八年级上学期数学错题集

合集下载

人教版数学八年级上册易错题难题整理含答案+易错题及答案

人教版数学八年级上册易错题难题整理含答案+易错题及答案

人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。

改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。

5、正确说法的个数有(D)4个。

改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。

6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。

18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。

2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。

由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。

初二数学高频错题集(含答案)

初二数学高频错题集(含答案)

数学八年级高频错题集一、选择题(本大题共1小题,共3.0分)1.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)2.如果直线y=-2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .3.已知x+1x =√13,那么x-1x= ______ .4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为______.5.已知4y2+my+1是完全平方式,则常数m的值是______.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.7.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是______ .三、解答题(本大题共3小题,共24.0分)8.如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,如果点P,Q同时出发,用t(s)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,说明是否与t的大小有关.9.如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.10.若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x3项且含x项的系数是-3,求a和b的值.答案和解析1.【答案】A【解析】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有-a<b,即a>-b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选A.根据不等式的性质逐个判断即可求得答案.本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.2.【答案】±6【解析】解:当x=0时,y=b,当y=0时,x=,则根据三角形的面积公式:,解得b=±6.故答案为±6.先求出直线y=-2x+b与两坐标轴的交点,再根据三角形的面积公式列出关于b的方程,求出b的值即可.本题考查了一次函数图象上点的坐标特征,求出函数与x轴、y轴的交点是解题的关键.3.【答案】±3【解析】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+-2=(x-)2=9,∴x-=±3.故答案为:±3.直接利用完全平方公式得出x2+=11,进而得出x-的值.此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.4.【答案】2或√10【解析】【分析】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,.综上所述,BE的长为2或.故答案为2或.5.【答案】±4【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.【解答】解:∵4y2+my+1是完全平方式,∴m=±4,故答案为±46.【答案】10【解析】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7.【答案】(21008,0)【解析】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(-2,2),同理可知OB 4=4,B 4点坐标为(-4,0),B 5点坐标为(-4,-4),B 6点坐标为(0,-8),B 7(8,-8),B 8(16,0)B 9(16,16),B 10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252 ∴B 2016的纵横坐标符号与点B 8的相同,横坐标为正值,纵坐标是0, ∴B 2016的坐标为(21008,0).故答案为:(21008,0).首先求出B 1、B 2、B 3、B 4、B 5、B 6、B 7、B 8、B 9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B 2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍. 8.【答案】解:(1)∵点P 沿AB 边从点A 开始向点B 以2cm ╱s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm ╱s 的速度移动,∴AP =2t ,AQ =AD -DQ =6-t ,∵△QAP 为等腰直角三角形,∴AP =AQ ,∴2t =6-t ,解得t =2,∴t =2s 时,△QAP 为等腰直角三角形;(2)四边形QAPC 的面积=12×6-12×12•t -12×6•(12-2t )=36, 所以,四边形QAPC 的面积与t 无关.【解析】(1)表示出AP 、AQ ,然后根据等腰直角三角形两直角边相等列方程求解即可; (2)根据四边形QAPC 的面积等于矩形的面积减去Rt △CDQ 和Rt △BCP 的面积列式整理即可得解.本题考查了矩形的性质,等腰直角三角形的判定,四边形的面积,熟记性质是解题的关键.9.【答案】证明:(1)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ;(2)由(1)证得:△ABE ≌△ADC ,∴∠ABE =∠ADC .在△ABM 和△ADN 中,{AB =AD∠ABM =∠ADN ∠BAM =∠DAN,∴△ABM ≌△ADN (ASA ),∴AM =AN .∵∠DAE =60°,∴△AMN 是等边三角形;(3)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ,∠ABE =∠ADC ,∵∠BAC =90°∴∠MAN >90°,∵∠MAN ≠60°,∴△AMN 不是等边三角形,∴(1)的结论成立,(2)的结论不成立.【解析】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质、矩形的性质、等边三角形的判定与性质. (1)根据等边三角形的性质得到AB=AD ,AC=AE ,∠DAB=∠EAC=60°,则∠DAC=∠BAE ,根据“SAS”可判断△ABE ≌△ADC ,则BE=DC ; (2)由△ABE ≌△ADC 得到∠ABE=∠ADC ,根据“AAS”可判断△ABM ≌△ADN (ASA ),则AM=AN ;∠DAE=60°,根据等边三角形的判定方法可得到△AMN 是等边三角形.(3)判定结论1是否正确,也是通过证明△ABE ≌△ADC 求得.这两个三角形中AB=AD ,AE=AC ,∠BAE 和∠CAD 都是60°+∠ACB ,因此两三角形就全等,BE=CD ,结论1正确.将△ACE 绕点A 按顺时针方向旋转90°,则∠DAC >90°,因此三角形AMN 绝对不可能是等边三角形.10.【答案】解:∵(x 2+ax +8)(x 2-3x +b )=x 4+(-3+a )x 3+(b -3a +8)x 2-(-ab +24)x +8b , 又∵不含x 3项且含x 项的系数是-3,∴{a −3=0−ab +24=3, 解得{a =3b =7. 【解析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x 3项且含x 项的系数是-3,建立关于a ,b 等式,即可求出.本题考查了多项式乘以多项式,根据不含x 3项且含x 项的系数是-3列式求解a 、b 的值是解题的关键.。

八年级数学(初二数学)高频错题集

八年级数学(初二数学)高频错题集

八年级数学高频错题集1.【题文】把根号外的因式移入根号内的结果是A. B. C. D.2.【题文】如图,的面积是,点、、、分别是、、、的中点,则的面积是A. B. C. D.3.【题文】若,,则的值用,可以表示为.A. B. C. D.4.【题文】下列由三条线段,,构成的三角形:①,,;②,,;③,,;④其中能构成直角三角形的有.A.个B.个C.个D.个5.【题文】若一次函数的图象不经过第三象限,则下列选项正确的是A.,B.,C.,D.,6.【题文】▱中,,是对角线上不同的两点.下列条件中,不能得出四边形一定为平行四边形的是A. B. C. D.7.【题文】在四边形中,,要判定此四边形是平行四边形,还需要满足的条件是A. B. C. D.8.【题文】已知正方形的边长为,如果边长增加,那么面积增加,则关于的函数关系式为A. B. C. D.9.【题文】若函数则当时,自变量的值是A. B. C.或 D.或10.【题文】快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系小欣同学结合图象得出如下结论:快车途中停留了快车速度比慢车速度多图中快车先到达目的地.其中正确的是A. B. C. D.11.【题文】如图所示,在平面直角坐标系中,菱形的顶点坐标是,则顶点、的坐标分别是______.12.【题文】若一个多边形的内角和与外角和之和是,则该多边形的边数是______.13.【题文】在矩形中,,,折叠矩形,使点与点重合,则的长为______.14.【题文】在▱中,平分交边于点,平分交边于点若,,则.15.【题文】一个长方形的长是,宽是,周长是,面积是.写出随变化而变化的关系式;写出随变化而变化的关系式;当时,等于多少?等于多少?16.【题文】小明在解决问题:已知,求的值.他是这样分析与解的:,,,,.请你根据小明的分析过程,解决如下问题:化简若,①求的值;②求代数式的值.17.【题文】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以米分的速度骑行一段时间,休息了分钟,再以米分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为米与时间分钟的关系如图.请结合图象,解答下列问题:填空:______;______;______.若小军的速度是米分,求小军第二次与爸爸相遇时距图书馆的距离.在的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距米,此时小军骑行的时间为______分钟.18.【题文】如图,四边形中,,,,,于点。

八年级上数学错题集

八年级上数学错题集

3 a 9 a 八年级上数学错题集1.如图,在矩形 ABCD 中,已知AB = 8,BC =,点 P 在 BC 上,点 Q 在 CD 上,且 CP=2CQ ,四边形 APCQ 的面积是 7,求 BP 的长。

2. 已知x 的一元二次方程(k -1)x 2 + 2kx + k + 3 = 0 有两个不相等的实数根,求 k 的最大整数值。

3. 若 5的小数部分是b ,则b 的倒数是。

4.计算: a+ -5. 将一元二次方程(3x -1)2 - 2x =4化为一般形式为 , 一次项系数为,常数项为 。

6. 二次三项式x 2 + 20x + 96分解因式的结果为,如果令x 2+ 20x -96=0 ,那么它的两个根是。

7.计算: 9x 2 -18x=16018 3 a 38. 已知关于x的两个一元二次方程:方程:x2 + (2k -1)x +k 2 - 2k +13= 0 ①;2方程:x2 - (k + 2)x + 2k +9= 0 ②4(1)若方程①②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根,试判断方程①、②中,哪个没有实数根,并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的解。

-310.11.已知方程ax2 + c = 0(其中a ≠ 0)没有实数根,则a和c的符号关系为。

12.当等号右边为非负数时,;当等号右边为负数时,方程。

13.已知x2 + 2x -a +1 = 0(a为已知数)没有实数根,试判断x2 + 2x+12a=1 是否一定有两个不相等的实数根,并说明理由。

3m 33 -2 32 5 + 152 +39422314.m取什么值,关于x的方程mx 2 -(2m -1)x +m -2 =0(1)有两个相等的实数根?(2)有两个不相等的实数根?(3)没有实数根?15.如果=-x x +5,则x的取值范围是16.17.已知a +b =-4, ab = 3, 求:b +a a的值b18. 下列计算正确的是----------------------- ()(A)2 - 2 =(B) = 3(C) 1=+ 2 (D) =19.下列各式计算错误的个数为------------------- ( )①3 2 2 = 6 2; ② 5 3 5 = 5 6;③27 -312=-= 1 ④= 3 -1(A) 1 (B) 2 (C) 3 (D) 420.2x -解不等式:- 6x -3x3 + 5x2x2 -2x +3 b a33m5226 - 22235-2 5+221. “如果 x - y 与 2x - y + 1是同类二次根式,则x, y .” 出题者所给的标准答案是“x=-1,y ≤ -1”,你认为出题者的标准答案是否正确?为什么?请说明理由。

八年级上册数学错题集

八年级上册数学错题集

⼋年级上册数学错题集1、如图①,分别以Rt△ABC三边为直径向外作三个半圆,其⾯积分别⽤S1,S2,S3表⽰,则不难证明S1=S2+S3.(1)如图②,分别以Rt△ABC三边为边向外作三个正⽅形,其⾯积分别⽤S1,S2,S3表⽰,写出它们的关系;(不必证明)(2)如图③,分别以Rt△ABC三边为边向外作正三⾓形,其⾯积分别⽤S1,S2,S3表⽰,确定它们的关系并证明;(3)若分别以Rt△ABC三边为边向外作三个⼀般三⾓形,其⾯积分别⽤S1,S2,S3表⽰,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三⾓形应满⾜什么条件?2、王伟准备⽤⼀段长30⽶的篱笆围成⼀个三⾓形形状的⼩圈,⽤于饲养家兔.已知第⼀条边长为a⽶,由于受地势限制,第⼆条边长只能是第⼀条边长的2倍多2⽶.(1)请⽤a表⽰第三条边长;(2)问第⼀条边长可以为7⽶吗?请说明理由,并求出a的取值范围3)能否使得围成的⼩圈是直⾓三⾓形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.3、如图所⽰,将⼀根长为24cm的筷⼦,置于底⾯直径为5cm,⾼为12cm的圆柱形⽔杯中,设筷⼦露在外⾯的长为hcm,则h的取值范围是()4、若5x+32的⽴⽅根等于-2,求x+17的平⽅根5、若a.b 均为正整数,且a >根号7,b<2的⽴⽅根,则a+b 的最⼩值是()6、如果正⽅形ABCD的两个相对顶点为B(3,0),D(0,3),那么A、C两点的坐标分别为:7、已知点A(m+1,-2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为(), 如果直线AB∥y轴,那么m的值为()8、在平⾯直⾓坐标系中,点P在x轴的上⽅,点P到y轴的距离为1,且OP=2,画出图形并求P点坐标。

9、已知点M(x,y)与点A(-1/5,n)关于x轴对称,与点B(m,1/2)关于y轴对称,求代数式25x2+20xy+4y2+2013的值10、如图,平⾯直⾓坐标系中有四个点,它们的横纵坐标均为整数.若在此平⾯直⾓坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为().11、如图,已知点C为直线y=x上在第⼀象限内⼀点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC⽅向平移3倍根号2个单位,求平移后的直线解析式。

初二上学期数学错题集

初二上学期数学错题集

初二上学期数学错题集《二次根式》1、计算:1881-23、若,则a ;,则x 。

【说明】:负、零为相反。

4、x 23x x 23x +-=+-成立的条件是 。

5、化简:y x yx y x xy2y x +----+6、解不等式:3x 1x 2+<- x≤17、x 1x ,2x 1x +=-求。

【说明】:对比得出方法。

8、应满足什么条件。

,则b a ,a )a b (ab b a 2a 223-=+-9、-)10、把根式a 移到根号内,得1120022001《一元二次方程》1、当m_____时,方程01x )1m (x )1m (22=++--是关于x 的一元二次方程;当m______时,上述方程是关于x 的一元一次方程。

2、关于x 的一元二次方程mx 2+x+m 2+m=0有一个根是零,求m 的值。

3、解方程2x 2=x 4、解方程22)x 2(4)1x (-=-5、解方程03)1x 2(2)1x 2(2=----6、解方程)1x ()x 2(4)1x (2--=- 7、因式分解1x 3x 22-- -x 2-4x+3-2x 2+2xy+y 2 【说明】:不要丢三落四,顾此失彼。

a (x-x 1)(x-x 2) 8、若x 、y 为实数,且(x 2+y 2)(x 2+y 2+1)=12,求x 2+y 2的值。

9、若4mx x 2+-是完全平方式,则m=_____。

10、02x 4x )1m (2=---有两个不相等的实数根,那么m 的取值范围是_______。

11、求证:关于x 的一元二次方程mx 2+(m+2n )x+2n=0总有实数解。

【说明】:先求后证。

12、已知关于x的一元二次方程(ax+1)(x-a)=a-2的各项系数之和为3,求方程的解。

13、已知关于x的方程x2-2x-1=0有两个不相等的实数根,求k的范围。

14、若方程x2+mx+9=0有两个相等的正数根,求m的值。

15、若x2-mx+1是一个完全平方式,求m的值。

人教版八年级上册数学易错题(含解析)

人教版八年级上册数学易错题(含解析)

八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。

【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。

八年级上册数学错题

八年级上册数学错题

八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。

当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。

当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。

故选 B。

错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。

二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。

B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。

C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。

八年级数学经典错题分析

八年级数学经典错题分析

八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。

错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。

错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。

同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。

正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。

2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。

A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。

错解:选A 或B 或D 。

错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。

上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。

∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。

所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。

正解:选C 。

3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。

初中八年级学生数学错题集

初中八年级学生数学错题集

说明:1.题集所收录的是八年级()班学生在日常学习中出现的具有代表性、典型性的题目;2.题集里面的题目无顺序、章节规律;3.对于题集里面出现的题目,拥有人应彻底掌握,再次遇到该题或此类题目不应再犯以前的错误.★1.若aa则,6.122________.错解:1.6 正解:6.1.★2.计算:mm m xx xx223122223.说明:本题并无多大难度,但部分学生在看到题目后会被题目吓倒,不敢下手!出现假不会的现象. 解:原式mm m x x x x 22312222322222222223m m m xxx ★3.若32433212nn ,试求n 的值.说明:本题是资料上所谓的开放探究创新题,说明白些就是资料(ˇ?ˇ)想告诉你本题是具有较大难度的!但真的是这样吗?解:32433212nn 48133322nn(这一步反向利用了同底数幂的乘法公式)4313342n(这一步主要是把公因式n23提出来)2,423343434242nnnn★4.计算3210的结果是【】(A )510(B )610(C )510(D )610说明:有学生选择(C )答案,我想他(她)肯定是将同底数幂的乘法运算和幂的乘方运算弄混淆了,两种运算的公式是不一样的.本题考查的是幂的乘方运算公式.另外,还要用到结论:为奇数)为偶数)n A n A Annn(-(解:63232101010,选择(D ).★5.42m a________.说明:这道题当时居然有人做错,而且不止一人,不过我宽恕了他们!出错的地方是没有利用乘法分配律.解:84424)2(442m m m m aaaa(够详细了).★6.设d c b a dc b a,,,,5,4,3,211223344把按从小到大的顺序排列.说明:本题又是所谓的开放探究创新题,没有一个学生做出来.我们若仔细观察,就会发现d c b a ,,,的指数都是11的倍数,所以我们就往这个方向努力. 解:111141144416222a.516444273331111112112221111311333b ca d d cb 我们在任何时候都不要脱离了课本!★7.201020115775________.分析本题考查公式nm nmaaa 的反向利用,即nmnm a aa.解:2010201157757575175577575577557752010201020102010201012010★8.计算:23104.1.解:原式62321096.1104.1.评注:这道题你们真的没有做错,但你们过程写多了. ★9.若5127,n x xxxnmnm求的值.评注:这道题的正确率并不高,都出现了或多或少的问题.本题只能求出n 的值,m 的值是无法求出的. 解:nmnmxxx x.7127127055n nnm nm x xnm nm (题外话:把本章的公式、结论看看、背背)21第10题DABCE21EDAB C★10.如图所示,点B 、C 、E 在同一条直线上,△ABC 和△DCE 均为等边三角形,连结AE 、BD. (1)求证:AE=BD;(2)若把△DCE 绕点C 顺时针旋转一个角度,(1)中的结论还成立吗?请画出图形进行说明. 解:(1)∵△ABC 和△DCE 都是等边三角形∴∠1=∠2,BC=AC,CD=CE ∴∠1+∠ACD=∠2+∠ACD 即∠BCD=∠ACE 在△BCD 和△ACE 中∵CECDACEBCD ACBC∴△BCD ≌△ACE (SAS )∴BD=AE;(2)如图所示,(1)中的结论还成立. 同理可证:△BCD ≌△ACE (SAS )∴BD=AE.评注:这几个学生的胆子有点小,一看这个题目就不敢做了!如果认真思考、耐心看完题目是完全能够解决这个问题的.★11.已知2322,2y x yx y x 求的值.分析数学这一门学科,公式和定理、公理等都是给定的,我们必须在理解的基础上加以记忆,然后再进行一些适当的练习加以巩固,最终把知识变成我们自己的东西,才能灵活运用.当然,在运用这些定理、公式和公理等解决问题的时候,我们还会得出一些有用的、重要的结论,这些结论的总结其实是我们对知识深刻掌握的产物,是我们学会学习的一种表现.每一个学生都要学会总结结论,虽然每个人总结的结论不尽相同,但对每个人自己确是最适用的.另外,对同一个知识点的考查,有各种各样的题目,这些题目我们是做不完的,我们能做的是进行适当的练习,最终掌握相关的知识点! 解:∵2y x ∴2322yxyx1282444)(2552323yx yxyx y x y x 评注就是这么一个简单的题目,当时却没几个学生能做出来.我想他们还是没有深刻掌握相关的公式和结论等所导致的.他们应该对这个问题引起重视. ★12.已知10210510826的计算结果用科学记数法表示为n a an与求,10的值.分析科学记数法的一般形式为na 10,其中n a ,101为正整数.如8106.3、6108.2等都是合法的表示形式,而71036这样的表示却是不正确的!你们几个犯的就是这样的错误!两个用科学记数法表示的数相乘(除)的方法是:系数与系数相乘(除),同底数幂相乘(除).但要保证结果的系数的绝对值大于或等于1而小于10. 解:10210510826109261081080101010258★13.已知c b a xxx xb c x x a 、、求,34722222的值. 分析这是一个关于多项式相等的问题.我之前给你们总结了一个相关的结论:如果两个多项式相等,则它们对应..的系数相等.如果F Ex DxC Bx Ax22,那么.ECD BC A注意:该结论里面各项之间是相加的.解:34722222xx xx b cx x a 324723472234722347222222222bacb ab a xxbacxb a x b axxb ac x b a x b a x x b bx bx ac ax ax 解之得:115cba.★14.若n mxxxx 284,则n m 、的值分别是【】(A )4 , 32 (B )4 , 32(C )4, 32(D )4,32分析这也是一个考查两个多项式相等的题目,出现的错误比较多!注意结论里面各项之间是相加的.解:nmxxxx 2843243243243243248222222nm n m nmxxx xn mxx x x n mx x x x x 正确答案是【 A 】.★15.若20112,01232xxxx 求的值.分析本题主要考查学生依据题目所给的条件,对要求值的式子进行变形处理的能力. 解:∵012x x ∴12x x ∴2011223x x2012201112011201112011222223x x xx x xxx★16.若n mx xx 21的计算结果中不含2x 项和x 项,则m________,n ________. 分析这是一个关于多项式中不含某项的问题,有这样的结论:若一个多项式中不含某一项,则该项的总系数等于0(总系数是指合并同类项之后的系数). 解:nmx xx 210011223223nmm x x nxn mxmxn mx xnx mx x 项项和其计算结果中不含解之得:11nm .★17.。

人教版八年级上册数学考题易错汇总及答案解析

人教版八年级上册数学考题易错汇总及答案解析

人教版八年级上册数学考题易错汇总及答案解析1.下列各组线段中,能组成三角形的是() A.2,3,5B.3,4,8C.3,3,4D.7,4,2【考点】三角形三边关系.【解答】A、2+3=5,不能构成三角形;B、4+3<8,不能构成三角形;C、3+3>4,能够组成三角形;D、2+4<7,不能构成三角形.故选:C.2.如图,在四边形 ABCD 中,∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【考点】多边形内角与外角.【解答】如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,∴∠PAB+∠ABP=∠DAB+∠ABC+ (180°﹣∠ABC)=90°+ (∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠PAB+∠ABP)=15°.故选:B.3.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.720°D.900°【考点】三角形内角和定理;三角形的外角性质;多边形内角与外角.【解答】连接 DG,则∠1+∠2=∠F+∠E,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠AGF=∠A+∠B+∠C+∠1+∠2+∠CDE+∠AGF=(5﹣2)×180°=540°.故选:B.4.满足下列条件的三角形中,不是直角三角形的是() A.∠A﹣∠B=∠CB.∠A:∠B:∠C=3:4:7 C.∠A=2∠B=3∠CD.∠A=9°,∠B=81°【考点】三角形内角和定理.【解答】A.∵∠A﹣∠B=∠C,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B.∵∠A:∠B:∠C=3:4:7,∴∠C=180°×=90°,∴该三角形是直角三角形;C.∵∠A=2∠B=3∠C,∴∠A=180°×>90°,∴该三角形是钝角三角形;D.∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C.5.一个多边形的每个内角都等于 144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°【考点】多边形内角与外角.【解答】∵180°﹣144°=36°,360°÷36°=10,即这个多边形的边数是 10,∴这个多边形的内角和为(10﹣2)×180°=1440°. 故选:D.6.若一个多边形的外角和等于 360°,那么它一定是()A.四边形B.五边形C.六边形D.无法确定【考点】多边形内角与外角.【解答】任何多边形的外角和等于 360°,故多边形的边数无法确定,故选:D.7.在数学课上,同学们在练习画边 AC 上的高时,出现下列四种图形,其中正确的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【解答】AC 边上的高应该是过 B 作垂线段 AC,符合这个条件的是 C; A,B,D 都不过 B 点,故错误;故选:C.8.如图,一个正五边形和一个正方形都有一边在直线 l 上,且有一个公共顶点 B,则∠ABC 的度数是()A.120°B.142°C.144°D.150°【考点】多边形内角与外角.【解答】如图:由题意:∠ABE=108°,∠CBF=90°,∠BEF=72°,∠BFE=90°,∴∠EBF=180°﹣72°﹣90°=18°,∴∠ABC=360°﹣108°﹣18°﹣90°=144°,故选:C.9.如图,已知四边形 ABCD 中,AB∥DC,连接 BD,BE 平分∠ABD,BE⊥AD,∠EBC 和∠DCB 的角平分线相交于点 F,若∠ADC=110°,则∠F 的度数为()A.115°B.110°C.105°D.100°【考点】平行线的性质;多边形内角与外角.【解答】∵BE⊥AD,∴∠BED=90°,又∵∠ADC=110°,∴四边形 BCDE 中,∠BCD+∠CBE=360°﹣90°﹣110°=160°,又∵∠EBC 和∠DCB 的角平分线相交于点 F,∴∠BCF+∠CBF=×160°=80°,∴△BCF 中,∠F=180°﹣80°=100°,故选:D.10.如图,在四边形 ABCD 中,∠A=90°,AD=3,连接 BD,BD⊥CD,∠ADB=∠C.若 P 是 BC 边上一动点,则 DP 长的最小值为()A.1B.6C.3D.12【考点】角平分线的性质.【解答】过点 D 作 DH⊥BC 交 BC 于点 H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD 是∠ABC 的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点 D 是直线 BC 外一点,∴当点 P 在 BC 上运动时,点 P 运动到与点 H 重合时 DP 最短,其长度为DH 长等于 3,即 DP 长的最小值为 3.故选:C.11.如图,已知点 E、F 在线段 BC 上,BE=CF,DE=DF,AD⊥BC,垂足为点 D,则图中共有全等三角形()对.A.2B.3C.4D.5【考点】全等三角形的判定.【解答】∵BE=CF,DE=DF,AD⊥BC,∴AD 垂直平分 BC,AD 垂直平分 EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形 4 对,故选:C.12.如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC 的条件是()A.∠D=∠CB.AD=BCC.∠BAD=∠ABCD.BD=AC【考点】全等三角形的判定.【解答】由题意得,∠ABD=∠BAC,A、在△ABC 与△BAD 中,,∴△ABC≌△BAD(AAS),故 A 选项能判定全等;B、在△ABC 与△BAD 中,由 BC=AD,AB=BA,∠BAC=∠ABD,可知△ABC 与△BAD 不全等,故 B 选项不能判定全等;C、在△ABC 与△BAD 中,,∴△ABC≌△BAD(ASA),故 C 选项能判定全等;D、在△ABC 与△BAD 中,,∴△ABC≌△BAD(SAS),故 D 选项能判定全等;故选:B.13.已知△ABC 的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC 全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【解答】甲,不符合两边对应相等,且夹角相等,∴甲和已知三角形不全等;乙,符合两边对应相等,且夹角相等,乙和已知三角形全等;丙,符合 AAS,即三角形和已知图的三角形全等;故选:B.14.已知点 A(2,a)与点 B(b,3)关于 x 轴对称,则 a+b 的值为()A.﹣1B.1C.2D.3【考点】关于 x 轴、y 轴对称的点的坐标.【解答】∵点 A(2,a)与点 B(b,3)关于 x 轴对称,∴a=﹣3,b=2,∴a+b=﹣3+2=﹣1. 故选:A.15.如图,在△ABC 中,AB⊥AC,AB=3,BC=5,EF 垂直平分 BC,点 P为直线 EF 上的任意一点,则△ABP 周长的最小值是()A.8B.7C.6D.4【考点】线段垂直平分线的性质;轴对称﹣最短路线问题.【解答】∵EF 垂直平分 BC,∴B、C 关于 EF 对称,设 AC 交 EF 于 D,∴当 P 和 D 重合时,AP+BP 的值最小,最小值等于 AC 的长,由勾股定理得:AC===4,∴△ABP 周长的最小值是 AB+AC=3+4=7.故选:B.16.如图,在 Rt△ABC 中∠C=90°,AB>BC,分别以顶点 A、B 为圆心,大于AB 长为半径作圆弧,两条圆弧交于点 M、N,作直线 MN 交边 CB 于点D.若 AD=5,CD=3,则 BC 长是()A.7B.8C.12D.13【考点】线段垂直平分线的性质.【解答】由尺规作图可知,MN 是线段 AB 的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.17.如图,在△ABC 中,∠C=90°,∠B=15°,DE 垂直平分 AB,垂足是点E,若 AD=8cm.则 AC 的长是()A.4cmB.5cmC.4cmD.6cm【考点】线段垂直平分线的性质;含 30 度角的直角三角形.【解答】∵DE 垂直平分 AB,∴AD=BD=8cm,∴∠BAD=∠B=15°,∴∠ADC=∠BAD+∠B=15°+15°=30°,∵∠C=90°,∴Rt△ACD 中,AC= AD=×8=4(cm).故选:A.18.如图,已知 AD 是△ABC 的角平分线,AD 的中垂线交 AB 于点F,交 BC的延长线于点 E.以下四个结论:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠FDE=90°;(4)∠B =∠CAE.恒成立的结论有()A.(1)(2)B.(2)(3)(4)C.(1)(2)(4)D.(1)(2)(3)(4)【考点】平行线的判定;线段垂直平分线的性质.【解答】(1)∵EF 是 AD 的垂直平分线,∴EA=ED,∴∠EAD=∠EDA;(2)∵EF 是 AD 的垂直平分线,∴FA=FD,∴∠FDA=∠FAD,∵AD 平分∠BAC,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵FD 与 BE 不一定互相垂直,∴∠FDE=90°不成立;(4)由(1)(2)得:∠EAD=∠EDA,∠FAD=∠CAD,又∵∠EDA =∠B+∠FAD,∠EAD=∠CAD+∠CAE,∴∠B=∠CAE. 故选:C.19.如图,直线 l 表示一条河,点 A,B 表示两个村庄,想在直线l 上的某点P 处修建一个水泵站向 A,B 两村庄供水.现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设的管道最短的是()A.B.C.D.【考点】垂线段最短;轴对称﹣最短路线问题.【解答】作点 A 关于直线 l 的对称点 A′,连接 BA′交直线 l 于P.根据两点之间,线段最短,可知选项 D 铺设的管道最短. 故选:D.20.在下列各式中,计算正确的是()A.4x﹣7x=3xB.y4﹣y3=yC.5a2﹣2a2=3D.4m2﹣(2m)2=0【考点】合并同类项;幂的乘方与积的乘方.【解答】A.4x﹣7x═﹣3x,故本选项不合题意;B.y4 与 y3 不是同类项,所以不能合并,故本选项不合题意;C.5a2﹣2a2=3a2,故本选项不合题意;D.4m2﹣(2m)2=0,正确,故本选项符合题意.故选:D.21.给出下列关系式:(1)﹣22=4;(2)(﹣a2)3=﹣a5;(3)(0.5)2019×22020=2;(4)(a+b)(a2+b2)=a3+b3.其中一定成立的有()A.1个B.2 个C.3 个D.4 个【考点】幂的乘方与积的乘方;平方差公式.【解答】﹣22=﹣4,故(1)错误;(﹣a2)3=a6,故(2)错误;(0.5)2019×22020=2,故(3)正确;(a+b)(a2+b2)=a3+b3+ab2+a2b,故(4)错误.∴一定成立的有(3)共 1 个. 故选:A.22.(﹣0.5)99×2100 的计算结果正确的是()A.﹣1B.1C.﹣2D.2【考点】幂的乘方与积的乘方.【解答】(﹣0.5)99×2100=(﹣0.5)99×299×2=(﹣0.5×2)99×2=(﹣1)99×2=(﹣1)×2=﹣2. 故选:C.23.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图 1 可以得到(a+b)2=a2+2ab+b2,那么利用图2 所得到的数学等式是()A.(a+b+c)2=a2+b2+c2B.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcC.(a+b+c)2=a2+b2+b2+ab+ac+bcD.(a+b+c)2=2a+2b+2c 【考点】完全平方公式的几何背景.【解答】∵正方形的面积=( a+b+c ) 2 ;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc. 故选:B.24.下列从左到右的变形,属于因式分解的是() A.(a+4)(a ﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1 C.8m2n3=2m2?4n2D.m2﹣2m+1=(m﹣1)2【考点】因式分解的意义.【解答】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.25.若分式在实数范围内有意义,则 x 的取值范围为()A.x>3B.x≠3C.x≥0D.x≠0 且 x≠3【考点】分式有意义的条件.【解答】∵分式在实数范围内有意义,∴x﹣3≠0,∴x≠3 故选:B.26.下列各式,,,,(x﹣y),中,分式的个数共有()A.2个B.3 个C.4 个D.5 个【考点】分式的定义.【解答】由题可得,是分式的有:,,(x﹣y),,共 4 个,故选:C.27.如果关于 x 的不等式组有且仅有四个整数解,且关于 y 的分式方程﹣=1 有非负数解,则符合条件的所有整数 m 的和是()A.13B.15C.20D.22【考点】分式方程的解;一元一次不等式组的整数解.【解答】原不等式组的解集为﹣<x≤,因为不等式组有且仅有四个整数解,所以 0≤<1,解得 2≤m<7.原分式方程的解为 y=,因为分式方程有非负数解,所以≥0,解得 m>1,且 m≠5,因为 m=5 时 y=2 是原分式方程的増根.所以符合条件的所有整数 m 的和是 2+3+4+6=15.故选:B.28.已知 a、b 为实数且满足 a≠﹣1,b≠﹣1,设,,则下列两个结论()①ab=1 时,M=N,ab>1 时,M>N;ab<1 时,M<N.②若 a+b =0,则M?N≤0.A.①②都对B.①对②错C.①错②对D.①②都错【考点】分式的加减法.【解答】∵,,∴M﹣N=﹣(),=,=,=,①当 ab=1 时,M﹣N=0,∴M=N,当 ab>1 时,2ab>2,∴2ab﹣2>0,当 a<0 时,b<0,(a+1)(b+1)>0 或(a+1)(b+1)<0,∴M﹣N>0 或 M﹣N<0,∴M>N 或 M<N;当 ab<1 时,a 和 b 可能同号,也可能异号,∴(a+1)(b+1)>0 或(a+1)(b+1)<0,而 2ab﹣2<0,∴M>N 或 M<N;∴①错②M?N=()?()=++,∵a+b=0∴原式===∵a≠﹣1,b≠﹣1,∴(a+1)2(b+1)2>0,∵a+b=0∴ab≤0,M?N≤0.∴②对. 故选:C.29.某服装制造厂要在开学前赶制 3000 套校服,为了尽快完成任务,厂领导合理调配加强第一线人力使每天完成的校服比原计划多 20%,结果提前 4 天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服 x 套,则可列出方程()A. B.C.D.【考点】由实际问题抽象出分式方程.【解答】设原来每天完成校服 x 套,则实际每天完成校服(1+20%)x 套,依题意,得:=4+ .故选:C.30.如图,五边形 ABCDE 的外角中,∠1=∠2=∠3=∠4=75°,则∠A 的度数是 .【考点】多边形内角与外角.【解答】∵∠1=∠2=∠3=∠4=75°,∴与∠A 相邻的外角=360°﹣75°×4=360°﹣300°=60°,∴∠A=180°﹣60°=120°.故答案为:120°.31.如图,在△ABC 中,AD 是 BC 边上的高,AE 平分∠BAC,∠B =∠BCA﹣70°,∠DAE 的度数为 .【考点】三角形内角和定理.【解答】∵AD 是 BC 边上的高,∴∠D=90°,∴∠BAD=90°﹣∠B,∵AE 平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠BCA),又∵∠B=∠BCA﹣70°,∴∠BCA=∠B+70°,∴∠DAE=∠BAD﹣∠BAE=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=90°﹣∠B﹣(180°﹣∠B﹣∠B﹣70°)=35°,故答案为:35°.32.如图,有一张矩形纸片 ABCD,将它沿 GH 折叠,点 C 落在点 Q 处,点D 落在 AB 边上的点E 处,若∠GHC=110°,则∠AGE 等于 .【考点】平行线的性质;多边形内角与外角.【解答】∵AD∥BC∴∠DGH+∠GHC=180°,且∠GHC=110°∴∠DGH=70°∵将长方形纸片 ABCD 沿 GH 折叠,∴∠EGH=∠DGH=70°∴∠AGE=180°﹣∠DGH﹣∠EGH=40°故答案为:40°.33.如图,AB=AC,AD=AE,点 B、D、E 在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.【考点】全等三角形的判定与性质.【解答】如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD 和△ACE 中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为 65.34.如图,CA⊥BC,垂足为 C,AC=2cm,BC=6cm,射线 BM⊥BQ,垂足为 B,动点 P 从 C 点出发以 1cm/s 的速度沿射线 CQ 运动,点 N 为射线 BM 上一动点,满足 PN=AB,随着 P 点运动而运动,当点 P 运动秒时,△BCA 与点 P、N、B 为顶点的三角形全等.【考点】全等三角形的判定.【解答】①当 P 在线段 BC 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点 P 的运动时间为 4÷1=4(秒);②当 P 在线段 BC 上,AC=BN 时,△ACB≌△NBP,这时 BC=PN =6,CP=0,因此时间为 0 秒;③当 P 在 BQ 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点 P 的运动时间为 8÷1=8(秒);④当 P 在 BQ 上,AC=NB 时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点 P 的运动时间为 12÷1=12(秒),故答案为:0 或 4 或 8 或12.35.如图,△ABC 中,AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,EF 垂直平分 AB,交 AC 于点 F,在 EF 上确定一点 P,使 PB+PD 最小,则这个最小值为 .【考点】线段垂直平分线的性质;等腰三角形的性质;轴对称﹣最短路线问题.【解答】∵AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,∴AD=6,∵EF 垂直平分 AB,∴点 P 到 A,B 两点的距离相等,∴AD 的长度=PB+PD 的最小值,即 PB+PD 的最小值为 6,故答案为:6.36.如图,已知△ABC 中,AB=AC=5,BC=8,将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,顶点 A,B,C 分别与 D,E,F 对应,若以 A,D,E 为顶点的三角形是等腰三角形,且 AE 为腰,则 m 的值是 .【考点】等腰三角形的性质;等腰三角形的判定;平移的性质.【解答】分 2 种情况讨论:①当 DE=AE 时,作 EM⊥AD,垂足为 M,AN⊥BC 于 N,则四边形 ANEM 是平行四边形,∴AM=NE,AM= AD= m,CN= BC=4,∴m+m=8﹣(4﹣m),∴m=8;②当 AD=AE=m 时,∵将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,∴四边形 ABED 是平行四边形,∴BE=AD=m,∴NE=m﹣4,∵AN2+NE2=AE2,∴32+(m﹣4)2=m2,∴m= .综上所述:当 m=8 或时,△ADE 是等腰三角形. 故答案为:8 或.37.如图,由四个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点.在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC 本身)共有个.【考点】轴对称的性质.【解答】如图所示:符合题意的有 3 个三角形.故答案为:3.38.若 a,b,c 分别是△ABC 的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC 的形状是 .【考点】因式分解的应用.【解答】∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c 分别是△ABC 的三条边,∴△ABC 是等边三角形,故答案为等边三角形.39.因式分解:ax3y﹣axy3= .【考点】提公因式法与公式法的综合运用.【解答】ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).40.若关于 x 的方程+=无解,则 m= .【考点】分式方程的解.【解答】分式方程化简,得3(x﹣1)+6x=m(x+1)整理,得(9﹣m)x=3+m当 x=0 时,m=﹣3;当 x=1 时,m=3;当 9﹣m=0 时,m =9.故答案为:3 或﹣3 或 9.41.当 x=时,分式的值为 0.【考点】分式的值为零的条件.【解答】由题意得:x2﹣x﹣6=0,且|x|﹣3≠0,解得:x=﹣2,故答案为:﹣2.42.化简:?= .【考点】分式的乘除法.【解答】?=﹣故答案为﹣.43.如图,四边形 ABCD 中,AB∥CD,∠B=∠D,点 E 为 BC 延长线上一点,连接 AE.(1)如图 1,求证:AD∥BC(2)若∠DAE 和∠DCE 的角平分线相交于点 F,连接 AC.①如图 2,若∠BAE=70°,求∠F 的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)【考点】平行线的判定与性质;多边形内角与外角.【解答】(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF CF=∠ECF=猓?∵AD∥BC,∴∠D=∠DCE=2猓?∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2?+2猓?180整理得:?+猓?55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F 即:?+2猓健螰+猓?∴∠F=?+猓?55°;②如图 3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD 中,x+2y+2z=180①,△ACG 中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.44.如图,AD 是△ABC 的角平分线,点 F、E 分别在边 AC、AB 上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当 AF+FD=AE 时,求证:∠AFD=2∠AED.【考点】全等三角形的判定与性质;角平分线的性质.【解答】证明:(1)过点 D 作 DM⊥AB 于 M,DN⊥AC 于 N,如图 1 所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD 平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB 和△DNF 中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在 AB 上截取 AG=AF,连接 DG.如图 2 所示,∵AD 平分∠BAC,∴∠DAF=∠DAG,在△ADF 和△ADG 中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD 又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED45.如图,已知等腰△ABC 中,AB=AC,∠BAC=120°,AD⊥BC 于D,点P 是 BA 延长线上一点,点 O 是线段 AD 上一点,OP=OC.(1)求∠APO+∠DCO 的度数;(2)求证:AC=AO+AP.【考点】全等三角形的判定与性质.【解答】(1)连接 BO,如图 1 所示:∵AB=AC,AD⊥BC,∴BD=CD,∠ODB=∠ODC,在△OBD 和△OCD 中,,∴△OBD≌△OCD(SAS),∴OB=OC,又∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,又∵∠BAC=120°,∠ABC=∠ACB=30°,又∵∠ABD=∠ABO+∠DBO=30°,∴APO+∠DCO=30°;(2)过点 O 作 OH⊥BP 于点 H,如图 2 所示:∵∠BAC=120°,AB=AC,AD⊥BC,∴∠HAO=∠CAD=60°,又∵OH⊥BP,∴∠OHA=90°,∴∠HOA=30°,∴AO=2AH,又∵BO=PO,OH⊥BP,∴BH=PH,又∵HP=AP+AH,∴BH=AP+AH,又∵AB=BH+AH,∴AB=AP+2AH,又∵AB=AC,AO=2AH,∴AC=AP+AO.46.如图 1,在锐角△ABC 中,∠ABC=45°,高线 AD、BE 相交于点 F.(1)判断 BF 与 AC 的数量关系并说明理由;(2)如图 2,将△ACD 沿线段 AD 对折,点 C 落在 BD 上的点 M,AM 与BE 相交于点 N,当 DE∥AM 时,判断 NE 与 AC 的数量关系并说明理由.【考点】全等三角形的判定与性质.【解答】(1)BF=AC,理由是:如图 1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD 是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC 和△BDF 中,∵,∴△ADC≌△BDF(ASA),∴BF=AC;(2)NE= AC,理由是:解法一:如图 2,由折叠得:MD=DC,AM=AC∴∠AMD=∠ACD,∵DE∥AM,∴∠EDC=∠AMD=∠ACD,∴DE=CE,同理得:AE=DE,∴AE=CE,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴EN=AE= AC.解法二:如图 2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴NE=AE= AC.47.如图,网格中的△ABC 和△DEF 是轴对称图形.(1)利用网格线,作出△ABC 和△DEF 的对称轴 l;(2)结合所画图形,在直线 l 上找点 G,使 GA+GC 最小;(3)如果每个小正方形的边长为 l,则△ABC 的面积为;(4)在图中到 EF、BC 的距离相等的格点有个.【考点】角平分线的性质;作图﹣轴对称变换;轴对称﹣最短路线问题.【解答】(1)如图所示,直线 l 即为△ABC 和△DEF 的对称轴;(2)如图所示,连接 CD,交 l 于 G,连接 AG,则 GA+GC 最小,点 G 即为所求;(3)△ABC 的面积=2×4﹣×1×2﹣×2×2﹣×1×4=3,故答案为:3;(4)如图,延长 EF,BC 交于点 H,根据角的轴对称性可得,到 EF、BC的距离相等的格点在∠BHE 的角平分线上,故符合题意的格点在直线 l 上,共 8 个.故答案为:8.48.如图,直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,l 与 m 分别交边 AB,BC 于点 D 和点 E.(1)若 AB=10,则△CDE 的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE 的度数.【考点】线段垂直平分线的性质.【解答】(1)△CDE 的周长为 10.∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴△CDE 的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.49.已知:如图,AF 平分∠BAC,BC 垂直平分 AD,垂足为 E,CF 上一点 P,连结 PB 交线段 AF 相交于点 M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F 与∠MCD 的数量关系,并说明理由.【考点】平行线的判定与性质;线段垂直平分线的性质.【解答】(1)∵BC 垂直平分 AD,∴AC=CD,∠CAD=∠CDA,∵AF 平分∠BAC,∴∠CAD=∠BAD,∴∠CDA=∠BAD,∴AB∥CD;(2)结论:∠F=∠MCD,理由:∵∠DAC=∠CDA,∠DAC=∠MPC,∴∠CDA=∠MPC,又∵∠CDA+∠CDM=180°,∠MPC+∠MPF=180°,∴∠CDM=∠MPF;又∵AF 平分∠BAC,AE⊥BC,AE=AE.∴△ACE≌△ABE(ASA),∴AC=AB.又∵AF 平分∠BAC,AM=AM,∴△ACM≌△ABM(SAS),∴∠AMC=∠AMB,又∵∠AMB=∠PMF.∴∠AMC=∠PMF.又∵∠AMC+∠MCD+∠CDM=180°,∠PMF+∠MPF+∠F=180°,∴∠F=∠MCD.50.先化简:÷(﹣),再从﹣3<x<2 的范围内选取一个你最喜欢的整数代入,求值.【考点】分式的化简求值;一元一次不等式组的整数解.【解答】原式=÷=?=,∵x≠±1 且 x≠0,∴取 x=﹣2,则原式==﹣ .。

八年级上册数学错题集

八年级上册数学错题集

读书破万卷 下笔如有神1、女口图①,分别以Rt △ ABC 三边为直径向外作三个半圆,其面积分别用 S ,1S ,S 表示,则不难证明S=S+S . 32213 ( 1 )如图②,分别以Rt △ ABC 三边为边向外作三个正方形,其面积分别用 S ,S ,S 表示,写出它们的关系;(不必证明)312 (2)如图③,分别以Rt △ ABC 三边为边向外作正三角形,其面积分别 用S ,S ,S 表示,确定它们的关系并证明;312 (3)若分别以Rt △ ABC 三边为 边向外作三个一般三角形,其面积分别用 S ,S ,S 表示,为使S ,S ,S 之间仍2、王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家 兔.已知第一条边长为a 米,由于受地势限制,第二条边长只能是第一条边长的 2倍多2米.(1)请用a 表示第三条边长;(2)问第一条边长可以为7米吗?请 说明理由,并求出a 的取值范围3)能否使得围成的小圈是直角三角形形状,且 各边长均为整数?若能,说明你的围法;若不能,说明理由.下笔如有神读书破万卷3、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()4、若5X+32的立方根等于-2,求x+17的平方根5、若a.b均为正整数,且a >根号7,b v 2的立方根,则a+b的最小值是()6如果正方形ABCD的两个相对顶点为B(3,0),D(0,3),那么A、C两点的坐标分别为:7、已知点A (m+1, -2)和点B (3,m-1),如果直线AB // x轴,那么m的值为),如果直线AB // y轴,那么m的值为( )8、在平面直角坐标系中,点P在x轴的上方,点P到y轴的距离为1,且0P=2, 画出图形并求P点坐标。

9、已知点M(x,y)与点A(-1/5,n)关于x轴对称,与点B(m,1/2)关于y轴对称,求代数式25x2+20xy+4y2+2013 的值10、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移). 的坐标为(A动后点.读书破万卷下笔如有神_____________________________________11、如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线0C方向平移3倍根号2个单位,求平移后的直线解析式。

八上数学错题集

八上数学错题集

八上数学Smj(一)在△ABC中,∠ACB=90°,∠CAB=43°,∠1=47°直线AB∥CD,DE⊥AB,DF⊥AC,9.如图,在△ABC中,BD是AC边上的高线,若△ABC的面积为4,AC=4,则BD=10.如图,在△ABC中,∠B =∠C E是AC上的一点, ED⊥BC,DF⊥AB,垂足分别是D,F,如果∠AED=130°,那么∠B= °,∠EDF= °16.小华在电话中问小明:“已知一个三角形三边长分别为6,9,14,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高线来求解。

”小华根据小明的提示作出的图形正确的是()18.如图,在△ABC的一边AB上截取BD= BC,有下列关系式:(1)AD+2BC>AC(2)AD<AC(3)AD+DC>AC(4)AC-DC<AD,其中正确的式子有A.1个 B。

2个 C。

3个 D。

4个19.如图,已知△ABC(1)用刻度尺画BC边上的中线(2)用量角器画以点B为个端点的△ABC的角平分线22. 如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠BCD=30°,(1)求∠B的度数(2)求证:∠BCD=∠A(二)2. 如图,△ABE=△ACD,B和C,E和D是对应顶点,如果∠B =40°,BE=5,∠AEB=66°,那么CD=,∠DAC= °12.全等三角形是A三个对应相等的三角形B周长相等的两个三角形C面积相等的两个三角形D能够重合的两个三角形24.如图,居民区A处有两条交叉公路AM、AN,它们构成∠MAN张三准备在∠MAN内部开一家超市B,李四准备在公路AM上开一家洗车场,根据以下条件,请用尺规作图确定超市B及洗车场C的位置.(1)超市B到两公路AM、AN距离分别相等,且到居民区A的距离为m(如图);(2)洗车场C到居民区A及超市B的距离相等.25.点E,A,B,F在同一条直线上,AD与BC交于点O。

八年级上学期数学错题集

八年级上学期数学错题集

13.2--13.3错题集一、选择题1、下列说法正确的是()A.面积相等周长相等的两个三角形全等B.全等三角形指形状完全相同的三角形C.全等三角形周长相等D.所有等边三角形全等2、下列不能唯一确定一个直角三角形的是()A.已知两直角边B.已知一直角边和一斜边C.已知一斜边和一锐角D.已知两直角边3、下列说法正确的是()A.有两条边分别相等的两个三角形全等B.一条直角边和一个锐角分别相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.两条直角边对应相等的两个直角三角形全等4、下列命题:①两个三角形中有两边及第三边上的中线对应相等的两个三角形全等;②两边及第三边的高对应相等的两个三角形全等;③两边及第三边的高对应相等的两个锐角三角形全等;④锐角为30 的两个直角三角形有一边相等,则这两个三角形全等;正确的是()A.①②B.②③C.③④D.①③5、在△ABC中,AB=AC,AB的中垂线与AC所成的角为50 ,则∠B等于()A.70B.20 或70C.40 或70D.40 或206、如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论::①DE=DF,②AE=AF③BD=CD,④AD⊥BC。

其中正确的个数有()A:1个 B:2个 C:3个 D:4个第7题第8题7、如图:在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,Q在AC上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正确的是()A:①②③ B:①② C:②③ D:①9、如图:直线a,b,c表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A:1个 B:2个 C:3个 D:4个二、填空题1、如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是_________1、等腰三角形的顶角为 ,则一腰上的高线与底边的夹角是______1、如图,AB=AC,D是AB上一点,且DE⊥BC于E,ED的延长线交CA的延长线于F,那么△ADF 是__________三角形如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上。

八年级上册数学错题集

八年级上册数学错题集

八年级上册数学错题集1、若关于x 的分式方程xx x m 2132=--+无解,则m 的值__________. 2、使代数式x x --312有意义的x 的取值范围________________ 3、若942+-mx x 是完全平方公式,则m=_____________4、关于x 的方程112=-+x a x 的解为正数,那么a 的取值范围是_______________ 5、已知xy <0,化简y x 2=________________6、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是_____________7、已知三角形相邻两边长分别为20cm 和30cm ,第三边上的高为10cm ,则此三角形的面积为______________8、△ABC 的三边长分别为3,4,5,点P 是△ABC 内一点,且到三边的距离都为r ,则r=_____9、若101=+a a ,则aa 1-的值为__________ 10、已知多项式222++x x 与另一多项式相乘,得到b kx x x +--242,则3k+b=__________11、如果整数a 使得代数式2322-+-a a a 的值也为整数,那么a=______________ 12、某加油站储有a 天的常用油量m (t ),要使供油时间延长2天,每天就要比常用油量减少供油n (t ),则n=__________t13、计算:yx x y y x 235112342⨯÷- 11)1(---a a14、已知31=+x x ,求1242++x x x 的值15、已知x+y=-15,求)(2)(4)()()(2222222222y x xyy x x y xy y x y x y y x x +÷+--⋅-++-+的值16、已知312+=x ,312-=y ,(1)试求2x²+2y²-xy 的值(2)若x 的整数部分是a ,y 的小数部分是b ,求5a²+(x-b )²-y 的值17、某超级市场销售一种计算机,每个售价48元 后来计算机的进价降低了4%,但售价未变,所以让这种计算机的利润提升了5% 这种计算机的每个进价是多少?18、某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折出售,结果销量增加20件,营业额增加700元。

八上数学错题集

八上数学错题集

第五章函数1.结果要化简,2.未知数用什么字母表示,除x、y之处,还有可以是指定的字母3.画图,标图要完整。

5.1函数(1)1.某人的年龄与体重是否存在函数关系?为什么?2.正方形的边长一定,它的周长和面积是否存在函数关系?3.如图是某地区11月份的某天温度随时间变化的曲线图,请问,温度T可以看成时间T的函数吗?为什么?4.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km)。

图中的折线表示y与x之间的函数关系,根据图像进行探究。

(1)甲乙两地的距离为 km.(2)请解释图中点B、C对应的事件。

5.1函数(2)14.如图,在直角梯形ABCD中,AB=22,CD=10,AD=16,(1)在斜腰BC上任取一点P,过P点作底边的垂线,与上下底分别交于E、F,设PE长为x,PF长为y,求y与x 的函数表达式和自变量x的取值范围;(2)如果S三角形PCD=SD三角形PAB,P点应取在什么地方?5.2一次函数(1)1.正方形的面积y与它的边长x这间的关系:是不是一次函数,是不是正比例函数。

16.已知A、B两地相距30千米,B、C之间相距48千米,某人骑自行车以每小时12千米的速度从A地出发,经B地到达C地,设此人骑车时间为x(时),离B 地的距离为y(千米),当此人在B、C之间时,求y与x的函数关系,及自变量x5.2一次函数(1)4.有下列函数,y=x-2; y=-2/x; y=-x2+(x+1)(x-2); y=-x/2k中,是一次函数的有()个。

15.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60㎝×30㎝,B型板材的规格是40㎝×30㎝,现只能购到规格是150㎝×30㎝的标准板材,一张标准板材尽可能多地裁出A、B型板材,共有下列三种裁法。

设所购的标准板材全部裁完,其中按裁法一裁去x张,按裁法二裁去y张,按裁法三裁去z张,且所裁出的A、B两种型号的板材刚好够用,(1)上表中,m= ,n= ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x 的函数关系式。

数学八年级上册易错题及答案

数学八年级上册易错题及答案

八年级上册易错题集三角形1. 一个三角形的三个内角中()A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°2. 如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为.3、三角形的一个外角大于相邻的一个内角,则它的形状;三角形的一个外角小于于相邻的一个内角,则它的形状;三角形的一个外角等于相邻的一个内角,则它的形状。

4、三角形内角中锐角至少有个,钝角最多有个,直角最多有个,外角中锐角最多有个,钝角至少有个,直角最多有个。

一个多边形中的内角最多可以有个锐角。

5.已知一个三角形的三边长3、a+2、8,则a的取值范围是。

6.如图②,△ABC中,∠C=70°,若沿虚线截去∠C,则∠1+∠2= 。

7.如图③,一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= 。

8.△ABC中,∠A=80°,则∠B、∠C的内角平分线相交所形成的钝角为;∠B、∠C的外角平分线相交所形成的锐角为;∠B的内角平分线与∠C的外角平分线相交所形成的锐角为;高BD与高CE相交所形成的钝角为;若AB、AC边上的垂直平分线交于点O,则∠BOC为。

9.一个多边形除去一个内角外,其余各角之和为2 750°,则这个多边形的边数为,去掉的角的度数为.10.一个多边形多加了一个外角总和是1150°,这个多边形是边形,这个外角是度.11.如图,在△ABC中,画出AC边上的高和BC边上的中线。

全等三角形1.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等;④斜边和一锐角对应相等;⑤两条直角边对应相等;⑥斜边和一条直角边对应相等。

其中能判断两直角三角形全等的是BAC2.已知△ABC与△A′B′C′中,AB=A′B′,BC=B′C′,下面五个条件:①AC=A′C′;②∠B=∠B′;③∠A=∠A′;④中线AD=A′D′;⑤高AH=A′H′,能使△ABC≌△A′B′C′的条件有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.2--13.3错题集
一、选择题
1、下列说法正确的是()
A.面积相等周长相等的两个三角形全等
B.全等三角形指形状完全相同的三角形
C.全等三角形周长相等
D.所有等边三角形全等
2、下列不能唯一确定一个直角三角形的是()
A.已知两直角边
B.已知一直角边和一斜边
C.已知一斜边和一锐角
D.已知两直角边
3、下列说法正确的是()
A.有两条边分别相等的两个三角形全等
B.一条直角边和一个锐角分别相等的两个直角三角形全等
C.有一条边相等的两个等腰直角三角形全等
D.两条直角边对应相等的两个直角三角形全等
4、下列命题:①两个三角形中有两边及第三边上的中线对应相等的两个三角形全等;②两
边及第三边的高对应相等的两个三角形全等;③两边及第三边的高对应相等的两个锐角三角
形全等;④锐角为30的两个直角三角形有一边相等,则这两个三角形全等;正确的是()
A.①②
B.②③
C.③④
D.①③
5、在△ABC中,AB=AC,AB的中垂线与AC所成的角为50,则∠B等于()
A.70
B.20或70
C.40或70
D.40或20
6、如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论::①DE=DF,②AE=AF③BD=CD,④AD⊥BC。

其中正确的个数有()
A:1个 B:2个 C:3个 D:4个
第7题第8题
7、如图:在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,Q在AC上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正确的是()
A:①②③ B:①② C:②③ D:①
9、如图:直线a,b,c表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要
求它到三条公路的距离相等,则可供选择的地址有()
A:1个 B:2个 C:3个 D:4个
二、填空题
1、如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对
的角的关系是_________
1、等腰三角形的顶角为,则一腰上的高线与底边的夹角是______
1、如图,AB=AC,D是AB上一点,且DE⊥BC于E,ED的延长线交CA的延长线于F,那么△ADF 是__________三角形
如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC
交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BP D,
③点P在∠AOB的平分线上。

正确的是;(填序号)
1、如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=

、如图:在△ABC中,AB=3㎝,AC=4㎝,则BC边上的中线AD的取值范围是
三、解答题
1、求证:等腰三角形底边中点到两腰的距离相等。

如图,AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

如图,在ABC中,ACB=90,AC=BC,D是AB上的一点,AE CD于E,BF CD 交CD的延长线于点F,则CF,EF,BF之间有什么数量关系,并说明理由。

如图,在ABC中,AD BC于点D,BE AC于点E,AD与BE相交于点F,若BF=AC,求ABC的度数
如图,在ABC中,BAC是锐角,AB=AC,AD和BE是高,它们交与点H, AE=BE,求证:AH=2BD。

相关文档
最新文档