生存分析概念
生存分析SPSS
√
√
2021/10/10
22
三、主要输出结果
1.分析例数描述
案 例 处 理摘 要
分析
事件 a
中可 用的
删失
案例
合计
删除
带有缺失值的案例
的案 例
带有负时间的案例
层中的最早事件之
前删失的案例
合计
N 26 37 63 0 0
0
0
合计
63
a. 因变量: t
2021/10/10
23
百分比 41.3% 58.7% 100.0% .0% .0% .0%
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
1
35 50 1 0 0 1 0 26
1
36 33 1 1 0 0 0 120
0
37 57 1 1 1 0 0 120
0
38 48 1 0 0 1 0 120
0
39 28 0 0 0 1 0
3
1
40 54 1 0 1 1 0 120
1
41 35 0 1 0 1 1
7
1
42 41)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
统计学中的生存分析方法
统计学中的生存分析方法统计学是一门研究数据收集、分析和解释的学科,而生存分析是统计学中的一种重要方法。
生存分析是研究个体从某一特定事件(如诊断、治疗、手术等)发生到另一特定事件(如死亡、复发、康复等)的时间间隔的方法。
它可以帮助我们了解和预测事件发生的概率和时间。
一、生存分析的基本概念生存分析的基本概念包括生存时间、生存函数和生存率。
生存时间是指从特定事件发生到另一特定事件发生的时间间隔,可以是天、月、年等。
生存函数是描述个体在给定时间点存活下来的概率,通常用Kaplan-Meier曲线表示。
生存率是指在给定时间点存活下来的比例,可以通过生存函数计算得出。
二、生存分析的方法1. Kaplan-Meier方法Kaplan-Meier方法是最常用的生存分析方法之一。
它基于观测数据估计生存函数,考虑到了个体在不同时间点的观测情况。
Kaplan-Meier曲线可以用来比较不同组别之间的生存情况,例如治疗组和对照组之间的生存率差异。
2. Cox比例风险模型Cox比例风险模型是一种常用的多变量生存分析方法。
它可以同时考虑多个危险因素对生存时间的影响,并估计各个因素的风险比。
Cox模型的优势在于可以控制其他危险因素的影响,从而更准确地评估某个因素对生存时间的影响。
3. Log-rank检验Log-rank检验是用来比较两个或多个组别之间生存曲线差异的统计方法。
它基于Kaplan-Meier曲线,通过计算观测到的死亡事件数与期望死亡事件数的比值来判断组别之间的差异是否显著。
Log-rank检验广泛应用于生物医学研究中,帮助研究人员评估不同治疗方法或风险因素对生存时间的影响。
三、生存分析的应用领域生存分析方法在多个领域有广泛的应用,例如医学、流行病学、经济学等。
在医学领域,生存分析可以用来评估不同治疗方法对患者存活时间的影响,帮助医生制定更合理的治疗方案。
在流行病学研究中,生存分析可以用来评估某种疾病的发病率和死亡率,从而帮助制定预防和控制策略。
第15章 生存分析讲解
4.
半参数法:不需要对生存时间的分布作出假定,但却可 以通过一个模型来分析生存时间的分布规律,以及危险
因素对生存时间的影响。例如:Cox比例风险回归模型。
o 优点:
1)可以估计生存函数; 2)可以比较两组或多组生存布函数; 3)可以分析危险因素对生存时间的影响;
4)可以建立生存时间与危险因素之间依存关系的模型。
生存分析
Survival Analysis
一、什么是生存分析?
在医学研究中,常常用追踪(follow up)的方式来研究事 物发展的规律。
o o o
了解某药物的疗效 了解手术后的存活时间
了解某医疗仪器设备的使用寿命
这种研究的特点是追踪研究的现象都要经过一段时间, 统计学上将这段时间称为生存时间。
o o o
因素变量不能随时间变化而变化;
样本死亡相对数不能过小; 样本含量要足够大;
o
o o o
因素各水平组的例数要适当;
模型拟合要注意因素之间的交互作用;
分类型因素变量要建立哑变量;
生存曲线不能随意延长,也不能轻易地用来 作预报。
八、Cox回归与线性回归、logistic回归的区别
线性回归 因变量:连续型变量y 服从正态分布 模型: y与x的 线性关系 系数: b表示x增加一 表示 个单位,y的 时的 改变量 x=x* 比 Logistic回归 Cox回归 分类型变量y 生存时间t 无分布要求 无分布要求 y取某个值的概率 t 的风险函数 p与x的关系 h与x的关系 exp(b)=OR, 近似表示 exp(b)=RH, 在x=x*+1时的发病率 与x=x*时的发病率之 比RR (在发病率较低时) 在x=x*+1 风险度与 时的风险度之
生存分析
欧春泉 生物统计系
一、生存分析的基本概念
1、生存分析(survival analysis)是将 事件的结果(终点事件)和出现这一 结果所经历的时间(生存时间)结合 起来分析的一种统计分析方法。 它不 同于其它多因素分析的主要区别点就 是生存分析考虑了每个个体出现某一 结局的时间长短。
10
6. 生存分析的特点
9 可以处理删失数据 9 与其它多元分析方法的区别:
▬ ▬
与线性回归不同, 结局变量为长短
9 与所有其它统计资料的分析一样,生存分析包括 以下三方面:
▬ ▬ ▬
计算生存率等指标(描述性分析) 可比较两组/多组的生存时间 (单变量分析) 评价各因素对生存时间的影响(多变量分析)
2. 生存率/生存函数 (survival rate/ survival function)
指观察对象经历t个单位时段后仍存活的 可能性,即生存时间大于等于t的概率 可见,生存率随时间而变化,即生存率是 时间t的函数,称生存函数,用S(t)表示, S(t)=P(T≥t) 。某时间点生存函数的值就 是该时间点的生存率
数据分析中用两个变量定义一个观察对象的 随访结果 δ – 结局变量:反映终点事件是否发 生,为二分类变量 – 1 (若终点事件出现) – 0 (若终点事件未出现) T- 观察时间 – 生存时间(若研究的结局出现) – 随访时间(若研究的结局未出现)
5
表1 16-1
病例号 1 2 3 4 开始日期 11/29/80 06/13/82 03/02/83 08/04/83
1 1 3 3 1 1 2 0 1 0 0 0 0 0 1 0 1 1
23 22 21 18 15 14 13 11 10 9 8 7 6 5 4 3 2 1
生存分析在统计学中的重要性与应用
生存分析在统计学中的重要性与应用生存分析是统计学中的一项重要分析方法,它被广泛应用于医学研究、生物学、经济学等领域。
生存分析旨在研究个体或群体的生存时间,并对其生存几率和生存函数进行估计与预测。
本文将介绍生存分析的基本概念与方法,并探讨其在统计学中的重要性与应用。
一、生存分析的基本概念生存分析的核心目标是对个体或群体的生存时间进行研究和分析。
其基本概念包括以下几个方面:1. 生存时间(Survival Time):指个体或群体从某一起始时间到达终止事件(如死亡、失效等)所经历的时间。
2. 生存状态(Survival Status):用来描述个体在某一时刻之前是否发生了终止事件,通常用1表示发生,用0表示未发生。
3. 生存函数(Survival Function):记为S(t),可用来描述个体在某一时刻之前生存下来的概率。
生存函数一般是一个递减函数,在开始时为1,随着时间的推移逐渐减小。
4. 风险函数(Hazard Function):记为h(t),用来描述在给定时刻t 生存下来的个体在下一时刻会发生终止事件的概率。
风险函数的大小与时间t有关,通常会随着时间的推移逐渐增大。
二、生存分析的方法与技巧生存分析采用的方法包括Kaplan-Meier法、Cox回归模型等。
下面将介绍这些方法的基本原理与应用技巧:1. Kaplan-Meier法(K-M法):该方法用于估计生存函数,相比其他方法更适合用于分析数据中存在截断或缺失的情况。
K-M法将生存时间按照不同的时间点进行分组,并计算每个时间点的生存几率。
2. Cox回归模型:该模型用于研究生存时间与多个危险因素之间的关系。
通过对危险因素的调整,可以得到更准确的生存预测。
Cox回归模型广泛应用于生物医学研究中,如癌症预后、药物疗效评价等领域。
三、生存分析在统计学中的重要性生存分析在统计学中具有重要的意义,主要体现在以下几个方面:1. 生存率研究:生存分析可以用来研究各种事件的生存率,如疾病的治疗效果、产品的使用寿命、经济市场的生存周期等。
关于生存分析的统计方法
关于生存分析的统计方法以生存分析的统计方法为标题,本文将介绍什么是生存分析,以及生存分析中的统计方法。
一、什么是生存分析生存分析是一种描述和分析生存时间的统计方法,它研究事件发生的概率和时间之间的关系,以及发生特定事件之前的时间长度。
生存分析是医学统计学中的一个重要部分,也被用于经济学、营销学和其他社会科学领域。
生存分析是统计分析的一种,它提供了一个可以测量特定事件发生的概率的方法。
生存分析的主要任务是研究不同的因素对某个事件发生的概率以及在该事件发生之前的持续时间方面的影响。
二、生存分析中的统计方法生存分析的主要统计方法包括单因素生存分析和多因素生存分析:1.因素生存分析单因素生存分析是一种用来估计特定事件发生的概率的统计方法,这种统计方法采用单一因素来评估特定事件发生的可能性。
单因素生存分析一般采用比例风险模型(或也叫做Cox比例风险模型),其中一个因素会影响另一个因素发生的概率。
比例风险模型分析需要经过正态分布的测试,以评估特定因素发生的概率。
2.因素生存分析多因素生存分析比单一因素生存分析更为复杂。
多因素生存分析采用多个因素,以估计特定事件发生的概率。
多因素生存分析一般使用多变量比例风险模型,该模型用多个变量衡量某一事件发生的概率。
通过多变量比例风险模型,可以确定影响特定事件发生的概率的每个变量及其重要性。
三、结论本文详细介绍了生存分析的定义以及生存分析中使用的两种主要统计方法:单因素生存分析和多因素生存分析。
生存分析的结果可以用来评估特定事件发生的概率以及在该事件发生之前的持续时间。
因此,生存分析为评估大量复杂数据提供了有用的信息,并且已经成为统计学中的重要技术。
14-生存分析
将原始数据录入计算软件,首先对每个备选的自变量作单因素Cox回 归模型,得到表23-9所示结果。由表23-9可见,在水准上,有统计 学意义的因素为年龄和确诊到手术时间。
Cox回归应用中的注意事项
1.Cox回归分析结论的正确性要以科学的设计、有代 表性的抽样为前提。如果样本例数过少(多因素分析 中死亡例数一般应在自变量个数的10倍以上),或者 抽样不随机而使得某些变量在其各个水平上分布极偏, 很难得到真正的结果。有时回归分析得到的相对危险 度与专业知识相悖,并非是什么专业上的新发现,而 是设计上的缺陷造成。通过计算机软件进行模型拟合 只能保证计算上的准确,不合理的设计得到的数据计 算出的结果只能是错得更复杂。另外,虽然它可以利 用删失数据的信息,但过多的删失很可能会带来分析 结果的偏倚。
2. 截尾原因无偏性 例如,老年患者常因不重视随访而失访,由此可能 使估计的生存率偏高。为防止截尾偏性,常需对被截尾者的年龄、 职业和地区等构成情况进行分析。
3. 生存时间尽可能精确 因为多数生存分析方法都是在生存时间排序的 基础上进行的,即使是小小的舍入误差,也可能改变生存时间顺序 而影响结果。对于随访资料,生存时间最好精确到天数。
完全数据
完全数据(complete data):是指从观 察的起始事件一直达到观察的终点事件。 是生存分析最重要的资料,即观察对象 完整的生存时间。
截尾数据
截尾数据(censored data)在随访工作中,由于某种 原因未能观察到病人的明确结局(即终止事件),所 以不知道该病人的确切生存时间,它所提供关于生存 时间的信息是不完全的。
产生截尾现象的原因: ①病人失访 ②病人的生存期超过了研究的终止期
③在动物实验中,达到了事先规定的终止事件
生存分析入门及其应用领域
生存分析入门及其应用领域生存分析是一种统计方法,用于研究个体在给定时间内生存或发生特定事件的概率。
它广泛应用于医学、生物学、社会科学等领域,帮助研究人员了解个体的生存状况和预测未来事件的发生概率。
本文将介绍生存分析的基本概念和方法,并探讨其在不同领域的应用。
一、生存分析的基本概念和方法1.1 生存函数和生存率生存函数是描述个体在给定时间内存活的概率分布函数。
它可以用来计算个体在不同时间点的生存率。
生存率是指个体在给定时间段内存活下来的概率。
1.2 风险函数和累积风险函数风险函数是描述个体在给定时间点发生事件的概率密度函数。
它可以用来计算个体在不同时间点发生事件的风险。
累积风险函数是指个体在给定时间段内发生事件的累积概率。
1.3 生存分析方法生存分析方法包括Kaplan-Meier方法、Cox比例风险模型等。
Kaplan-Meier方法用于估计生存函数和生存率,适用于无法满足正态分布假设的数据。
Cox比例风险模型用于分析多个协变量对生存时间的影响,可以得出各个协变量的风险比。
二、生存分析在医学领域的应用2.1 癌症生存分析生存分析在癌症研究中广泛应用。
研究人员可以通过分析患者的生存时间和相关协变量,评估不同治疗方法对患者生存率的影响。
此外,生存分析还可以用于预测患者的生存时间和制定个体化治疗方案。
2.2 药物研发生存分析在药物研发中也有重要应用。
研究人员可以通过分析药物对动物或人体的生存时间和相关协变量,评估药物的疗效和安全性。
生存分析可以帮助筛选出具有潜在治疗效果的药物,并为临床试验的设计提供依据。
三、生存分析在社会科学领域的应用3.1 人口统计学生存分析在人口统计学中被广泛应用。
研究人员可以通过分析人群的生存时间和相关协变量,评估不同因素对人口生存率的影响。
生存分析可以帮助政府和决策者制定人口政策和社会福利政策。
3.2 金融风险管理生存分析在金融风险管理中也有应用。
研究人员可以通过分析金融产品的生存时间和相关协变量,评估不同因素对金融产品的风险和收益的影响。
医学统计学中的生存分析方法
医学统计学中的生存分析方法一、引言在医学领域中,了解疾病的生存状况对于预测患者的预后、制定治疗方案以及评估新药疗效至关重要。
为了帮助我们更好地理解疾病的生存情况,医学统计学中的生存分析方法应运而生。
本文将介绍生存分析的基本概念、常用的生存分析方法以及其在医学研究中的应用。
二、生存分析的基本概念生存分析是一种用于研究事件发生时间的统计方法,常用于分析疾病的生存状况。
其核心概念是生存时间(Survival Time)、生存状态(Survival Status)以及危险比(Hazard Ratio)。
生存时间是指从一个特定事件(例如诊断疾病)发生到另一个特定事件(例如死亡或复发)发生的时间间隔。
生存状态是指在某个特定时间点上,观察的个体是否存活。
危险比是比较两组生存时间的风险差异,通常用来评估不同因素对生存时间的影响。
三、常用的生存分析方法1. Kaplan-Meier曲线Kaplan-Meier曲线是一种常用的生存分析方法,它可以估计在不同时间点上的生存概率。
通过绘制Kaplan-Meier曲线,我们可以直观地观察到不同组别、不同变量对生存时间的影响。
2. Log-Rank检验Log-Rank检验是一种常用的假设检验方法,用于比较两组或多组生存曲线之间是否有差异。
通过计算观察到的生存时间与预期生存时间之间的差异,可以判断不同因素对生存时间的影响是否显著。
3. Cox比例风险回归模型Cox比例风险回归模型是一种常用的多变量生存分析方法,用于评估多个因素对生存时间的影响。
该模型可以控制其他潜在影响因素,并计算危险比,从而确定不同因素对生存时间的相对危险性。
四、生存分析方法在医学研究中的应用生存分析方法在医学研究中有着广泛的应用,以下是其中一些典型的例子:1. 癌症研究生存分析方法可以用于评估不同治疗方法对癌症患者生存时间的影响,帮助医生制定个体化的治疗方案。
此外,生存分析还可以确定某种基因突变是否与癌症预后相关,从而为基因治疗提供依据。
生存分析(survivalanalysis)
⽣存分析(survivalanalysis)⼀、⽣存分析(survival analysis)的定义 ⽣存分析:对⼀个或多个⾮负随机变量进⾏统计推断,研究⽣存现象和响应时间数据及其统计规律的⼀门学科。
⽣存分析:既考虑结果⼜考虑⽣存时间的⼀种统计⽅法,并可充分利⽤截尾数据所提供的不完全信息,对⽣存时间的分布特征进⾏描述,对影响⽣存时间的主要因素进⾏分析。
⽣存分析不同于其它多因素分析的主要区别点:⽣存分析考虑了每个观测出现某⼀结局的时间长短。
应⽤场景 什么是⽣存?⽣存的意义很⼴泛,它可以指⼈或动物的存活(相对于死亡),可以是患者的病情正处于缓解状态(相对于再次复发或恶化),还可以是某个系统或产品正常⼯作(相对于失效或故障),甚⾄可是是客户的流失与否等。
在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。
还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作等等。
在某些领域的分析中,常常⽤追踪的⽅式来研究事物的发展规律,⽐如研究某种药物的疗效,⼿术后的存活时间,某件机器的使⽤寿命等。
在医学研究中,常常⽤追踪的⽅式来研究事物发展的规律。
如,了解某药物的疗效,了解⼿术的存活时间,了解某医疗仪器设备使⽤寿命等等。
对⽣存资料的分析称为⽣存分析。
所谓⽣存资料就是描述寿命或者⼀个发⽣时间的数据。
更详细的说⼀个⼈的⽣存时间的长短与许多因素有联系的,研究因素与⽣存时间的联系有⽆及程度⼤⼩,称为⽣存分析。
例如研究病⼈感染了病毒后,多长时间会死亡;⼯作的机器多长时间会发⽣崩溃等。
这⾥“个体的存活”可以推⼴抽象成某些关注的事件。
所以SA就成了研究某⼀事件与它的发⽣时间的联系的⽅法。
这个⽅法⼴泛的⽤在医学、⽣物学等学科上,近年来也越来越多⼈⽤在互联⽹数据挖掘中,例如⽤survival analysis去预测信息在社交⽹络的传播程度,或者去预测⽤户流失的概率。
⽣存分析研究的内容 1.描述⽣存过程 研究⽣存时间的分布特点,估计⽣存率及平均存活时间,绘制⽣存曲线等,根据⽣存时间的长短,可以估算出各个时点的⽣存率,并根据⽣存率来估计中位⽣存时间,也可以根据⽣存曲线分析其⽣存特点,⼀般使⽤Kaplan-Meier法和寿命表法。
统计学中的生存分析
统计学中的生存分析统计学是一门研究数据收集、分析和解释的学科,它在许多领域都有着广泛的应用。
其中,生存分析是统计学中的一项重要内容,专注于研究和预测个体在特定时间内生存或发生某个事件的概率。
本文将介绍生存分析的基本概念、应用领域以及常用的生存分析方法。
一、生存分析的基本概念生存分析,又称事件分析、时间数据分析或生命表分析,是一种用于研究个体在某个时间段内生存或发生特定事件的概率的统计方法。
在生存分析中,个体可以是人、动物、物体或其他单位,而事件可以是死亡、失业、疾病复发等。
生存分析通过观察一组个体在不同时间点上的生存状态,从而推断他们发生特定事件的可能性。
生存时间(Survival time)是生存分析中的重要概念,它指的是个体从某一特定起始时间到达结束时间(观测终点)的时间间隔。
有时,个体在观测终点前可能已经发生了感兴趣的事件,这种情况下,我们称之为“截尾”(Censored)观测,即观测的结束并非由于事件发生,而是由于某种原因无法继续观测。
二、生存分析的应用领域生存分析在医学、生物学、经济学、工程学等许多领域都有着广泛的应用。
在医学领域,生存分析可以用于疾病治疗的疗效评估,例如研究一种新药物对患者的生存时间是否有显著延长作用。
通过生存分析,我们可以比较治疗组和对照组的生存曲线,评估治疗效果。
在生物学研究中,生存分析可以用于评估不同基因型对个体寿命的影响,以及环境因素对生物生存的影响。
生存分析方法可以帮助研究人员了解遗传和环境因素对个体生存能力的作用机制。
在经济学领域,生存分析可以用于客户流失分析、产品寿命分析、市场竞争分析等。
通过生存分析,我们可以估计产品的寿命分布,预测客户的生命周期价值,从而制定合理的经营策略。
在工程学中,生存分析可以用于评估设备的可靠性和寿命,以及故障检测和预测。
通过生存分析,工程师可以确定设备的有效寿命,并及时采取维修或更换措施,以确保设备的正常运行。
三、常用的生存分析方法生存分析涉及到许多复杂的统计方法,下面介绍其中两种常用的生存分析方法:卡普兰-迈尔估计和考克斯模型。
生存分析知识总结
生存分析知识总结一、生存分析的基本概念生存分析是将事件的结果和出现此结果所经历的时间结合起来分析的统计分析方法。
研究生存现象和响应时间数据及其统计规律的一门学科。
对一个或多个非负随机变量(生存时间)进行统计分析研究。
对生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度的统计分析方法。
在综合考虑相关因素(内因和外因)的基础上,对涉及生物学、医学(临床、流行病)、工程(可靠性)、保险精算学、公共卫生学、社会学和人口学(老龄问题、犯罪、婚姻)、经济学(市场学)等领域中,与事件(死亡,疾病发生、发展和缓解,失效,状态持续)发生的时间(也叫寿命、存活时间或失效时间,统称生存时间)有关的问题提供相关的统计规律的分析与推断方法的学科。
生存时间也叫寿命、存活时间、失效时间等等。
比如:医学上包括疾病发生时间、治疗后疾病复发时间;可靠性工程系为元件或系统失效时间;犯罪学方面是重罪犯人的假释时间;社会学上指首次婚姻持续时间;人口学上包括母乳喂养新生儿断奶时间;经济学包括经济危机爆发时间、发行债券的违约时间;保险精算学包括保险人的索赔时间、保险公司某一索赔中所付保费;汽车工业包括汽车车轮转数;市场学中有报纸和杂志的篇幅和订阅费。
这些也可以说明,生存时间可以不是具体的时间。
二、生存分析的历史生存分析方法最早可上溯至十九世纪的死亡寿命表。
现代的生存分析则开始于二十世纪三十年代工业科学中的相关应用。
二次世界大战时期,武器装备的可靠性研究,这一研究兴趣延续到战后。
此时生存分析都集中在参数模型。
二十世纪六七十年代,医学研究中大量临床试验的出现,要求方法学有新的突破,导致了生存分析的研究开始转向非参数方法。
D.R. Cox在72年提出的比例风险模型为此做出了划时代的贡献。
现在,生存分析方法的在医学领域得到了广泛的应用,而通过医学研究要求的不断提高,这一方法也得到了飞速的发展。
三、生存分析的研究目的,内容和具体方法(一)研究目的主要由以下五个方面1.描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。
生存分析
第二节 生存率的估计与生存曲线
一、小样本资料生存率及其标准误的计算 生存率的计算:Kaplan-Meier法(K-M法、 乘积极限法) Kaplan-Meier法由Kaplan和Meier于1958年提 出,直接用概率乘法定理估计生存率,故称乘 积极限法(product-limit method),是一种非 参数法,适用于小样本和大样本。 生存率的标准误的计算 生存曲线
生存资料统计学处理方法
(一)设计 目的:专业目的:据专业知识确定。
统计学目的: 估计:根据样本生存资料估计总体生 存率及其它有关指标(如中位生存期 等),如根据脑瘤患者治疗后的生存 时间资料,估计不同时间的生存率、 生存曲线以及中位生存期等。
比较:对不同处理组生存率进行比较,如 比较不同疗法治疗脑瘤的生存率,以了解 哪种治疗方案较优。
1476 2417 876+ 2250+ 265 985+
生存时间
生存时间的度量单位可以是年、月、 日、小时等。常用符号t表示,截尾数据在 其右上角标记“+”。 生存资料的主要特点:
含有截尾数据。 截尾数据的特点:真实的生存时间未知, 只知道比观察到的截尾生存时间要长。 生存时间的分布一般不呈正态分布。
影响因素分析:目的是为了探索和了解影 响生存时间长短的因素,或平衡某些因素 影响后,研究某个或某些因素对生存率的 影响。如为改善脑瘤病人的预后,应了解 影响病人预后的主要因素,包括病人的年 龄、性别、病程、肿瘤分期、治疗方案等。 预测:具有不同因素水平的个体生存预测, 如根据脑瘤病人的年龄、性别、病程、肿 瘤分期、治疗方案等预测该病人t年(月) 生存率。
二、大样本资料的生存分析 生存率的计算 寿命表法 生存曲线
统计学中的生存分析方法
统计学中的生存分析方法统计学是一门研究数据的收集、整理、分析和解释的学科,而生存分析方法则是其中一个重要的分析工具。
生存分析方法主要用于探索和评估个体在特定时间段内存活或事件发生的概率。
在医学、生物学、社会科学等领域中,生存分析方法被广泛应用于研究疾病发展、生物进化、人口统计等诸多问题。
本文将介绍生存分析的基本概念、常用的统计方法和其在不同领域中的应用。
1. 生存分析的基本概念生存分析也被称为时间至事件分析、事件史分析或等待时间分析,它关注的是从某个特定时刻开始,个体直至其面临感兴趣事件发生或结束时的时间间隔。
常见的感兴趣事件包括死亡、疾病复发、失业等。
生存分析方法所研究的主要目标是估计特定时间内个体发生事件的概率,同时还可以探究和比较不同因素对个体生存时间的影响。
2. 常用统计方法生存分析方法包括半参数模型和非参数模型两大类。
2.1 半参数模型半参数模型是指同时利用参数和非参数方法进行估计和推断的模型。
其中最常用的是Cox比例风险模型,它是解释和预测时间发生的概率的一种方法。
Cox比例风险模型不需对生存时间分布做出假设,且可以容纳多个解释变量,对于解释个体生存时间的影响非常有用。
2.2 非参数模型非参数模型则是不对生存时间分布做出任何先验假设的模型。
其中最常用的是Kaplan-Meier曲线和Nelson-Aalen累积风险曲线。
Kaplan-Meier曲线是一种描述生存函数的非参数方法,用于估计给定时间点上的存活概率。
而Nelson-Aalen累积风险曲线则是用于估计事件累积风险的方法,尤其适用于研究罕见事件或数据缺失较多的情况。
3. 生存分析方法的应用生存分析方法在各个领域中都有广泛的应用。
3.1 医学领域在医学研究中,生存分析方法用于评估治疗方法的效果、预测患者的生存时间、研究疾病的进展等。
通过生存分析,医生可以了解不同治疗方法对患者生存时间的影响,从而指导临床决策,并优化治疗方案。
3.2 生物学领域生存分析方法在生物学领域中广泛应用于研究物种的存活和繁殖方式。
医学统计学第16-章生存分析-PPT幻灯片
0.0199
20 25 0.0787 10.0000 2.6517 0.0250 0.0105 0.064516 0.028475
25 30 0.0741 8.1250 2.2535 0.0200 0.00949 0.072727 0.035758
30 35 0.0660 11.2500 3.7500 0.0200 0.00949 0.114286 0.054761
n data li16_1; n input count c time; n cards; n 510 n 715 n 6 1 10 n 4 1 15 n 5 1 20 n 4 1 25 n 4 1 30 n 0 1 35 n 2 1 40 n 1 1 45 n 2 1 50 n; n proc lifetest plots=(s) method=life n width=5; time time*c(0); n freq count; n run;
生存时间资料常通过随访获得,因观 察时间长且难以控制混杂因素,再加上存 在截尾数据,规律难以估计,一般为正偏 态分布。
6、生存率(survival rate)与 死亡概率
①生存率:又叫累积生存率或生存函数。
表示观察对象其生存时间T大于t时刻的概 率,常用S(t,X)=P(T>t,X)表示。在实际工
data ex16_2; input month censor@@; cards; 1 0 3 0 4 0 5 0 6 0 8 0 10 0 11 0 12 0 14 0 17 0 18 0 24 0 30 0 31 0 51 0 62 1 78 1 88 1 115 1 124 1 ; proc lifetest plots=(s); time month*censor(1); run;
关于生存分析
关于生存分析一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。
根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。
2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。
生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。
有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。
3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。
常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。
4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。
t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。
二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。
对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。
2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。
这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。
三、实例要研究某种新药治疗相对于常规药物治疗对生存率有无改善,收集以下数据:months:生存时间(单位月),为连续变量。
group:1=治疗组,2=对照组status:0=出现结局,1=失访,2=实验结束时仍存活三、操作步骤菜单选择:主对话框:按图设置点击状态框下方的“定义事件”按钮,如下图:填入代表事件发生的“0”回答主对话框,点击“选项”按钮,设置如下:回到主对话框,点击“比较因子”按钮,设置如下:回到主对话框,点击“确定”输出结果。
生存分析(Survivalanalysis)
⽣存分析(Survivalanalysis)⽣存分析(Survival analysis)是研究影响因素与⽣存时间和结局关系的⽅法。
简单的说就是要分析影响因素是否与结局相关,还要分析影响因素与结局出现时间关系。
⽣存分析中的最主要有以下⼏个概念:⽣存时间(Survival time)是指从某起点事件开始到被观测对象出现终点事件所经历的时间,如从疾病确诊到进展/死亡的时间;⽣存时间有两种类型:第⼀种是完全数据(Complete data),指被观测对象从观察起点到出现终点事件所经历的时间;第⼆种是截尾数据(Consored data),截尾数据的产⽣主要有三个原因,失访(Loss offollow-up)、退出和终⽌。
失访和退出都是在试验还没有结束时,研究者就已经追踪不到数据了,⽽终⽌是研究已经结束仍未观察到患者结局。
截尾数据过多会影响⽣存分析的效果。
死亡概率(Mortality probability)是指某段时间开始时⽣存的个体在该段时间内死亡的可能性⼤⼩;⽣存概率(Survival probability)是指某段时间开始时存活的个⼈⾄该时间结束时仍然存活的可能性⼤⼩;以下我们简单展⽰两个⽣存分析常⽤的⽅法:Kaplan-Meier曲线和Cox⽐例风险模型。
本次⽤到的数据和上期logistic⽤到的数据⼀样,都是虚构。
⼀、各变量的含义⼆、单因素⽣存分析程序如下:data survival_analysis;input SampleID$ Age Gender Primary_site Vascular_invasion GeneA GeneB GeneC Outcome$PFS;if Outcome='PD' then Outcome1=1;else Outcome1=0;cards;T1 1 1 0 0 1 1 1 PD155T2 1 0 0 1 1 1 1 PD247T3 1 1 0 1 0 0 0 PD51……T68 0 1 0 0 0 0 0 SD 40T69 1 1 0 0 0 0 0 SD 139T70 1 0 0 1 1 1 1 SD 238;run;proc print;run;proc lifetest plots=(s,ls,lls) data=survival_analysis;*plots选项分别绘制S图,LS图和LLS图;time PFS*Outcome1(0);strata Age;run;以GeneB单因素分析结果为例:GeneB突变与未突变两条⽣存曲线⽐较的假设检验结果显⽰,两条曲线差异有统计学意义,表明突变与未突变⼈群的PFS差异有统计学意义。
生存分析概念
一、生存分析的概念:将事件的结果和出现此结果所经历的时间结合起来分析的统计分析方法。
研究生存现象和响应时间数据及其统计规律的一门学科。
对一个或多个非负随机变量(生存时间)进行统计分析研究。
对生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度的统计分析方法。
在综合考虑相关因素(内因和外因)的基础上,对涉及生物学、医学(临床、流行病)、工程(可靠性)、保险精算学、公共卫生学、社会学和人口学(老龄问题、犯罪、婚姻)、经济学(市场学)等领域中,与事件(死亡,疾病发生、发展和缓解,失效,状态持续)发生的时间(也叫寿命、存活时间或失效时间,统称生存时间)有关的问题提供相关的统计规律的分析与推断方法的学科。
二、“生存时间”(Survival Time)的概念生存时间也叫寿命、存活时间、失效时间等等。
医学:疾病发生时间、治疗后疾病复发时间可靠性工程系:元件或系统失效时间犯罪学:重罪犯人的假释时间社会学:首次婚姻持续时间人口学:母乳喂养新生儿断奶时间经济学:经济危机爆发时间、发行债券的违约时间保险精算学:保险人的索赔时间、保险公司某一索赔中所付保费汽车工业:汽车车轮转数市场学中:报纸和杂志的篇幅和订阅费三、生存分析的应用领域:社会学,保险学,医学,生物学,人口学,医学,经济学,可靠性工程学等六、生存分析研究的目的1、描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。
统计方法包括Kaplan-Meier(K-M)法、寿命表法。
2、比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了解哪种治疗方案较优。
统计方法log-rank检验等。
3、影响因素分析:研究某个或某些因素对生存率或生存时间的影响作用。
如为改善脑瘤病人的预后,应了解影响病人预后的主要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。
统计方法Cox比例风险回归模型等。
4、预测:建立Cox回归预测模型。
生存分析在医学研究中的作用
生存分析在医学研究中的作用生存分析是医学研究中一种重要的统计分析方法,用于研究个体在一定时间内生存或发生某种事件的概率。
生存分析主要应用于临床医学、流行病学和生物统计学等领域,能够帮助研究人员评估治疗效果、预测疾病进展和生存时间,为临床决策提供科学依据。
本文将介绍生存分析在医学研究中的作用及其应用场景。
一、生存分析的基本概念生存分析是一种统计方法,用于研究个体在一定时间内生存或发生某种事件的概率。
在医学研究中,生存分析通常用于评估治疗效果、预测疾病进展和生存时间。
生存分析的基本概念包括生存时间、生存函数、生存率和风险比等指标。
1. 生存时间:生存时间是指从个体被诊断出患有某种疾病或接受治疗开始,到发生特定事件(如死亡、疾病复发等)的时间间隔。
生存时间可以是连续的,也可以是离散的。
2. 生存函数:生存函数是描述个体在给定时间内存活的概率分布函数。
常用的生存函数包括生存曲线、生存率曲线和危险函数等。
3. 生存率:生存率是指个体在给定时间段内存活下来的概率。
生存率可以用生存曲线来表示,反映了个体在不同时间点的存活概率。
4. 风险比:风险比是比较两组个体在发生特定事件的风险大小的指标。
在生存分析中,常用的风险比包括相对风险(hazard ratio)和绝对风险(absolute risk)。
二、生存分析的应用场景生存分析在医学研究中有着广泛的应用场景,主要包括以下几个方面:1. 评估治疗效果:生存分析可以帮助研究人员评估不同治疗方案对患者生存时间的影响。
通过比较不同治疗组的生存曲线和风险比,可以确定哪种治疗方案更有效,为临床决策提供依据。
2. 预测疾病进展:生存分析可以用于预测患者疾病进展的风险。
通过构建预测模型,可以根据患者的临床特征和生存时间数据,预测患者未来发生疾病进展的可能性,从而采取相应的干预措施。
3. 评估生存质量:生存分析可以帮助评估患者的生存质量。
通过分析患者的生存时间和生存率,可以了解患者在治疗过程中的生存状态和生活质量,为改善患者的生存质量提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OS :death for any cause;DSS:cancer or its treatment;
DFS:any type of treatment failure ;
disease-specific survival应该是没有算因其他原因而死亡的,overall survival应该是总的算上其他的原因
无病生存期(Disease-free survival,DFS)的定义是指从随机化开始至疾病复发或由于疾病进展导致患者死亡的时间。
该指标也常作为抗肿瘤药物III期临床试验的主要终点。
某些情况下,DFS与OS 相比,作为终点比较难以记录,因为它要求认真随访,及时发现疾病复发,而且肿瘤患者的死亡原因也很难确定。
肿瘤患者常有合并症(如,心血管病),这些合并症可能会干扰对DFS的判断。
并且,肿瘤患者常死于医院外,不能常规进行尸检。
总生存期(Overall survival,OS)的定义是指从随机化开始至因任何原因引起死亡的时间。
该指标常常被认为是肿瘤临床试验中最佳的疗效终点。
如果在生存期上有小幅度的提高,可以认为是有意义的临床受益证据。
作为一个终点,生存期应每天进行评价,可通过在住院就诊时,通过与患者直接接触或者通过电话与患者交谈,这些相对比较容易记录。
确认死亡的日期通常几乎没有困难,并且死亡的时间有其独立的因果关系。
当记录至死亡之前的失访患者,通常截止到最后一次有记录的、与患者接触的时间。
2 h0 d8 V8 C: h# j; l4 k$ M PFS(progression-free survival)是指观察受试者进入试验到肿瘤发生恶化或死亡的时间长度,受试者只要“肿瘤恶化”或“死亡”二者其一先发生,则达到研究的终点;
PFS(progression-free survival)定义为由随机至第一次发生疾病进展或任何原因死亡的时间。
PFS与TTP不同之处在于PFS可包括有患者死亡时间,因而与OS有更好的相关性。
但当多数的死亡事件与肿瘤无关时,TTP则是一个可被接受的终点指标。
PFS可反映肿瘤生长,并能在得出生存期受益结果之前被评价,且不会受到后续治疗的干扰,但将其正式批准为多个不同恶性肿瘤的生存期替代
指标有一定困难。
无论PFS的改善是直接还是间接地代表临床获益,都取决于新治疗与现有有效治疗比较的效应和风险-获益大小。
在PFS试验设计中需注意详细规定对PFS的评估、观察和分析方法,并仔细确定好肿瘤进展的标准,盲法在其整个试验执行过程中非常重要,最好应有一个由影像学家和临床专家组成的独立评估小组进行。
缺失值可使得PFS分析变得复杂,因此方案应就每名受试者确定好足够的评价访视,统计分析计划应详细说明主要分析(Primary Analysis)和一个或更多的敏感分析(Sensitivity Aanalysises)来评价结果的可靠性。
FDA建议如果之前没有缺失评价且经审核末次影像学评价确定没有肿瘤进展,那么进展时间应确定为所观察到出现任何方面进展的最初时间。
/ q% b: ^" J }& q* e+ `' t
无进展生存期(PFS,Progress Free Survival):指从随机分组开始到肿瘤进展或死亡时间,该指标的优点是比OS观察所需时间短且样本量少,既反映肿瘤的生长,又可以在证实生存受益以前进行评价,不会使现有治疗受到潜在的其他治疗的混淆,目前认为可以接受作为可能预测OS临床获益的替代指标。
其缺点是,目前对无进展生存期存在不同的定义,不同研究者在判断疾病进展时容易产生偏倚,因此,在试验设计中对其进行明确的定义是非常重要的。