测量值的变化来调整卡尔曼滤波的参数。
具体步骤如下:1. 初始化卡尔曼滤波模型的参数,包括状态向量、状态转移矩阵、测量矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。
2. 根据当前的测量值和状态向量,计算预测的状态向量和状态转移矩阵。
3. 通过当前的测量值和预测的状态向量,计算卡尔曼增益。
4. 更新状态向量和状态协方差矩阵。
5. 根据更新后的状态向量,重新计算过程噪声协方差矩阵和测量噪声协方差矩阵。
6. 重复步骤2到5,直到滤波结束。
自适应卡尔曼滤波的关键在于如何根据当前的测量值和状态向量来调整滤波模型的参数,以适应实际系统的变化。
常见的自适应卡尔曼滤波算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波等。
在MATLAB中,可以使用现有的工具箱或编写自己的函数来实现自适应卡尔曼滤波。
MATLAB提供了kalmanfilt函数用于实现标准的卡尔曼滤波,同时也可以根据需要自定义滤波模型和参数。
它还提供了ekf, ukf和pf函数分别用于实现扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波算法。
下面是一个简单的MATLAB示例,演示了如何使用kalmanfilt函数实现自适应卡尔曼滤波:matlab% 定义系统的状态转移矩阵和测量矩阵A = [1 0.1; 0 1];C = [1 0];% 定义过程噪声协方差矩阵和测量噪声协方差矩阵Q = [0.01 0; 0 0.01];R = 0.1;% 创建kalman滤波器对象kf = kalmanfilt(A, C, Q, R);% 初始化状态向量和状态协方差矩阵x0 = [0; 0];P0 = eye(2);% 生成模拟数据N = 100;x_true = zeros(2, N);y = zeros(1, N);for k = 1:Nx_true(:, k) = A * x_true(:, k-1) + sqrtm(Q) * randn(2, 1);y(k) = C * x_true(:, k) + sqrt(R) * randn(1);end% 使用kalman滤波器滤波数据x_est = zeros(2, N);for k = 1:Nx_est(:, k) = kf(y(k));end% 绘制真实值和估计值的对比图figure;hold on;plot(1:N, x_true(1, :), 'b-', 'LineWidth', 2);plot(1:N, x_true(2, :), 'r-', 'LineWidth', 2);plot(1:N, x_est(1, :), 'k', 'LineWidth', 2);plot(1:N, x_est(2, :), 'm', 'LineWidth', 2);legend('True x1', 'True x2', 'Estimate x1', 'Estimate x2');hold off;以上示例中,定义了一个二维状态向量和一个一维测量向量,并根据这两个向量构建了卡尔曼滤波模型的参数。
自适应卡尔曼滤波matlab
自适应卡尔曼滤波matlab自适应卡尔曼滤波(Adaptive Kalman Filtering)是一种常用的估计和滤波技术,常用于处理不确定性和噪声存在的系统。
在这篇文章中,我将详细介绍自适应卡尔曼滤波的原理和应用,并探讨如何在MATLAB中实现该算法。
自适应卡尔曼滤波是卡尔曼滤波器的一种扩展形式,它通过动态调整滤波器的参数,以适应不断变化的系统条件和噪声水平。
与传统的卡尔曼滤波相比,自适应卡尔曼滤波具有更好的鲁棒性和适应性。
自适应卡尔曼滤波的关键思想是根据观测数据的特点动态调整系统模型的参数。
在传统的卡尔曼滤波中,系统模型的参数通常是固定的,但在实际应用中,系统的动态特性和外部环境的变化可能导致模型参数的不确定性。
自适应卡尔曼滤波通过监测观测数据的统计特性,自动调整系统模型的参数,以提高滤波器的性能。
在MATLAB中实现自适应卡尔曼滤波可以分为以下几个步骤:1. 定义系统模型:首先需要定义系统的状态变量、测量变量以及系统的状态转移方程和测量方程。
这些方程描述了系统的动态特性和观测模型。
2. 初始化滤波器:在开始滤波之前,需要初始化滤波器的状态向量和协方差矩阵。
状态向量表示系统的状态变量,协方差矩阵表示对状态变量估计的不确定性。
3. 预测步骤:根据系统的状态转移方程和当前的状态估计,进行状态的预测。
预测的结果是对系统下一时刻状态的估计。
4. 更新步骤:根据测量方程和当前的观测值,更新状态估计和协方差矩阵。
更新的结果是对系统当前状态的更准确估计。
5. 自适应调整:根据观测数据的统计特性,自适应地调整滤波器的参数。
这个步骤是自适应卡尔曼滤波与传统卡尔曼滤波的主要区别之一。
自适应卡尔曼滤波在许多领域都有广泛的应用。
例如,在目标跟踪中,通过自适应调整滤波器的参数,可以更好地适应目标运动的变化和观测噪声的不确定性。
在信号处理中,自适应卡尔曼滤波可以用于去除信号中的噪声和干扰,提高信号的质量。
自适应卡尔曼滤波是一种强大的估计和滤波技术,能够有效处理不确定性和噪声存在的系统。
一维卡尔曼滤波matlab
一维卡尔曼滤波器在MATLAB中的实现主要涉及以下步骤:
1. 初始化:设置初始状态和协方差矩阵。
2. 预测:根据上一状态的值,预测下一状态的值。
3. 更新:根据新的测量值,更新对下一状态的估计。
下面是一个简单的一维卡尔曼滤波器的MATLAB实现示例:
```matlab
function [x, P] = simpleKalman(x, P, A, Q, B, U, H, R, z) 预测阶段
x = A*x + B*U; 状态预测
P = A*P*A' + Q; 协方差矩阵预测
更新阶段
K = P*H'/(H*P*H' + R); 卡尔曼增益
x = x + K*(z - H*x); 状态更新
P = (eye(size(P,1)) - K*H)*P; 协方差矩阵更新
end
```
在这个函数中,输入参数`x`是状态估计向量,`P`是状态估计协方
差矩阵,`A`是状态转移矩阵,`Q`是过程噪声协方差矩阵,`B`是控制输入矩阵,`U`是控制向量,`H`是观察矩阵,`R`是观察噪声协方差矩阵,`z`是观察向量。
输出参数`x`和`P`分别是更新后的状态估计向量和协方差矩阵。
注意:这只是一个简单的示例,实际应用中需要根据具体的问题进行适当的修改和优化。
卡尔曼滤波 正弦函数 matlab
一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。
它是由朗迪·卡尔曼在1960年提出的。
卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。
二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。
这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。
2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。
这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。
三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。
在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。
四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。
在matlab中,可以很方便地实现和应用卡尔曼滤波算法。
1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。
通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。
2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。
首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。
然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。
3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。
通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。
五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。
卡尔曼滤波原理及应用matlab仿真
卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。
它是一种递归算法,适用于线性以及线性化的系统。
卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。
卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。
估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。
通过不断迭代的过程,最终得到最优的状态估计值。
卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。
在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。
Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。
Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。
通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。
在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。
因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。
2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。
3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。
4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。
总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。
通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。
在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
维纳、卡尔曼滤波简介及MATLAB实现
现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。
因此,维纳滤波在实际问题中应用不多。
下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。
卡尔曼滤波的仿真实现
卡尔曼滤波的仿真实现以下是一个卡尔曼滤波的仿真实现过程。
1.定义系统模型:首先,需要定义系统的状态转移方程和观测方程。
系统状态转移方程描述了状态在时间上的演变关系,观测方程描述了测量值与系统状态之间的关系。
例如,考虑一个简单的一维恒定速度系统,状态转移方程可以定义为:x(k+1) = x(k) + v(k) * dt观测方程可以定义为:z(k)=x(k)+w(k)2.初始化滤波器参数:卡尔曼滤波器需要初始化一些参数,包括状态的初始估计值和协方差矩阵。
初始估计值可以根据先验知识提供一个初始猜测,协方差矩阵则定义了该估计的方差。
在这个例子中,可以假设初始位置和速度均为0,并且初始协方差矩阵为一个较大的值。
3.实现卡尔曼滤波算法:在每个时间步骤中,进行以下步骤:-预测步骤:根据状态转移方程预测下一个状态的估计值和协方差矩阵:x_hat(k+1,k) = A * x_hat(k,k) + B * u(k)P(k+1,k)=A*P(k,k)*A^T+Q-更新步骤:根据观测方程更新状态的估计值和协方差矩阵:K(k+1)=P(k+1,k)*H^T*(H*P(k+1,k)*H^T+R)^(-1)x_hat(k+1,k+1) = x_hat(k+1,k) + K(k+1) * (z(k+1) - H *x_hat(k+1,k))P(k+1,k+1)=(I-K(k+1)*H)*P(k+1,k)其中,A和B是状态转移方程的系数矩阵,u(k)是系统的外部输入,Q是过程噪声的协方差矩阵,H是观测方程的系数矩阵,R是观测噪声的协方差矩阵。
4.生成噪声:为了模拟真实的情况,在每个时间步骤中,生成过程噪声和观测噪声。
过程噪声可以使用正态分布随机数生成,观测噪声可以根据具体应用生成。
5.执行仿真:在每个时间步骤中,首先根据当前状态和输入生成观测值。
然后,根据观测值和卡尔曼滤波算法更新状态的估计值和协方差矩阵。
最后,记录每个时间步骤下的估计状态和真实状态,并计算估计状态与真实状态之间的误差。
卡尔曼滤波 matlab算法
卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
卡尔曼滤波原理及应用(含MATLAB程序)
《卡尔曼滤波原理及应用-MATLAB仿真》原理+实例+程序+中文注释基本信息书名:卡尔曼滤波原理及应用:MATLAB仿真原价:39.80元作者:黄小平,王岩出版社:电子工业出版社出版日期:2015-06-01ISBN:9787121263101字数:页码:188版次:1装帧:平装开本:16开商品重量:0.4kg内容简介本书主要介绍数字信号处理中的Kalman滤波算法及在相关领域应用的相关内容。
全书共7章组成。
第1章为绪论。
第2章介绍MATLAB 算法仿真的编程基础,只有掌握一定的编程能力,才能快捷高效地仿真算法。
第3章介绍线性Kalman滤波,它是经典的Kalman滤波算法,也是其他线性或非线性Kalman滤波算法的源头,如信息卡尔曼滤波、扩展卡尔曼滤波等,都是以经典的线性Kaman滤波为蓝本的。
第4章讨论扩展卡尔曼滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。
第5章介绍UKF滤波算法,同时也给出其应用领域内的算法仿真实例。
第6章介绍了交互多模型卡尔曼滤波算法。
第7章介绍Simulink环境下,如何通过模块库和S函数构建Kalman滤波器,并给出了系统是线性和非线性两种情况的滤波器设计方法。
本书可以作为电子信息类各专业高年级本科生和硕士、博士研究生数字信号处理课程或者Kalman滤波原理的教材,也可以作为从事雷达、语音、图像等传感器数字信号处理的教师和科研人员的参考书。
目录第1章绪论t11.1 滤波的基础知识t11.2 Kalman滤波的背景t11.3 Kalman滤波的发展过程t2 1.4 Kalman滤波的应用领域t4第2章MATLAB仿真基础t62.1 MATLAB简介t62.1.1 MATLAB发展历史t6 2.1.2 MATLAB 7.1的系统简介t7 2.1.3 M文件编辑器的使用t10 2.2 数据类型和数组t122.2.1 数据类型概述t12 2.2.2 数组的创建t132.2.3 数组的属性t152.2.4 数组的操作t162.2.5 结构体和元胞数组t19 2.3 程序设计t212.3.1 条件语句t212.3.2 循环语句t232.3.3 函数t252.3.4 画图t272.4 小结t29第3章线性Kalman滤波t303.1 Kalman滤波原理t303.1.1 射影定理t303.1.2 Kalman滤波器t333.1.3 Kalman滤波的参数处理t373.2 Kalman滤波在温度测量中的应用t393.2.1 原理介绍t393.2.2 MATLAB仿真程序t423.3 Kalman滤波在自由落体运动目标跟踪中的应用t44 3.3.1 状态方程的建立t443.3.2 MATLAB仿真程序t473.4 Kalman滤波在船舶GPS导航定位系统中的应用t50 3.4.1 原理介绍t503.4.2 MATLAB仿真程序t533.5 Kalman滤波在石油地震勘探中的应用t55 3.5.1 石油地震勘探白噪声反卷积滤波原理t55 3.5.2 石油地震勘探白噪声反卷积滤波仿真实现t57 3.5.3 MATLAB仿真程序t583.6 Kalman滤波在视频图像目标跟踪中的应用t60 3.6.1 视频图像处理的基本方法t613.6.2 Kalman滤波对自由下落的皮球跟踪应用t683.6.3 目标检测MATLAB程序t703.6.4 Kalman滤波视频跟踪MATLAB程序t72第4章扩展Kalman滤波t774.1 扩展Kalman滤波原理t774.1.1 局部线性化t774.1.2 线性Kalman滤波t794.2 简单非线性系统的扩展Kalman滤波器设计t80 4.2.1 原理介绍t804.2.2 标量非线性系统EKF的MATLAB程序t83 4.3 EKF在目标跟踪中的应用t844.3.1 目标跟踪数学建模t844.3.2 基于观测距离的EKF目标跟踪算法t85 4.3.3 基于距离的目标跟踪算法MATLAB程序t87 4.3.4 基于EKF的纯方位目标跟踪算法t89 4.3.5 纯方位目标跟踪算法MATLAB程序t91 4.4 EKF在纯方位寻的导弹制导中的应用t94 4.4.1 三维寻的制导系统t944.4.2 EKF在寻的制导问题中的算法分析t96 4.4.3 仿真结果t974.4.4 寻的制导MATLAB程序t99第5章无迹Kalman滤波t1035.1 无迹Kalman滤波原理t1035.1.1 无迹变换t1035.1.2 无迹Kalman滤波算法实现t1055.2 无迹Kalman滤波在单观测站目标跟踪中的应用t107 5.2.1 原理介绍t1075.2.2 仿真程序t1085.3 UKF在匀加速度直线运动目标跟踪中的应用t111 5.3.1 原理介绍t1115.3.2 仿真程序t1135.4 UKF与EKF算法的应用比较t116第6章交互多模型Kalman滤波t1196.1 交互多模型Kalman滤波原理t1196.2 交互多模型Kalman滤波在目标跟踪中的应用t122 6.2.1 问题描述t1226.2.2 IMM滤波器设计t1236.2.3 仿真分析t1246.2.4 IMM Kalman滤波算法MATLAB仿真程序t126第7章Kalman滤波的Simulink仿真t1327.1 Simulink概述t1327.1.1 Simulink启动t1327.1.2 Simulink仿真设置t1347.1.3 Simulink模块库简介t1397.2 S函数t1437.2.1 S函数原理t1437.2.2 S函数的控制流程t1477.3 线性Kalman的Simulink仿真t1487.3.1 一维数据的Kalman滤波处理t148 7.3.2 状态方程和观测方程的Simulink建模t154 7.3.3 基于S函数的Kalman滤波器设计t160 7.4 非线性Kalman滤波t1677.4.1 基于Simulink的EKF滤波器设计t167 7.4.2 基于Simulink的UKF滤波器设计t174 7.5 小结t179书中部分内容截图完整版程序请看书中,此为部分截图(下同)。
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
卡尔曼滤波简介及仿真分析
卡尔曼滤波简介及仿真分析摘要本文简介了卡尔曼滤波的基本原理,在仿真条件下,用Matlab对滤波原理进行了仿真。
结果表明,卡尔曼滤波算法可以减小观测数据的误差。
关键词卡尔曼滤波;matlab;仿真1 基本原理卡尔曼滤波是基于状态空间方法的一套递推滤波算法,在状态空间方法中,引入了状态变量的概念。
在此,引入离散控制过程的控制系统,该系统用线性随机微分方程来描述:x(k)= Ax(k-1)+ Bu(k)+ w(k)(1)系统的测量值:z(k)= Hx(k)+ v(k)(2)上两式中,x(k)是k时刻的系统状态,u(k)是k时刻对系统的控制量。
A和B是系统参数。
z(k)是k时刻的测量值,H是测量系统的参数。
w(k)和v(k)分别表示过程和测量的噪声,在此假设成彼此独立的高斯白噪声,他们的协方差矩阵是Q和R。
下面结合式(1)、(2)协方差矩阵估算系统输出。
假设现在系统状态是k,根据系统模型,可以基于系统上一状态而预测现在状态:x(k|k-1)=Ax(k-1|k-1)+Bu(k)+w(k )(3)式(3)中,x(k|k-1)是利用上一状态预测结果,x(k-1|k-1)是上一状态结果,u(k)为现在状态控制量。
用P表示协方差:P(k|k-1)= AP(k-1|k-1)A’+Q (4)式(4)中,P(k|k-1)是X(k|k-1)对应的协方差矩阵,P(k-1|k-1)是X (k-1|k-1)對应的协方差矩阵,A’表示A的转置矩阵,Q是系统过程的协方差矩阵。
式(3),(4)是卡尔曼滤波器前两个式子,是对系统的预测。
结合预测值和测量值,可得到现在状态x(k|k)的估,也可以理解成此刻的观测值z(k)是可以比较多地“被信任”的,特别地,lim R→0 Kk=H’;当P(k│k-1)趋近于0时,加权因子K(k)使得x(k|k)估算值中残余占的比例轻,也可以理解成,此刻的观测值z(k)是可以比较少地“被信任”的,特别地,lim P→0 Kk=0。
卡尔曼滤波器及matlab代码.
信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702学号:2007302171姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。
由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。
例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。
发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。
而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。
接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。
随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。
2.维纳最速下降算法滤波器2.1 最速下降算法的基本思想考虑一个代价函数J(w),它是某个未知向量w的连续可微分函数。
函数J(w)将w的元素映射为实数。
这里,我们要寻找一个最优解w。
使它满足如下条件J(w0)≤J(w)(2.1)这也是无约束最优化的数学表示。
特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想w(0)出发,产生一系列权向量w(1),w(2),⋯,使得代价函数J(w)在算法的每一次迭代都是下降的,即J(w(n+1))<J(w(n))其中w(n)是权向量的过去值,而w(n+1)是其更新值。
我们希望算法最终收敛到最优值w0。
迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。
卡尔曼滤波原理及应用-matlab仿真代码
一、概述在信号处理和控制系统中,滤波是一种重要的技术手段。
卡尔曼滤波作为一种优秀的滤波算法,在众多领域中得到了广泛的应用。
其原理简单而高效,能够很好地处理系统的状态估计和信号滤波问题。
本文将对卡尔曼滤波的原理及其在matlab中的仿真代码进行介绍,以期为相关领域的研究者和工程师提供一些参考和帮助。
二、卡尔曼滤波原理1.卡尔曼滤波的基本思想卡尔曼滤波是一种递归自适应的滤波算法,其基本思想是利用系统的动态模型和实际测量值来进行状态估计。
在每次测量值到来时,根据当前的状态估计值和测量值,通过递推的方式得到下一时刻的状态估计值,从而实现动态的状态估计和信号滤波。
2.卡尔曼滤波的数学模型假设系统的状态方程和观测方程分别为:状态方程:x(k+1) = Ax(k) + Bu(k) + w(k)观测方程:y(k) = Cx(k) + v(k)其中,x(k)为系统的状态向量,u(k)为系统的输入向量,w(k)和v(k)分别为状态方程和观测方程的噪声向量。
A、B、C为系统的参数矩阵。
3.卡尔曼滤波的步骤卡尔曼滤波的具体步骤如下:(1)初始化首先对系统的状态向量和协方差矩阵进行初始化,即给定初始的状态估计值和误差协方差矩阵。
(2)预测根据系统的状态方程,利用上一时刻的状态估计值和协方差矩阵进行状态的预测,得到状态的先验估计值和先验协方差矩阵。
(3)更新利用当前时刻的观测值和预测得到的先验估计值,通过卡尔曼增益计算出状态的后验估计值和后验协方差矩阵,从而完成状态的更新。
三、卡尔曼滤波在matlab中的仿真代码下面是卡尔曼滤波在matlab中的仿真代码,以一维线性动态系统为例进行演示。
定义系统参数A = 1; 状态转移矩阵C = 1; 观测矩阵Q = 0.1; 状态方程噪声方差R = 1; 观测噪声方差x0 = 0; 初始状态估计值P0 = 1; 初始状态估计误差协方差生成系统数据T = 100; 时间步数x_true = zeros(T, 1); 真实状态值y = zeros(T, 1); 观测值x_est = zeros(T, 1); 状态估计值P = zeros(T, 1); 状态估计误差协方差初始化x_est(1) = x0;P(1) = P0;模拟系统动态for k = 2:Tx_true(k) = A * x_true(k-1) + sqrt(Q) * randn(); 生成真实状态值y(k) = C * x_true(k) + sqrt(R) * randn(); 生成观测值预测x_pred = A * x_est(k-1);P_pred = A * P(k-1) * A' + Q;更新K = P_pred * C' / (C * P_pred * C' + R);x_est(k) = x_pred + K * (y(k) - C * x_pred);P(k) = (1 - K * C) * P_pred;end绘制结果figure;plot(1:T, x_true, 'b', 1:T, y, 'r', 1:T, x_est, 'g');legend('真实状态值', '观测值', '状态估计值');通过上面的matlab代码可以实现一维线性动态系统的状态估计和滤波,并且绘制出真实状态值、观测值和状态估计值随时间变化的曲线。
卡尔曼滤波原理及应用matlab仿真第二版
《卡尔曼滤波原理及应用matlab仿真第二版》是一本深入探讨卡尔曼滤波原理和其在matlab中应用的专业书籍。
本书通过对卡尔曼滤波原理的详细剖析,加之丰富的matlab仿真实例,为读者提供了深入理解和应用卡尔曼滤波的宝贵资料。
本书的主要内容如下:一、卡尔曼滤波原理1. 基本概念卡尔曼滤波是一种线性最优滤波器,通过融合系统模型和实际观测值,可以对系统状态进行估计。
本书对卡尔曼滤波的基本概念进行了详细阐述,包括状态空间模型、观测模型、预测和更新等基本原理。
2. 数学推导为了帮助读者深入理解卡尔曼滤波原理,本书对卡尔曼滤波的数学推导进行了全面而系统的讲解,包括卡尔曼滤波的求解方程、卡尔曼增益的计算等内容。
3. 算法实现除了理论推导,本书还详细介绍了卡尔曼滤波算法的实现步骤,并结合matlab示例进行了实际演示,帮助读者具体了解卡尔曼滤波在实际应用中的具体操作。
二、matlab仿真应用1. matlab基础本书首先对matlab的基础知识进行了简要介绍,包括matlab的基本语法、矩阵运算、绘图函数等内容,为后续的卡尔曼滤波仿真应用做了铺垫。
2. 卡尔曼滤波仿真通过具体的matlab仿真实例,本书展示了卡尔曼滤波在不同应用场景下的具体应用,包括目标跟踪、航空航天领域、自动驾驶等领域,帮助读者从实际案例中更好地理解卡尔曼滤波的应用方法。
3. 仿真案例分析针对具体的仿真案例,本书进行了详细的分析和讨论,包括数据处理方法、滤波效果评估等内容,帮助读者深入理解卡尔曼滤波在实际应用中的具体操作步骤和注意事项。
三、实战案例与实践1. 行业案例分析本书结合实际行业案例,对卡尔曼滤波在航空航天、汽车驾驶辅助系统、无人机等领域的应用进行了案例分析,帮助读者更好地理解卡尔曼滤波在实际工程中的应用价值。
2. 实战技巧除了理论知识和仿真应用,本书还总结了在实际工程中使用卡尔曼滤波的一些实战技巧,包括滤波参数调整、模型选择、实时数据处理等方面的经验共享,为读者实际应用卡尔曼滤波提供了有益的参考。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab什么是卡尔曼滤波?卡尔曼滤波(Kalman Filter)是一种递归滤波算法,用于估计系统的状态变量,同时能够考虑到系统中的测量噪声和过程噪声。
它被广泛应用于信号处理、控制系统、导航系统等领域。
1. 卡尔曼滤波原理卡尔曼滤波的基本原理可以简单概括为:先预测系统的状态变量,再通过测量数据对预测结果进行校正,得到更准确的状态估计。
具体步骤如下:(1)初始化:设定系统的初始状态估计值和协方差矩阵。
(2)预测状态:基于系统的动态模型,通过前一时刻的状态估计值和控制输入(如果有),利用状态方程预测当前时刻的状态和协方差。
(3)状态更新:根据当前时刻的测量数据,通过测量方程计算状态的残差,然后利用卡尔曼增益对预测的状态估计进行校正,得到更新后的状态和协方差。
(4)返回第二步,重复进行预测和更新。
卡尔曼滤波的核心在于通过系统模型和测量数据不断进行预测和校正,利用预测的结果和测量数据之间的差异来修正状态估计,从而对真实状态进行有效的估计。
2. 卡尔曼滤波的应用卡尔曼滤波在实际应用中有广泛的领域,下面介绍一些常见的应用场景。
(1)信号处理:在信号处理领域,卡尔曼滤波可用于降噪、信号提取、信号预测等工作。
通过将测量噪声和过程噪声考虑进来,卡尔曼滤波能够对信号进行更精确的估计和分离。
(2)控制系统:在控制系统中,卡尔曼滤波可用于状态估计,即根据系统的输入和输出,通过滤波算法估计系统的状态变量。
这对于控制系统的稳定性和性能提升具有重要意义。
(3)导航系统:卡尔曼滤波在导航系统中被广泛应用。
由于导航系统通常包含多个传感器,每个传感器都有测量误差,卡尔曼滤波能够通过融合多个传感器的测量数据,获得更准确的位置和速度估计。
(4)图像处理:卡尔曼滤波也可用于图像处理中的目标跟踪和运动估计。
通过将目标的位置和速度作为状态变量,将图像的测量数据带入卡尔曼滤波算法,可以实现对目标运动的预测和跟踪。
3. 使用MATLAB实现卡尔曼滤波MATLAB是一种强大的数学建模和仿真工具,也可以用于实现卡尔曼滤波算法。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
基于MATLAB的卡尔曼滤波法参数辨识与仿真
基于MATLAB的卡尔曼滤波法参数辨识与仿真童余德周永余陈永冰周岗(海军工程大学电气与信息工程学院导航工程系,武汉 430033)摘要:本文介绍了基于MATLAB的使用卡尔曼滤波法进行参数辨识的设计与仿真方法。
简述了参数辨识的概念和卡尔曼滤波法应用于参数辨识的基本原理,结合实例与最小二乘法进行比较,给出了相应的仿真结果和分析。
关键词:Matlab 参数辨识 卡尔曼滤波法 最小二乘法中图分类号:TP311 TN713 文献标识码:A 文章编号:1003-4862 (2009) 08-0047-04Kalman Filter Parameter Identification andEmulate Based on MatlabTong Yude, Zhou Yongyu, Chen Yongbing, Zhou Gang(College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China)Abstract:This paper introduces the methods of design and simulation of parameter identification using kalman filter theory based on Matlab.This paper also introduces the concept of parameter identification and the basic principle of how to apply kalman filter theory to parameter identification. Finally, according to two examples, the methods of kalman filter theory and least squares used in parameter identification are compared and the simulation and results are also analyzed.Key words: Matlab; parameter identification; kalman filter theory; least squares1 引言系统辨识是根据系统的输入、输出数据辨识“灰色系统”或“黑色系统”。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波器及其简matlab仿真一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。
但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。
人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。
为了“估计”,要事先确定某种准则以评定估计的好坏程度。
1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。
卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。
其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。
算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。
对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。
它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。
卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。
二、卡尔曼滤波的原理卡尔曼滤波思想的来源是在海图作业中,航海长通常以前一时刻的船位为基准,根据航向、船速和海流等一系列因素推算下一个船位,但是他并不轻易认为船位就一定在推算船位上,还要选择适当的方法,通过仪器得到另一个推算船位。
观测和推算这两个船位一般不重合,航海长需要通过分析和判断选择一个可靠的船位,作为船舰当前的位置。
就是以现时刻的最佳估计为在前一时刻的最佳估计的基础上根据现时刻的观测值作线性修正。
卡尔曼滤波在数学上是一种线性最小方差统计估算方法,它是通过处理一系列带有误差的实际测量数据而得到物理参数的最佳估算。
其实质要解决的问题是要寻找在最小均方误差下K X 的估计值^K X 。
它的特点是可以用递推的方法计算K X ,其所需数据存储量较小,便于进行实时处理。
具体来说,卡尔曼滤波就是要用预测方程和测量方程对系统状态进行估计。
设动态系统的状态方程和测量方程分别为:11,11,----Γ+Φ=K K K K K K K W X XK K K K V X H Z +=上两式子中,K X 是k 时刻的系统状态,1,-ΦK K 和1,-ΓK K 是k-1时刻到k 时刻的状态转移矩阵,K Z 是k 时刻的测量值,K H 是测量系统的参数,K W 和K V 分别表示过程和测量的噪声,他们被假设成高斯白噪声。
如果被估计状态和观测量是满足上述第一式,系统过程噪声和观测噪声满足第二式的假设,k 时刻的观测K X 的估计^X 可按下述方程求解。
状态的一步预测: (1)均方误差进一步预测: (2) 滤波增益矩阵: (3) 滤波估计方程: (4) 均方误差更新矩阵(K 时刻的最优均方误差): (5) 上述就是卡尔曼滤波器的5条基本公式,只有给定初值0X 和0P ,根据k 时刻的观测值K Z ,就可以递推计算得k 时刻的状态估计^K X 。
/1,11ˆˆk k k k k x x φ---=*/1,11,1111ˆTTk k k k k k k k k k P P Q φφ-------=**+ΓΓ1/1/1ˆˆT T k k k k k k k k K P H H P H R ---⎡⎤=***+⎣⎦[]/1/1ˆˆk k k k k k k x x K Z H x--=+-*[]/1ˆk k k k P I K H P -=-**下面论述卡尔曼五个公式的推导过程:设系统1111,----Γ+Φ=k k k k k k x x ω (1)k k k k v x H z += k>=1 (2)其中, 动态噪声{k ω}与量测噪声{k v }是互不相关的零均值白噪声序列,对任意k,j 其基本统计性质为:E{k ω} = 0 Cov(k ω,j ω)=E[k ωTj ω]=kj k Q δE{k v } = 0 Cov(k v ,j v )=E[k v T j v ]=kj k R δ Cov(k ω,j v )=E[k ωTj v ]=0其中kj δ是克罗内克δ函数,即:又设初始状态的统计特征为 E[x 0]=Var x 0 = E{(x 0-)( x 0-)T }=P 0且x 0与{k ω},{k v }都不相关,即 Cov(0x ,k ω)=0 Cov(0x ,k v )=0在量测(k-1)次之后,已经有一个1/11ˆˆ---=k k k x x的估计值,要推测k 状态的状态值,因为E{1-k ω} = 0,可定义1/ˆ-k k x 为由k-1次量测值所估计值1ˆ-k x 的一步预测合理数值,即11,1/ˆˆ---Φ=k k k k k x x (3)同样,考虑到E{k v } = 0,因而量测的期望值为1ˆ-k k x H 也是合适的。
考虑到这两点以后利用第k 次的量测数据k z 来估计k x ˆ的递推形式,其应该为:)ˆ(ˆˆˆ1/1//---+==k k k k k k k k k k x H z K x x x (4)这里的k K 是一个待定的增益矩阵,其应使误差矩阵极小。
接下来推导误差方差公式。
定义k k k k k x xx -=--1/1/ˆ~ (5) k k k k k k x xx x -==//ˆ~~ (6) 其中“~”表示误差,式(5)表示先验(没有测量值)的误差,式(6)表示后验的误差(经测量值校正)。
则,根据式(6),将式(4),式(5)带入,得k k k k k k k k k k k k k k k k x k k k k k k k k k k k k k k k k k k v K x H K I x x H K x H K v K x H K x x x x H v x H K x x xx +-=---+++=--++=-=-----1/1/1/1/1/~)(~~)ˆ(ˆˆ~估计误差矩阵]})(~[])(~[~){(]~~[1/1/1/T k k T k k T k k k k T k T k T k k T k k k k k k T k k k K v H K I x v K K v H K I x x H K I E x x E P +-++--==---(7)定义]~~[1/1/1/T k k k k k k x x E P ---= (8)这就是一步预测误差矩阵。
由模型的统计性质可知E[k v T k v ]=k R (9) 而且,预测误差与测量噪声不相关,即:0]~[][1/1/==--T k k k T k k k x v E v x E (10) 将式(8),式(9),式(10)带入式(7),得T kk k T k k k k k k k K R K H K I P H K I P +--=-)()(1/ (11)现寻找一个k K 使式(11)最小。
将式(11)右端展开后,加减同一项1/11/1/)(----+k k k k Tk k k k T k k k P H R H P H H P再把有关k K 的项归在平方项里,即])([)]()([)(11/1/1/11/1/1/11/1/1/------------+-++-++-=k T k k k k T k k k k k k k k k k T k k k k T k k k k k k k k Tk k k k T k k k k k k R H P H H P K R H P H R H P H H P K P H R H P H H P P P(12)在式(12)中,欲使k P 极小,则11/1/)(---+=k T k k k k T k k k k R H P H H P K (13)此时1/1/11/1/1/][)(-------=+-=k k k k k k k k T k k k k T k k k k k k P H K I P H R H P H H P P P (14)这就是误差迭代公式。
由此可见,卡尔曼滤波的递推公式即可得到滤波的估计值,又可得到误差的方差阵。
由式(3)两边同时减去k x 得:k k k k k k k x x x x -Φ=---11,1/ˆ-ˆ (15)将式(1),式(5)带入式(15)1111,1/~~-----Γ-Φ=k k k k k k k x x ω因此T k k k T k k k k k k k Q P P 1111,11,1/-------ΓΓ+ΦΦ= (20)式(20)即一步预测估计误差矩阵。
到此,卡尔曼滤波公式推导完毕。
三、 卡尔曼滤波的实例——以温度检测滤波为例假设我们要研究一个房间的温度,这个房间的真实温度是25度,以一分钟为时间单位。
根据我们的经验判断,这个房间的温度是恒定的(A=1),但是对我们的经验不是完全相信,可能存在上下几度的偏差,我们把该偏差看做是高斯白噪声(系统噪声W )。
另外,我们在房间里放一个温度计(H=1),温度计也不准确,测量值会与实际值存在偏差,我们也把这偏差看做是高斯白噪声(测量噪声V )。
现在我们用卡尔曼滤波,过滤掉噪声,估算出房间的实际温度。
系统参数名称解释如下: xk系统状态 实际温度 φ系统矩阵 温度不变,为1 B 、uk 状态的控制量 无控制量,为0 Zk 观测值 温度计读数 H 观测矩阵 直接读出,为1wk 过程噪声 温度变化偏差,常量1e-1 vk测量噪声读数误差,常量1e-6假如我们要估算 2 时刻房间的实际温度值。
首先你要根据 1 时刻温度的估计值(就假设为1),来算出 2 时刻温度的估计值,即: =1 (*公式1),然后由给出的1时刻的均方差 (假设为10)进一步更新均方差,有 = 10.009(*公式2)。
有方差 之后,根据卡尔曼增益方程计算出增益: =0.925 (*公式3)。