离散数学考试复习题2-中南大学电子信息工程
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
中南大学离散数学试卷
第一章绪论(1学时)本章重点:计算机的发展;计算机基本结构本章难点:微型计算机系统,微型计算机,CPU三个层次概念第二章8086系统结构(5学时)本章重点:8086结构、EU和BIU功能、8086CPU的引脚与功能、8086CPU时序等。
本章难点:EU和BIU关系、8086CPU时序、8086CPU引脚分时复用第三章8086寻址方式和指令系统(8学时)本章重点:8086的各种寻址方式,指令的机器码表示方法,8086的各类指令。
本章难点:8086的寻址方式和8086的各类指令的应用。
第四章汇编语言程序设计(4学时)本章重点:汇编语言程序的格式、汇编语言中的数据与表达式本章难点:伪指令语句、功能调用、程序设计2学时2学时第五章存储器(2学时)本章重点:存储器工作时序;存储器容量的扩展方法;存储器空间分配使用及其与CPU 的连接。
本章难点:存储器的工作时序;存储器的地址分配。
第六章I/O接口和总线(2学时)本章重点:I/O接口的功能、CPU与外设数据传送方式、主要总线的概念本章难点:CPU与外设数据传送方式2学时第七章微型计算机中断系统(4学时)本章重点:中断的基本概念、响应过程、中断向量表、中断服务子程序、8259A的使用本章难点:8086的中断处理流程、8259A的工作方式及编程第八章可编程计数器/定时器8253及其应用(2学时)本章重点:8253A的结构、引线、8253A的工作方式、功能及编程本章难点:8253的应用第九章可编程外围接口芯片8255A及其应用(2学时)本章重点:8255A的结构、引线、8255A的工作方式、功能及编程本章难点:8255的应用第十章 串行通信和可编程接口8251A (1学时)本章重点:串行通信的基本概念及实现方式 1学时第十章 A/D和D/A 转换(1学时)本章重点:A/D 和D/A 转换的基本概念及实现方式 本章难点:A/D 和D/A 芯片的使用 1学时。
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
中南大学离散考试试卷
中南大学离散考试试卷中南大学考试试卷2009 -- 2021 学年一学期期末考试试题时间100分钟离散数学课程48学时3学分考试形式:闭卷一、判断(本大题共10小题,每小题1分,共10分)()1.ρ(A)?? ρ(B) A是B的子集()2.Q∧R∨P∧R∨T∧?P∧R的对偶式为Q∨R∧P∨R∧F∨?P∨R ()3.设A和B是两个命题公式,若A=>B且B是重言式,则A是重言式。
()4.R和S都是集合A上的关系,若R和S是自反的,则R?S是自反的。
()5.设A、B和C是集合,若A∩B=A∩C,且A??,则B=C。
()6.若R和S都是集合A上的二元关系,则dom(R)∪dom(S)=dom(R∪S)。
()7.是全序集,则A的任何非空子集必有唯一极小元。
()8.有限集上的全序关系必是良序关系。
()9.连通的4度正则图一定没有桥。
()10.设无向图G具有割点,则G中一定不存在哈密尔顿通路。
二、单项选择(本大题共6小题,每小题2分,共12分)()1.若公式A(P,Q,R)的主合取范式为∏(0,1,4,5),则下列公式哪个是A(P,Q,R)的主析取范式①∑(0,1,4,5)②∏(0,1,4,5)③∑(2,3,6,7)④∏(2,3,6,7)()2.设∏1和∏2都是非空集合A的划分,则下列集合哪个必定是A的划分①∏1∪∏2 ②∏1∩∏2 ③∏1—∏2 ④(∏1∩(∏2—∏1))∪∏2()3.设A-B=?,则下列命题中正确的是?① B=? ② B≠? ③ A??B④ B ? A()4.设R是集合A上的偏序关系,R-1 是R的逆关系,则R∪R-1是①偏序关系②等价关系③非自反关系④非传递关系()5.若f、g是A上的双射,则①f?g是双射②(f?g)-1 =f-1?g-1③f?g?g?f ④以上答案都不对()6.任何无向图中结点间的可达关系是三、 1. 2. 3.若用谓词R(x)表示“x是实数”,L(x, y)表示“x0),则有______个不同的A上的即对称又反对称的关系。
离散数学复习题含答案
离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。
请写出集合{1, 2, 3}和{2, 3, 4}的交集。
答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。
请判断复合命题“p且q”的真值。
答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。
请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。
答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。
请计算表达式(A∨B)∧(¬A∨¬B)的值。
答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。
答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。
若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。
答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。
8. 正则表达式正则表达式用于描述字符串的模式。
请写出匹配任意长度的数字串的正则表达式。
答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。
请判断命题p∨¬p和命题¬(p∧¬p)是否等价。
答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。
请简述后序遍历的步骤。
答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
《离散数学》考试题库及答案(二)
《离散数学》考试题库及答案试卷五试题与答案一、填空15%(每空3分)1、设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。
2、n 阶完全图,K n 的点数X (K n ) = 。
3、有向图 中从v 1到v 2长度为2的通路有 条。
4、设[R ,+,·]是代数系统,如果①[R ,+]是交换群 ②[R ,·]是半群③ 则称[R ,+,·]为环。
5、设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有 。
二、选择15%(每小题3分)1、 下面四组数能构成无向简单图的度数列的有( )。
A 、(2,2,2,2,2); B 、(1,1,2,2,3); C 、(1,1,2,2,2); D 、(0,1,3,3,3)。
2、 下图中是哈密顿图的为( )。
3、 如果一个有向图D 是强连通图,则D 是欧拉图,这个命题的真值为( )A 、真;B 、假。
4、 下列偏序集( )能构成格。
5、 设}4,41,3,31,2,21,1{=s ,*为普通乘法,则[S ,*]是()。
A 、代数系统;B 、半群;C 、群;D 、都不是。
三、证明 48%1、(10%)在至少有2个人的人群中,至少有2 个人,他们有相同的朋友数。
2、(8%)若图G 中恰有两个奇数度顶点,则这两个顶点是连通的。
3、(8%)证明在6个结点12条边的连通平面简单图中, 每个面的面数都是3。
4、(10%)证明循环群的同态像必是循环群。
5、(12%)设]1,0,,,,[-+⨯B 是布尔代数,定义运算*为)()(*b a b a b a ⨯+⨯=,求证[B ,*]是阿贝尔群。
四、计算22%1、在二叉树中1) 求带权为2,3,5,7,8的最优二叉树T 。
(5分) 2) 求T 对应的二元前缀码。
(5分)2、 下图所示带权图中最优投递路线并求出投递路线长度(邮局在D 点)。
答案:一、填空(15%)每空3 分1、 6;2、n ;3、2;4、+对·分配且·对+分配均成立;5、a a a a a a =⊕=⊗且。
离散数学考试题及答案
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学复习题有答案
离散数学复习题有答案1. 什么是集合的子集?子集是指一个集合中的所有元素都属于另一个集合。
如果集合A中的每一个元素都是集合B的元素,那么集合A就是集合B的子集。
2. 描述有限集合和无限集合的区别。
有限集合是指元素数量有限的集合,可以被一一列举。
无限集合则包含无限多个元素,无法被完全列举。
3. 什么是二元关系?二元关系是集合A和集合B之间的一种对应关系,它由有序对(a, b)组成,其中a属于集合A,b属于集合B。
4. 什么是函数?函数是一种特殊的二元关系,其中每个定义域中的元素都与值域中的一个且仅一个元素相关联。
5. 什么是等价关系?等价关系是一种自反的、对称的、传递的二元关系。
在集合A上的等价关系将A划分为若干个不相交的等价类。
6. 什么是偏序关系?偏序关系是一种自反的、反对称的、传递的二元关系。
它在集合上定义了一个部分顺序。
7. 什么是有向图和无向图?有向图是一种图,其中的边有方向,表示从一个顶点指向另一个顶点。
无向图的边没有方向,表示两个顶点之间的双向连接。
8. 什么是强连通分量?在有向图中,强连通分量是指图中的一组顶点,这些顶点中的每一个顶点都可以到达集合中的其他任何顶点。
9. 什么是二进制数?二进制数是一种基数为2的数制,只使用0和1两个数字来表示数值。
10. 什么是逻辑运算?逻辑运算是对逻辑值(真或假)进行的操作,包括与(AND)、或(OR)、非(NOT)等运算。
11. 什么是归纳法?归纳法是一种数学证明方法,通过证明一个基本情况,然后假设某个情况成立,再证明下一个情况也成立,从而证明整个命题。
12. 什么是图的遍历?图的遍历是指按照一定的规则访问图中的每个顶点,确保每个顶点都被访问一次。
常见的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
13. 什么是正规表达式?正规表达式是一种描述字符串集合的模式,用于文本搜索和文本处理。
它由一系列字符和元字符组成,定义了字符串的匹配规则。
中南大学离散数学复习资料(习题)
离散数学课程测试题一、判断()1. 若wff A是可满足式,那么~A是矛盾式。
()2. P=>P∨Q是合适公式。
()3.∃x(A(x)→B)→(∃xA(x) →B)是重言式。
()4. 可满足式的代入实例一定是可满足式。
()5. wff A(P)=P的对偶式为~P。
()6. 若A*和B*是wff A和B的对偶式,且A=>B,则A*=>B*。
()7. 重言式的主析取范式为T。
()8. 空集是非空集合的一个元素。
()9. 设A和X是集合,则X∈2A iff X⊂A。
()10. 设A、B、C和D是四个非空集合, 且A×C ⊂B×D,则A⊂B且C⊂D。
()11. 传递关系的对称闭包仍是传递的。
()12. 非空集合上的关系不是对称的,则必是反对称的。
()13. 若R和S是二个有完全相同的二元组的集合,则称它们是相等的二元关系。
()14. 设A是一个非空集合,则A上的等价关系都不是偏序关系。
()15. 有限集上的全序关系必是良序关系。
()16. 有限集上的偏序关系必是全序关系。
()17 . <A;R>是偏序集,则A的任何非空子集必有极小元。
()18. <A;R>是偏序集,则A的非空子集B的上确界必是B的最大元。
()19. <A;R>是全序集,则A的任何非空子集必有唯一极小元。
()20. <A;R>是全序集,则A的非空子集B的下确界必是B的最小元。
()21. 无限集必与它的真子集等势。
()22. 若A⊂B,且A与B等势,则B是无限集。
()23. 若A⊂B,则#A<#B。
()24. 连通的4度正则图一定没有桥。
()25. p阶图的直径不可能等于p。
二、选择()1. 是wff (P→Q)∧R∧(S→(P→Q))的代入实例的有①P∧R∧(S→P) ②(~P→Q)∧~R∧(~S→(~P→Q))③(P→Q)∧S∧(R→(P→Q)) ④(P→Q)∧R∧(R→(P→Q))()2. 与公式∃x ((P(x)∧∀y Q(y))∧∀z R(z)) →S(t)等价的有:①∃u ((P(u)∧∀y Q(y))∧∀z R(z)) →S(t)②∃u ((P(u)∧∀u Q(u))∧∀z R(z)) →S(t)③∃u ((P(u)∧∀u Q(u))∧∀u R(u)) →S(t)④∃u ((P(u)∧∀u Q(u))∧∀u R(u)) →S(u)()3. 下列关系中正确的有:①{a}∈{a, {a}} ②{a}⊆{a, {a}}③{a}∈{a, {{a}}} ④{a}⊆{a, {{a}}}⑤{a}∈{{a}, {{a}}} ⑥{a}⊆{{a}, {{a}}}()4.设A=P(P(P(Φ))),下列关系式中正确的有:①Φ∈A ②Φ⊆A ③{Φ}∈A④{Φ}⊆A ⑤{{Φ}}∈A ⑥{{Φ}}⊆A()5.下列说法中正确的有:①任何集合都不是它自身的元素②任何集合的幂集都不是空集③若A×B=Φ,则A=B=Φ④任意两集合的笛卡尔积都不是空集()6. {1,2,3,4,5}上的关系R={<1,1>,<1,3>,<2,3>}是①自反的②反自反的③对称的④反对称的⑤传递的()⒎空集上的空关系是关系。
离散数学考试题目及答案
离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学考试题目及答案
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
离散数学复习题及答案
总复习题(一)一.单选题1 (C)。
一连通的平面图,5个顶点3个面,则边数为()。
、4 、5 、6 、72、 (A)。
如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。
、1 、2 、3 、43、 (D)。
为无环有向图,为的关联矩阵,则()。
、是的终点、与不关联、与关联、是的始点4、 (B)。
一连通的平面图,8个顶点4个面,则边数为。
、9 、10 、11 、125、 (D)。
如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。
、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、107、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、1010、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、1212、 (B)。
为有向图,为的邻接矩阵,则。
、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。
在无向完全图中有个结点,则该图的边数为()。
A 、B 、C 、D 、14、 (C)。
任意平面图最多是()色的。
A 、3B 、4C 、5D 、615、 (A)。
对与10个结点的完全图,对其着色时,需要的最少颜色数为()。
中南大学离散数学习题及答案
( ① (R∪S)-1=R-1∪S-1 ③ (R-S)-1=R-1-S-1 ② (R∩S)-1=R-1∩S-1 ④ (R⊕S)-1=R-1⊕S-1
)10. 设R和S都是A到B的关系,则下列关系式中正确的有:
三、计算与作图
1.若集合A={1,2,3,4,5}上的等价关系R ={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<1,2>,<2,1>,<3,4>,<4,3>},求商 集A/R 2.R为集合A={1,2,3,4,5}上的等价关系,已知商集A/R ={{1,2},{3},{4,5}},求R 3.设A={3,6,9,15,54,90,135,180},|为自然数的整除关系。画出< A;|>的Hasse图,并求{6,15,90}的上、下确界。
(
)⒌ 若R和S是集合A上的等价关系,则下列关系中一定是等 价关系的有 ① R∪S ② R∩S ③ R-S ④ R⊕S ( )⒍ 若R是集合A上的等价关系,则 ① R2=R ② t(R)=R ③ IA R ④ R-1=R ( )⒎ 空集上的空关系是 关系。 ① 线序 ② 等价 ③ 偏序 ④ 拟序 ⑤ 良序 ( ) 8. {1,2,3,4,5}上的全序关系一定是 关系。 ①等价 ②偏序 ③拟序 ④良序 ( )9. {1,2,3,4,5}上的良序关系一定是 ① 自反的 ② 反自反的 ③ 对称的 ④ 反对称的 ⑤ 传递的
二、多项选择题 ( )⒈ 下列说法中正确的有: ② 任何集合的幂集都不是空集 ④ 任意两集合的迪卡尔积都不 ① 任何集合都不是它自身的元素 ③ 若A×B=Φ,则A=B=Φ 是空集 (
离散数学考试试题及答案
离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。
离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。
下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。
1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。
答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。
答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。
答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。
答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。
答案:是永真式。
(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。
请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。
答案:是真命题。
4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学考试试题及答案
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题
1、对每个集合A,都有()
2、<A;R>是全序集,则A的任何非空子集必有唯一极小元。
()
3、(P∨→(Q∧R))是一个命题演算的命题公式,其中P、Q、R是命题变元。
()
4、ρ(A) ⊆ρ(B) <=> A是B的子集()
5、若R和S是反自反的,则R。
S也是反自反的()
6、∀x(A(x) ∧B(x))⇔∃x A(x)∧∃x B(x) ()
7、设R和S是集合A上的等价关系,则R⋃S一定是等价的。
()
8、若A-B ⊆B,则B⊆A()
9、非空集合上的关系不是对称的,则必是反对称的。
( )
10、若R是集合A上的传递关系,则R2也是集合A上的传递关系。
()
二、单项选择题
1、下列说法中正确的有:()
A、任何集合都是它自身的元素
B、任何集合的幂集都不是空集
C、若A×B=Φ,则A=B=Φ
D、任意两集合的迪卡尔积都不是空集
2、若R和S是集合A上的等价关系,则下列关系中一定是等价关系的有()
A、R∪S
B、R∩S
C、R-S
D、R⊕S
3、幂集P(P(P(∅))) ()
A、{{∅},{∅,{∅}}}
B、{∅,{∅,{∅}},{∅}}
C、{∅,{∅,{∅}},{{∅}},{∅}}
D、{∅,{∅,{∅}}}
4、设集合A={a,b,c},R是A上的二元关系,R={<a,a>,<a,b>,<a,c>,<c,a>},那么
R是()
A、反自反的
B、反对称的
C、可传递的
D、不可传递的
5、设∏1和∏2都是非空集合A的划分,则下列集合哪个必定是A的划分()
A、∏1∪∏2
B、∏1∩∏2
C、∏1—∏2
D、(∏1∩(∏2—∏1))∪∏2
6、R是反对称的当且仅当()
A、I A⊆R
B、R∩I A =ф
C、R=R-1
D、R∩R-1⊆I A
8、设R和S分别是A到B和B到C的关系,且R·S=Φ,那么
A、R是空关系
B、R和S都是空关系
C、R和S中至少有一个是空关系
D、以上答案都不对
9、设P:我们划船,Q:我们跑步。
命题“我们不能既划船又跑步”符号化为()
A、P Q
⌝↔D、P Q
↔⌝
⌝∨⌝C、()
P Q
⌝∧⌝B、P Q
10、谓词公式x(P(x)yR(y))Q(x)
∀∨∃→中变元x是()
A、自由变量
B、约束变量
C、既不是自由变量也不是约束变量
D、既是自由变量也是约束变量
三、填空题
1. 假如上午不下雨,我去看电影,否则就在家里读书或看报。
令P:上午下雨。
Q:我去看电影。
R:我在家里读书。
S:我在家里看报。
则命题符号化为_____________________________________________。
2. 设A={x| 100〈x〈200,x = 7n+3,n∈Z,x∈Z},则| A|=____________。
3.设A={1,2,3,4}上关系R={〈1,2〉,〈2,4〉,〈3,3〉,〈1,3〉},则r(R)= ____________________________,s(R)= ___________________________。
4.命题公式()
⌝↔。
的主析取范式为____________________________。
P Q
5. 若集合A={1,2,3,4,5}上的等价关系
R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<1,2>,<2,1>,<3,4>,<4,3>},则商集A/R=______________________________________________________________。
四、作图及计算题(共15 分)
1、(8分)设A={3,6,9,15,54,90,135,180},|为自然数的整除关系。
画出<A;|>的Hasse图,并求{6,15,90}的上、下确界。
2、(7分)求命题公式F=(())(())
→→→→→的主析取范式和主合
P Q Q Q P P
取范式。
五、证明题(每小题15分,共30 分)
1、用命题逻辑推理规则证明下列推理的正确性:如果甲地发生了交通事故,则小张的交通会发生困难。
如果小张按指定时间到达了,则他的通行没有发生困难。
小张按指定时间到达了。
所以甲地没有发生交通事故。
2、用谓词逻辑推理证明:
任何人如果他喜欢步行,他就不喜欢乘汽车;每个人或者喜欢乘汽车或者喜欢骑自行车。
有的人不爱骑自行车,因此有的人不爱步行。