参加学术讲座和学术报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生(学术讲座)报告题目:参加学术讲座和学术报告记录
学号M*********
姓名刘鑫伟
专业计算机技术
指导教师万继光
院(系、所)武汉光电国家实验室华中科技大学研究生院制
注意事项
一、本表适用于攻读硕士学位研究生实践课程、选题报告、学术
报告等。
二、以上各报告内容及要求由相关院(系、所)做具体要求。
三、以上各报告均须存入研究生个人学籍档案。
四、本表填写要求文句通顺、内容明确、字迹工整。
一、新型存储介质应用技术
越快的文件传输速度,越短的软件启动时间可以有效地提高人们的工作效率。而高效的存储能力就等价于要求存储器能够同时提供超低的响应延迟,超快的传输速度,超大的存储容量,并具备经久耐用的特性。很不幸,这种理想中的存储器目前在个人电脑上却很难看到。在很长时间内,人们使用的都是基于温彻斯特结构设计的机械硬盘,其200MB/s以内的连续读写速度,不到2MB/s的随机4KB小文件读写速度,超高的访问延迟令外部存储器成为制约计算机性能提升的主要瓶颈。近年来,随着固态硬盘的登场,存储器的传输速度、访问延迟均得到大幅改善,但由于闪存颗粒的先天技术特性所致,其主流产品的P/E(编程/擦除)寿命仅有数千次左右。对于比较在意可靠性、使用寿命的用户来说,固态硬盘也难挑大梁。因此就如开头所说,现在我们很难找到一种在各方面都有完美表现的存储器。不过随着以下两种技术的问世,以及后续实用化、商业化工作的开展,存储产品将很可能迎来一次革命,一次质的提升。
如果只从性能上来看,毫无疑问,固态硬盘是传统机械硬盘最好的继任者。但在早期,由于固态硬盘往往使用成本高昂的SLC闪存,因此其售价高高在上,导致它只能成为少数人的专享。现在为了帮助固态硬盘进入主流市场,半导体厂商开始采用不同于传统SLC结构的MLC乃至TLC结构的闪存。这三种结构的差异在于,SLC在一个存储单元里面只保存1位数据,而MLC保存两位,TLC保存三位。这也就是说,搭建同样容量的存储器,MLC结构只需要SLC结构二分之一的晶体管数量,成本降低到原来的三分之一,而TLC结构只需要三分之一的晶体管数量,成本更减少到原来的五分之一。尽管成本下降使得产品更加亲民,但是闪存的P/E(编程/擦写)寿命一直是徘徊在用户心头的隐忧。SLC结构的闪存可以达到10万次P/E寿命,而常见于主流商业产品中的MCL颗粒仅有3000~5000次P/E寿命,TLC更是只有500~1000次。P/E(编程/擦写)寿命的存在使得固态硬盘的接受度受到直接打压,厂商不得不持续改进闪存颗粒使用调度算法,在各个寿命有限的存储单元之间分摊负载。为了更好地解决擦写寿命的问题,来自台湾旺宏电子公司的工程师们研发出了一种能够让闪存存储单元自我修复,从而延长闪存使用寿命的技术。
在提高存储密度和存储容量方面,哈佛大学医学院的乔治·丘奇教授及其同事所做的研究工作可以作为代表。近期,他们以《DNA中的下一代数据化存储》为标题,在殿堂级学术杂志《自然》上发表了两页简讯,虽然其正文长度尚不到一页,但仍旧引发了广泛关注。这种DNA存储技术一口气将数据存储的理论极限密度推高了几个数量级,据计算1克重量的单链DNA能够存储455EB的数据(注:1PB=1024TB,1EB=1024PB),这意味着当下全球互联网的通信线路中流动的数据可以全部存储在1克DNA里面。
二、软件定义数据中心关键技术
目前,IT基础设施及其运营越来越复杂,人们通常采用云计算和虚拟化技术来满足各种业务需求。在过去的十年里,服务器虚拟化重新部署、管理以及优化了计算资源,将数据中心转化成为一个更加灵活高效的业务应用平台。专用服务器被动态托管之后,在虚拟服务器环境中能够根据需求运行应用程序。虽然虚拟化重塑数据中心的运营,企业能够部署机架服务器汇集和分配应用程序的需求,但这种转变并不完整理。数据中心网络和存储资产仍然保持着孤立和静态配置,很少有设施能够自动化统筹管理混合网络和存储硬件。
软件定义的数据中心(SDDC)声称改变这种状况。VMware对其描述为:“一个统一的数据中心平台,提供了前所未有的自动化、灵活性和效率,并转变IT交付的方式。汇集和汇总计算、存储、网络、安全性等可用性服务,并交付软件,通过智能化的策略驱动的软件进行管理。”
SDDC从功能架构上可分为软件定义计算、软件定义存储、软件定义网络、云操作系统、IT基础设施五大关键技术。
(1)软件定义计算(SDC):实现硬件资源与计算能力的解耦合,将计算能力以资源池的形式提供给用户并根据应用需要灵活地进行计算资源调配。服务器虚拟化是SDC的核心技术之一,其在一台物理主机上虚拟出多个虚拟机,各个虚拟机之间相互隔离,并同时运行相互独立的操作系统。但SDC不仅仅实现了服务器虚拟化,还将这种能力扩展到物理服务器及应用容器,通过相关管理、控制软件实现物理服务器、虚拟机以及容器的统一管理、调度与能力提供。服务器虚拟化技术相对成熟,目前市场上存在多种商用及开源解决方案。现有商用产品在性能、基础功能方面差异日渐缩小,可供选择的产品
范围扩大,呈现多种解决方案并存的格局。其主要差异体现在虚拟化管理层的能力上,后续该技术将围绕自动化运维、廉价、易扩展的存储、灵活智能的网络承载、灵活便捷的容灾等方面进一步优化。而实现物理机、虚拟机、应用容器统一管理与能力提供的技术与产品尚处于探索阶段。
(2)软件定义存储(SDS):把存储控制面与硬件面分离,使存储资源变得更灵活,使其更容易配置和使用存储资源。SDS将硬件存储资源整合起来,并通过软件来定义这些资源。用户能够根据应用策略来配置和使用存储服务,并将它们部署在一系列由供货商优化商用硬件乃至云中的多种硬件上。软件定义存储实质上是利用存储虚拟化软件,将物理设备中的存储(无论是基于块、文件,还是对象)抽象为虚拟共享存储资源池,通过虚拟化层进行存储管理,可以按照用户的需求,将存储池划分为许多虚拟存储设备,并可以配置个性化的策略进行管理,跨物理设备实现灵活的存储使用模型。SDS起步稍晚,标准化的研究以及产品的研发尚处在起步阶段,再加上传统存储厂商由于各自利益,对SDS的发展战略尚不明晰,SDS的发展仍然需要一定的时间。
(3)软件定义网络(SDN):SDN是一种将网络控制功能与转发功能分离、实现控制可编程的新兴网络架构。这种架构将控制层从网络设备转移到外部计算设备,使得底层的基础设施对于应用和网络服务而言是透明抽象的,网络可被视为一个逻辑的或虚拟的实体。基于SDN构建云数据中心网络,可实现业务与网络的解耦,基于对网络的高层抽象,应用可通过编程直接定义网络行为;通过集中的控制平面,实现对虚拟接入网络层的统一控制,并与计算、存储紧密协同,满足计算、存储资源的移动性要求;SDN的开放编程特性支持基于网络现状和应用需求灵活调整网络流量路径,成为新型算法、设备及架构创新的孵化器。SDN总体上处于发展早期,在数据中心内以叠加网技术为主流,通过在现有物理网络上构建虚拟的逻辑网络层,网络控制逻辑从底层物理硬件设备中解耦出来,交由虚拟网络层中集中的控制器进行统一处理;用户可以根据实际业务需求灵活构建逻辑网络以及调整网络策略;逻辑网络承载在物理网络之上,与底层物理网络的具体实现无关,两者相互独立。
(4)云操作系统:SDDC的大脑,负责将计算、存储、网络资源依据策略进行自动化调度与统一管理、编排和监控,同时根据用户需求形成不同的服务并提供计费等功能。云操作系统从功能上一般可分为资源管理、服务管理和