第五章贝塞尔函数
贝塞尔函数详细介绍(全面)
y x 1J m (x) x J m (x)
y 1x 2 Jm (x) x 1Jm (x) x 1Jm (x) x 2 Jm(x)
x 2 Jm(x) 2x 1Jm (x) 1 x 2 Jm (x)
x 2 Jm(x) 2x 1Jm (x) 1x 2 Jm (x)
xnYn1(x)
d
dx
xnYn (x)
x
Y n n1
(
x)
Yn1 ( x)
Yn1 ( x)
2n x
Yn
(x)
Yn1(x) Yn1(x) 2Yn(x)
例1 求下列微积分
(1)
d dx
J0
(
x)
J 0
(x)
J1(x)
(2)
J0(x)
1 x
J0(x)
J1(x)
1 x
J1(x)
1 2
J
0
(x)
1 2 x
x 1Jm (x) x Jm (x)
2
2
m2 x2
x
J
m
(x)
x 2 Jm(x) x 1Jm (x) x2 2 m2 x 2 Jm (x)
x 2 x2 2 Jm(x) xJm (x) x2 2 m2 Jm (x)
x2 t 2Jm(t) tJm (t) t 2 m2 Jm (t)
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n
第五章-特殊函数(下)-贝塞尔函数
u |t 0 ( x, y ).
于是有
亥姆霍兹 方程
T a 2T 0,
Vxx V yy V 0.
T (t ) Ae
a 2 t
方程(4)的解为
.
由边界条件(2)有
V | x 2 y 2 R 2 T (t ) 0,
V | x 2 y 2 R 2 0.
4
这个问题归结为求解下列定解问题:
ut a 2 (u xx u yy ) ( x 2 y 2 R 2 ), u | x 2 y 2 R 2 0,
(1) (2) (3)
u |t 0 ( x, y ).
应用分离变量法求这个问题的解。为此,令 u( x, y, t ) V ( x, y)T (t ), 代入方程(1)得
12
x 2 y xy ( x 2 n 2 ) y 0.
y ( x) a k x s k
k 0
(12) (13)
(a0 0),
y a k ( s k ) x s k 1 ,
k 0
y a k ( s k 1)( s k ) x s k 2
k 0
k 2
13
x 2 y xy ( x 2 n 2 ) y 0.
y ( x) a k x s k
(12) (13)
a k ( s k ) 2 n 2 x s k a k 2 x s k 0,
k 0
k 2
15
y ( x) a k x s k
k 0
05第五章贝赛尔函数
西安理工大学应用数学系
2. Bessel函数-Bessel方程的解 函数- 函数 方程的解
用广义幂级数法求解该方程。由常微分方程理论, 用广义幂级数法求解该方程。由常微分方程理论,设方程的解 ∞ 为 y= a x s + k , ( a ≠ 0, s为常数 )
∑
k =0
k
0
各阶导数为
y ' = ∑ k = 0 ( s + k )ak x
ut = a2 (uxx + uyy ) 该问题的数学模型为: 该问题的数学模型为: u x2 +y2 =R2 = 0 u t=0 = ϕ(x, y)
用分离变量法求解。 用分离变量法求解。 令
x2 + y2 < R2, t > 0
u(x, y,t) =V(x, y)T(t) 代入方程得
9 ′ ′ ′ x J3/2 (x) + xJ3/2 (x) +(x − )J3/2 (x) = 0 4
2 2
证明: 证明:因
1 ′ = x J3/2(x) + x J3/2(x) ′ y 2 3 1 1 − − 1 2 ′ ′ ′ ′ y′ =− x J3/2(x) + x 2 J3/2(x) + x2 J3/2(x) 4
s +1
∞
x y " = ∑ k = 0 ( s + k )( s + k − 1)ak x s + k = a0 s( s − 1) x + a1 ( s + 1) sx
s
+ ∑ k = 2 ( s + k )( s + k − 1)ak x s + k
贝塞尔函数详细介绍(全面)
(−1) m x 2 n + 2 m −1 = x n J ( x) = x n ∑ n + 2 m−1 n −1 2 m!⋅Γ(n + m) m =0
∞
d x n J n ( x ) = x n J n −1 ( x ) dx d −n x J n ( x) = − x − n J n +1 ( x) dx
y = AJ n ( x) + BYn ( x)
A、B为任意常数, n为任意实数
数学物理方程与特殊函数
第5章贝塞尔函数
三 贝塞尔函数的性质
(−1) m x J n ( x) = ∑ ⋅ m = 0 m! Γ ( n + m + 1) 2
∞ n+2m
J α ( x) cos απ − J −α ( x) Yn ( x) = lim α →n sin απ
= −3J1 ( x) + 2 J1 ( x) + J1 ( x) − J 3 ( x) = − J 3 ( x)
数学物理方程与特殊函数
第5章贝塞尔函数
(4)
d n x J n ( x) = x n J n −1 ( x) dx = − xJ1 ( x ) + ∫ x −1 J1 ( x )dx 2 = − xJ1 ( x) + 2 ∫ J1 ( x)dx d −n x J n ( x) = − x − n J n +1 ( x) = − xJ1 ( x ) − 2 ∫ dJ 0 ( x) = − xJ1 ( x) − 2 J 0 ( x ) + C dx ′ (5) ∫ x 3 J 0 ( x )dx = ∫ x 2 dxJ1 ( x ) = x 3 J 1 ( x ) − 2 ∫ x 2 J1 ( x)dx J n −1 ( x) − J n +1 ( x) = 2 J n ( x) 2n J n −1 ( x) + J n +1 ( x) = J n ( x) 3 2 3 2 = x J 1 ( x ) − 2 ∫ dx J 2 ( x ) = x J 1 ( x ) − 2 x J 2 ( x ) + C x
第五章 贝塞尔函数 学习要求:
本章需掌握下列问题:
1、方程 x
2
1 2 y xy (x ) y 0 叫什么方程?写出它的有限解吗? 4
2、何谓 Bessel 函数 J n ( x) 的零点?它与 Bessel 方程的何种特征值问题有关?有 什么样的关系? 3、利用 Bessel 函数表达式推导出 Bessel 函数的递推公式?这些公式有什么作 用? 4、会用 Bessel 函数的性质做一些简单的证明题。 5、第二类 Bessel 函数是否也满足 Bessel 函数递推公式?为什么? 6、任意函数能用 Bessel 函数的级数表示吗? 7、Bessel 方程的通解是什么? 8、 能完整地写出在柱坐标中对 u u 0或 u 0 分离变量后所得到的在柱体 内的分离变量形式的解吗?
第五章 贝塞尔函数1
q 1 1 q 1 1 q2 p 1 p 1 p q2 p 1 p 1 = (1 x ) ( x x x ) dx = (1 x ) [ x x (1 x)]dx p 0 p 0 q 1 q 1 q 1 = B( p, q 1) B ( p, q ) B ( p, q ) B( p, q 1) p p p q 1
第五章 贝塞尔函数
一、贝塞尔方程的引出 二、贝塞尔方程的求解
三、贝塞尔函数的递推公式 四、函数展开贝塞尔函数的级数 五、 应用
§ 5.1 贝塞尔方程的引出
例:设有半径为R的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒 保持为零度,且初始温度为已知,求圆盘内的温度分布规律。
问题归结为求解下述定解问题:
2 2 u u u 2 2 2 2 a ( ), x y R ; t 2 2 x y 2 2 2 u ( x, y ), x y R ; t 0 u x2 y 2 R2 0;
2 q 1 ( 2 2 )
d d
令: = cos , sin ( 0, 0< 则: ( p ) ( q ) 4
0 0
2
), d d d d
2 0
2
2( p +q ) 1 2
e
sin 2 p 1 cos 2 q 1 d d
0
=2 e 2( p +q ) 1d 2 2 sin 2 p 1 cos 2 q 1 d
2 x
=
0
e x x ( p +q ) 1dxB( p, q) ( p q)B( p, q)
数理方程5 贝塞尔函数
r F r P
由温度是有限的,得:
P 0
2 P" P' 2 n 2 P 0
dP dP dr dP d dr d dr r d 2P d 2P 2 2 d dr
" 0 2 P" P' 2 P 0
" 0 2
本征值问题
n n2,n 0,1,2, 本征函数 a0 0 , n an cos n bn sin n
k 0
要使上式恒成立,各项 x的幂的系数必须全为0 k 0
代入方程确定系数 2 2
2
和 c : a k c n a0 0 c n
a0 0
22
d y dy 2 2 2 x x x n c 1 n 2a1 0 a1 0 yx 0 dx dx
m
n m n m 1 n 2 (n 1)(n 1) n m 1
因此
a2 m 1
m
1 2n 2 m m! n m 1
1
a2 m 1
m
1 2n 2 m m! n m 1
1 n2m x 2n 2 m m ! n m 1
方程转化为
2
r F"r r F ' r r n F r 0
2 2
这是n阶贝塞尔方程的标准形式.
5.2
贝塞尔方程的求解
用 x 表示自变量, y=y( x ) 表示未知函数, 则n阶贝塞 尔方程为 2
第五章-贝塞尔函数
第五章-贝塞尔函数n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=(5.4)22220V VV x y λ∂∂++=∂∂ (5.5)从(5.4)得2()a t T t Ae λ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。
5.4 贝塞尔函数的应用
0
rJ 0 r dr
1
( 0) 2 m
rJ 1 r 0
(0) m
1
( 0) m
代入 C m 得
( 0) J1 m ,
d xJ 1 ( x) xJ 0 ( x). dx
14
( 0) (m 1, 2, ) 是函数 J 0 ( x) 的正零点,试将 例 设 m ( 0) ( 0 , 1 ) J ( f ( x ) 1 函数 在 上展成 0 m x) 的傅里叶贝塞尔级数。 解 由(42)(43)式有
10
2 R R2 2 2 (n) (n) J ( r dr J ( ) n 1 m ) (41) n 1 m 0 2 2 ( n) R m k( n ) r J r n 0 rJ n R R dr 0, m k . (37) (n) R m (n) 0 rf (r ) J n R r dr m . r , (42) f (r ) Cm J n C R (43) m 2 m 1 R 2 (n) J n 1 ( m ) 2 事实上, k( n )
1 Cm J 0
m 1
( 0) m
R
(n) 2 m rJ n R
(42)式两边同乘 rJ n
r R
并对
r 从 0 到 R 积分得
k( n ) r J n R r dr.
R
0
k( n ) rf (r ) J n R
(n) R m r dr Cm 0 rJ n R m 1
贝塞尔函数
贝塞尔函数基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
数学物理方程课件第五章贝塞尔函数
(c 2 n2 )a0 xc (c 1)2 n2 a1xc1 (c k )2 n 2 ) ak ak2 xck 0
k 0
(c2 n2 )a0 0
(c 1)2 n2 a1 0 (c k)2 n2 ) ak ak2 0
c n c n
a1 0
a1 a3 a5.... 0
y
x2 y xy x2 n2 y 0, x R
y( R) 0, y(0)
n阶贝塞尔方程
数学物理方程与特殊函数
第5章贝塞尔函数
二 贝塞尔方程的求解
n阶贝塞尔方程 n任意实数或复数
x2 y xy x2 n2 y 0
假设 n 0
令:y xc (a0 a1x a2 x 2 ak x k ) ak xck k 0 (c k)(c k 1) (c k) (x2 n2 ) ak xck 0 k 0
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n
J
(x)
cos sin
J
(
x)
y AJn (x) BYn (x)
A、B为任意常数,
n为任意实数
0
数学物理方程与特殊函数
第5章贝塞尔函数
例3:将1在 0 x 1区间内展成
J
0
(
(0) i
x)
的级数形式
1
Ci
J
0
(
( i
0)
x)
第五章-贝塞尔函数讲解
2 sin x
x
J
1 2
x
2 cos x
x
1 0.8 0.6 0.4 0.2
J0 J5
-0.2 -0.4
2
4
6
8
10
5.1.2.虚宗量贝塞耳方程
n 阶虚宗量贝塞耳方程
x2
d 2R dx 2
x
dR dx
(x2
n2 )R
0
ix
2
d 2R
d 2
dR
d
( 2
m
1
J-n(x)称为-n阶第一类贝塞尔函数
(5.19)
Jn(x) 和J-n(x)线性无关,故贝塞尔方程(5.12)的通解可表 示为:
y x AJn x BJn x
(5.20)
令 A cot n , B csc n,则 (5.20)可写成
第二个线性 无关特解
2
ak
ak 2
0
由于 a0 0,可得 s1 n s2 n ,需要分别讨论:
(5.14) (5.15) (5.16)
情形1:n不为整数和半奇数,则s1-s2=2n也不为整数。取s1=n代 入(5.15)式得到a1=0,代入(5.16)式得到:
ak
ak 2
k 2n k
d dx
xn
Jn
x
xn
J n1
x
d dx
x
n
J
n
x
x
n
J
第五章 贝塞尔函数讲解
贝塞尔方程
(5.12)尔函数或柱函数 为二阶变系数常 微分方程,
x 2 y '' + xy ' + ( x 2 − n 2 ) y = 0
贝塞尔方程
(5.12)
求解贝塞尔方程(5.12),假设如下幂级数解 假设如下幂级数解:
y ( x ) = ∑ ak x
Vxx + Vyy + λV = 0 T ''+ λ a 2T = 0
Helmholtz方程
(5.5)
为了求Helmholtz方程 (5.5),可在极坐标中进行求解 方程 为了求 ,
∂ 2V 1 ∂V 1 ∂ 2V + 2 + λV = 0 2 + 2 r ∂r r ∂θ ∂r V r=R = 0
r F + rF + ( λ r − n ) F = 0
2 '' ' 2 2
F ( R) = 0
F ( 0) < ∞
令 x=
λ r ,记F(r)=y(x),则(5.11)转化为: F(r)=y(x), (5.11)转化为 转化为:
x 2 y '' + xy ' + ( x 2 − n 2 ) y = 0
第五章 贝塞尔函数
5.1 贝塞尔方程
在利用分离变量法求解其它偏微分方程的定解问题时, 在利用分离变量法求解其它偏微分方程的定解问题时,会导 出其它形式的常微分方程的边值问题, 出其它形式的常微分方程的边值问题,从而得到各种各样的坐标 函数---特殊函数。如贝塞尔函数、 ---特殊函数 函数---特殊函数。如贝塞尔函数、勒让德多项式等
贝塞尔函数详细介绍(全面)
y AJn (x) BYn (x)
A、B为任意常数, n为任意实数
三 贝塞尔函数的性质
J
n
(
x)
m0
(1) m!(n
m
m
1)
x 2
n2m
Yn
(x)
lim
n
J
(x)
cos sin
J
(x)
性质1 有界性
Jn (x)
性质2 奇偶性 当n为正整数时
Yn (0)
x 0 Yn (x)
(0) j
)
1 2
J 0 (i(0) x)
i 1
(0) i
J
1
(i(0)
)
d
dx
xnJn (x)
xn Jn1(x)
d
dx
xn J n (x)
x n J n1 (x)
J n1 (x) J n1 (x) 2J n (x) 2n
J n1 (x) J n12区间内展成
第五章 贝塞尔函数(bessel)
一 贝塞尔函数的引出
u(ut,a,02) 2u(a,2 ),2u2
1
u
1
2
2u
2
,
R,0 2 ,t 0 R,0 2
u(R, ,t) 0,
令: u(, ,t) V (, )T (t)
0 2 ,t 0
令: V (, ) ()( )
VT a22V T
J (n1) (x) 2
2
x
n
1 2
1
d
n cosx
x dx x
J
n
(x)
m0
(1) m m!(n m
1)
贝塞尔函数课件
3
正交性
贝塞尔函数之间具有正交性质,适合用于展开函数。
贝塞尔函数的计算方法
级数展开求解
可以使用贝塞尔函数的级数展开 式近似求解。
径向波动方程求解
使用贝塞尔函数表(示例)
贝塞尔函数是径向波动方程的解, 可用于求解相关问题。
通过查表,可以直接获取贝塞尔 函数的数值。
贝塞尔函数的在物理学中的应用
电磁场问题中的应用
贝塞尔函数用于描述电磁场分 布、辐射和散射等问题。
圆形共振问题中的应 用
贝塞尔函数用于解决圆形共振 腔中的电磁波问题。
量子力学中的应用
贝塞尔函数用于描述量子力学 中的球对称问题和径向波函数。
总结
在本课件中,我们介绍了贝塞尔函数的定义和基本类型,讨论了贝塞尔函数的性质和计算方法,以及它在物理 学中的应用。希望通过这些内容,您对贝塞尔函数有更全面的了解。
贝塞尔函数PPT课件
贝塞尔函数是一种数学函数,常用于解决各种科学领域中的物理和数学问题。 本课件将介绍贝塞尔函数的定义、类型、性质、计算方法以及在物理学中的 应用。
什么是贝塞尔函数
贝塞尔函数是一类特殊的数学函数,它是贝塞尔微分方程的解。它广泛应用 于物理学、工程学和数学等领域,例如波动理论、振动问题和量子力学。
下一步研究方向
贝塞尔函数作为一种重要的数学工具,在各个领域中仍有许多未解决的问题 和有待深入研究的方向。我们鼓励您继续探索和应用贝塞尔函数。
参考文献
1. Jiang, X., & Li, X. (2019). Applications of Bessel functions in physics. Physics Education, 54(6), 065010.
贝塞尔函数总结
篇一:贝塞尔函数的有关公式c.贝塞尔函数的有关公式贝塞尔方程的持解bp(z)为(柱)贝塞尔函数。
有第一类柱贝塞尔函数jp(z)p为整数n时,j?n=(?1) njn;p不为整数时,jp 与j?p线性无关。
第二类柱贝塞尔函数n p(z)(柱诺依曼函数)n为整数时n?n=(?1) nnn。
第三类柱贝塞尔函数hp(z) (柱汉开尔函数):第一类柱汉开尔函数 hp(1)(z)= jp(z)+j n p(z)第二类柱汉开尔函数 hp(2)(z)= jp(z)?j n p(z)大宗量z??小宗量z?,为欧拉常数见微波与光电子学中的电磁理论p668jn(z)的母函数和有关公式函数ez(t/2-1/2t)称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近展开成罗朗级数,可得到在上式中作代换,令t=ej?,t=?jej?等,可得又可得如z=x为实数贝塞尔函数的加法公式jn(z)的零点?nij’n(z)的零点?ni半整数阶贝塞尔函数jn+1/2(z)的零点?npjn+1/2(z)的零点?npd.朗斯基行列式及其它关系式e.修正贝塞尔函数有关公式贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程方程的两个线性无关的解为ip(z)=j?pjp(jz).称为第一类修正的柱贝塞尔函数。
kp(z)=(?/2)jp+1hp(1)(jz).称为第二类修正的柱贝塞尔函数。
篇二:贝塞尔函数第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
数学物理方程第五章_贝塞尔函数
y ( x) = ∑
式中, a 0 为任意常数.令
a0 =
1 2 Γ(n + 1)
n
根据 Γ 函数的性质,可得到关于系数的一个简洁的表达式
a2m
∞
( − 1) m = n+2m 2 m! Γ ( n + m + 1)
(n ≥ 0)
这样,我们得到了式(5.1.14)的一个特解
y1 ( x) = ∑
(−1) m x n+2m n+2m 2 ! Γ ( + + 1 ) m n m m =0
(−1) m J − N ( x) = ∑ − N + 2 m x − N +2m m!Γ(− N + m + 1) m =0 2
∞ m − N =l ∞
(−1) l + N = ∑ N + 2l x N + 2l (l + N )!Γ(l + 1) l =0 2
∞ l =0
=∑
(−1) l (−1) N x N + 2l N + 2l 2 (l + N )!l!
∑ k +1
k =0
∞
1
⎛ x ⎞ 1 Yn ( x) = J n ( x)⎜ ln + C ⎟ − π ⎝ 2 ⎠ π 2
2m
(n − m − 1)! ⎛ x ⎞ ⎜ ⎟ ∑ m! ⎝2⎠ m =0
∞
− n+2m
⎛ x⎞ (−1) m ⎜ ⎟ ∞ n + m −1 m −1 1 1 1 ⎞ ⎝2⎠ ⎛ − ∑ +∑ ⎜ ∑ ⎟ π m =0 m!(n + m)! ⎝ k =0 k + 1 k =0 k + 1 ⎠
第五章-贝塞尔函数讲解
Jn R 0
(5.34)
由于(5.34)式可知:当 取不同值时,Jn(x)有零值,即贝塞尔
函数的零点。
1. Jn(x)有无穷多个零点,关于原点对称分布。 2. Jn(x)的零点和Jn+1(x)的零点是彼此相间分布,且Jn(x)的零 点更靠近坐标原点。 3. 当x趋于无穷大时,Jn(x)两个零点之间的距离接近于π。
y1
x
Jn
x
1m
m0
2n2m
xn2m
m!n
m
1
(5.18)
Jn(x)称为n阶第一类贝塞尔函数
取s2=-n时:
a0
1
2n n
1
可以得到方程另一个特解
y2
x
Jn
x
1m
m0
2n2m
xn2m
m! n
在极坐标系中:
2u 1 u 1 2u
r
2
r
r
r2
2
0
u rr0 f
分离变量
u(r, ) R(r)( )
0 r r0
化简引入常量
R '' 1 R ' 1 R '' 0
r
r2
r2R '' rR ' R 0 '' 0
Jn
kn
R
r
dr
0
m k
三 贝塞耳函数的模
定义积分:
R 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222(0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+= (5.4)22220V VV x y λ∂∂++=∂∂ (5.5) 从(5.4)得2()a tT t Aeλ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。
为了求出这个方程满足条件2220x y R V+== (5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得22222110,,02, (5.7)0,02, (5.8)R V v VV R Vρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩ 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得()()0θμθ''Θ+Θ= (5.9)22()()()()0P P P ρρρρλρμρ'''++-= (5.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,,,n L L对应于2n n μ=,有0()2a θΘ=(为常数) ()cos sin ,(1,2,)n n n a n b n n θθθΘ=+=L以2n n μ=代入(5.10)得222()()()()0P P n P ρρρρλρρ'''++-= (5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。
若再作代换r =,并记()F r P=,则得222()()()()0r F r rF r r n F r '''++-=.这是n 阶贝塞尔方程最常见的形式。
由条件(5.8)及温度u 是有限的,分别可得()0(0)P R P =⎧⎪⎨<+∞⎪⎩(5.12) 因此,原定解问题的最后解决就归结为求贝塞尔方程(5.11)在条件(5.12)下的特征值与特征函数((5.12中第一个条件是在R ρ=处的第一类边界条件,第二个条件是在0ρ=处的自然边界条件,由于2()k ρρ=在0ρ=处为零,所以在这一点应加自然边界条件)。
在下一节先讨论方程(5.11)的解法,然后在§5.5中再回过头来讨论这个特征值问题。
§5.2 贝塞尔方程的求解在上一节中,从解决圆盘的瞬时温度分布问题引出了贝塞尔方程,本节来讨论这个方程的解法。
按惯例,仍以x 表示自变量,以y 表示未知函数,则n 阶贝塞尔方程为22222()0d y dyx x x n y dx dx++-= (5.13) 其中n 为任意实数或复数。
我们仅限于n 为任意实数,且由于方程中的系数出现2n 的项,所以在讨论时,不妨先假定0n ≥。
设方程(5.13)有一个级数解,其形式为20120()ckc k k k k y x a a x a x a x a x ∞+==+++++=∑L L ,00a ≠ (5.14)其中常数c 和(0,1,2,)k a k =L 可以通过把y 和它的导数,y y '''代入(5.13)来确定。
将(5.14)及其导数代入(5.13)后得220{[()(1)()()]}0c k k k c k c k c k xn a x ∞+=++-+++-=∑化简后写成22221220122()[(1)]{[()]}0cc c k k k k c n a x c n a xc k n a a x ∞++-=-++-++-+=∑要上式为恒等式,必须各个x 幂的系数全为零,从而得到下列各式:1°220()0a c n -=; 2°221[(1)]0a c n +-=;3°222[()]0(2,3,)k k c k n a a k -+-+==L 。
由1°得c n =±,代入2°得10a =。
先暂取c n =,代入3°得 4°2(2)k k a a k n k --=+。
因为10a =,由4°知13570a a a a =====L ,而246,,,a a a L 都可以用0a 表示,即22(22)a a n -=+,424(22)(24)a a n n =++g ,6246(22)(24)(26)a a n n n -=+++g g ,…202(1)2462(22)(24)(22)(1)2!(1)(2)()m m mm a a m n n n m a m n n n m =-+++-=+++g g L L L .由此知(5.14)的一般项为202(1)2!(1)(2)()m n mm a x m n n n m +-+++L0a 是一个任意常数,让0a 取一个确定的值,就得(5.13)得一个特解。
把0a 取作012(1)na n =Γ+这样选取0a 可使一般项系数中2的次数与x 的次数相同,并可以运用下列恒等式:()(1)(2)(1)(1)(1)n m n m n n n n m ++-++Γ+=Γ++L使分母简化,从而使(5.14)中一般项的系数变成221(1)2!(1)mm n m a m n m +=-Γ++ (5.15)这样就比较整齐、简单了。
以(5.15)代入(5.14)得到(5.13)的一个特解2120(1)(0)2!(1)n mmn m m x y n m n m +∞+==-≥Γ++∑用级数的比率判别法(或称达朗贝尔判别法)可以判定这个级数在整个数轴上收敛。
这个无穷级数所确定的函数,称为n 阶第一类贝塞尔函数。
记作220()(1)(0)2!(1)n mmn n m m x J x n m n m +∞+==-≥Γ++∑ (5.16)至此,就求出了贝塞尔方程的一个特解()n J x 。
当n 为正整数或零时,(1)()!n m n m Γ++=+,故有220()(1)(0,1,2,)2!()!n mmn n m m x J x n m n m +∞+==-=+∑L (5.17)取c n =-时,用同样的方法可得(5.13)的另一特解220()(1)(1,2,)2!(1)!n mmn n m m x J x n m n m -+∞--+==-≠Γ-++∑L (5.18)比较(5.16)式与(5.18)式可见,只要在(5.16)右端把n 换成n -,即可得到(5.18)式。
因此不论n 式正数还是负数,总可以用(5.16)统一地表达第一类贝塞尔函数。
当n 不为整数时,这两个特解()n J x 与()n J x -是线性无关的,由齐次线性常微分方程的通解的结构定理知道,(5.13)的通解为()()n n y AJ x BJ x -=+ (5.19)其中,A B 为两个任意常数。
当然,在n 不为整数的情况,方程(5.13)的通解除了可以写成(5.19)式以外还可以写成其它的形式,只要能够找到该方程另一个与()n J x 线性无关的特解,它与()n J x 就可构成(5.13)的通解,这样的特解是容易找到的。
例如,在(5.19)中取cot ,csc A n B n ππ==-,则得到(5.13)的一个特解()cot ()csc ()()cos ()()sin n n n n n Y x n J x n J x J x n J x n n ππππ--=--=≠整数(5.20) 显然,()n Y x 与()n J x 是线性无关的,因此,(5.13)的通解可以写成()()n n y AJ x BY x =+ (5.21)由(5.20)式所确定的函数()n Y x 称为第二类贝塞尔函数,或称Neumann 函数。
§5.3 当n 为整数时贝塞尔方程的通解上一节说明,当n 不为整数时,贝塞尔方程(5.13)的通解由(5.19)或(5.21)式确定,当n 为整数时,(5.13)的通解应该是什么样子呢?首先,我们证明当n 为整数时,()n J x 与()n J x -是线性相关的。
事实上,不妨设n 为正整数N (这不失一般性,因n 为负整数时,会得到同样的结果),这在(5.18)中,1(1)N m Γ-++当0,1,2,,(1)m N =-L 时均为零,这时级数从m N =起才开始出现非零项。
于是(5.18)可以写成222424()(1)2!(1)! (1){}2!2(1)!2(2)!2!(1)()N mmN n mm NN N N NN N N N N x J x m N m x x x N N N J x -+∞--+=++++=-Γ-++=--++++=-∑L即()N J x 与()N J x -线性相关,这时()N J x 与()N J x -已不能构成贝塞尔方程的通解了。