武汉各区八年级上期中压轴题

合集下载

八年级上期中考试考前压轴题训练

八年级上期中考试考前压轴题训练

八年级(上)期中考试考前压轴题训练八年级(上)期中考试考前压轴题训练1.如图,已知等边△ABC,P在AC延长线上一点,以PA为边作等边△APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.2.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下十个结论:①AD=BE;② PQ∥AE;③ AP=BQ;④ DE=DP;⑤∠AOB=60°⑥CP=CQ⑦△CPQ为等边三角形.⑧共有2对全等三角形⑨CO平分∠AOE ⑩CO平分∠BCD恒成立的结论有______________(把你认为正确的序号都填上).BCEMA BC EDOP Q如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,.求证:AGE DAC △≌△;4已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEFCEFABCS S S +=△△△.CGAEDBF当EDF 绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS △、CEFS △、ABCS△又有怎样的数量关系?请写出你的猜想,不需证明.5.等边△ABC ,D 为△ABC 外一点,∠BDC=120°,BD=DC .∠MDN=60°射线DM 与直线AB 相交于点M ,射线DN 与直线AC 相交于点N ,①当点M 、N 在边AB 、AC 上,且DM=DN 时,直接写出BM 、NC 、MN 之间的数量关系.②当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜想①中的结论还成立吗?若成立,请证明. ③当点M 、N 在边AB 、CA 的延长线上时,请画出图形,并写出BM 、NC 、MN 之间的数量关系.A E CFBD 图图ADFEC B ADBCE 图F6.在等边ABC∆的两边AB,AC所在直线上分别有两点M,N,D为ABC∠=︒,120∠=︒,BDC∆外一点,且60MDN=,探究:当点M,N分别爱直线AB,AC BD CD上移动时,BM,NC,MN之间的数量关系及AMN∆的周长Q与等边ABC∆的周长L的关系.⑴如图①,当点M,N在边AB,AC上,且DM=DN时,BM,NC,MN之间的数量关系式__________;此时=__________QL⑵如图②,当点M,N在边AB,AC上,且DNDM≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M,N分别在边AB,CA的延长线上时,若AN=x,则Q=_________(用x,L表示)图3MN KEDBA图2MNKDCBA图1MK N CBA7、已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

武汉市黄陂区2022-2023学年度第一学期八年级数学期中复习卷

武汉市黄陂区2022-2023学年度第一学期八年级数学期中复习卷

八上数学期中复习卷测试时间:120分钟一.选择题(共10小题,每小题3分)1.下列图形中,不具有稳定性的是()A.B.C.D.2.如图,AC、BD相交于点O,∠1=∠2,若用“SAS”说明△ACB≌△BDA,则还需要加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=AB3.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.124.下列运算正确的是()A.x2+x2=x4B.a2•a3=a5 C.(3x)2=6x2D.(mn)5÷(mn)=mn45.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6B.5C.4D.36.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,∠E=45°,则∠DBC的度数为()A.10°B.15°C.18°D.30°7.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE=4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm8.以下说法正确的有()①三角形的中线、角平分线都是射线;②三角形的三条高所在直线相交于一点;③三角形的三条角平分线在三角形内部交于一点;④三角形的中线把三角形分成面积相等的两部分;⑤直角三角形的三条高相交于直角顶点.A.5个B.4个C.3个D.2个第2题图第5题图第6题图第7题图第9题图9.如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB﹣BD=AC﹣CDC.AB+BD=AC+CD D.AD=BC10.如图,△ABC是等腰三角形,AB=AC,∠BAC=45°,过点A作AD⊥BC于点D,过点B作BE⊥AC于点E,AD,BE交于点F,H为AB的中点,连接EH,CH,FH,则下列说法正确的个数为()①∠BAD=∠CBE;②EH⊥AB;③CE=AF;④AE=CE+CF;⑤S△EFH=S△EHC.A.2个B.3个C.4个D.5个二.填空题(共6小题,每小题3分)11.若三角形的两边分别是6和2,第三边长是偶数,则此三角形的第三边为 .12.初二数学兴趣小组的小桃同学提出这样一个问题:如图,从边长为a +4的正方形纸片中剪去一个边长为a 的正方形(a >0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),你认为长方形的面积为 .13.如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且CD =BE ,BD =CF .若∠EDF =42°,则∠BAC 的度数是 .14.如图,在ABC ∆中,AB AC =.点D 为ABC ∆外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为 .15.如图,在△ABC 中,∠ABC =45°,AM ⊥BC 于点M ,点D 在AM 上,且DM =CM ,F 是BC 的中点,连接FD 并延长,在FD 的延长线上有一点E ,连接CE ,且CE =CA ,∠BDF =36°,则∠E = .第13题图 第14题图 第15题图16.如图,已知A ,B 点分别在x 轴负半轴、y 轴负半轴上,点M ,N 分别在x 轴正半轴、y轴正半轴上,满足MN =NB =MA ,点I 为△MON 的内角平分线的交点,AI ,BI 分别交y 轴正半轴、x 轴正半轴于P ,Q 两点,IH ⊥ON 于点H ,且H (0,4),记△POQ 的周长为C △POQ ,求C △POQ = .三.解答题(共8小题)17.(8分)如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB =ED ,求证:DB =CD .18.(8分)如图,在等腰△ABC 中,BA =BC ,点F 在AB 边上,延长CF 交AD 于点E ,BD =BE ,∠ABC =∠DBE . 4分(1)求证:AD =CE ;4分(2)若∠ABC =30°,∠AFC =45°,求∠EAC 的度数.19. 4分(1)先化简,再求值:(x +4)(x ﹣4)+(x ﹣3)2,其中x 2﹣3x +1=0.4分(2)已知a +b =8,ab =1,请求出a 2+b 2与a ﹣b 的值.20.(8分)图1、图2、图3均是5×5的正方形网格,每个小正方形边长为1,点A、B均在格点上.只用直尺,分别按照下列要求画图.3分(1)在图1中,作△ABC的高CD、中线BE2分(2)在图2中,找格点F,使△ABF为等腰三角形3分(3)在图3中,作∠ABD,使得∠ABD=45°;C21.(8分)如图,已知△ABC中,AB=AC=12cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由B点向C点运动,同时,点Q在线段CA上由点C向A点运动.3分(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由.5分(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?22.(10分)如图,已知△ABC,∠BAC=45°,在△ABC的高BD上取点E,使AE=BC.3分(1)求证:CD=DE;3分(2)试判断AE与BC的位置关系?请说明理由;4分(3)若AD=a,CD=b,AE平分∠BAC,连接CE,求出△CDE的周长.23.(10分)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.3分(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,求∠ACE;3分(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;4分(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE之间的数量关系,并写出证明过程.24.(12分)3分(1)如图,A在x轴负半轴上,点B的坐标为(0,-a),点E(b,a)在射线BA上.已知a2−8a+b2+12b+52=0,求B点和E点坐标.4分(2)在第(1)问的条件下,y轴正半轴上有一点F,使∠FEA=45°,求点F的坐标.5分(3)如图2,点C(0,2),Q、D两点均在x轴上,且S△CQD=6a.分别以DC、CQ为腰在第一、第二象限作等腰Rt△CDN、等腰Rt△QCM,连接MN交y轴于P点,问:S△MON是否发生改变?若不变,求出S△MON 的值;若变化,求S△MON的取值范围.图1 图2。

八年级数学上学期期中模拟卷(湖北武汉专用,人教版八上第11~13章:三角形+全等三角形+轴对称)解析

八年级数学上学期期中模拟卷(湖北武汉专用,人教版八上第11~13章:三角形+全等三角形+轴对称)解析

2024-2025学年八年级数学上学期期中模拟卷(湖北武汉专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第11~13章(三角形+全等三角形+轴对称)。

5.难度系数:0.61。

第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.没有哪一门学科能像数学这样,利用如此多的符号展现一系列完备且完美的世界.下列几种著名的数学曲线中,不是轴对称的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的定义可知,B 、C 、D 均为轴对称图形,A 不是轴对称图形故选A.2.如图,直线12//l l ,一个含45°角的直角三角板如图所示放置,点A 在直线2l 上,直角顶点C 在直线1l 上,已知么130Ð=°,则2Ð的度数为( )A.45°B.60°C.65°D.75°【答案】D【解析】∵l1∥l2,∴∠DCA=∠1=30°,∵∠DCA +∠DCB=90°,∴∠DCB=90°-30°=60°,∴∠2=180°-∠B-∠DCB=180°-45°-60°=75°,故选D..3.若点A关于x轴的对称点为(-2,3),则点A关于y轴的对称点为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)【答案】B【解析】∵点A关于x轴的对称点为(-2,3),∴A(-2,-3),∴点A关于y轴的对称点为(2,-3).故选B.4.如图.花瓣图案中的正六边形ABCDEF 的内角和是( )A .720°B .900°C .1080°D .360°【答案】A 【解析】正六边形ABCDEF 的内角和()62180720=-´°=°,故选A .5.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .BD 平分∠ABCB .点D 是线段AC 的中点C .AD =BD =BCD .△BCD 的周长等于AB +BC【答案】B 【解析】∵在ABC V 中,AB AC =,36A Ð=°,∴18036722ABC C °-°Ð=Ð==°,∵AB 的垂直平分线是DE ,∴AD BD =,∴36ABD A Ð=Ð=°,∴723636DBC ABC ABD ABD Ð=Ð-Ð=°-°=°=Ð,∴BD 平分ABC Ð,故A 正确;∴BCD △的周长为:BC CD BD BC CD AD BC AC BC AB ++=++=+=+,故D 正确;∵36DBC Ð=°,72C Ð=°,∴18072BDC DBC C =°--=°∠∠∠,∴BDC C Ð=Ð,∴BD BC =,∴AD BD BC ==,故C 正确;∵BD CD >,∴AD CD >,∴点D 不是线段AC 的中点,故B 错误.故选B .6.下列条件中,能判定△ABC ≌△DEF 的是( )A .AB=DE ,BC=EF ,∠A=∠EB .∠A=∠E ,AB=EF ,∠B=∠DC .∠A=∠D ,∠B=∠E ,∠C=∠FD .∠A=∠D ,∠B=∠E ,AC=DF【答案】D【解析】A .AB=DE ,BC=EF ,∠A=∠E ,SSA 不能确定全等;B .∠A=∠E ,AB=EF ,∠B=∠D ,AB 和EF 不是对应边,不能确定全等;C .∠A=∠D ,∠B=∠E ,∠C=∠F ,AAA 不能确定全等;D .∠A=∠D ,∠B=∠E ,AC=DF ,根据AAS ,能判断△ABC ≌△DEF .故选D .7.如图,在ABC V 中,已知点D ,分别为,BC AD 的中点2EF FC =,且ABC V 的面积为12,则BEF △的面积为( )A .3B .5C .6D .4【答案】D 【解析】∵点D 是BC 的中点,∴△ABD 的面积=△ACD 的面积=12△ABC =6,∵E 是AD 的中点,∴△ABE 的面积=△DBE 的面积=14△ABC 的面积=3,△ACE 的面积=△DCE 的面积=14△ABC 的面积=3,∴△BCE 的面积=12△ABC 的面积=6,∵EF =2FC ,∴△BEF 的面积=23×6=4,故答案为:4.8.如图,在ABC V 中,AB AC =,36A Ð=°.按照如下步骤作图:①分别以点A ,B 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN ,交AC 点D ;③以D 为圆心,BC 长为半径作弧,交AC 的延长线于点E ;④连接BD ,BE .则下列结论中错误的是( )A .MN BE∥B .AD BD BC ==C .3AEB CBE Ð=ÐD .2AB CE BE+=【答案】D【解析】AB AC =Q ,36A Ð=°,1180722ABC ACB A \Ð=Ð=°-Ð=°(),由题意得:BC DE =,MN 是AB 的垂直平分线,DA DB \=,DN AB ^,36A DBA \Ð=Ð=°,36DBC ABC DBA \Ð=Ð-Ð=°,72CDB A DBA \Ð=Ð+Ð=°,72CDB ACB \Ð=Ð=°,BD BC \=,AD DB BC DE \===,故选项B 正确;BD DE =Q ,1180542DBE DEB CDB \Ð=Ð=°-Ð=°(),\365490EBA DBA DBE Ð=Ð+Ð=°+°=°,即EB AB ^,又DN AB ^Q ,MN BE \∥,故选项A 正确;36DBC Ð=°Q ,54DBE Ð=°,543618CBE DBE DBC \Ð=Ð-Ð=°-°=°,54AEB Ð=°Q ,3AEB CBE \Ð=Ð,故选项C 正确;Q 36A Ð=°,90ABE Ð=°,2AE BE \¹,AB CE AC CE AE +=+=Q ,2AB CE BE \+¹,故选项D 错误.故选D .9.如图,已知ABC V 中,AB AC =,90BAC Ð=°,EPF Ð的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F (点E 不与A 、B 重合),90EPF Ð=°,过点F 作FH BC ^于点H ,给出以下四个结论:①AE CF =;②EPF V 是等腰直角三角形;③12ABC AEPF S S =四边形△;④当BP BE =时,2FA CF FH -=.上述结论中始终正确的个数有( )A .4个B .3个C .2个D .1个【答案】A【解析】如图,AB AC =Q ,90BAC Ð=°,ABC \V 是等腰直角三角形,90BAC Ð=°Q ,P 是BC 中点,AP CP \=,APE ÐQ 、CPF Ð都是APF Ð的余角,12\Ð=Ð,在APE V 与V CPF 中,3412AP CP Ð=Ðìï=íïÐ=Ðî,()ASA APE CPF \V V ≌,①由APE CPF V V ≌得到AE CF =,故①正确;②由APE CPF V V ≌得到PE PF =,EPF ÐQ 是直角,EPF \△是等腰直角三角形,故②正确;③由APE CPF V V ≌得到APE CPF S S =△△,则AEP APF CPF APF AEPF S S S S S =+=+=V V V V 四边形12ABC S V ,∴12ABC AEPF S S =四边形△,故③正确;④延长EF 交BC 的延长线于点G ,∵BP BE =,∴BP BE PC AP AF ====,∴67.5BPE BEP Ð=Ð=°,67.5APF AFP Ð=Ð=°,∴67.54522.5GFC AFE Ð=Ð=°-°=°,∴22.522.5G FCH Ð=Ð-°=°,18067.59022.5FPC Ð=°-°-°=°,∴PF FG =,CF CG =,∵FH BC ^,∴PH GH =,FH CH =,∵FA FH PC CH PH -=-=,CF FH CG CH GH +=+=,∴FA FH CF FH -=+,∴2FA CF FH -=,∴④正确;∴正确结论为①②③④.故选A .10.如图,已知ABC V 是等边三角形,点D 、E 分别在边AB 、BC 上,CD 、AE 交于点F ,60AFD Ð=°.FG 为AFC V 的角平分线,点H 在FG 的延长线上,HG CD =,连接HA 、HC .①BD CE =;②60AHC Ð=°;③FC CG =;④CBD CGH S S =△△;其中说法正确的有( )A .1个B .2个C .3个D .4个【答案】C 【解析】①∵△ABC 是等边三角形,∴∠B =∠ACE =60°,BC =AC ,∵∠AFD =∠CAE +∠ACD =60°,∠BCD +∠ACD =∠ACB =60°,∴∠BCD =∠CAE ,在△BCD 和△CAE 中,B ACE BC AC BCD CAE Ð=Ðìï=íïÐ=Ðî,∴△BCD ≌△CAE (ASA ),∴BD =CE ,故①正确;②作CM ⊥AE 交AE 的延长线于M ,作CN ⊥HF 于N ,如图:∵∠EFC =∠AFD =60°∴∠AFC =120°,∵FG 为△AFC 的角平分线,∴∠CFH =∠AFH =60°,∴∠CFH =∠CFE =60°,∵CM ⊥AE ,CN ⊥HF ,∴CM =CN ,∵∠CEM =∠ACE +∠CAE =60°+∠CAE ,∠CGN =∠AFH +∠CAE =60°+∠CAE ,∴∠CEM =∠CGN ,在△ECM 和△GCN 中,90CEM CGN CME CNG CM CN Ð=ÐìïÐ=Ð=°íï=î,∴△ECM ≌△GCN (AAS ),∴CE =CG ,EM =GN ,∠ECM =∠GCN ,∴∠MCN =∠ECG =60°,由①知△CAE ≌△BCD ,∴AE =CD,∵HG =CD ,∴AE =HG ,∴AE +EM =HG +GN ,即AM =HN ,在△AMC 和△HNC 中,90AM HN AMC HNC CM CN =ìïÐ=Ð=°íï=î,∴△AMC ≌△HNC (SAS ),∴∠ACM =∠HCN ,AC =HC ,∴∠ACM ﹣∠ECM =∠HCN ﹣∠GCN ,即∠ACE =∠HCG =60°,∴△ACH 是等边三角形,∴∠AHC =60°,故②正确;③由②知∠CFH =∠AFH =60°,若FC =CG ,则∠CGF =60°,从而∠FCG =60°,这与∠ACB =60°矛盾,故③不正确;④∵△ECM ≌△GCN ,△AMC ≌△HNC ,∴S △AMC ﹣S △ECM =S △HNC ﹣S △GCN ,即S △ACE =S △CGH ,∵△CAE ≌△BCD ,∴S △BCD =S △ACE =S △CGH ,故④正确,∴正确的有:①②④,故选C .第二部分(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知三角形的两边长分别为3和7,第三边为x ,则x 的取值范围是 .【答案】410x <<【解析】根据三角形的三边关系,得第三边的取值范围:7373x -<<+,解得410x <<,故答案为:410x <<.12.如图,在△ABC 中,AB =13,AC =10,AD 为中线,则△ABD 与△ACD 的周长之差= .【答案】3【解析】∵AD 是△ABC 中BC 边上的中线,∴BD =DC =12BC ,∴△ABD 与△ACD 的周长之差=(AB +BD +AD )﹣(AC +DC +AD )=AB ﹣AC=13﹣10=3.则△ABD 与△ACD 的周长之差=3.故答案为3.13.如图,在△ABC 中,BD 平分ABC Ð,CD 平分ACB Ð,连接AD ,作DE AB ^,2DE =,6AC =,则ADC △的面积为 .【答案】6【解析】如图,过点D 作DF BC ^于点F ,DG AC ^于点G ,∵BD 平分ABC Ð,DE AB ^,DF BC ^,∴DE=DF=2,∵CD 平分ACB Ð,DF BC ^,DG AC ^,∴DG=DF=2,∴1162622ADC S AC DG =×=´´=V .故答案是:6.14.如图,长方形纸带ABCD 中,AB CD ∥,将纸带沿EF 折叠,A ,D 两点分别落在A ¢,D ¢处,若162Ð=°,则2Ð的大小是 .【答案】56°/56度【解析】∵AB CD ∥,∴162AEF Ð=Ð=°,由折叠知62A EF AEF ¢Ð=Ð=°,∴218056AEF A EF ¢Ð=°-Ð-Ð=°.故答案为:56°.15.如图,ACB 90Ð=°,AC 2=,AB 4=,点P 为AB 上一点,连接PC ,则12PC PB +的最小值为 .【答案】3【解析】过P 点作PM ⊥BC 于点M ,将△ACB 沿AB 向上翻折得到△ADB ,且△ACB ≌△ADB ,过P 点作PN ⊥BD 于点N ,如图,∵在Rt △ACB 中,AC =2,AB =4,∴∠ABC =30°,∴BC =∵PM ⊥BC ,∴在Rt △PMB 中,有PM =12PB ,∴PC +12PB =PC +PM ,∵△ACB ≌△ADB ,∴∠ABD =∠ABC =30°,∵PN ⊥BD ,PB =PB ,∴∠PMB =∠PNB =90°,∴Rt △PNB ≌Rt △PMB ,∴PN =PM ,∴PC +12PB =PC +PM =PC +PN ,∵要求PN +PC 的最小值,∴可知当P 、N 、C 三点共线,根据垂线段最短可知,当CN ⊥BD 时,CN 最小,如图,∵CN ⊥BD ,∠CBD =∠ABC +∠ABD =60°,BC =∴在Rt △ABN 中,CN =3,则PC +12PB =PC +PM =PC +PN 的最小值是3,即PC +12PB 最小为3,故答案为:3.16.如图,在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,过点B 作BI EH ^于点I ,延长IB 交AC 于点J ,给出下列结论:①AB MG =.②BEH AFN S S =△△.③过点B 作BI EH ^于点I ,延长IB 交AC 于点J ,则AJ CJ =.④若J 是AC 中点,则2BJ EH =.其中正确的结论有 (只填写序号).【答案】①②③④【解析】∵在Rt ABC △中,90Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC MC =,BC GC =,90MCA GCB Ð=Ð=°∵90ACB Ð=°∴90MCG ACB Ð=Ð=°∴()SAS ACB MCG V V ≌∴AB MG =,故①正确;如图所示,过点F 作FO NA ^交NA 延长线于点O ,∵90FAO BAO CAB BAO Ð+Ð=Ð+Ð=°∴FAO CABÐ=Ð又∵90O ACB Ð=Ð=°,AF AB=∴()AAS AFO ABC V V ≌∴OF BC=∵AN AC=∵12ANB S AN OF =×V ,12ACB S AC BC =×V ∴ABC AFN S S =△△,同理可得:ABC BEH S S =V △,∴BEH AFN S S =△△,故②正确;如图所示,过点A 作AP BJ ^BJ 的延长线于点P ,过点C 作CQ BJ ^.∵90ABP BEI Ð+Ð=°,90EBI BEI Ð+Ð=°∴ABP BEIÐ=Ð又∵90P BIE Ð=Ð=°,AB BE=∴()AAS ABP BEI V V ≌∴AP BI=同理可证,()AAS BCQ HBI V V ≌∴CQ BI=∴CQ AP=∵90P CQJ Ð=Ð=°,AJP CJQÐ=Ð∴()AAS AJP CJQ V V ≌∴AJ CJ =,故③正确;延长BJ 交AN 于T ,过T 作TK BA ^于K ,过H 作HL EB ^于L ,∵J 为AC 中点;同理可得:BCJ TAJ V V ≌,∴ABC BEH ABT S S S ==V V V ,BJ =,∴1122AB TK BE HL ×=×,而AB BE =,∴TK HL =,∵AN BM ∥,90CBH ABE Ð=Ð=°,∴180TAB ABC ABC EBH Ð+Ð=°=Ð+Ð,∴TAB HBE Ð=Ð,∴TAK HBL Ð=Ð,∴TAK HBL V V ≌,∴TA HB =,∴TAB HBE V V ≌,∴HE BT =,而TJ BJ =,∴2EH BJ =;故④正确.故答案为:①②③④.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)如图,已知AB DC =,ABC DCB Ð=Ð,求证:A D Ð=Ð.【解析】证明::在△ABC 和 DCB △中,AB DC ABC DCB BC CB =ìïÐ=Ðíï=î,(4分)∴()SAS ABC DCB △≌△,(6分)A D \Ð=Ð.(8分)18.(8分)已知,如图,PD OA ^,PE OB ^,垂足分别为D ,E ,且PD PE =,试证明点P 在AOB Ð的平分线上.【解析】证明:连接OP ,如图,(2分)在Rt OPD V 和Rt OPE △中,PD PE OP OP=ìí=î∴()Rt Rt HL OPD OPE V V ≌(6分)∴Ð=ÐPOD POE ,∴OP 是AOB Ð的平分线,∴点P 在AOB Ð的平分线上.(8分)19.(8分)已知△ABC .(1)如图(1),C B Ð>Ð,若 AD BC ^于点D ,AE 平分BAC Ð,你能找出EAD Ð与B C ÐÐ,之间的数量关系吗?并说明理由.(2)如图(2),AE 平分BAC Ð,F 为AE 上一点,FM BC ^于点M ,EFM Ð与B C ÐÐ,之间有何数量关系?并说明理由.【解析】(1)解:∵AE 平分BAC Ð,∴1118022EAC BAC B C Ð=Ð=°-Ð-Ð(),又∵AD BC ^,∴90DAC C Ð=°-Ð,∴1902EAD EAC DAC B C C C B Ð=Ð-а-Ð-Ð-°-Ð=Ð-Ð)()(),∴12EAD C B Ð=Ð-Ð().(4分)(2)解:如图,过点 A 作AD BC ^于D ,∵FM BC ^,∴A D F M ∥,∴12EFM EAD C B Ð=Ð=Ð-Ð() .(8分)20.(8分)如图是44´的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在给定的网格中按要求画图.(保留作图痕迹,要求:借助网格,只用无刻度的直尺,不要求写出画法)(1)画出线段PM ,使PM AB ∥,且点M 为格点;(2)在线段AB 上画出点Q ,使PQ AB ^;(3)请直接写出PM 与PQ 的位置关系________.【解析】(1)解:如图,点M 即为所求;;(3分)(2)解:如图,点Q 即为所求;(6分)(3)解:∵PM AB ∥,PQ AB ^,∴PM PQ ∥,故答案为:垂直.(8分)21.(8分)如图,在等边△ABC D ,E 分别在边,BC AC 上,且,AE CD BE = 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:AD BE =;(2)求PBQ Ð的度数;(3)若6,2PQ PE ==,求AD 的长.【解析】(1)证明:∵ABC V 为等边三角形,∴,60AB CA BAE C =Ð=Ð=°,在AEB V 与CDA V 中,∵AB CA BAE C AE CD =ìïÐ=Ðíï=î,∴()SAS AEB CDA ≌V V ,∴AD BE =.(3分)(2)解:由(1)得:AEB CDA △△≌,∴ABE CAD Ð=Ð,∴60BAD ABE BAD CAD BAC Ð+Ð=Ð+Ð=Ð=°,∴60BPQ BAD ABE Ð=Ð+Ð=°,∵BQ AD ^,∴90BQP Ð=°,∴90906030PBQ BPQ Ð=°-Ð=°-°=°.(6分)(3)解:∵30PBQ Ð=°,90BQP Ð=°,6PQ =,∴212==BP PQ ,∵2PE =,∴14BE BP PE =+=,∵AD BE =,∴14AD =.(8分)22.(10分)如图所示,已知B (﹣2,0),C (2,0),A 为y 轴正半轴上的一点,点D 为第二象限一动点,点E 在BD 的延长线上,CD 交AB 于点F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC的度数是否发生变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【解析】(1)证明:∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(3分)(2)证明:过点A作AM⊥CD于点M,作AN⊥BE于点N,如下图所示:则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,由(1)可知:∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴DA平分∠CDE.(角的两边距离相等的点在角的平分线上);(6分)(3)解:∠BAC的度数为在CD上截取CP=BD,连接AP,如下图所示:∵CD=AD+BD,∴AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP (SAS) ,(8分)∴AD=AP,∠BAD=∠CAP,∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.(10分)23.(10分)数学活动课上,王老师提出这样一个问题:在△ABC 中,AD 是BC 边上的中线,若7AB =,4AC =,你能判断AD 的取值范围吗?如图①,小明同学考虑到,利用线段相等,可以构造全等把一些分散的已知条件整合在一个三角形里,因此得到如下解题思路:延长AD 到E ,使DE AD =,连接BE ,构造一对全等三角形,然后在ABE D 中就可以判断AE 的取值范围,从而求出AD 的取值范围.(1)按照上述思路,请完成小明的证明过程;(2)类比上述解题思路,解决问题:如图②,在ABC V 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF AB ∥交ED 的延长线于点F ,若AD BC ^,1AE =,2CF =,求AC 的长.(3)如图③,王老师在原△外部,以A 为直角顶点作两个等腰直角三角形,分别为ABM V 与ACN △,连接MN ,猜想MN 与中线AD 的数量关系,并证明你的结论.【解析】(1)AD Q 是BC 边上的中线,BD CD \=.在ADC △和EDB △中,CD BD ADC BDE AD ED =ìïÐ=Ðíï=î,(SAS)ADC EDB \△≌△,AC BE \=,AB BE AE AB BE -<<+Q ,2AB AC AD AB AC \-<<+,7AB =Q ,4AC =,3211AD \<<,1.5 5.5AD \<<.(3分)(2)CF AB Q ∥,B FCD \Ð=Ð,BED F Ð=Ð,AD Q 是BC 边上的中线,BD CD \=,(AAS)BDE CDF \△≌△,2BE CF \==,123AB AE BE \=+=+=,AD BC ^Q ,BD CD =,3AC AB \==.(6分)(3)2MN AD =.理由:延长AD 至E ,使DE AD =,连接CE ,如图所示:由(1)得:BAD CED ≌△△,BAD E \Ð=Ð,AB CE =,90BAM NAC Ð=Ð=°Q ,180BAC MAN \Ð+Ð=°,即180BAD CAD MAN Ð+Ð+Ð=°,180E CAD ACE Ð+Ð+Ð=°Q ,ACE MAN \Ð=Ð,(9分)BAM QV 和ACN △是等腰直角三角形,AB MA \=,AC AN =,CE MA \=,在ACE △和NAM △中,CE AM ACE MAN AC NA =ìïÐ=Ðíï=î,(SAS)ACE NAM \V V ≌,AE MN \=,2AD MN \=.(10分)24.(12分)阅读理解:如图1,在V ABC 中,D 是BC 边上一点,且BD m DC n =,试说明ABD ACD S m S n =△△.解:过点A 作BC 边上的高AH ,∵12ABD S BD AH =×△,12ACD S DC AH =×△,∴1212ABDACD BD AH S BD S CD DC AH ×==×△△,又∵BD m DC n=,∴ABD ACD S m S n =△△.根据以上结论解决下列问题:如图2,在V ABC 中,D 是AB 边上一点,且CD ⊥AB ,将V ACD 沿直线AC 翻折得到V ACE ,点D 的对应点为E ,AE ,BC 的延长线交于点F ,AB =12,AF =10.(1)若CD =4,求V ACF 的面积;(2)设△ABF 的面积为m ,点P ,M 分别在线段AC ,AF 上.①求PF +PM 的最小值(用含m 的代数式表示);②已知23AM MF =,当PF +PM 取得最小值时,求四边形PCFM 的面积(用含m的代数式表示).【解析】(1)∵CD ⊥AB ,∴∠ADC =90°,由翻折得,CE =CD =4,∠AEC =∠ADC =90°,∴CE ⊥AF ,∵AF =10,∴S △ACF =12AF •CE =12×10×4=20.(3分)(2)①如图2,作MN ⊥AC 于点O ,交AB 于点N ,连接FN 、PN ,,由翻折得,∠OAM =∠OAN ,∵AO =AO ,∠AOM =∠AON =90°,∴△AOM ≌△AON (ASA ),∴OM =ON ,AM =AN ,∴AC 垂直平分MN ,∴PM =PN ,∴PF +PM =PF +PN ≥FN ,∴当点P 落在FN 上且FN ⊥AB 时,PF +PM 的值最小,为此时FN 的长;(5分)如图3,FN ⊥AB 于点N ,交AC 于点P ,PM ⊥AF ,由S △ABF =12AB •FN =m ,得12×12FN =m ,解得,FN =16m ,此时PF +PM =FN =16m ,∴PF +PM 的最小值为16m .(8分)②如图4,当PF +PM 取最小值时,FN ⊥AB 于点N ,交AC 于点P ,PM ⊥AF ,设CD =CE =a ,PM =PN =x ,∵AB =12,AF =10,∴1126215102ABCAFC a S S a ´==´V V ,∴S △AFC =511S △ABF =511m ;∵23AM MF =,∴AM =25AF =25×10=4,∴AN =AM =4,∴BN =12=4=8,(10分)∴4182AFN BFN S S ==V V ,∴S △AFN =13S △ABF =13m ,由S △APM =12×4x ,S △APN =12×4x ,得S △APM =S △APN ,设S △APM =S △APN =2n ,∵23APM FPM S AM S MF ==V V ,∴S △FPM =3n,由S △APN +S △APM +S △FPM =S △AFN =13m ,得2n +2n +3n =13m ,∴n =121m ,∴S △APM =2n =221m ,∴S 四边形PCFM =511m -221m =83231m .(12分)。

2020-2021学年湖北省武汉市八年级(上)期中数学试卷

2020-2021学年湖北省武汉市八年级(上)期中数学试卷

2020-2021学年湖北省武汉市八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A. 1cmB. 2cmC. 7cmD. 10cm2.下列图案中,是轴对称图形的是()A. B. C. D.3.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.用三个正多边形镶嵌成一个平面时,若前两种是正方形和正六边形,则第三种是()A. 正十二边形B. 正十边形C. 正八边形D. 正三角形5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.7.正多边形的一个内角等于144°,则该多边形是正()边形.A. 8B. 9C. 10D. 117.如果两个三角形有两边及一角对应相等,那么这两个三角形()A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A. 100°B. 70°C. 40°D. 30°9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是()A. ①②④B. ①②③C. ②③④D. ①③10.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(本大题共6小题,共18.0分)11.△ABC中,∠A=80°,∠B=3∠C,则∠B=______ °.12.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是______ cm.13.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积是7,DE=2,AB=4,则AC长是______.14.如图,平面直角坐标系中有一正方形OABC,点C的坐标为(−2,−1),则点A坐标为______,点B坐标为______.15.如图,在△ABC中,AB=AC,∠BAC=90°,点E在边AC上,连接BE,过点A作AD⊥BE于点D,连接DC,若AD=4,则△ADC的面积为______.16.等边三角形ABC的边长为6,点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同,连接AF,BE相交于点P.当点E从点A运动到点C时,则点P经过的路径长______ .三、解答题(本大题共8小题,共72.0分)17.已知等腰三角形的一边长等于5,另一边长等于9,求这个三角形的周长.18.如图,已知AC、BD相交于点O,AD=BC,AC=BD,求证:OA=OB.19.如图,在△ABC中,AB=AC,∠BAC=80°,D是AC上一点,E是BC延长线上一点,连接BD,DE,若∠ABD=20°,BD=DE,求∠CDE的度数.20.如图,△ABC中,AB=AC,∠DBC=∠DCB,求证:直线AD是线段BC的垂直平分线.21.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.22.等腰Rt△ABC中,∠ACB=90°,AC=BC,点G是BC上一点,CF⊥AG于E,BF⊥CF,D为AB中点,连接DF.(1)求证:△AEC≌△CFB;(2)求证:EF=√2DF.23.如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=374,求△AED的面积.24.在平面直角坐标系中,点A、B分别在x轴、y轴上,直线l是第一、三象限的夹角平分线,P为直线l上的一点,且AP⊥AB,AP=AB(1)如图1,若点A坐标为(−1,0),试求点B的坐标(2)如图2,点Q位于点P的右侧,且PQ//x轴,连接AQ,E为y轴正半轴上一点,且AE=AQ,请探究线段OE、PQ、OB三者之间的数量关系?(3)如图3,在(1)的条件下,M为线段PB上的一点,且M(34 , 14),试求∠PAO+∠MAP的度数.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:6−4<x<6+4,解得:2<x<10,故选:C.根据三角形的三边关系可得6−4<第三根小棒的长度<6+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B【解析】【分析】此题主要考查了轴对称图形,关键是正确确定对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误.故选B.3.【答案】B【解析】【分析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选B.4.【答案】A【解析】【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.本题考查正多边形的镶嵌问题.【解答】解:正方形的每个内角是90°,正六边形每个内角是180°−360°÷6=120°,∵360°−90°−120°=150°,∴第三种正多边形的每个内角是150°又正十二边形每个内角是180°−360°÷12=150°,故第三种正多边形是正十二边形.故选A.5.【答案】B【解析】解:∵△ABC≌△BDA,∴BC=AD,∵AD=4cm,∴BC=4cm,故选B.根据全等三角形的性质得出BC=AD,代入求出即可.本题考查了全等三角形的性质的应用,解此题的关键是能根据全等三角形的性质得出BC=AD,注意:全等三角形的对应边相等,对应角相等.6.【答案】C【解析】试题分析:设正多边形是n边形,由题意得(n−2)×180°=144°n.解得n=10,故选C.考点:多边形内角与外角.7.【答案】C【解析】【分析】本题主要考查对全等三角形的判定的理解和掌握,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.根据全等三角形的判定定理判断即可.【解答】解:非直角三角形的两个三角形有两边及一角对应相等,这一角必须是两边的夹角对应相等,才能根据SAS,判断两个三角形全等,否则不能,例如若AB=DE,AC=DF,∠A=∠F,而△ABC和△DEF不一定全等,面积也不一定相等,故选:C.8.【答案】B【解析】解:∠BOB1=100°,∠AOB=30°,则∠A1OB=∠BOB1−∠AOB=100°−30°=70°.故选B.根据∠A1OB=∠BOB1−∠AOB即可求解.本题考查了图形的旋转,正确确定旋转角是关键.9.【答案】A【解析】【分析】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠BEC=90°,即可判断出正确的结论.∠AED=∠AEF+∠FED=12【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∠BEC=90°,所以①正确.∴∠AED=∠AEF+∠FED=12故选A.10.【答案】D【解析】解:∵∠CAD=30°,AC=AD,∴∠ACD=∠ADC=75°,∵CE⊥CD,∴∠ECA=165°,①正确;∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴BE=AD,③正确;∵BC=AD,∴BE=BC,②正确;过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,∴DM=12AD=12BC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°−∠ACD=15°,∠MDC=90°−∠ACD=15°,在△CMD和△DNC中,{∠CMD=∠CND ∠MDC=∠NCD CD=CD,∴△CMD≌△DNC,∴CN=DM=12AC=12BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确,故选:D.①根据:∠CAD=30°,AC=BC=AD,CE⊥CD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;③根据CE⊥CD,∠ACB=90°,AC=BC,利用SAS求证△ACD≌△BCE即可得出结论;②由③的结论,等量代换即可;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得DM=12BC,求证△CMD≌△DNC,可得CN=DM=12AC=12BC,从而得出CN=BN.然后即可得出结论.此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握.11.【答案】75【解析】解:∵∠A=80°,∴∠B+∠C=180°−80°=100°,∵∠B=3∠C,∴3∠C+∠C=100°,∠C=25°,∴∠B=75°.故答案为:75.根据三角形内角和定理可得∠B+∠C=180°−80°=100°,然后再把∠B=3∠C代入可得∠C的度数,进而可得∠B的度数.此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180°.12.【答案】17【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.13.【答案】3【解析】【分析】本题考查了角平分线的性质和三角形的面积公式.利用角平分线上的点到角两边的距离相等是解题的关键,过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DE=DH,再根据S△ABC=S△ABD+S△ACD可得AC的长.【解答】解:如图,过点D作DH⊥AC于H,∵DE⊥AB于点E,AD是△ABC中∠BAC的角平分线,∴DE=DH,∵S△ABC=S△ABD+S△ACD,即12×AB×DE+12×DH×AC=7,∴12×4×2+12×2×AC=7,解得AC=3.故答案为3.14.【答案】(−1,2);(−3,1)【解析】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,∵C(−2,−1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OA=OC=BC,易求∠AOD=∠COE=∠BCF,又∵∠ODA=∠OEC=∠F=90°,∴△AOD≌△COE≌△BCF,∴AD=CE=BF=1,OD=OE=CF=2,∴点A的坐标为(−1,2),EF=2−1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(−3,1).故答案为:(−1,2);(−3,1).过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,根据点C的坐标求出OE、CE,再根据正方形的性质可得OA=OC=BC,再求出∠AOD=∠COE=∠BCF,然后求出△AOD、△COE、△BCF全等,根据全等三角形对应边相等可得AD=CE=BF,OD=OE=CF,然后求解即可.本题考查了正方形的性质,全等三角形的判定与性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.15.【答案】8【解析】解:如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,×4×4=8.∴S△ADC=12故答案为8.如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.【答案】4√33π【解析】解:如图,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=∠C=60°.∵点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同∴AE=CF.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形.且∠ABP=∠BAP=30°,∴∠AOB=120°,∵AB=6,∴OA=2√3,∴点P的路径是:nπr180=120π⋅2√3180=4√33π.故答案为:4√3π3.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,由弧线长公式就可以得出结论.本题考查了等边三角形的性质、圆周角定理、弧线长公式的运用.17.【答案】解:若底边长为5,腰长为9,则它的周长为:5+9+9=23;若底边长为9,腰长为5,则它的周长为:9+5+5=19.故它的周长为23或19.【解析】此题考查了等腰三角形的性质以及三角形三边关系有关知识,分别从若底边长为5,腰长为9与若底边长为9,腰长为5,去分析求解即可求得答案.18.【答案】证明:在△ABD和△BAC中,∵{AD=BC BD=AC AB=BA,∴△ABD≌△BAC(SSS),∴∠ABD=∠BAC,∴OA=OB.【解析】【试题解析】本题考查全等三角形的判定和性质,以及等腰三角形的判定,掌握全等三角形的判定方法是解题关键.首先利用SSS证得△ABD≌△BAC,根据全等三角形的性质得出∠ABD=∠BAC,再根据等腰三角形的判定即可得证.19.【答案】解:∵在△ABC中,AB=AC,∠BAC=80°,(180°−80°)=50°,∴∠ABC=∠ACB=12∵∠ABD=20°,∴∠DBC=∠ABC−∠ABD=30°.∵BD=DE,∴∠E=∠DBC=30°,∴∠CDE=∠ACB−∠E=20°.【解析】由等腰三角形的性质以及三角形内角和定理可得∠ABC=∠ACB=50°,那么∠DBC=∠ABC−∠ABD=30°.因为△BDE是等腰三角形,所以∠E=∠DBC=30°,然后根据三角形外角的性质即可求出∠CDE的度数.本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质,求出∠ACB与∠E的度数是解题关键.20.【答案】证明:∵∠DBC=∠DCB,∴DB=DC,∴点D在线段BC的垂直平分线上,∵AB=AC,∴点A在线段BC的垂直平分线上,∴直线AD是线段BC的垂直平分线.【解析】欲证明直线AD是线段BC的垂直平分线,只要证明点A、点D在线段BC的垂直平分线上即可.本题考查线段的垂直平分线的定义,解题的关键是知道一条直线上有两个点在线段BC 的垂直平分线上,那么这条直线是线段BC的垂直平分线,属于中考常考题型.21.【答案】证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠EBC=180°,∴∠EBC=∠D,∵∠CEB=∠CFD=90°,∴△CBE≌△CDF.(2)证明:∵CE=CF,AC=AC,∴Rt△ACE≌Rt△ACF.∴AE=AF,∴AB+DF=AB+BE=AE=AF.【解析】本题考查了全等三角形的判定和全等三角形的性质.(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+ DF=AF即可.22.【答案】证明:(1)如图,∵CF⊥AG,BF⊥CF,∴∠BFC=∠CEA=90°,∴∠2+∠3=90°,又∵∠ACB=90°,∴∠1+∠3=90°,∴∠1=∠2,∴在△AEC和△CFB中,{∠BFC=∠CEA∠1=∠2BC=AC,∴△AEC≌△CFB(AAS);(2)连接ED,CD,如图所示:∵D为AB的中点,∴CD=BD=AD,∠CDA=90°,∴∠BCD=∠CBD=45°,∴∠DCF=45°−∠1,∵∠4=∠CAB−∠2=45°−∠2,由(1)知:∠1=∠2,∴∠4=∠DCF,由(1)知:△AEC≌△CFB,∴FC=AE,∴△AED≌△CFD(SAS),∴ED=FD,∠FDC=∠EDA,∴∠FDE=∠CDA=90°,即△FDE是等腰直角三角形,∴EF=√2DF.【解析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.(1)根据垂直的定义得到∠BCF=∠CAE=90°−∠ACE,根据全等三角形的判定即可得到结论;(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.23.【答案】(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,{BE=DC∠ABE=∠ADC AB=AD,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN//BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,{∠ANB=∠DCA ∠NAB=∠CDA BN=AC,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE//BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°−∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴DE=2EF=2×374=372,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=12DE×AP=12×372×4=37.【解析】(1)延长DB至E,使BE=CD,连接AE,证明△ABE≌△ADC,得到△AEC为等边三角形,根据等边三角形的性质证明;(2)过点A作AN//BC交EB于N,延长EF至M使得EF=FM,连接BM,证明△BNA≌△ACD,△BEM≌△CED,根据全等三角形的性质证明;(3)利用(2)的结论,根据三角形的面积公式计算即可.本题考查的是三角形的知识的综合运用,正确全等三角形的判定定理和性质定理、等边三角形的判定和性质是解题的关键.24.【答案】解:(1)如图1中,作PH⊥x轴于H.∵A(−1,0),∴OA=1,∵PA⊥AB,∴∠PAB=∠AOB=∠PHA=90°,∴∠PAH+∠APH=90°,∠PAH+∠OAB=90°,∴∠APH=∠OAB,∵AP=AB,∴△APH≌△BAO(AAS),∴PH=OA=1,AH=OB,∵直线l是第一、三象限的夹角平分线,∴∠POH=45°,△POH是等腰直角三角形,∴OH=OP=1,H=OA+OH=1+1=2,∴OB=AH=2,∴B(0,−2).(2)结论:OE−OB=PQ.理由:如图2中,作PH⊥x轴于H,QT⊥x轴于T,在OE上截取OK,使得OK=OB,连接AK.∵PQ//x轴,PH⊥x轴,QT⊥x轴,∴四边形PQTH是矩形,∴QT=PH=OA,PQ=TH,∵AE=AQ,∠AOE=∠ATQ=90°,∴△AOE≌△QTA(HL),∴EO=AT,∵OK=OB=AH,∴EK=HT=PQ,∴OE−OB=OE−OK=AT−AH=HT=PQ.(3)如图3中,设AM交直线l于J,直线l交AB于T.∵A(−1,0),M(34,14),∴直线AM 的解析式为y =17x +17,由{y =x y =17x +17,解得{x =16y =16,可得J(16,16), ∵A(−1,0),B(0,−2),∴直线AB 的解析式为y =−2x −2,由{y =−2x −2y =x ,解得{x =−23y =−23,可得T(−23,−23), ∴JA =√(16+1)2+(16)2=5√26,JT =√(16+23)2+(16+23)2=5√26, ∴JA =JT ,∴∠JQT =∠JTA ,∵∠JAT +∠PAM =90°,∠APO +∠JTA =90°,∴∠PAM =∠APO ,∵∠AOT =45°=∠APO +∠PAO ,∴∠PAO +∠MAP =45°.【解析】(1)如图1中,作PH ⊥x 轴于H.证明△APH≌△BAO(AAS)即可解决问题.(2)结论:OE −OB =PQ.如图2中,作PH ⊥x 轴于H ,QT ⊥x 轴于T ,在OE 上截取OK ,使得OK =OB ,连接AK.证明△AOE≌△QTA(HL)即可解决问题.(3)如图3中,设AM 交直线l 于J ,直线l 交AB 于T.想办法证明JA =JT ,推出∠JQT =∠JTA ,推出∠PAM =∠APO 即可解决问题.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,一次函数的性质等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.。

湖北省各区数学期中考试卷拉分题(压轴题)汇集2019-2020学年度八年级上册(附答案解析)

湖北省各区数学期中考试卷拉分题(压轴题)汇集2019-2020学年度八年级上册(附答案解析)

2019-2020学年度八年级第一学期上册湖北省各区数学期中考试卷拉分题(压轴题)汇集目录01.2019-2020青山区期中压轴汇编02.2019-2020武昌区八校期中压轴汇编03.2019-2020黄陂区期中压轴汇编04.2019-2020汉阳区期中压轴汇编05.2019-2020洪山区期中压轴汇编06.2019-2020江汉区期中压轴汇编07.2019-2020东湖高新区期中压轴汇编08.2019-2020江岸区东西湖期中压轴汇编09.2019-2020武昌拼搏联盟期中压轴汇编10.2019-2020江夏区期中压轴汇编【2019-2020】【八年级上册数学期中试】【青山区】10.如图,∠AOB =30°,M 、N 分别是边OA 、OB 上的定点,P 、Q 分别是边OB 、OA 上的动点,记∠AMP =∠1,∠ONQ =∠2,当MP +PQ +QN 最小时,则关于∠1、∠2的数量关系正确的是( )A .∠1+∠2=90°B .2∠2-∠1=30°C .2∠1+∠2=180°D .∠1-∠2=90°答案:D16.如图,△ABC 中,AC =8,AB =10,△ABC 的面积为30,AD 平分∠BAC ,F 、E 分别为AC 、AD 上两动点,连接CE 、EF ,则CE +EF 的最小值为__________.答案:623.(本题10分)如图1,Rt △ABC ≌Rt △DFE ,其中∠ACB =∠DFE =90°,BC =EF .(1)若两个三角形按图2方式放置,AC 、DF 交于点O ,连接AD 、BO ,则AF 与CD 的数量关系为 ,BO 与AD 的位置关系 ;(2)若两个三角形按图3方式放置,其中C 、B (D )、F 在一条直线上,连接AE ,M 为AE 中点,连接FM 、CM .探究线段FM 与CM 之间的关系,并证明; (3)若两个三角形按图4方式放置,其中B 、C (D )、F 在一条直线上,点G 、H 分别为FC 、AC 的中点,连接GH 、BE 交于点K ,求证:BK =EK .答案:(1)AF =CD ,BO ⊥AD(2)FM ⊥MC 且FM =MC ,理由如下: 延长FM 交CA 延长线于点H 可证△EFM ≌△AHM (AAS ) ∴FM =MH ,EF =AH ∵∠FCH =90° ∴CM =FM =MHQ M OPNBACFEDA图4图3图2图1C (D )GFEK H AB CB (D )AMEFDCB (E )O FAEDFCBA∵EF=AH=BC,BF=AC∴FC=CH又FM=MH∴CM⊥FM(3)连接BH,EG,在HG上取点J,使BJ=BH可证△BCH≌△EFG(SAS)再证△BKJ≌△EFG(AAS)∴BK=EK24.(本题12分)如图,△ABC的顶点A(0,3),B(b,0),C(c,0)在x轴上,若(b+3)2+|c-3|=0.(1)请判断△ABC的形状并予以证明;(2)如图,过AB上一点D作射线交y轴负半轴与点E,连CD交y轴与F点.若BD=FD,求∠BCD的度数;(3)在(2)的条件下,∠BCD=∠DEF,H是AB延长线上一动点,作∠CHG=60°,HG交射线DE于点G点,则DG DHAD-的值是否变化?若变化,请说明理由;若不变,请求出该值.答案:(1)△ABC为等腰直角三角形,理由如下:易得:b=-3,c=3∴OB=OC,且AO⊥BC∴AB=AC又OA=OB=OC∴∠BAO=∠OBA=∠OAC=∠OCA=45°∴∠BAC=90°(2)连接BF,设∠FCB=∠FBC=x,∴∠DFB=∠DBF=2x∴∠ABC=3x=45°∴x=15°(3)过点H作HM⊥DG于点M,HN⊥CD交CD的延长线于点N,连接CG,可证:△HGM≌△HCN(AAS)∴HC=HG∴△HCG为等边三角形由对角互补得:DH+DC=DG∵∠ACD=30°,∴CD=2AD∴DH+2AD=DG∴DG DHAD-=2图1【2019-2020】【八年级上册数学期中试】【武昌八校】10.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )A .5B .C .235 D .435答案:C16.如图,直角三角形ABC 与直角三角形BDE 中,点B ,C ,D 在同一条直线上,已知AC =AE =CD ,∠BAC 和∠ACB 的角平分线交于点F ,连DF ,EF ,分别交AB 、BC 于M 、N ,已知点F 到△ABC 三边距离为3,则△BMN 的周长为 .答案:6 23.(10分)如图1,∠AOB =30°,点M 为射线OB 上一点,平面内有一点P 使∠P AM =150°且P A =AM . (1)求证:∠OMA =∠OAP .(2)如图2,若射线OB 上有一点Q 使∠POA =∠AQO ,求证:OP =AQ .(3)如图3,在(2)的条件下,过A 作AH ⊥OB ,且OH=3AH ,已知N 点为MQ 的中点,且ON =1,则OA =____________.答案:(1)∵∠AOB =30°,∴∠OAM +∠OMA =150°又∵∠OAP +∠OAM =150°,∴∠OAP =∠OMA …………3分 (2)在OB 上取点N 使AM =AN∵∠AMO +∠AMN =180°,∠ANM +∠ANQ =180° ∴∠AMO =∠ANQ =∠OAP ∵AP =AM ,∴AP =AN在△OAP 与△QNA 中OAP ANQ AOP AQN AP AN ∠∠⎧⎪∠∠⎨⎪⎩===∴△OAP ≌△QNA (AAS ),∴OP =AQ ………………7分EDCBANM FE DCBAPOAMBBMAOP(3)在OB上取点C,使AM=AC,由(2)知△OAP≌△ACQ 设AH=x,则OA=CQ=2x,OH设MH=CH=y,∴MQ=2x+2y,∴MN=x+y又∵OMx-y∴OM+MN=x+yx-y=1x=1∴OA=2…………………………………………………………10分24.(12分)如图,在平面直角坐标系中,点A(n,0)是x轴上一点,点B(0,m)是y轴上一点,且满足多项式(x+m)(nx-2)的积中x的二次项与一次项系数均为2.(1)求出A,B两点坐标.(2)如图1,点M为线段OA上一点,点P为x轴上一点,且满足BM=MN,∠NAP=45°,证明:BM ⊥MN.(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.(B先证△BDC≌△AME,再证△BDM≌△NEM最后可得BM⊥MN…………………………7分(3)在AM上截取一点C使CM=ON.连接B C.由∠MOA=∠MOB+∠BOA=150°得∠MOD=30°∵OA=OM.所以∠OMA=∠OAM=15°,所以∠BAM=30°,∠BMA=45°可证△OAN≌△BMC∴BC=AN, ON=MC∠MBC=∠OAN=15°∴∠ABC=90°∴BC=AN=12AC=12(AM-ON)∴AN=12(AM-ON)【2019-2020】【八年级上册数学期中试】【黄陂区】10.在△ABC 中,AD 平分∠BAC ,∠B =2∠ADB ,AB =3,CD =5,则AC 的长为( )A .6B .7C .8D .9答案:C16.如图,在四边形ABCD 中,AC ,BD 相交于点E .若E 为BD 的中点,∠BAC =2∠ACD ,AE =2,CE =8,则AB 的长为 .答案:423.(本题10分)如图.在△AB C 中,AB =AC ,点D .E 分别是BC ,AC 上的点,AD ,BE 相交于点P ,∠EBC =∠B A D .(1)如图1.求证:∠APE =∠C ;(2)作AF //BC 交DE 的延长线于点F ,PE =E C . ①如图2,求证:AD =AF :②如图3,过点E 作EG ⊥BC 于点G ,若DP =1,DC =7.直接写出DG 的长为答案:(1)略;(2)①作EG ⊥DC ,EH ⊥AD ,则△EHP ≌△EGC ,∴EH =EG ,∵EG ⊥DC ,EH ⊥AD ,∴∠ADF =∠CDF ,∵AF ∥BC ,∴∠F =∠CDF ,∴∠F =∠ADF ,∴AD =AF . ②作EH ⊥AD ,则△EHP ≌△EGC ,∴PH =GC ,∴△DEH ≌△DEG ,∴DH =DG ,∴DG =DH =DP +PH =1+GC ,∴1+GC +GC =7,∴CG =3,∴DG =DC -GC =7-3=424.(本题12分)在平面直角坐标系中,点4(0,m ),C (n ,0). (1)若m ,n 满足24212m n m n ;①直接写出m = ,n = ;②如图1,D 为点A 上方一点,连接CD ,在y 轴右侧作等腰 Rt △BDC ,∠BDC =90,连接BA 并延长交x 轴于点E ,当点A 上方运动时,求△ACE 的面积:(2)如图2,若m =n ,点D 在边0A 上,且AD =11,G 为OC 上一点,且OG =8,连接CD ,过点G 作DBE DBA图 1PEDBAFABCD EP 图 2G图 3P EDCBAFH PE CBA G H ABC E PCD 的垂线交CD 于点F ,交AC 于点H .连接DH ,当∠ADH =∠ODC ,求点D 的坐标.答案:(1)m =4=n ;(2)作BF ⊥AD 于F ,则△BDF ≌△DCO ,∴BF =DO ,FD =CO =4, ∴BF =AF ,∴∠BAF =45°,∴AO =EO =4, ∴△ACE 的面积=1162CE AO ⨯⨯=; (3)作CP ∥y 轴,交DH 延长线于P ,作DK ⊥PC 于K ,则DP =DC ,PK =CK =OD , 设OD =x ,则PK =CK =x ,PC =2x ,∴CG =x +3,∵∠P =∠ADP =∠ODC =∠HGC ,∴△HCG ≌△HCP ,∴CG =CP ,∴x +3=2x ,∴x =3,∴D (0,3)【2019-2020】【八年级上册数学期中试】【汉阳区】10.如图,△ABC 中,BC =10,AC -AB =4,AD 是∠BAC 的角平分线,CD ⊥AD ,则S △BDC 的最大值为( )A .40B .28C .20D .10答案:D16.如图,AB AC =,D 是ABC ∆外一点,BD 平分ADC ∠,若150BCD =∠,则ABD ∠的大小是______.答案:30° 23.已知在四边形ABCD 中,180ABC ADC ∠+∠=,AB BC =,点E ,F 分别在射线DA ,DC 上,满足EF AE CF =+.(1)如图1,若点E ,F 分别在线段DA ,DC 上,求证:1902EBF ADC ∠=-∠; (2)如图2,若点E ,F 分别在线段DA 延长线与DC 延长线上,请直接写出EBF ∠与ADC ∠的数量关系.答案:(1)证明见解析;(2)∠EBF =90°+12∠AD C . (1)如图,延长DA 到G ,使AG =CF ,连接BG , ∵∠ABC +∠ADC =180°,∴∠C +∠DAB =180°, ∵∠GAB +∠DAB =180°,∴∠C =∠GAB ,在△GAB 和△FCB 中,AG CF GAB C AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△FCB ,∴BG =BF ,∠ABG =∠CBF ,∴∠ABF +∠ABG =∠ABF +∠CBF ,即∠GBF =∠ABC , ∵EF =AE +CF ,AG =CF ,∴EF =AE +AG =GE ,在△GBE 和△FBE 中,GB BF BE BE GE EF =⎧⎪=⎨⎪=⎩,△GBE ≌△FBE ,∴∠GBE =∠EBF ,CBADCBA图1DEFCBAABCDE图2∴∠EBF =12∠GBF =12∠ABC =12(180°-∠ADC )=90°-12∠AD C .(2)延长CD 到H ,使CH =AE ,∵∠ABC +∠ADC =180°,∴∠BCD +∠DAB =180°, ∵∠EAB +∠DAB =180°,∴∠BCD =∠EAB ,在△BAE 和△BCH 中,AB BC EAB BCD AE CH =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△BCH ,∴BE =BH ,∠ABE =∠HBC ,∴∠ABE +∠ABH =∠HBC +∠ABH ,即∠EBH =∠ABC , ∵EF =AE +CF ,CH =AE ,∴EF =CH +CF =FH ,在△EBF 和△HBF 中,BE BH BF BF EF FH =⎧⎪=⎨⎪=⎩,∴△EBF ≌△HBF ,∴∠EBF =∠HBF ,∴∠EBF +∠FBH +∠EBH =2∠EBF +∠ABC =2∠EBF +(180°-∠ADC )=360°, ∴∠EBF =90°+12∠AD C .24.(实验操作)如图①,在ABC ∆中,AB AC =,现将AB 边沿ABC ∠的平分线BD 翻折,点A 落在BC 边的点1A 处;再将线段1CA 沿CD 翻折到线段2CA ,连接2DA .(探究发现)若点B ,D ,2A 三点共线,则ADB ∠的大小是______,BAC ∠的大小是________,此时三条线段AD ,BD ,BC 之间的数量关系是________. (应用拓展)如图②,将图①中满足(实验操作)与(探究发现)的ABC ∆的边AB 延长至E ,使得AE BC =,连接CE ,直接写出BCE ∠的度数.GABCFED图1HEDCBA答案:【探究发现】60°,100°,BC =BD +AD ;【应用拓展】∠BCE =10°. 【解析】 【分析】探究发现:根据折叠性质可得∠ADB =∠BDA 1,∠A 1DC =∠CDA 2,由B 、D 、A 2在一条直线上可得∠CDA 2=∠ADB ,可得∠ADB =∠BDA 1=∠A 1DC =∠CDA 2,根据平角定义可求出∠CDA 2的度数即可得∠ADB 的度数;根据外角性质及等腰三角形的性质即可求出∠BAC 的度数;根据折叠性质可得AD =A 1D =A 2D ,可得BD +AD =BA 2,根据折叠性质可求出∠A 2CB =∠BA 2C ,根据等腰三角形的性质即可得BC =BD +AD ;应用拓展:以BC 为边,在△ABC 外作等边△BCD ,连接AD ,利用SSS 可证明△ABD ≌△ACD ,可得∠ADB =∠ADC =12∠BDC =30°,根据等腰三角形的性质可求出∠ABC =∠ACB =40°,可得∠ACD =∠BAC =100°,由AE =BC 可得AE =CD ,利用SAS 可证明△AEC ≌△CDA ,可得∠AEC =∠ADC =30°,利用外角性质求出∠BCE 的度数即可. 【详解】 探究发现:∵AB 边沿ABC ∠的平分线BD 翻折,点A 落在BC 边的点1A 处,∴∠ADB =∠A 1DB , ∵线段1CA 沿CD 翻折到线段2CA ,∴∠A 1DC =∠A 2DC ,∵B 、D 、A 2三点共线,∴∠ADB =∠A 2DC ,∴∠A 1DB =∠A 1DC =∠A 2DC ,∴∠A 1DB =13×180°=60°,∴∠ADB =60°, ∵AB =AC ,∴∠ABC =12(180°-∠BAC ),∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =14(180°-∠BAC ),∴∠BDC =∠ABD +∠BAC =14(180°-∠BAC )+∠BAC =120°,解得:∠BAC =100°,根据折叠性质得:∠BA 1D =∠BAC =100°,AD =A 1D =A 2D ,∠BCA =∠ACA 2=40°,∴BD +AD =BD +A 2D =BA 2,∠A 2=∠DA 2C =180°-∠BA 1D =80°,∠BCA 2=2∠BCA =80°, ∴∠A 2=∠BCA 2,∴BC =BA 2,∴BC =BD +A D . 故答案为:60°,100°,BC =BD +AD 应用拓展:以BC 为边,在△ABC 外作等边△BCD ,连接AD ,∴BC =BD =CD , ∵AB =AC ,BD =CD ,AD =AD , ∴△ABD ≌△ACD ,∴∠ADB =∠ADC =12∠BDC =30°, ∵∠ACB =∠ABC =40°,△BCD 是等边三角形,∴∠DCA =∠BAC =100°,∵AE =BC ,∴AE =CD ,在△AEC 和△CDA 中,AE CD EAC DCA AC AC =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△CDA ,∴∠AEC =∠ADC =30°,图①A 2A 1DCBAABCE图②∴∠BCE =∠ABC -∠AEC =40°-30°=10°.DECB A【2019-2020】【八年级上册数学期中试】【洪山区】10.如图,点C 、D 在线段AB 的同侧,CA =4,AB =12,BD =9,M 是AB 的中点,∠CMD =120°,则CD 长的最大值是( )A .16B .19C .20D .21 答案:B16.如图,已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =74°,∠ABC =46°,且∠BAD +∠CAD =180°,那么∠BDC 的度数为 .答案:30°23.已知四边形ABCD 是正方形,△DEF 是等腰直角三角形,DE =DF ,M 是EF 的中点. (1)如图1,当点E 在AB 上时,求证:点F 在直线BC 上.(2)如图2,在(1)的条件下,当CM =CF 时,求证:∠CFM =22.5°(3)如图3,当点E 在BC 上时,若CM =2,则BE 的长为 (直接写出结果)(注:等腰直角三角形三边之比为1:1答案:(1)连接CF .,由题意可知:∠ADC =∠EDF =90° ,∴∠ADE +∠EDC =∠EDC +∠CDF ∴∠ADE =∠CDF ,在△ADE 和△CDF 中, AD =CD ,∠ADE =∠CDF , DE =DF ,∴△ADE ≌△CDF (SAS ),∴∠DCF =90°,∴∠DCE +∠DCB =180°,∴B 、C 、F 三点共线 ,即F 在直线BC 上 .(2)如图,连接DM ,过M 作MG ⊥MC 交DC 于点G .由(1)可知:DE =DF ∵M 为EF 中点 ∴DM ⊥EF ,∠EDM =∠EDM =45°(三线合一),∴∠DMF =∠DCF =90°,DM =MF ,∵∠DMF +∠1=∠DCF +∠2 ,∴∠1=∠2,∵∠DMF =∠GMC =90° ∴∠3+∠4=∠4+∠5 ∴∠3=∠5,在△DMG 和△MFC 中,∠1=∠2,DM =MF ,∠3=∠5,∴△DMG ≌△MFC (ASA ),∴MG =MC ,∠MCG =45°,∠MCF =135°,又∵MC =MF ,∴∠CFM =22.5°.24.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥xDCBACBA图3图1图2ABCDE FMA BC DEFM MF EDCBA GMF EDCBA轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12. (1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAM 交y 轴于点N ,且∠HAN =∠HBO ,求NB -HB 的值.答案:(1)∵D (m ,m +8), DA ⊥x 轴,∴A (m ,0),∴OA =- m , OB =n ,∵OA -OB =2,∴-m -n=2,即m +n =-2,四边形DAOB 的面积:S 四边形DAOB =12(OB +DA )OA =12(n +m +8)(-m )=12,m =-4,n =2.(2)过D 作DK ⊥y 轴于K ,∴DK =4,KB =2 易证△DKB ≌△AOB (SAS ),∴DB =AB ∵C 是OA 中点 ∴AC =12OA =2,∴AC =OB ,易证△DAC ≌△AOB (SAS ),∴∠1=∠2 , 易证∠AED =90°, ∴DC ⊥AB 于E ,S △ABD =12AF .BD =12DE .AB ∵AB =BD ∴ED =EF .(3)过A 作AM ⊥GB 于M .∵GA =GB ∴∠GAB =∠1 ∵GA ∥y 轴,∴∠GAB =∠2 ,∴∠1=∠2易证△MAB ≌△OAB (AAS ), ∴MA =OA ,MB =OB ,又∵∠HAN =∠HBO , ∴∠3=∠4,易证△MAH ≌△OAN (AAS ),∴MH =ON ,∴NB -HB =OB +ON -(MH -MB ) =OB +ON -MH +MB =OB +MB =2OB =4,∴NB -HB =4.图1图2【2019-2020】【八年级上册数学期中试】【江汉区】24.(12分)在△ABC 中,AD 是高,AE 是角平分线,已知∠ACB =70°,∠EAD =15°,则∠ABC 的度数为 . 答案:40°或100°25.如图,AB ⊥CD 于点E ,且AB =CD =AC ,若点I 是△ACE 的角平分线的交点,点F 是BD 的中点.下列结论:①∠AIC =135°;②BD =BI ;③S △AIC =S △BID ;④IF ⊥A C .其中正确的是 (填序号).答案:①③④ 27.(本题12分)以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)(2)已知(3)多项式M 与多项式x 2-3x +1的乘积为2x 4+ax 3+bx 2+cx -3,则2a +b +c 的值为______ . 答案:(1)5,-1,an + bm (2)m +=1 (3)-428.(本题12分)已知,点A (t ,1)是平面直角坐标系中第一象限的点,点B ,C 分别是y 轴负半轴和x 轴正半轴上的点,连接AB ,AC ,B C .(1)如图1,若OB =1,OC =32,且A ,B ,C 在同一条直线上,求t 的值;(2)如图2,当t =1,∠ACO +∠ACB=180°时,求BC +OC-OB 的值;(3)如图3,点H (m ,n )是AB 上一点,∠A =∠OHA =90°,若OB =OC ,求m +n 的值.AECIBD Fxxx图 3图 1图 2答案:(1)作AH⊥x轴于H,则∠AHC=∠BOC=90°,AH=1=BO在△AHC和△BOC中∠ACH=∠BCO,∠AHC=∠BOC,AH=BO,∴△AHC=△BOC∴HC=OC=32,∴t=3(2)作AM⊥y轴,AN⊥x轴,AH⊥BC,垂足分别是M,N,H,AM=AN=OM=ON=1∵∠ACO+∠ACB=180°=∠ACB+∠ACH∴∠ACO=∠ACH,可证△ABM=△ABH,得BM=BH,可证△AHC=△ANC,得CN=CH,∴BC+OC-OB=BC+ON+CN-OB=BC+CH-OB+ON=BH-OB+ON=BM-OB +ON=OM+ON(3)作AQ⊥CA交CA的延长线于Q,EHy轴于E,AFx轴交EH于点F,证△OHB=△OQC得OH=OQ,又∵OH⊥AB,OQ⊥CA∴∠OAH=∠OAQ=45°再证△OEH=△HF A,∴EH=F A∴m=1-n即m+n=1【2019-2020】【八年级上册数学期中试】【东湖高新】10.如图,在ABC ∆中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE于点H ,下面说法正确的是( )①ABE ∆的面积BCE =∆的面积;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.A .①②③④B .①②③C .②④D .①③ 答案:B 16.如图,已知四边形ABCD 中,对角线BD 平分ABC ∠,64BAC ∠=︒,180BCD DCA ∠+∠=︒,那么BDC ∠为 度.答案:3223.(10分)已知正方形ABCD ,一等腰直角三角板的一个锐角顶点与A 重合,将此三角板绕A 点旋转时,两边分别交直线BC 、CD 于M 、N .(1)当M 、N 分别在边BC 、CD 上时(如图1),求证:BM DN MN +=;(2)当M 、N 分别在边BC 、CD 所在的直线上时(如图2),线段BM 、DN 、MN 之间又有怎样的数量关系,请直接写出结论 BM DN MN -= ;(不用证明)(3)当M 、N 分别在边BC 、CD 所在的直线上时(如图3),线段BM 、DN 、MN 之间又有怎样的数量关系,请写出结论并写出证明过程.答案:ACB D EFHGADC图3图2图1(1)延长CB 到G 使BG DN =,AB AD =,GB DN =,90AGB ADN ∠=∠=︒, AGB AND ∴∆≅∆,AG AN ∴=,GAB DAN ∠=∠, 45MAN ∠=︒,90BAD ∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒, GAM NAM ∴∠=∠,而AM 是公共边, AMN AMG ∴∆≅∆,MN GM BM GB MB DN ∴==+=+; (2)BM DN MN -=; (3)DN BM MN -=.证明:如图3,在ND 上截取DG BM =, AD AB =,90ABM ADN ∠=∠=︒, ADG ABM ∴∆≅∆,AG AM ∴=,MAB DAG ∠=∠, 45MAN ∠=︒,90BAD ∠=︒,90MAG ∴∠=︒,AMG ∆为等腰直角三角形, AN ∴垂直MG ,AN ∴为MG 垂直平分线, 所以NM NG =. DN BM MN ∴-=.24.(12分)如图1,平面直角坐标系xOy 中,若(0,4)A 、(1,0)B 且以AB 为直角边作等腰Rt ABC ∆,90CAB ∠=︒,AB AC =. (1)如图1,求C 点坐标;(2)如图2,在图1中过C 点作CD x ⊥轴于D ,连接AD ,求ADC ∠的度数;(3)如图3,点A 在y 轴上运动,以OA 为直角边作等腰Rt OAE ∆,连接EC ,交y 轴于F ,试问A 点在运动过程中:AOB AEF S S ∆∆的值是否会发生变化?如果没有变化,请说明理由.答案:图3图2图1图3图2图1(1)如图①,(0,4)A 、(1,0)B ,4OA ∴=,1OB =,过点C 作CG y ⊥轴于G , 90AGC BOA ∴∠=︒=∠,90OAB OBA ∴∠+∠=︒90CAB ∠=︒,90OAB GAC ∴∠+∠=︒,OBA GAC ∴∠=∠, AB AC =,()AOB CGA AAS ∴∆≅∆,4CG OA ∴==,1AG OB ==,5OG OA AG ∴=+=,(4,5)C ∴; (2)由(1)知,4OA =,点(4,5)C ,CD x ⊥轴,∴点(4,0)D ,4OD ∴=,OA OD ∴=,45OAD ∠=︒, CD x ⊥轴,//CD y ∴轴,45ADC OAD ∴∠=∠=︒;(3)A 点在运动过程中:AOB AEF S S ∆∆的值不会发生变化, 理由:设点A 的坐标为(0,)a ,①当点A 在y 轴正半轴上时,连接CE 交y 轴于F , ∴点C ,E 在y 轴的两侧,即点E 在y 轴左侧, 同(1)的方法得,(,1)C a a +,OAE ∆是等腰直角三角形,AE OA ∴⊥,(,)E a a ∴-,∴直线CE 的解析式为1122y x a a =++,1(0,)2F a ∴+,1122AF a a ∴=+-=,1OB =,∴12212AOB AEF OB OAS OB OA OBS AF OA AFAF AE ∆∆====; ②当点A 在y 轴负半轴上时,同①的方法得,(,1)C a a --,(,)E a a ,∴直线CE 的解析式为1122y x a a =+-,1(0,)2F a ∴-,12AF ∴=,∴12212AOB AEF OB OAS OB OA OB S AF OA AFAF AE ∆∆====. 即A 点在运动过程中:AOB AEF S S ∆∆的值不会发生变化.【2019-2020】【八年级上册数学期中试】【东西湖区】10.(3分)如图,四边形ABDC 中,对角线AD 平分∠BAC ,∠ACD =136°,∠BCD =44°,则∠ADB 的度数为( )A .54°B .50°C .48°D .46° 答案:D16.(3分)如图,△ABC 中,AB =AC ,∠BAC =56°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为 度.答案:112°23.(10分)如图,△ABC 和△ADE 中,AB =AD ,AC =AE ,∠BAC =∠DAE ,BC 交DE 于点O ,∠BAD =α.(1)如图1,求证:∠BOD =α;(2)如图2,若AO 平分∠DAC ,求证:AC =AD ;(3)若∠C =30°,OE 交AC 于F ,且△AOF 为等腰三角形,则α= .【解答】(1)证明:设AD 交OB 于K . 在△ABC 和△ADE 中,∴△ABC ≌△ADE (SAS ),∴∠B =∠D , ∵∠AKB =∠DKO ,∴∠BOD =∠BAD =α (2)过A 作AM ⊥BC 于M ,作AN ⊥DE 于N ∵△ABC ≌△ADE ,∴S △ABC =S △ADE ,∴,∵BC =DE ,∴AM =AN ,∴AO 平分∠BOE ,∵AO 平分∠DAC ,∴∠DAO =∠CAO ,∴∠BAO =∠EAO 在△ABO 和△AEO 中,,∴△ABO ≌△AEO (ASA ),∴AB =AE , ∵AB =AD ,AC =AE ,∴AC =AD , (3)由(2)可知∠AOB =∠AOF ,DCBAOF BEADC图2图1O OBAACDGBCDEFGF E∴∠AOF ≠∠OAF (否则CA ∥CB ),∴只有AO =AF 或OA =OF , ①当AO =AF 时,∠AOF =∠AFO =∠AOB =α+30°,∴∠AOB +∠AOF +∠FOC =180°,∴2(α+30)+α=180°,∴α=40°. ②当OA =OF 时,∠OAF =∠OFA =α+30°, ∴∠AOB =∠AOF =180°-2(α+30°),∴2[180°-2(α+30)]+α=180°,∴α=20°, 综上所述,α=40°或20°24.(12分)在平面直角坐标系中,直线AB 交y 轴于点A ,交x 轴于B 点,且OA =O B .点D 是线段BO 上一点,BF ⊥AD 交AD 的延长线于点F .(1)如图1,若OE ∥BF 交AD 于点E .点O 作OG ⊥BF ,交BF 的延长线于点G ,求证:AE =BG ; (2)如图2,若AD 是∠OAB 的角平分线,OE ∥BF 交AD 于点E ,交AB 于点Q ,求的值;(3)如图3.若OC ∥AB 交BF 的延长线于点C .请证明:∠CDF +2∠BDF =180°.【解答】(1)证明:∵BF ⊥AD ,DG ⊥BF ,OE ∥BF ,∴∠DEA =∠OGB =90°, ∵∠OAE =∠DOE =∠OBG ,OA =OB , ∴△AOE ≌△BOG (AAS ),∴AE =BG ;(2)解:如图2中,作BH ⊥OQ 交OQ 的延长线于H .∵AD 是∠OAB 的角平分线,∴∠OAD =22.5°,∴∠ADO =67.5°, ∵AD ⊥OE ,∴∠BOH =∠OAD =22.5°,∵OA =OB ,∠AEO =∠H =90°,∴△OAE ≌△BOH (AAS ),∴OE =BH ,AE =OH , ∵AF ⊥OH ,OH ⊥BH ,∴∠ADO =∠OBH =67.5°, ∵∠OBA =45°,∴∠HBQ =∠DOE =22.5°,∵∠OED =∠H =90°,∴△OED ≌△BHQ ,∴DE =QH , ∴AD -OQ =AE +DE -(OH -HQ )=2DE ,∴==12. (3)解:如图3中,作OE 平分∠AOB 交AD 于E . ∵OC ∥AB ,∴∠COB =∠ABO =∠AOE =45°,∵OA =OB ,∠OAE =∠OBC ,∴△AOE ≌△OBC (ASA ),∴OE =OC ,∵∠EOD =∠DOC ,OD =OD ,∴△ODE ≌△ODC (SAS ),∴∠ODE =∠ODC , ∵∠ODE =∠BDF ,∴∠ODC =∠BDF ,∵∠CDF +∠ODC +∠BDF =180°,∴∠CDF +2∠BDF =180°.图3图2图1C【2019-2020】【八年级上册数学期中试】【拼搏联盟】10. 如图,在Rt △ABC 中,∠ACB =90°,BC =6,点P 在边AB 上,连接CP ,将△BCP 沿直线CP 翻折后,点B 恰好落在边AC 的中点处,则点P 到AC 的距离是( )A . 2.5B .103C . 4D .203答案:C16. 如图,∠AOB =40°,C 为OB 上的定点,M 、N 分别为OA 、OB 上两个动点,当CM +MN 的值最小时,∠OCM 的度数为__________答案:10°23.(10分)如图1,已知等边三角形ABC ,点P 为AB 的中点,点D 、E 分别为边AC 、BC 上的点,∠APD +∠BPE =60°.(1)如图1,若PD ⊥AC ,PE ⊥BC ,写出线段AD ,BE ,AP 有数量关系为__________ (2)如图2,求证:PD =PE ;(3)如图3,点F ,H 分别在线段BC 、AC 上,连接线段PH ,PF ,若PD ⊥PF 且PD =PF ,HP ⊥EP .求∠AHP 的度数.答案:(1)AD +BE =AP ;(2)在AC 上取点H ,使AP =AH ,连接PH ,∵△ABC 为等边三角形,∴∠A =∠B =60°, 又∵AP =AH ,∴△APH 为等边三角形,∴∠1=∠APH =60°=∠B ,PA =PH , 又∵点P 为AB 的中点,∴AP =PB =PH ,又∵∠APD +∠BPE =60°,∴∠DPH +∠HPE =120°,又∵∠PEB +∠HPE =120°,∴∠DPH =∠BPE ,∴△DHP ≌△EPB (AAS ),∴PD =PE ; (2)过点P 分别作BC ,AC 的垂线,垂足分别为M ,G ,连接PC , ∵PG ⊥AC ,PM ⊥BC ,∠DGP =∠PMF =90°,BCPAAOB C MN图1PEDCB A 图2ABCDEP F HPED CBA 图3H图2A BCD EPHM G F 图3A BCD E P∵△BC为等边三角形,点P为AB的中点,∴PC平分ACB,∴PG=PM,又∵PD=PF,∴Rt△PDG≌Rt△PFM(HL),∴∠GDP=∠PFM,又∵PD⊥PF,HP⊥EP,∴∠DPF=∠HPE=90°,∴∠DPH=∠FPE=30°,又∵PD=PE,∴PF=PE,∴∠PFE=∠PEF=∠GDP=12(180°-30°)=75°,∴∠AHP=∠ADP-∠DPH=75°-30°=45°.24.(12分)如图1,在平面直角坐标系中,A(5,0),B(0,5),C(2,0),连AB(1)点C关于AB的对称点C1的坐标为_________(2)如图2,D为第一象限内一点,CD⊥BC于点C,AD⊥AB于点A,求点D坐标;(3)E为x轴负半轴上一动点,连BE,在x轴下方做EF⊥BE于点E,并且EF=BE,连FC,直接写出当CF最短时点E的坐标.答案:(1)(5,3);(2)过C作CE⊥x轴交AB于点E,过D作DF⊥x轴于点F,∵∠BAO=45°,∴△CAE为等腰直角三角形,∴CE=CA,∵∠BCD=∠BAD=90°,∴∠CBA=∠CDA,∠CEB=∠CAD=135°,证△CEB≌△CAD(AAS),∴CB=CD,证△OBC≌△FCD(AAS),∴OC=FD=2,OB=FC=5,∴OF=7,∴D(7,2);(3)过E作EM⊥x轴交AB延长线于点M,过C作CF′⊥AF于点F′,过F′作F′H⊥x轴于点H,∵∠BAO=45°,∴△AEM为等腰直角三角形,证△EBM≌△EF A(SAS),∴∠M=∠EAF=45°,∴点F在AF上运动,当CF⊥AF时,CF最小为CF′,此时,证△BOE′≌△E′HF′(AAS),∴OE′=F′H=12AC=32,∴此时E(-32,0).【2019-2020】【八年级上册数学期中试】【江夏区】10.如图,在锐角△ABC 中,O 为三条边的垂直平分线的交点,I 为三个角的角平分线的交点,若∠BOC的度为x ,∠BIC 的度数为y ,则x 、y 之间的数量关系是( )A .x +y =90°B .x -2y =90°C .x +180°=2yD .4y -x =360°答案:D .16.如图,在△ABC 中,∠BAC =90°,AB =AC ,过C 作CD 垂直射线BF 于点D ,射线BF 交AC 于点O ,过A 作AE ⊥BO 于点E ,若BD =13,AE =4,则CD = .答案:523.(10分)已知AP 是△ABC 的外角平分线,连接PB 、P C .(1)如图1,①若BP 平分∠ABC ,且∠ACB =28°,求∠APB 的度数;②若P 与A 不重合,请判断AB +AC 与PB +PC 的大小关系,请证明你的结论;(2)如图2,若过点P 作PM ⊥BA ,交BA 的延长线于M 点,且∠BPC =∠BA C .求:AMAC AB-的值.答案:(1)①∠APB =14°…… 3分.②PB +PC >AB +A C .延长BA 到点M ,使AM =AC ,证△P AC ≌△P AM ,∴PC =PM ,在△PBM 中,PB +PC >AB +A C .…… 3分.(2)过P 作PN ⊥AC 于N ,证△PBM ≌△PCN ,△APM ≌△APN ,∴21=-AB AC AM …… 4分.总计10分.24.(12分)在平面直角坐标系中,直线AB 交y 轴于A (0,a ),交x 轴于B (0,b ),且a ,b 满足(a -b )2+|3a +5b -88|=0.(1)求点A ,B 的坐标;第 10 题I CA OBD O C BFEA图1PABCPABC图2MB P图1M图2PABN(2)如图,已知点D (2,5),求点D 关于直线AB 对称的点C 的坐标;(3)如图,若P 是∠OBA 的角平分线上的一点,∠APO =67.5°,求2OP OAOB+的值.答案:(1)a =b =11,∴A (0,11),B (11,0)(a ,b 正确1分,坐标正确一个给一分)…… 3分.(2)作D 关于直线AB 的对称点C ,连AD 、AC ,作DF ⊥y 轴、AG //x 轴、CG ⊥y 轴.证△ADF ≌△ACG .∵D (2,5),∴C (6,9)…… 4分.(3)过P 作PM ⊥BA 于M ,PN ⊥BO 于N ,可得∠MPN =135°,在ON 的延长上截取NC =MA ,连PC ,证Rt △PMA ≌Rt △PNC ,∴P A =PC ,再证 △P AO ≌△PCO ,∴∠POA =∠PO C .∵∠APO =67.5°,∴OP =O A .∴OP =OA =O B .∴OBOAOP +2=3.……5分.总计12分.。

2021-2022学年湖北省武汉市武昌区部分学校八年级(上)期中数学试卷(解析版)

2021-2022学年湖北省武汉市武昌区部分学校八年级(上)期中数学试卷(解析版)

2021-2022学年湖北省武汉市武昌区部分学校八年级第一学期期中数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共10小题).1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列线段长能构成三角形的是()A.3、7、4B.2、3、6C.5、6、7D.1、2、33.已知等腰三角形的一边长为4cm,另一边为10cm,则它的周长是()A.18cm B.24cm C.14cm D.18cm或24cm 4.下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.等边三角形有3条对称轴C.角是轴对称图形D.等腰三角形一边上的高、中线及这边所对角的角平分线重合5.如图是教材例题中用尺规作图作出的∠AOB的角平分线OC,用到的作图依据有()A.SAS B.AAS C.SSS D.ASA6.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条B.7条C.8条D.9条7.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05B.20:01C.20:10D.10:028.如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°9.如图,是由9个等边三角形拼成的六边形,若已知中间最小的三角形的边长是3,则六边形的周长为()A.90B.60C.50D.3010.如图,在△ABC中,AB=9,AC=13,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则CF的长为()A.12B.11C.10D.9二、填空题(每小题3分,共18分)11.在平面直角坐标系中点P(﹣2,3)关于x轴的对称点是.12.为了使矩形相框不变形,通常可以在相框背后加根木条固定.这种做法体现的数学原理是.13.如图,△ABC中,点D是边AB、AC的垂直平分线的交点,已知∠A=80°,则∠BDC的度数为.14.如图所示,正方形ABCD的面积为6,△CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为.15.如图,K是等边△ABC内部一点,∠AKB,∠BKC,∠CKA的大小之比是3:4:5,则以KA,KB,KC为边的三角形的三个角的大小之比(从小到大)是.16.如图,已知∠AOB=8°,一条光线从点A发出后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=82°.当∠A<82°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,…若光线从点A出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为.三、解答题(共8小题,共72分)17.如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数.18.如图,点E、F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC.19.如图,直线l是线段AB的垂直平分线,P点在直线l的右侧,求证:PA>PB.20.如图,在△ABC中,AK,BK,CK分别平分∠BAC,∠ABC,∠ACB,KD⊥BC于点D,求证:AB﹣AC=BD﹣CD.21.如图是6×8的小正方形构成的网格,每个小正方形的边长为1,△ABC的三个顶点A,B,C均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S,使得△BSC≌△CAB(S不与A重合);(2)在图2中AB上取一点K,使CK是△ABC的高;(3)在图3中AC上取一点G,使得∠AGB=∠ABC.22.如图是两个全等的直角三角形纸片,且AC:BC:AB=3:4:5,按如图的两种方法分别将其折叠,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在角的两边重合,记折叠后不重叠部分面积分别为S1,S2.(1)若AC=3,求S1的值.(2)若S1+S2=26,求单个直角三角形纸片的面积是多少.23.在等边△ABC中,D为边AC的中点,点N在边BC的延长线上,且∠MDN=120°.(1)如图1,点M在边AB上,求证:DM=DN;(2)如图2,点M在边AB的延长线上,试探究BM,BN与等边△ABC边长BC的数量关系;(3)如图3,点M在边AB上,若AM+CN=BD,求∠ADM的度数.24.如图,点A(a,0),B(0,b),若点F(a,b)关于y轴的对称点的坐标为(﹣2,2).(1)求△AOB的面积.(2)如图1,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,试探究线段AC、BD、CD之间的数量关系,并给出证明.(3)如图2,点E是x轴上一动点,在y轴正半轴上取一点K,连接EK,FK,FE,使∠EFK=∠OAB,试探究线段BK,KE,EA之间的数量关系,并给出证明.参考答案一、选择题(每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.下列线段长能构成三角形的是()A.3、7、4B.2、3、6C.5、6、7D.1、2、3【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.解:A、3+4=7,不能构成三角形,故此选项不合题意;B、3+2=5<6,不能构成三角形,故此选项不合题意;C、5+6=11>7,能构成三角形,故此选项符合题意;D、1+2=3,不能构成三角形,故此选项不合题意.故选:C.3.已知等腰三角形的一边长为4cm,另一边为10cm,则它的周长是()A.18cm B.24cm C.14cm D.18cm或24cm 【分析】分为两种情况:①当腰为4cm时,三边为4cm,4cm,10cm,②当腰为10cm时,三边为4cm,10cm,10cm,看看是否符合三角形三边关系定理,再求出即可.解:①当腰为4cm时,三边为4cm,4cm,10cm,∵4+4<10,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为10cm时,三边为4cm,10cm,10cm,此时符合三角形的三边关系定理,此时等腰三角形的周长是4cm+10cm+10cm=24cm,故选:B.4.下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.等边三角形有3条对称轴C.角是轴对称图形D.等腰三角形一边上的高、中线及这边所对角的角平分线重合【分析】利用轴对称的性质、灯边三角形的性质、角的对称性及等腰三角形的性质分别判断后即可确定正确的选项.解:A、关于直线对称的两个三角形一定全等,正确,不符合题意;B、等腰三角形有三条对称轴,正确,不符合题意;C、角是轴对称图形,正确,不符合题意;D、等腰三角形底边上的高、中线及这边所对角的角平分线重合,故原命题错误,符合题意.故选:D.5.如图是教材例题中用尺规作图作出的∠AOB的角平分线OC,用到的作图依据有()A.SAS B.AAS C.SSS D.ASA【分析】根据作图的过程知道:OM=ON,OC=OC,CM=CN,所以由全等三角形的判定定理SSS可以证得△MOC≌△NOC.解:根据作图的过程可知:OM=ON,CM=CN,在△MOC与△NOC中,∴△MOC≌△NOC(SSS).故选:C.6.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条B.7条C.8条D.9条【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.7.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05B.20:01C.20:10D.10:02【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.8.如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°【分析】根据三角形外角的性质,得∠D+∠E=∠ABD,∠ACG=∠F+∠G,那么∠D+∠E+∠F+∠G=∠ABD+∠ACG.由∠ABD=∠A+∠ACB,∠ACG=∠A+∠ABC,得∠ABD+∠ACG=∠A+∠ABC+∠ACB+∠A=180°+∠A,进而解决此题.解:∵∠D+∠E=∠ABD,∠ACG=∠F+∠G,∴∠D+∠E+∠F+∠G=∠ABD+∠ACG.∵∠ABD=∠A+∠ACB,∠ACG=∠A+∠ABC,∴∠ABD+∠ACG=∠A+∠ABC+∠ACB+∠A=180°+∠A.∴∠D+∠E+∠F+∠G=180°+∠A=180°+60°=240°.故选:B.9.如图,是由9个等边三角形拼成的六边形,若已知中间最小的三角形的边长是3,则六边形的周长为()A.90B.60C.50D.30【分析】设左下角三个小的等边三角形的边长是a,则剩下的5个等边三角形的边长是3+a、3+a、a+6、a+6、a+9,根据题意得到方程2a=a+9,求出a后可求出围成的六边形的周长.解:设等边△ABC的边长为a.∵9个三角形都是等边三角形,∴NA=AW=AB=BN=BC=a,CD=CE=DE=DF=a+3,GF=HF=MG=a+6,MN=MW=a+9.∵NW=NA+AW,∴a+9=2a.∴a=9.∴拼成的六边形的周长为:NB+BC+CD+DF+GF+MG+MN=a+a+a+3+a+3+a+6+a+6+a+9=7a+27=63+27=90.故选:A.10.如图,在△ABC中,AB=9,AC=13,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则CF的长为()A.12B.11C.10D.9【分析】过点B作BT∥AC交FM的延长线于T,延长BA交MF的延长线于G.证明△FCM≌△TBM(ASA),由全等三角形的性质得出CF=BT,由平行线的性质得出∠3=∠T,∠2=∠3,∠1=∠G,证出CF=BG,AF=AG,设AG=AF=x,则CF=13﹣x,BG=9+x,得出13﹣x=9+x,求出x=2.则可得出答案.解:过点B作BT∥AC交FM的延长线于T,延长BA交MF的延长线于G.∵点M是BC的中点,∴BM=CM,∵BT∥AC,∴∠C=∠TBM,在△FCM和△TBM中,,∴△FCM≌△TBM(ASA),∴CF=BT,∵BT∥CF,∴∠3=∠T,∵AD∥FM,∴∠2=∠3,∠1=∠G,又∵AD平分∠BAC,∴∠1=∠2,∴∠T=∠G,∴BG=BT,∴CF=BG,∵∠3=∠AFG,∴∠G=∠AFG,∴AG=AF,设AG=AF=x,则CF=13﹣x,BG=9+x,∴13﹣x=9+x,解得x=2,∴CF=13﹣x﹣11.故选:B.二、填空题(每小题3分,共18分)11.在平面直角坐标系中点P(﹣2,3)关于x轴的对称点是(﹣2,﹣3).【分析】根据关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数可得答案.解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答案为:(﹣2,﹣3).12.为了使矩形相框不变形,通常可以在相框背后加根木条固定.这种做法体现的数学原理是三角形具有稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:这样做的道理是利用三角形的稳定性.故答案为:三角形具有稳定性.13.如图,△ABC中,点D是边AB、AC的垂直平分线的交点,已知∠A=80°,则∠BDC 的度数为160°.【分析】连接AD,根据三角形内角和定理得到∠ABC+∠ACB=130°,根据线段垂直平分线的性质、等腰三角形的性质计算.解:连接AD,∵∠ABC+∠ACB+∠BAC=180°,∠ABC+∠ACB=180°﹣∠BAC=180°﹣80°=100°,∵点D是边AB、AC的垂直平分线的交点,∴DA=DB,DA=DC,∴∠DBA=∠DAB,∠DCA=∠DAC,∴∠DBA+∠DCA=∠DAB+∠DAC=∠BAC=80°,∴∠DBC+∠DCB=(∠ABC+∠ACB)﹣(∠DBA+∠DCA)=100°﹣80°=20°,∵∠DBC+∠DCB+∠BDC=180°,∴∠BDC=180°﹣20°=160°,故答案为:160°.14.如图所示,正方形ABCD的面积为6,△CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为.【分析】根据正方形的性质可知C、A关于BD对称,推出CK=AK,推出EK+AK≥CE,根据等边三角形性质推出CE=CD,根据正方形面积公式求出CD即可.解:∵四边形ABCD是正方形,∴C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CK=AK,∴EK+CK≥CE,∵△CDE是等边三角形,∴CE=CD,∵正方形ABCD的面积为6,∴CD=,∴KA+KE的最小值为,故答案为:.15.如图,K是等边△ABC内部一点,∠AKB,∠BKC,∠CKA的大小之比是3:4:5,则以KA,KB,KC为边的三角形的三个角的大小之比(从小到大)是1:2:3.【分析】将△ABK顺时针旋转60°得到△BDC,连接KD,将以KA,KB,KC为边的三角形转化为图中三角形CKD,然后根据,∠AKB,∠BKC,∠CKA的大小之比是3:4:5,以及旋转的性质分别求出∠DKC,∠CKD,∠CDK的度数即可得出结果.解:如图,将△ABK绕点B顺时针旋转60°得到△BDC,连接KD,∴△BDK为等边三角形,KA=CD,∴KD=KB,∴以KA,KB,KC为边的三角形即为图中△CKD,∵∠AKB,∠BKC,∠CKA的大小之比是3:4:5,且∠AKB+∠BKC+∠CKA=360°,∴∠AKB=90°,∠BKC=120°,∴∠DKC=∠BKC﹣∠BKD=120°﹣60°=60°,∠CDK=∠BDC﹣∠BDK=∠AKB﹣∠BDK=90°﹣60°=30°,∴∠CKD=180°﹣∠CDK﹣∠CKD=180°﹣30°﹣60°=90°,∴以KA,KB,KC为边的三角形的三个角的大小之比(从小到大)是30°:60°:90°=1:2:3,故答案为:1:2:3.16.如图,已知∠AOB=8°,一条光线从点A发出后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=82°.当∠A<82°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,…若光线从点A出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为10°.【分析】如图,当MN⊥OA时,光线沿原路返回,分别根据入射角等于反射角和外角性质求出∠5、∠9的度数,从而得出与∠A具有相同位置的角的度数变化规律,即可解决问题.解:如图:当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°﹣8°=82°,∴∠6=∠5=∠4﹣∠AOB=82°﹣8°=74°=90°﹣2×8°,∴∠8=∠7=∠6﹣∠AOB=74°﹣8°=66°=90°﹣3×8°,∴∠9=∠8﹣∠AOB=66°﹣8°=58°=90°﹣4×8°,由以上规律可知,∠A=90°﹣2n•8°,当n=5时,∠A取得最小值,最小度数为10°,故答案为:10°.三、解答题(共8小题,共72分)17.如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.解:∵DF⊥AB,∠A=40°∴∠AFE=∠CFD=50°,∴∠ACB=∠D+∠CFD=45°+50°=95°.18.如图,点E、F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC.【分析】根据BE=CF推出BF=CE,然后利用“角角边”证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(AAS),∴AB=DC(全等三角形对应边相等).19.如图,直线l是线段AB的垂直平分线,P点在直线l的右侧,求证:PA>PB.【分析】利用垂直平分线上的点到线段两端点的距离相等得到只有直线l上的点满足此条件,连接BC,利用三角形的三边关系可以得到PA>PB.【解答】证明:连接PA交直线l于C,连接PB,BC,∵直线l是线段AB的垂直平分线,∴CA=CB∴AP=CA+CP=CB+CP>PB,即PA>PB.20.如图,在△ABC中,AK,BK,CK分别平分∠BAC,∠ABC,∠ACB,KD⊥BC于点D,求证:AB﹣AC=BD﹣CD.【分析】由角平分线的性质得出作KE⊥AB于E,KF⊥AC于点F,KE=KF,证明△AKE ≌△AKF(HL),由全等三角形的性质得出AE=AF,同理可得:BE=BD,CD=CF,则可得出结论.【解答】证明:作KE⊥AB于E,KF⊥AC于点F,∵AK平分∠BAC,KE⊥AB,KF⊥AC,∴KE=KF,在Rt△AKE和Rt△AKF中,,∴△AKE≌△AKF(HL),∴AE=AF,同理可得:BE=BD,CD=CF,∴AB﹣AC=AE+BE﹣AF﹣CF=BE﹣CF=DB﹣CD.21.如图是6×8的小正方形构成的网格,每个小正方形的边长为1,△ABC的三个顶点A,B,C均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S,使得△BSC≌△CAB(S不与A重合);(2)在图2中AB上取一点K,使CK是△ABC的高;(3)在图3中AC上取一点G,使得∠AGB=∠ABC.【分析】(1)根据全等三角形的判定作出点S即可;(2)取格点Q,作射线CQ交AB于点K,线段CK即为所求;(3)取点Q,连接AQ,BQ,BQ交AC于点G,点G即为所求.解:(1)如图1中,点S即为所求;(2)如图2中,线段CK即为所求;(3)如图,点G即为所求.22.如图是两个全等的直角三角形纸片,且AC:BC:AB=3:4:5,按如图的两种方法分别将其折叠,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在角的两边重合,记折叠后不重叠部分面积分别为S1,S2.(1)若AC=3,求S1的值.(2)若S1+S2=26,求单个直角三角形纸片的面积是多少.【分析】(1)设DM=CM=x,则BM=4﹣x,依据S△ABM=AB×DM=BM×AC,即可得到x的值,进而得出S1的值.(2)如图1,依据S△ABM=AB×DM=BM×AC,即可得到DM=x,进而得出S1=;如图2,依据S△ABN=AB×EN=AN×BC,即可得到EN=x,进而得出S2=,再根据S1+S2=26,即可得到x2=12,进而得出单个直角三角形纸片的面积.解:(1)∵AC:BC:AB=3:4:5,AC=3,∴BC=4,AB=5,由折叠可得,DM=CM,∠ADM=∠C=90°,AD=AC=3,设DM=CM=x,则BM=4﹣x,∵S△ABM=AB×DM=BM×AC,∴AB×DM=BM×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DM==.(2)由AC:BC:AB=3:4:5,可设AC=3x,BC=4x,AB=5x,如图1,由折叠可得,AD=AC=3x,BD=5x﹣3x=2x,DM=CM,∠ADM=∠C=90°,∵S△ABM=AB×DM=BM×AC,∴AB×DM=BM×AC,即5x×DM=(4x﹣DM)×3x,解得DM=x,∴S1=BD×DM=2x×x=;如图2,由折叠可得,BC=BE=4x,EN=CN,∴AE=x,AN=3x﹣EN,∵S△ABN=AB×EN=AN×BC,∴AB×EN=AN×BC,即5x×EN=(3x﹣EN)×4x,解得EN=x,∴S2=AE×EN=x×x=,∵S1+S2=26,∴+=26,解得x2=12,∴S△ABC==6x2=72.23.在等边△ABC中,D为边AC的中点,点N在边BC的延长线上,且∠MDN=120°.(1)如图1,点M在边AB上,求证:DM=DN;(2)如图2,点M在边AB的延长线上,试探究BM,BN与等边△ABC边长BC的数量关系;(3)如图3,点M在边AB上,若AM+CN=BD,求∠ADM的度数.【分析】(1)作DE∥BC交AB于E,证明△DCN≌△DEM(ASA),由全等三角形的性质得出DN=DM.(2)作DE∥BC交AB于E,由(1)同理可证△DEM≌△DCN,得出EM=CN,则可得出BN﹣BM=BC;(3)作DE∥BC交AB于E,DH⊥AB于点H,由直角三角形的性质及等边三角形的性质证出MH=DH,得出△HDM为等腰直角三角形,求出∠AMD=45°,则可得出答案.【解答】(1)证明:如图1,作DE∥BC交AB于E,∵△ABC是等边三角形,∴AB=AC=BC,∠A=∠B=∠ACB=60°,∵D为AC的中点,∴AD=DC=AC,∵DE∥BC,∴∠AED=∠B=∠ADE=∠ACB=60°,∴△ADE为等边三角形.∴AE=DE=AD,∴DE=DC,∵∠MDN=∠EDC=120°,∴∠EDM=∠CDN,在△DCN和△DEM中,,∴△DCN≌△DEM(ASA),∴DN=DM.(2)解:如图2,作DE∥BC交AB于E,由(1)同理可证△DEM≌△DCN,∴EM=CN,∴BN﹣BM=BC+CN﹣EM+BE=BC+BE=BC.(3)如图3,作DE∥BC交AB于E,DH⊥AB于点H,由(1)知,EM=CN,∵D为AC的中点,∴∠ABD=30°,∵DH⊥AB,∴BD=2DH,∵△ADE为等边三角形,DH⊥AB,∴AH=EH,∵AM+CN=BD,∴AH+EH+EM+EM=2DH,即EH+EM=DH,∴MH=DH,即△HDM为等腰直角三角形,∴∠AMD=45°,∴∠ADM=180°﹣∠A﹣∠AMD=180°﹣60°﹣45°=75°.24.如图,点A(a,0),B(0,b),若点F(a,b)关于y轴的对称点的坐标为(﹣2,2).(1)求△AOB的面积.(2)如图1,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,试探究线段AC、BD、CD之间的数量关系,并给出证明.(3)如图2,点E是x轴上一动点,在y轴正半轴上取一点K,连接EK,FK,FE,使∠EFK=∠OAB,试探究线段BK,KE,EA之间的数量关系,并给出证明.【分析】(1)根据关于y轴对称的性质得到a=2,b=2,得到OA=2,OB=2,于是得到结果;(2)先判断出∠OAE=∠OBD=135°,进而判断出△OBD≌△OAE,得出OD=OE,BD=AE,进而判断出△DOC≌△EOC(SAS),即可得出结论;(3)分五种情况,利用全等三角形的判定和性质解答即可.解:(1)由题意可得:a=2,b=2,∴OA=2,OB=2,∴,(2)CD=BD+AC,过点O作OE⊥OD交BC的延长线于E,∵∠BOD+∠DOA=90°,∠AOE+∠DOA=90°,∴∠BOD=∠AOE,∵∠OBA=∠OAB=45°,∴∠OAE=∠OBD=135°,在△OBD和△OAE中,,∴△OBD≌△OAE(ASA),∴OD=OE,BD=AE,∴BD+AC=AC+AE=CE,在△DOC和△EOC中,,∴△DOC≌△EOC(SAS),∴CD=CE=BD+AC;(3)∵∠OAB=45°,∠EFK=∠OAB,∴∠EFK=45°,①当E在A右侧时,K不在y轴正半轴上,不合题意;②当E在A上时,K与O重合,不合题意;③当E在A,O之间时,过点F作FM⊥FE交y轴于点M,连接FB,FA,∵F(2,2),A(2,0),B(0,2),∴OA=OB,AF⊥x轴,BF⊥y轴,∵∠FBO=∠FAO=90°,∵∠AOB=90°,∴四边形AOBF是矩形,∵OA=OB,∴矩形AOBF是正方形,∴AF=BF,∠AFB=90°,∴∠EFA=90°﹣∠BFE,∵FM⊥FE,∴∠EFM=90°,∴∠MFB=90°﹣∠BFE,∴∠MFB=∠EFA,在△MFB与△EFA中,,∴△MFB≌△EFA(ASA),∴MB=EA,MF=EF,∵∠KFE=45°,∴∠KFM=90°﹣45°=45°,在△KFM和△KFE中,,∴△KFM≌△KFE(SAS),∴KE=KM=BK+MB=BK+EA,即KE=BK+EA;④当E在O上时,BK=0,KE=EA=2,也满足KE=BK+EA;⑤当E在O左侧时,同理可证,△BFM≌△AFE(ASA),∴EA=MB,同理可证△KFM≌△KFE(SAS),∴MK=KE,∴EA=BK+KE,综上所述:KE=BK+EA或EA=BK+KE.。

「专项突破」湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)

「专项突破」湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)

「专项突破」湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)【专项突破】湖北省武汉市2021-2022学年八年级上册数学期中试题(解析版)一、选一选(每题3分,共30分)1.下面有个汽车标致图案,其中没有是轴对称图形为()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A.属于轴对称图形,正确;B.属于轴对称图形,正确;C.没有属于轴对称图形,错误;D.属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.2.下列长度的三条线段首尾相连能组成三角形的是()A1,2,3B.2,3,4C.3,4,7D.4,5,10【答案】B【解析】【详解】A.∵1+2=3,∴1,2,3没有能组成三角形;B.∵2+3>4,∴2,3,4能组成三角形;C.∵3+4=7,∴3,4,7没有能组成三角形;D.∵4+5<10,∴4,5,10没有能组成三角形;故选B.3.五边形的对角线共有()条A.2B.4C.5D.6【答案】C【解析】【详解】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对称轴,总共有条对角线,故可求五边形的对角线的条数为5条.故选C.点睛:此题主要考查了多边形的对角线的条数,利用多边形的对角线的条数的规律:n边形的一个顶点处有n-3条对称轴,总共有条对角线,代入计算即可.4.如图,△ABC≌△DEF,则∠E的度数为()A.80°B.40°C.62°D.38°【答案】D【解析】【分析】根据全等三角形的性质,全等三角形的对应角相等,可求∠E=∠B=180°-∠A-∠C=38°.【详解】解:∵△ABC≌△DEF,∠A=80°,∠C=62°,∴∠F=∠C=62°,∠D=∠A=80°,∴∠E=180°−∠D−∠F=180°−80°−62°=38°,故选:D.【点睛】此题主要考查了全等三角形的性质,解题关键是熟记全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.5.如图,图中x的值为()A.50°B.60°C.70°D.75°【答案】B【解析】【详解】由外角的性质得,x+70=(x+10)+x解之得x=60°.故选B点睛:本题考查了三角形外角的性质及一元方程的几何应用,根据三角形的一个外角等于和它没有相邻的两个内角的和列方程求解即可.6.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】认真观察图形,找着已知条件在图形上的位置,判定方法进行找寻,由OB=OC,CD⊥AB于D,BE⊥AC于E,得△BOD≌ΔCOE,进一步得其它三角形全等.【详解】解:CD⊥AB于D,BE⊥AC于E,∠BDO=∠CEO=90,在△BOD和ΔCOE中,△BOD≌△COE(AAS).进一步得△ADO≌△AEO,△ABO≌△ACO,△ABE≌△ACD共4对.故选C.【点睛】主要考查全等三角形的判定,做题时,从已知开始全等的判定方法由易到难逐个找寻,要没有重没有漏.7.在△ABC与△DEF中,下列各组条件,没有能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠FB.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠DD.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】【分析】【详解】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边没有对应,没有能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF 全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选B点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA没有能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都没有与点O重合),且AB=BC,则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCOD.无法确定【答案】C【解析】【详解】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.9.如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°【答案】C【解析】【分析】已知MN是AE的垂直平分线,根据线段垂直平分线的性质可得AC=EC,所以∠CAE=∠E,由三角形外角的性质可得∠ACB=∠CAE+∠E=2∠E,再根据等腰三角形的性质可得∠B=∠ACB=2∠E,在△ABC中,根据三角形的内角和定理求得∠E=25°,即可求得∠B=2∠E=50°.【详解】∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∴∠ACB=∠CAE+∠E=2∠E,∵AB=CE,∴∠B=∠ACB=2∠E,在△ABC中,∠BAE+∠B+∠E=180°,∴105°+2∠E+∠E=180°即∠E=25°.∴∠B=2∠E=50°.故选C.【点睛】本题考查了线段垂直平分线的性质、三角形外角的性质、等腰三角形的性质及三角形的内角和定理,求得∠E=25°是解决本题的关键.10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.二、填空题:(每题3分,共18分)11.三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.【答案】5【解析】【详解】根据三角形的三边关系,可知第三边的范围为4<第三边<6,由于第三边为整数,可求得第三边的长为5.故答案为5.点睛:此题主要考查了三角形的三边关系,解题关键是根据三角形的两边之和大于第三边,三角形的两边之差小于第三边,求出第三边的范围即可.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【解析】【详解】解:设边数为n,由题意得,180(n-2)=3603,解得n=8.所以这个多边形的边数是8.故答案:8.13.如图,小明用直尺和圆规作一个角等于已知角,则说明的依据是______.【答案】SSS【解析】【分析】根据作一个角等于已知角的过程可判断,即可得出结论.【详解】作一个角等于已知角的过程中,,则,判定依据为,故有,故答案为:.【点睛】本题考查作一个角等于已知角过程理解及全等三角形的判定,理解作图过程中的相等线段是解题关键.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.15.如图△ABO的边OB在x轴上,∠A=2∠ABO,OC平分∠AOB,若AC=2,OA=3,则点B的坐标为_________【答案】(5,0)【解析】【详解】如图,过O作OA=OD=3,并连接CD,由OC为公共边,OC平分∠AOD,根据SAS判定△AOC≌△DOC,根据全等三角形的性质可得AC=CD=2,∠CDO=∠A=2∠CBO,因此可知∠DCB=∠CBO,再根据等角对等边,可得DC=DB=2,所以OB=2+3=5,即点B的坐标为(5,0).故答案为(5,0).16.已知△ABC中,∠B=30°,AD为高,∠CAD=30°,CD=3,则BC=_________ 【答案】12或6【解析】【详解】根据题意,可得如图所示的图形:当AD在三角形的内部时,根据30°角所对的直角边等于斜边的一半,由∠C1AD=30°,AD为高,可得AC1==2C1D=6,然后在△ABC1中,可得BC1=12;当AD在三角形的外部时,根据30°角所对的直角边等于斜边的一半,由∠C2AD=30°,AD为高,可得AC2==2C2D=6,再根据三角形的外角性质和等腰三角形的判定与性质可知BC2=6.故答案为12或6.点睛:此题主要考查了30°直角三角形的性质,解题时要根据题意分为高在三角形的内部和三角形的外部,两种情况,然后根据直角三角形的性质和等腰三角形的判定与性质求解即可.三、解答题(共8题,共72分)17.已知:△ABC中,∠B=2∠A,∠C=∠A-20°,求∠A的度数.【答案】50°.【解析】【详解】试题分析:根据题意,设∠A的度数为x°,然后分别表示处∠B、∠C,再根据三角形的内角和列方程求解即可.试题解析:设∠A=x度,则∠B=2x度,∠C=x°-20°,在△ABC中,∠A+∠B+∠C=180°,∴x+2x+x-20=180,∴x=50,即∠A=50°.18.如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】证明见解析【解析】【详解】试题分析:证明三角形△ABC△DEF,可得=.试题解析:证明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.19.如图,△ABC中,∠A=60°,P为AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D,PD=DQ,证明:△ABC为等边三角形.【答案】证明见解析.【解析】【详解】试题分析:过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.试题解析:如图,过P作PE∥BQ交AC于E,∴∠EPD=∠Q,在△EPD和△CQD中,∵∴△EPD≌△CQD(ASA),∴PE=CQ,∵PA=CQ,∴PE=PA,∴∠PEA=∠A=60°,∵PE∥BQ,∴∠PEA=∠ACB=60°∴∠A=∠ACB=∠B=60°,∴△ABC为等边三角形.点睛:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.20.如图,在四边形ABCD中,∠ABC=150°,∠BCD=30°,点M 在BC上,AB=BM,CM=CD,点N为AD的中点,求证:BN⊥CN.【答案】证明见解析.【解析】【详解】试题分析:延长BN、CD交于点E,根据同旁内角互补,两直线平行,可证AB∥CD,然后根据平行线的性质得到∠BAD=∠ADE,再根据全等三角形的判定“ASA”证得△ABN≌△EDN,得出BN=EN,AB=DE,进而得到CB=CE,根据等腰三角形的“三线合一”的性质得证.试题解析:如图,延长BN、CD交于点E,∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥CD,∴∠BAD=∠ADE,在△ABN和△EDN中,∵∴△ABN≌△EDN(ASA),∴BN=EN,AB=DE,又∵AB=BM,∴DE=BM,∵CM=CD,∴CB=CE,∵BN=EN,∴CN⊥BN.21.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B (-1,3),C(-3,2)(1)作出△ABC关于x轴对称的△;(2)点的坐标为,点的坐标为;(3)点P(a,a-2)与点Q关y轴对称,若PQ=8,则点P的坐标为;【答案】(1)见解析;(2)(2,-1),(-1,-3);(3)(4,2)或(-4,-6).【解析】【详解】试题分析:(1)根据关于x轴对称的点的坐标特点画出△A1B1C1即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)先根据对称的性质求出点P的横坐标,进而可得出结论.(1)如图所示:(2)点的坐标为(2,-1),点的坐标为(-1,-3);(3)∵点P(a,a-2)与点Q关y轴对称,PQ=8,∴a=4或a=−4,∴a-2=2或a-2=−6,P的坐标为(4,2)或(-4,-6);点睛:本题考查了平面直角坐标系中点的对称特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.22.如图,△ABC中,AC=BC,∠ACB=90°,点D 为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】试题分析:(1)连接DE,根据对称轴和线段垂直平分线的性质,求出CF=EF,CD=DE,推出CD=ED=BD,根据直角三角形的判定推出△BEF是直角三角形,求出∠AFC=∠BEC=∠ACD=90°,∠CAF=∠ECB,根据全等三角形的判定定理得出△ACF≌△CBE,根据全等三角形的性质得证;(2)作∠ACB的平分线交AD于M,根据ASA推出△ACM≌△CBG 得出∠ADC=∠M,CD=BM,根据SAS推出△DCM≌△DBG,求出∠M=∠BDG,即可得出答案.试题解析:(1)连接DE,∵点E、C关于AD对称,∴AD为CE的垂直平分线,∴CD=DE,∵D为CB中点,∴CD=DE=DB,∴∠DCE=∠CED,∠DEB=∠DBE,∵∠DCE+∠CED+∠DEB+∠DBE=180°,∴∠CEB=90°,∵∠ECB+∠ACF=90°,∠CAF+∠ACF=90°,∴∠ECB=∠CAF,在△ACF 和△CBE中,∵∴△ACF≌△CBE(AAS),∴CF=BE,右∵CF=EF,∴EF=EB,∴△EFB为等腰直角三角形.(2)作∠ACB的平分线交AD于M,在△ACM和△CBG中,∵∴△ACM≌△CBG(ASA),∴C M=BG,在△DCM和△DBG中,∵∴△DCM≌△DBG(SAS),∴∠ADC=∠GDB.23.如图,△ABC和△ADE中,AB=AD,AC=AE,∠BAC=∠DAE,BC交DE于点O,∠BAD=a.(1)求证:∠BOD=a.(2)若AO平分∠DAC,求证:AC=AD;(3)若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则a=.【答案】(1)证明见解析;(2)证明见解析;(3)40°或20°【解析】【分析】(1)根据全等三角形的判定“SAS”证得△ABC≌△ADE,然后根据全等的性质,可得∠B=∠D,再根据三角形的内角和定理得证结论;(2)过A作AM⊥BC于M,作AN⊥DE于N,由(1)知△ABC≌△ADE,根据全等三角形的面积相等,证得AM=AN,从而AO 为∠DAC的平分线,根据ASA证得△ABO≌△AEO,可得AB=AE,然后得证;(3)由题意可分为OA=OF和OA=AF两种情况讨论,即可求解.【详解】(1)在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS)∴∠B=∠D,∴∠BOD=∠BAD=α,(2)过A作AM⊥BC于M,作AN⊥DE于N,∵△ABC≌△ADE,∴S△ABC=S△ADE,∴,∵BC=DE,∴AM=AN,∴AO平分∠BOE,∵AO平分∠DAC,∴∠DAO=∠,∴∠BAO=∠EAO,在△ABO和△AEO中,∵∴△ABO≌△AEO(ASA),∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,(3)当AO=AF时,a=40°,当OA=OF时,a=20°,故答案为40°或20°.24.如图,在轴负半轴上,点坐标为,点在射线上.(1)求证:点为的中点.(2)在轴正半轴上有一点,使,求点的坐标.(3)如图,点,分别在轴正半轴、轴正半轴上,点为的内角平分线的交点,分别交轴正半轴、轴正半轴于,两点,于点,记的周长为.求证:.【答案】(1)详见解析;(2);(3)详见解析.【解析】【分析】(1)过点作轴于点.根据B、E两点坐标,证得≌,即有,故为的中点.(2)过点作交的延长线于点,过点作轴于点,易证≌,得到D点坐标,设的坐标为,利用建立方程,解方程即可(3)连接,易证≌,得到和,由角平分线性质,求得,再过点作于点,在上截取,可证≌与≌,得到,得到周长【详解】(1)过点作轴于点.∵,∴,∴≌,∴,∴为的中点.(2)过点作交的延长线于点,过点作轴于点,∵,∴,∴可证≌,∴的坐标为,设的坐标为,∵,∴,∴,∴.(3)连接,∵点为内角平分线的交点,∴平分,平分.∴≌.∴.同理可得.∵平分,平分,∴.∴.∴.过点作于点,在上截取,可证≌.∴,∴,可证≌.∴.∴.即.【点睛】本题主要考查全等三角形的证明与性质,涉及等角等边代换,难度较大,本题的关键在于能够正确做出辅助线,找到全等三角形.。

2014-2015年武汉市八年级数学上学期期中压轴题总汇

2014-2015年武汉市八年级数学上学期期中压轴题总汇

2014-2015八年级上学期压轴题汇总东西湖区12 .如图, △ ABC 中,AB = AC ,/ BAC = 90 ° BE 平分 ABC 交 AC 于 F , CE 丄 BF 于 E , EG AB + AF = BC :② BF = 2CE :③ FC = GE ; @ / GEA =Z CBF ,其中正确的结论个数有( )A . 1B . 2C . 316•下图都是由同样大小的正三角形按一定的规律组成的, 其中第1个图中有1个正三角形,第2个图形中共有5个正三角形,第 3个图形中共有13个正三角形……,按照此规律第 5个图形中正三角形的个数为 ____________24. (本题10分)如图,D 为等边 △ ABC 外一点,且 BD = CD ,/ BDC = 120。

,点M 、N 分别 在 AB 、AC 上,若 BM + CN = MN(1) __________________ 求/ MDN = 度⑵ 作岀△ DMN 的高DH ,并证明 DH = BD丄AB 于G ,连AE ,下列结论:①25. (本题12分)如图1,已知线段AC II y轴,点B在第一象限,且AO平分/ BAC , AB交y 轴于G,连OB、OC(1)判断△ AOG的形状,并予以证明(2)若点B、C关于y轴对称,求证:AO丄BO⑶在⑵的条件下,如图2,点M为OA上一点,且/ ACM = 45 ° BM交y轴于P,若点B的坐标为(3,1),求点M的坐标汉阳区Kh 如3L 屈平#NRrtC’DEXX, E M IAE},若Au书.M帘.则删珂)K.5 H. 6 7 D. E血RtZUBC中,f AB-AC,分别过点执(:作过点A的直线1的垂线閃、垂足分则为队E”若昨3, CE=2t则D由 _____________ .24. (本窗満分10分)(1)如图①,把沿DE折叠,使点落在点川处,直接写出Z1 + Z2与Z*之间的数虽关系____________________ ;(2) 如图②,创平分ZABC t C/平分ZACB t把MBC沿DE折叠,使点川与点/爾合,若/l + Z2=130。

武汉各区八年级上期中压轴题

武汉各区八年级上期中压轴题

江岸区2021~2021学年度第一学期期中考试八年级数学试卷(一)三、解答题(共8题,共72分)23.(此题14分)在平面直角坐标系中,A (3,0)、B (0,3),点P 为线段AB 上一点,且21=BP AP ,连接OP (1) 求P 点坐标(2) 作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC =OP(3) 在(2)的条件下,在直线AM 上一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ =ON ,连接点D (3,3)与点Q 的线段交x 轴于点E ,当OE =2,那么Q 点坐标为___________(请同窗们自己画图,并直接写出结果)武汉二中广雅中学2021—2021学年度上学期期中考试(二)三、解答题(共72分)24.如图1,在平面直角坐标系中, A 点的坐标为(a ,0),B 点的坐标为(0,b ), 且a 、b 知足8-+b a +|a -2b +4|=0.(1)求证∠OAB =∠OBA ; (2)如图2,点P 为第一象限内一点,且PA =OA ,AC ∠x 轴交OP 于点C ,AD 平分∠PAC 交OP 于点D ,求∠ODB 的度数.(3)如图3,点A 关于y 轴对称点为F ,点B 关于x 轴对称点为E ,点M 在AB 的延长线上,点N 在BF 的延长线上,且∠MEN =45°,试着判定线段MN 、AM 、FN 之间的数量关系并证明你的结论.图1 图2 图3武珞路中学2021~2021学年度八年级上学期期中测试数学试卷(三)三、解答题(共8题,共52分)23.(此题10分)在平面直角坐标系中,点A坐标为(8,0),点B坐标为(0,8),点C为OA中点(1) 如图1,过点O作OD⊥BC于点E,交AB于点D,求证:∠OBC=∠AOD(2) 点M从C点起身向x轴正方向运动,同时点N从C点起身向x轴负方向运动,点M、N运动速度均为每秒1个单位长度,运动时刻为t秒.射线OE⊥BM于点E,交AB于点D,直线ND交BM于点K①如图2,当0<t<4时,请证明△KNM为等腰三角形②当t>4时,△KNM是不是仍是等腰三角形,请画出图形,并说明理由2021~2021学年度八年级第一学期期中考试(四)三、解答题(共5小题,共52分)28.(此题12分)如图1,点A、B别离在x轴负半轴和y轴正半轴上,点C(2,-2),CA、CB别离交坐标轴于D、E,CA⊥AB,且CA=AB.(1)求点B的坐标;(2)如图2,连接DE ,求证:BD -AE =DE ;(3)如图3,假设点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.EDO C B Ayx图1EDOCB Ayx图2PG NM FOBy x图32021-2021学年度上学期武汉市部份学校期中联考(五)八 年 级 数 学 试 卷2六、(12分),如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4) (1)求B 点坐标;(2)假设C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式OFFMAM =1是不是成立?假设成立,请证明:假设不成立,说明理由.2021武汉名校八年级(上)期中试卷精选(六)三、解答题(此题共9小题,共72分)24.(此题12分)已知,如图,在平面直角坐标系中,点A、B、C别离在座标轴上,且OA=OB=OC,S△ABC=25.点P 从C点起身沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点(1) 求D点的坐标(2) 设点P运动的时刻为t秒,求当t为何值时,DP与DB垂直相等(3) 假设PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判定△APQ的形状,并说明理由(七)(江岸卷)24.(此题12分)如图,在平面直角坐标系中,△ABC 的极点A (-3,0),B (0,3),AD 丄BC 于D 交y 轴于点E (0,1) (1) 求证:AE =BC ,OE =OC(2) 将线段CB 绕点C 顺时针旋转90º后得线段CF ,连结BF ,求△BCF 的面积(3) 点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP 丄PC ,且QP =PC ,连结QO ,分过点Q 作QR 丄x 轴于R ,求OPQROC 定值黄陂区2021年秋部份学校期中调研考试八年级数学试卷(八)三、解答题(共9小题,共72分)25.(此题12分)在△ABC 中,AB =AC ,D 在AC 上,AE =AC 交BD 的延长线于点E ,AF 平分∠CAE 交BE 于F (1) 如图1,连CF ,求证:∠ABE =∠ACF(2) 如图2,当∠ABC =60°时,请写出AF 、EF 、BF 的数量关系,不需证明 (3) 如图3,假设∠BAC =90°,且BD 平分∠ABC ,求证:BD =2EF武汉市梅苑中学2021-2021学年八年级(上)期中试卷(九)三、解答题(此题共9小题,共72分)25.(12分)(2021秋•武汉校级期中)已知,如图,在平面直角坐标系中,点A、B、C别离在座标轴上,且OA=OB=OC,S△ABC=25.点P从C点起身沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.(1)求D点的坐标;(2)设点P运动的时刻为t秒,求当t为何值时,DP与DB垂直相等;(3)假设PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判定△APQ的形状,并说明理由.武珞路中学2021~2021学年度上学期八年级数学期中模拟试卷(十)三、解答题(共72分)24.(2021·黄陂区期中)如下图,在平面直角坐标系中,A 点坐标为(-2,2) (1) 如图(1),在△ABO 为等腰直角三角形,求B 点坐标(2) 如图(1),在(1)的条件下,别离以AB 和OB 为边作等边△ABC 和等边△OBD ,连结OC ,求∠COB 的度数(3) 如图(2),过点A 作AM ⊥y 轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,∠MKJ =90°,过点A 作AN ⊥x 轴交MJ 于点N ,连结EN .那么:① NE OE AN +的值不变;② NEOEAN -的值不变,其中有且只有一个结论正确,请判定出正确的结论,并加以证明和求出其。

武汉市xx区八年级上期中数学试卷含答案

武汉市xx区八年级上期中数学试卷含答案

八年级上学期数学期中考试调研试题题号1-1213-1617-2021-2324-25总分分数3612272322120得分一、选择题(请将正确答案填在下边相应的表格中,每题3分,共36分):123456789101112一、选择题(共12小题,每题3分,共36分)1.以下银行标记中是轴对称图形的个数有()A.2个B.3个C.4个D.5个2.以下说法中正确的选项是()A.36的平方根是6B.16的平方根是±2EC.8的立方根是-2D.4的算术平方根是-23.a是一个无理数,且知足3<a<4,则a可能是()DB CAA.2B.21C.πD.38F 4.如图,△ACE≌△DBF,若AD=8,BC=2,则AB的长度等于()A.6B.4C.3D.25.已知点P1(a-1,5)和P2(2,b-1)对于x轴对称,则(a+b)2009的值为()A.0B.-1C.1D.(-3)20096、△ABC的两边的长分别为23,53,则第三边的长度不行能为()A.3 3B.43C.53D.637.以下四个条件,能够确立△ABC与△A1B1C1全等的是()A.BC=B1C1,AC=A1C1,∠A=∠A1B.AB=A1B1,∠C=∠C1=900.AC=A1C1,∠A=∠A1,∠B=∠B1;D.∠A=∠A1,∠B=∠B1,A∠C=∠C18.如图:△ABC中,D为BC上一点,△ACD的周长为12cm,E DE是线段AB的垂直均分线,AE=5cm,则△ABC的周长是()A.17cm B.22cm C.29cm D.32cmC D B9.如图,直径为1个单位长度的圆从原点沿数轴向右转动一周,圆上一点由原点抵达点A,以下说法正确的选项是()A.点A所表示的是π.B.数轴上只有一个无理数π.C.数轴上只有无理数没有有理数.D.数轴上的有理数比无理数要多一些.O123A410.以下图,△ABC中,D为BC上一点,且AB=AC=BD.A 则图中∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=180°1C.∠1+3∠2=180°D.3∠1-∠2=180°B11.四边形ABCD中,AC和BD交于点E,若AC均分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=1∠DAB;④AB=BE=AE。

八上期中压轴题讲解一

八上期中压轴题讲解一

八上期中压轴题综合讲解【汉阳区八年级上期中】1.如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD 的一个半等角点.(1)在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);(3)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.【江汉区八年级上期中】24.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.25.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.【硚口区八年级上期中】25.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.(1)∠COA的值为_________ ;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,【江岸区八年级上期中】25.如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)(1)求B点坐标;(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;(3)过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式=1是否成立?若成立,请证明:若不成立,说明理由.参考答案与试题解析一.解答题1.(2006•安徽)如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P 为四边形ABCD的一个半等角点.(1)在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);(3)若四边形ABCD有两个半等角点P1、P2(如图(2)),证明线段P1P2上任一点也是它的半等角点.2.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.=,,3.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.4.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.∠COA=×AN+OB5.如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)(1)求B点坐标;(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;(3)过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式=1是否成立?若成立,请证明:若不成立,说明理由.成立,理由如下:,即。

八年级上册武汉数学压轴题 期末复习试卷达标检测卷(Word版 含解析)

八年级上册武汉数学压轴题 期末复习试卷达标检测卷(Word版 含解析)

八年级上册武汉数学压轴题期末复习试卷达标检测卷(Word版含解析)一、压轴题1.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.2.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).3.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.4.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC2a,试写出此时BF的值.∆中,线段AM为BC边上的中线.动点D在直线AM上时,以5.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.6.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).7.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)9.如图,在平面直角坐标系中,直线AB经过点A 332)和B30),且与y轴交于点D,直线OC与AB交于点C,且点C3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.10.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△; (2)求证:点G 是EF 的中点.11.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.12.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+2或9﹣2或6时,△APQ 为等腰三角形. 【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--, 即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=−m +2,解得m =−1, ∴点P 的坐标为(−1,3), 把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72, ∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0), ∴当Q 在A . C 之间时,AQ =2+7−t =9−t ,∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9,∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3,∴273322t -<或3273.22t -< 解得7<t <9或9<t <11.③存在; 设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去),当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.2.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.3.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.4.(1)①详见解析;②12α;(2)详见解析;(3)当B、O、F三点共线时BF最长,(10+2)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C 与点D 关于直线l 对称,∴AC = AD .∵AB = AC ,∴AB = AC = AD .∴点B ,C ,D 在以A 为圆心,AB 为半径的圆上.②∵AD=AB=AC ,∴∠ADB=∠ABD ,∠ADC=∠ACD ,∵∠BAM=∠ADB+∠ABD ,∠MAC=∠ADC+∠ACD ,∴∠BAM=2∠ADB ,∠MAC=2∠ADC ,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α 故答案为:12α. (2连接CE ,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=1α,2∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,2a,∴24BC AC a==,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴2=,OC HC∵点O是AC中点,AC2a,∴2=,OC a==,∴OH HC a∴BH=3a,∴BO =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点,∴OF OC ==,∴BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.5.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.6.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵ABC∆是等边三角形,点D是BC的中点∴AD⊥BC∴90ADC∠︒=∵60BDF ADE∠∠︒==∴30ADF EDC∠∠︒==在ADF∆与EDC∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.7.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°. 【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.8.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°, ∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.(1)y+2;(2)△AOD 为直角三角形,理由见解析;(3)t =23. 【解析】【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH,即2(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:3=220k b b ⎧+⎪⎨⎪=+⎩,解得:3=2kb⎧⎪⎨⎪=⎩-故直线AB的表达式为:y=﹣33x+2;(2)直线AB的表达式为:y=﹣3x+2,则点D(0,2),由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣3x+2,故点C(3,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(3,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH32﹣t)=QH,OQ=QH+OH32﹣t)+12(2﹣t)=t,解得:t=33;②当MO =MP 时,如图2,则∠MPO =∠MOP =30°,而∠QOP =60°,∴∠OQP =90°,故OQ =12OP ,即t =12(2﹣t ), 解得:t =23; ③当PO =PM 时,则∠OMP =∠MOP =30°,而∠MOQ =30°,故这种情况不存在;综上,t =2323. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.10.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.11.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.12.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。

湖北省武汉市各区2019—2020学年度年八年级上学期数学压轴题汇编(无答案)

湖北省武汉市各区2019—2020学年度年八年级上学期数学压轴题汇编(无答案)

硚口区9.如图,在△ABC中,AD是它的角平分线,AB=9,AC=6,BC=10,则CD的长为B.3C.4.5D.6A10310.如图,在平面直角坐标系中,A点坐标为(8,0),点P从点O出发以1个单位长度秒的速度沿y轴正半轴方向运动,同时,点Q从点A出发以1个单位长度/秒的速度沿x轴负半轴方向运动,设点P、Q运动的时间为t(0<t<8)秒.以PQ为斜边,向第一象限内作等腰Rt△PBQ,连接OB.下列四个说法:①OP+OQ=8;②B点坐标为(4,4);③四边形PBQO的面积为16;④PQ>OB.其中正确的说法个数有A.4B.3C.2D.115在等腰△AC中,AB=AC,AB边的垂直平分线MN与直线A(相交于点D,若∠DBC=42°,则∠BAC的大小为__________16.如图,牧人从A地出发,先到草地边MN的某处点C牧马,再到河边EF的某处点D饮马,然后回到B处,若从A到B走的是最短路径,CA与DB的延长线交于点H,设锐角∠1=a,则∠2的的大小为__________(用含a的式子表示)22(本题10分)已知CD∥AB,DE平分∠ADC(1)如图1,若∠B=90°,EB=EC,求证:AE平分∠DAB;(2)如图2,若AB+AD=CD,求证:EB=EC23.(本题10分)已知△ABC是等边三角形,点D是AC的中点,点E在射线BC上,点F在射线BA上,∠EDF=120(1)如图1,若点F与B点重合,求证:DB=DE;的值;(2)如图2,若点E在线段BC上,点F在线段BA上,求BE BFAC(3)如图3,若AF+CE=BD,直接写出∠EDC的度数为_________24.(本题1.分)在半面直角坐标系中,点A的坐标为(0,4)(1)如图1,若点B的坐标为(3,0),△ABC是等腰直角三角形,BA=BC,∠ABC=90°,求C点坐标;(2)如图2,若点E是AB的中点,求证:AB=2OE;(3)如图3,△ABC是等腰直角三角形,BA=BC,∠ABC=90°,△ACD是等边三角形,连接OD,若∠AOD=30°,求B点坐标江岸区9.已知△ABC 的内角平分线相交于点O ,三边的垂直平分线相交于点I ,直 线OI 经过点A .若∠BAC =40°,则∠ABC =( ) A .40°B .50°C .70°D .80°10.如图,在△ABC 中,点D 是线段AB 的中点,DC ⊥BC ,作∠EAB =∠B ,DE ∥BC ,连接CE .若52AE BC ,设△BCD 的面积为S ,则用S 表示△ACE 的面积正确的是( )A .S 25B .3SC .4SD .S 29 15.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的底角为__________° 16.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =___________(用含α的式子表示)21.(本题8分)如图,Rt △ABC ≌Rt △CED (∠ACB =∠CDE =90°),点D 在BC 上,AB 与CE 相交于点F (1) 如图1,直接写出AB 与CE 的位置关系(2) 如图2,连接AD 交CE 于点G ,在BC 的延长线上截取CH =DB ,射线HG 交AB 于K ,求证:HK =BK22.(本题10分)如图,在△ABC 中,CE 为三角形的角平分线,AD ⊥CE 于点F 交BC 于点D(1) 若∠BAC =96°,∠B =28°,直接写出∠BAD =__________° (2) 若∠ACB =2∠B ① 求证:AB =2CF② 若EF =2,CF =5,直接写出CDBD=__________23.(本题10分)如图1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于点D,EH⊥FG于点H(1) 直接写出AD、EH的数量关系:___________________(2) 将△EFG沿EH剪开,让点E和点C重合①按图2放置△EHG,将线段CD沿EH平移至HN,连接AN、GN,求证:AN⊥GN②按图3放置△EHG,B、C(E)、H三点共线,连接AG交EH于点M.若BD=1,AD=3,求CM的长度24.(本题12分)已知:如图,在平面直角坐标系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,点P为x轴上一动点,连接BP,在第一象限内作BC⊥AB且BC=AB(1) 求点A、B的坐标(2) 如图1,连接CP.当CP⊥BC时,作CD⊥BP于点D,求线段CD的长度(3) 如图2,在第一象限内作BQ⊥BP且BQ=BP,连接PQ.设P(p,0),直接写出S△PCQ=_____24、在△ABC 中,AD 是高,AE 是角平分线,已知∠ACB = 700∠EAD = 15°,则∠A BC 的度数为 。

2020—2021年武汉市部分学校初二上期中数学试卷含答案解析

2020—2021年武汉市部分学校初二上期中数学试卷含答案解析

2020—2021年武汉市部分学校初二上期中数学试卷含答案解析一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.14.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于__________.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是__________.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为__________.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是__________.15.各边长度差不多上整数、最大边长为8的三角形共有__________个.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是__________.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是__________ (用含有n的代数式表示).22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2020-2021学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念对各图形分析判定后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是查找对称轴.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°【考点】三角形的外角性质.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和列式运算即可得解.【解答】解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】依照在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:依照三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,把握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、依照ASA即可推出△ABC≌△DEF,故本选项正确;B、依照∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、依照AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、依照AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判定全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分明白得题意.6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分那个角为底角和顶角两种情形,利用三角形内角和定理求解即可.【解答】解:当那个内角为顶角时,则顶角为40°,当那个内角为底角时,则两个底角都为40°,现在顶角为:180°﹣40°﹣40°=100°,故选D.【点评】本题要紧考查等腰三角形的性质,把握等腰三角形的两底角相等是解题的关键.7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】第一依照折叠可得AD=BD,再由△ADC的周长为17cm能够得到AD+DC的长,利用等量代换可得BC的长.【解答】解:依照折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.【点评】此题要紧考查了翻折变换,关键是把握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】依照已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而依照“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题能够先依照直观判定得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,依照角平分线的性质求得EF=DE=2,然后依照三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】依照题意直截了当动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于依照折痕逐层展开,动手操作会更简便.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于75°.【考点】三角形内角和定理.【分析】依照已知条件设∠A=3x,∠B=4x,∠C=5x,然后依照三角形的内角和列方程即可得到结果.【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠C=5x=75°,故答案为:75°.【点评】本题考查了三角形的内角和,熟练把握三角形的内角和是解题的关键.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直截了当得到答案.【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).【点评】此题要紧考查了关于x轴对称点的坐标,关键是把握点的坐标的变化规律.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为6.【考点】多边形内角与外角.【专题】运算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴那个多边形是六边形.故答案为:6.【点评】本题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,因此要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,现在周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题要紧考查学生对等腰三角形的性质及三角形的三边关系的把握情形.已知没有明确腰和底边的题目一定要想到两种情形,分类进行讨论,还应验证各种情形是否能构成三角形进行解答,这点专门重要,也是解题的关键.15.各边长度差不多上整数、最大边长为8的三角形共有20个.【考点】三角形三边关系.【分析】利用三角形三边关系进而得出符合题意的答案即可.【解答】解:∵各边长度差不多上整数、最大边长为8,∴三边长能够为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度差不多上整数、最大边长为8的三角形共有20个.故答案为:20.【点评】此题要紧考查了三角形三边关系,正确分类讨论得出是解题关键.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【考点】圆周角定理.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.【考点】作图—复杂作图;三角形的面积.【专题】作图题.【分析】(1)过点A作AM⊥BC于M,过点C作CN⊥AB于N,则AM、BN为△ABC的高;(2)依照三角形面积公式得到AM•BC=CN•AB,然后利用比例性质求BC与AB的比值.【解答】解:(1)如图,AM、CN为所作;(2)∵AM、BN为△ABC的高,∴S△ABC=AM•BC=CN•AB,∴===.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种差不多作图的基础上进行作图,一样是结合了几何图形的性质和差不多作图方法.解决此类题目的关键是熟悉差不多几何图形的性质,结合几何图形的差不多性质把复杂作图拆解成差不多作图,逐步操作.也考查了三角形面积公式.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.【考点】全等三角形的判定.【分析】取BC中点D,作直线AD,利用SSS即可证明△ABD≌△ACD.【解答】解:如图,取BC中点D,作直线AD,则直线AD将△ABC分成两个全等的三角形,即△ABD≌△ACD.理由如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.【考点】三角形内角和定理.【分析】(1)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,再依照三角形内角和定理求出即可;(2)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,然后表示出∠FBC+∠FCB,再依照三角形的内角和等于180°列式整理即可得证.【解答】解:(1)∵∠ABC=42°,∠A=60°,∴∠ACB=78°,∵∠ABC、∠ACB的平分线相交于点F,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°﹣(∠FBC+∠FCB)=120°;(2)∠BFC=90°+A,理由是:∵∠ABC与∠ACB的平分线相交于点F,∴∠FBC=∠ABC,∠FCB=∠ACB,∴∠FBC+∠FCB=(∠ABC+∠ACB),在△FBC中,∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是360°.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是360°(n﹣2)(用含有n的代数式表示).【考点】翻折变换(折叠问题).【分析】(1)运用折叠原理及四边形的内角和定理即可解决问题;(2)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6的度数和;(3)利用(1)(2)的运算方法:类比得出答案即可.【解答】解:(1)连接AA′,∵∠1=∠BAA′+∠AA′E,∠2=∠CAA′+∠AA′D,∴∠1+∠2=∠BAA′+∠AA′E+∠CAA′+∠AA′D=∠BAC+∠DA′E,又∵∠BAC=∠DA′E,∴∠1+∠2=2∠BAC;(2)∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°;(3)∠1+∠2+∠3+…+∠2n=2(∠B+∠C+∠A)(n﹣2)=360°(n﹣2).【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何差不多知识,把握折叠的性质是解决问题的关键.22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,确实是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么能够用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC 来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC 中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先依照已知条件或求证的结论确定三角形,然后再依照三角形全等的判定方法,看缺什么条件,再去证什么条件.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.【考点】全等三角形的判定与性质.【分析】(1)依照SAS证明△ACD≌△BDE即可;(2)依照全等三角形得出AC=BD,进而得出BD=BC,利用角的运算即可解答;(3)过E作EF⊥AB于F,DH⊥BC于H,依照等腰直角三角形的性质求出EF的长,依照题意求出∠CED=∠DEF,依照角平分线的性质求出EH=EF,依照等腰三角形的性质得到答案.【解答】证明:(1)在△ACD与△BDE中,,∴△ACD≌△BDE(SAS),(2)∵△ACD≌△BDE,∴AC=BD,CD=DE,∵AC=BC,∴BD=BC,∴∠BCD=67.5°,∴∠CED=∠BCD=67.5°,∴∠BED=112.5°;(3)过E作EF⊥AB于F,DH⊥BC于H,∵EF⊥AB,∠B=45°,∴EF=BF=1,∵∠FEB=45°,∠CED=67.5°,∴∠DEF=67.5°,∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,∴EH=EF=1,∵DC=DE,DH⊥BC,∴CE=2EH=2.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,把握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【考点】全等三角形的判定与性质.【分析】(1)①依照等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②延长CE交BA的延长线于点G,如图1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,在△ABD与△ACG中,,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;(2)结论:BE﹣CE=2AF.过点A作AH⊥AE,交BE于点H,如图2:∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.【点评】本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.。

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

武昌区多校2023-2024学年上学期期中联考八年级数学试题一、单选题(每小题3分,共30分)1.已知一个三角形的两边长分别为4和1,则这个三角形的第三边长可能是()A.3B.4C.5D.62.“甲骨文”,是中国的一种古老文字,又称“契文”、“殷墟文字”,下列甲骨文中,不是轴对称图形的是()A. B. C. D.3.一个多边形内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.下列说法正确的是()A.三角形的一个外角等于任意两个内角的和B.三角形的一个外角小于它的一个内角C.三角形的一个外角大于它的相邻的内角D.三角形的一个外角大于任何一个与它不相邻的内角5.已知图中的两个三角形全等,则1∠的度数是()A.50°B.54°C.60°D.76°6.如图,点E ,F 在BC 上,BE FC =,B C ∠=∠.添加下列条件不能使得ABF DCE △≌△的是()A.AB DC =B.A D ∠=∠C.AFB DEC ∠=∠D.AF DE=7.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若15BC =,且:3:2BD CD =,则点D 到AB 的距离为()A.5B.6C.8D.98.如图,AC AB BD ==,AB BD ⊥,10BC =,则BCD △的面积为()A.15B.25C.20D.509.如图,A 、B 是5×6网格中的格点,网格中的每个小正方形边长都为1,以A 、B 、C 为顶点的三角形是等腰三角形的格点C 的位置有()A.8个B.11个C.12个D.14个10.如图,ABM △和CDM △均为等边三角形,直线BC 交AD 于点F ,点E 、N 分别为AD 、BC 的中点,下列结论:①AD BC =;②ME CB ⊥;③AF BF MF -=;④MNE △为等边三角形;⑤MF 平分BME ∠,其中一定成立的有()个A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.点()1,3A -关于x 轴的对称点A '的坐标为__________.12.在ABC △中::1:2:3A B C ∠∠∠=,则C ∠的度数为___________.13.如图,在ABC △和DCB △中,AB DC =.若不添加任何字母与辅助线,要使ABC DCB △≌△,则可以添加一个角相等的条件是_______________.14.如图,在AOB ∠的边OA 、OB 上取点M 、N ,连接MN ,MP 平分AMN ∠,NP 平分MNB ∠,若1MN =,PMN △的面积是1,OMN △的面积是4,则OM ON +的长是______________.15.多边形的一个内角的外角与其他内角的度数和为600°,则此多边形的边数为____________.16.如图120MON =︒∠,点A 为ON 上一点,且3OA =B 为直线OM 上的一动点,以AB 为边作等边ABC △,连接OC ,当BC 最小时,此时OC =______________.三、解答题(共8小题,共72分)17.(本题满分8分)用一条长为20cm 的细绳围成一个等腰三角形,能围成一边长是6cm 的等腰三角形吗?为什么?18.(本题满分8分)如图,在四边形ABCD 中,E 是BC 的中点,延长AE 、DC 相交于点F ,BEF B F =∠+∠∠.求证:AB CF =.19.(本题满分8分)如图,点D 、E 在ABC △的边BC 上,AB AC =,AD AE =,求证:BD CE =.20.(本题满分8分)如图,在四边形ABCD 中,AB CD ∥,E 为AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:CDE FAE △≌△.(2)连接BE ,当BE GF ⊥时,3CD =,2AB =,求BC 的长.21.(本题满分8分)如图,在5×5的正方形网格中,请仅用无刻度直尺完成下列画图问题(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,画出线段AB 的中点M .(2)在图2中,线段AC 与第3条,第5条水平网格线分别相交于D 、E 两点,在直线上画一点P ,连接PD 和PE ,使得PD PE +最小.(3)在图3中的直线上画一点F ,使45CAF ∠=︒.(4)在图4中,线段AC 与第3条水平网格线相交于D 点,过D 点画DH AG ⊥于H 点.22.(本题满分10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在ABC △中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC △的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在ABC △中,30B ∠=︒,AD 和DE 是ABC △的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请直接写出C ∠所有可能的值_________________.23.(本题满分10分)ABE △和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF =∠∠,BE CF =,求证:ABE ACF △≌△.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:__________________.24.(本题满分12分)如图1,ABC △是等腰直角三角形,点B 是y 轴上的一点,边AC 交y 轴于点D .(1)若点()1,1C -,直接写出点B 的坐标__________.(2)如图2,将ABC △沿y 轴负方向平移一定单位后,使AB 边交y 轴于点E .过点B 作BG y ⊥轴且BG OB =,连接OG .过点G 作GF x ⊥轴交BC 于点F ,连接EF ,求证:FG OE EF =+.(3)如图3,在(1)的条件下,若点M 坐标为()2,0,点P 在第一象限内,连接PM ,过点P 作PH PM ⊥交y 轴于点H ,在PH 上截取PN PM =,连接BN ,过点P 作45OPQ ∠=︒交BN 于点Q ,试探究点Q 在BN 上的位置关系,并说明理由.参考答案1.B2.A3.B4.D5.A6.D7.B8.B9.C 10.C二、填空题11.()1,312.90°13.ABC DCB ∠=∠14.515.5或6(注:对1个给1分,全对3分)16.32三、解答题17.【解析】分两种情况讨论:①当6cm 为腰长时,设底边长为cm x ,6220x ⨯+=,8x =,∴三边长分别为6cm ,6cm ,8cm②当6cm 为底边长时,设底边长为cm y ,6220y +=,7y =,∴三边长分别为6cm ,7cm ,7cm18.【解析】∵BEF F ECF ∠=∠+∠,BEF B F ∠=∠+∠,∴B ECF ∠=∠∵点E 是BC 中点,∴CE BE=在ABE △和FCE △中B ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABE FCE △≌△,∴AB CF =.19.【解析】证明:过点A 作AH BC ⊥于点H (辅助线交代不清扣1分)∵AB AC =,AH BC ⊥,∴BH CH=∵AD AE =,AH DE ⊥,∴DH EH=∴BH DH CH EH -=-即BD CE=20.【解析】(1)证明:∵AB CD ∥∴DCE F ∠=∠,∵点E 是AD 中点,∴DE AE =,在CDE △和FAE △中DCE F CED FEA DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CDE FAE ≌△△(2)由(1)知CDE FAE ≌△△,∴CE FE =,CD AF=∵BE GF ⊥,∴BE 垂直平分CF∴BC BF =,∵3CD =,2AB =∴3AF CD ==,∴325BC BF AF AB ==+=+=21.【解析】22.【解析】(1)设=A x ∠,∵AB BD BC==∴ABD A x ∠=∠=,2C BDC x x x∠=∠=+=∵AB AC =,∴2ABD C x∠=∠=在ABC △中,22180x x x ++=︒,36x =︒∴36A ∠=︒(2)(画对和度数表明即可,两个图每个各给2分)(3)20°或40°(写对1个给2分)23.【解析】(1)在ABE △和ACF △中A A ABE ACF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACF ≌△△(2)过点C 作CM BE ⊥于M ,作CN AB ⊥的延长线于N∵BOC BFC ABE BEC ACF ∠=∠+∠=∠+∠,ABE ACF∠=∠∴BFC BEC ∠=∠,即NFC MEC∠=∠∵CM BE ⊥,CN AB ⊥,∴90CNF CME ∠=∠=︒在CNF △和CNB △中NFC MEC CNF CME CF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CNF CME ≌△△,∴CN CM =,又CM BE ⊥,CN AB ⊥,∴BC 平分EBN∠∴EBC NBC ∠=∠,∵ABE α∠=∴1809022EBC αα︒-∠==︒-(3)2COE OGH ∠=∠或12OGH COE ∠=∠24.【解析】(1)()0,2B (2)在GF 上截取GR OE =,连接BR (或过点B 作BR BA ⊥交于GF 于R )∵BG y ⊥轴,BR x ⊥轴∴90OBG BGR BOE∠=∠=︒=∠在BGR △和BOE △中BG BO BOE BGR GR OE =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGR BOE ≌△△,∴BR BE =,GBR OBE ∠=∠∵90GBR OBR ∠+∠=︒,∴90OBE OBR ∠+∠=︒,即90ABR ∠=︒∵ABC △是等腰直角三角形∴45ABC ∠=︒,∴904545RBF EBF∠=︒-︒=︒=∠在BFR △和BFE △中BR BE RBF EBF BC BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFR BFE ≌△△,∴RF EF=∴FG RF GR EF OE=+=+(3)过点O 作OR OP ⊥交PQ 的延长线于点R ,连接BR ∵45OPQ ∠=︒,OR OP ⊥,∴904545ORP ∠=︒-︒=︒∴OPR △是等腰直角三角形∴OP OR =,90POR ∠=︒∵90BOM ∠=︒可证BOR MOP ∠=∠,再可证()SAS BOR MOP ≌△△∴BR PM PN ==,BRO MPO ∠=∠设=OPH x ∠,则90OPM ORB x ∠=∠=︒-∵45OPQ ∠=︒,∴45NPQ x ∠=︒-,904545BRQ x x ∠=︒--︒=︒-得NPQ BRQ ∠=∠,再证()AAS PNQ RBQ ≌△△得BQ NQ =,即点Q 为BN 的中点。

武汉市武钢钢花中学八年级上册压轴题数学模拟试卷及答案

武汉市武钢钢花中学八年级上册压轴题数学模拟试卷及答案

武汉市武钢钢花中学八年级上册压轴题数学模拟试卷及答案一、压轴题1.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.2.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 3.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABF ACF S S 的值.4.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.5.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD 的度数是度;拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数;应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=度.6.在等腰ABC ∆中,AB AC =,AE 为BC 边上的高,点D 在ABC ∆的外部且60CAD ∠=,AD AC =,连接BD 交直线AE 于点F ,连接FC .(1)如图①,当120BAC ∠<时,求证:BF CF =;(2)如图②,当40BAC ∠=时,求AFD ∠的度数;(3)如图③,当120BAC ∠>时,求证:CF AF DF =+.7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.9.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33时,连接AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.10.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E ,∠EAF =45°,且AF 与AB 在AE 的两侧,EF ⊥AF .(1)依题意补全图形.(2)①在AE 上找一点P ,使点P 到点B ,点C 的距离和最短;②求证:点D 到AF ,EF 的距离相等.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.12.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.13.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠=(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.14.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.15.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z +的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c ++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.16.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

武汉市南湖中学八年级上册压轴题数学模拟试卷及答案

武汉市南湖中学八年级上册压轴题数学模拟试卷及答案

武汉市南湖中学八年级上册压轴题数学模拟试卷及答案一、压轴题1.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.2.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.3.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )5.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.6.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,AB=,BAC DAE90∠=∠=︒,将ADE绕点A逆时针旋转,连结BE、CD.当5△与ADC的面积和的最大值为__________.2AD=时,在旋转过程中,ABE7.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD 的度数是度;拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数;应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=度.8.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.11.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.12.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)13.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.14.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠= (2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.15.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题. 材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x 的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c ++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.16.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.17.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

湖北省武汉市汉阳区2022度八年级数学第一学期期中押题新人教版

湖北省武汉市汉阳区2022度八年级数学第一学期期中押题新人教版

汉阳区2022-2022学年度八上期中测试数学试题一选择题3分×121A±4 B ±8 C 42下列命题中,错误的是A实数不是有理数就是无理数的算术平方根是2C 121的平方根是±11 D在实数范围内,非负数一定是正数3在实数范围内有意义,则的取值范围是≥-3 B >-3 C <-3 D ≤-34在实数π,25-,0,个个个个5下列图案中,有且只有三条对称轴的是6在平面直角坐标系中,下列各点关于轴的对称点在第一象限的是A 2,1B 2,-1C -2,1D -2,-17如图,△ACB≌△A’CB’,∠BCB’=30°,则∠ACA’的度数是A 20°B 30°C 35°D 40°8如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是9如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为A 15°B 20°C 30°D 45°10如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点216在平面直角坐标系中,点A2,0,B0,4,以AB为斜边作一个等腰直角三角形C的坐标为_________三解答题72分177第11题图AB CDA BCP·第10题图DCDEBA第15题图CBAD第14题图ABC第7题图A’B’DEAB C188650y -=1求、的值;2求-2的平方根197分如图,已知点E ,C 在线段BF 上,AB ∥DE ,∠ACB=∠F 求证:△ABC ≌△DEF2022分如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A-1,5,B-1,0,C-4,31画出△ABC 关于轴对称的△A 1B 1C 1;其中A 1、B 1、C 1是A 、B 、C 的对应点,不写画法2写出A 2、B 2、C 2的坐标;3求出△A 1B 1C 1的面积218分如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连结AC 、CF 求证:CA 是∠DCF 的平分线2210分如图,在△ABC 中,AB=AC ,E 在线段AC 上,D 在AB 的延长线,连DE 交BC 于F ,过点E 作EG ⊥BC 于G1若∠A=50°,∠D=30°,求∠GEF 的度数; 2若BD=CE ,求证:FG=BFCG2310分如图,已知△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CEBD 于E 1若BD 平分∠ABC ,求证:CE=12BD ; 2当D 在AC 上运动时,∠AEB 的度数是否会发生变化若变化,求它的变化范围;若不变,求出它的度数,并说明理由A B CD E F G CDECDEE A B CD A B C D F2412分如图1,凸四边形ABCD ,如果点P 满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P 为四边形ABCD 的一个半等角点1在图2中的正方形ABCD 内画一个半等角点P ,且α≠β;2在图3中的四边形ABCD 内画一个半等角点P ,保留画图痕迹适当文字说明3如图4,若四边形ABCD 有两个半等角点P 1、P 2,证明线段P 1P 2上任意一点也是它的半等角点A BCDα β 第24题图1α βABC D 第24题图2A BCD 第24题图3 ·P 1 P 2ABCD第24题图4·。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江岸区2015~2016学年度第一学期期中考试八年级数学试卷(一)
三、解答题(共8题,共72分)
23.(本题14分)在平面直角坐标系中,A (3,0)、B (0,3),点P 为线段AB 上一点,且2
1
=BP AP ,连接OP (1) 求P 点坐标
(2) 作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC =OP
(3) 在(2)的条件下,在直线AM 上一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ =ON ,连接点D (3,3)与点Q 的线段交x 轴于点E ,当OE =2,则Q 点坐标为___________(请同学们自己画图,并直接写出结果)
武汉二中广雅中学2015—2016学年度上学期期中考试(二)
三、解答题(共72分)
24.如图1,在平面直角坐标系中, A 点的坐标为(a ,0),B 点的坐标为(0,b ), 且a 、b 满足8-+b a +|a -2b +4|=0.
(1)求证∠OAB=∠OBA;
(2)如图2,点P为第一象限内一点,且P A=OA,AC∠x轴交OP于点C,AD平分∠P AC交OP于点D,求∠ODB 的度数.
(3)如图3,点A关于y轴对称点为F,点B关于x轴对称点为E,点M在AB的延长线上,点N在BF的延长线上,且∠MEN=45°,试着判断线段MN、AM、FN之间的数量关系并证明你的结论.
图1 图2 图3
武珞路中学2015~2016学年度八年级上学期期中测试数学试卷(三)
三、解答题(共8题,共52分)
23.(本题10分)在平面直角坐标系中,点A坐标为(8,0),点B坐标为(0,8),点C为OA中点
(1) 如图1,过点O作OD⊥BC于点E,交AB于点D,求证:∠OBC=∠AOD
(2) 点M从C点出发向x轴正方向运动,同时点N从C点出发向x轴负方向运动,点M、N运动速度均为每秒1个单位长度,运动时间为t秒.射线OE⊥BM于点E,交AB于点D,直线ND交BM于点K
①如图2,当0<t<4时,请证明△KNM为等腰三角形
②当t>4时,△KNM是否还是等腰三角形,请画出图形,并说明理由
2015~2016学年度八年级第一学期期中考试(四)
三、解答题(共5小题,共52分)
28.(本题12分)如图1,点A 、B 分别在x 轴负半轴和y 轴正半轴上,点C (2,-2),CA 、CB 分别交坐标轴于D 、E ,CA ⊥AB ,且CA =AB .
(1)求点B 的坐标;
(2)如图2,连接DE ,求证:BD -AE =DE ;
(3)如图3,若点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接
PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.
E
D
O C B A
y
x
图1
E
D
O
C
B A
y
x
图2
P
G N
M F
O
B
y x
图3
2009-2010学年度上学期武汉市部分学校期中联考(五)
八 年 级 数 学 试 卷
26、(12分),如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4) (1)求B 点坐标;
(2)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;
(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式
OF
FM
AM =1是否成立?若成立,请证明:若不成立,说明理由.
2015武汉名校八年级(上)期中试卷精选(六)
三、解答题(本题共9小题,共72分)
24.(本题12分)已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC=25.点P 从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点
(1) 求D点的坐标
(2) 设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等
(3) 若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由
(七)
(江岸卷)
24.(本题12分)如图,在平面直角坐标系中,△ABC 的顶点A (-3,0),B (0,3),AD 丄BC 于D 交y 轴于点E (0,1) (1) 求证:AE =BC ,OE =OC
(2) 将线段CB 绕点C 顺时针旋转90º后得线段CF ,连结BF ,求△BCF 的面积
(3) 点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP 丄PC ,且QP =PC ,连结QO ,分过点Q 作QR 丄x 轴于R ,求OP
QR
OC 定值
黄陂区2014年秋部分学校期中调研考试八年级数学试卷(八)
三、解答题(共9小题,共72分)
25.(本题12分)在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F
(1) 如图1,连CF,求证:∠ABE=∠ACF
(2) 如图2,当∠ABC=60°时,请写出AF、EF、BF的数量关系,不需证明
(3) 如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF
武汉市梅苑中学2014-2015学年八年级(上)期中试卷(九)
三、解答题(本题共9小题,共72分)
25.(12分)(2014秋•武汉校级期中)已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S∠ABC=25.点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.
(1)求D点的坐标;
(2)设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等;
(3)若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由.
武珞路中学2014~2015学年度上学期八年级数学期中模拟试卷(十)
三、解答题(共72分)
24.(2013·黄陂区期中)如图所示,在平面直角坐标系中,A点坐标为(-2,2)
(1) 如图(1),在△ABO 为等腰直角三角形,求B 点坐标
(2) 如图(1),在(1)的条件下,分别以AB 和OB 为边作等边△ABC 和等边△OBD ,连结OC ,求∠COB 的度数
(3) 如图(2),过点A 作AM ⊥y 轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,∠MKJ =90°,过点A 作AN ⊥x 轴交MJ 于点N ,连结EN .则:① NE OE AN +的值不变;② NE
OE
AN -的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其。

相关文档
最新文档