《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案
《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}010001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
数理统计课后答案-第三章
d ln L = dθ
n θ
+
n
ln xi
i =1
=0
,得到极大似然估计
θˆ = − n = −1 = −1 。
n
∑ ln X i
i =1
∑ 1 n
n i=1 ln X i
ln X
1
3.3 设总体 ξ 服从 Poisson 分布,概率分布为
P{ξ = k} = λk e−λ , k = 0, 1, 2,L , k!
Xi =
X
。
3.7 已知总体 ξ 服从 Maxwell 分布,概率密度为
⎧
ϕ
(
x)
=
⎪ ⎨
4x2 a3 π
− x2
e a2
⎪⎩
0
x>0 x≤0
其中, a > 0 是未知参数, ( X1, X 2 ,L, X n ) 是 ξ 的样本,求 a 的极大似然估计。
解 似然函数
∏ ∏ L =
n
ϕ(xi )
i =1
∏ ∏ ∏ L =
n
ϕ(xi )
=
⎪⎧ ⎨
n i =1
θ
xiθ −1 = θ n
n i =1
xiθ −1
i =1
⎪⎩
0
0 < xi < 1 ( i = 1,2,L, n) 其他
n
∑ 当 L ≠ 0 时,对 L 取对数,得到 ln L = n lnθ + (θ −1) ln xi 。 i =1
∑ 解方程
⎧aˆ = X − ⎩⎨bˆ = X +
3S 3S
。
(2) 似然函数
3
∏ ∏ L =
n
(完整版)《应用数理统计》吴翊_习题解答
1.2设总体X的分布函数为F x,密度函数为f x,X1,X2,⋯,
最大顺序统计量Xn与最小顺序统计量X1的分布函数与密度函数。
解:Fnx P Xix P X1x,X2x,L,Xnx F xn.
n1
fnx Fnx n F x f x.
F1x P Xix 1 P X1x,X2x,L,Xnx.
1
P
X1
x P X2
x L P Xn
x
1
1
P
X1x 1
P X2x
L 1 P Xnx
n
1
1
F
x
n1
f1x
F1
x n 1
F x f
x.
5
5
5
1 P Xi10 1
1 P Xi10
1 1 P X 10
P Xmin10 1 P Xmin10
1 P X110,X210,L,X510
1.4试证:
n
i)xi
i1
xi
2ห้องสมุดไป่ตู้
n x a对任意实数
a成立。并由此证明当
x时,
2xia
i1
i1
达到最小。
ii)
n
xi
i1
2
xi
i1
2nx
其中x
n
xi
i1
证明:
i)
xi
n
xi
i1
xx
xi
i1
i1
当a
ii)
P27
i1
xi
xi
2 xix x a
时,
xi
i1
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案————————————————————————————————作者:————————————————————————————————日期:第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图9080706050xi360340320300280y i由散点图不能够确定y 与x 之间是否存在线性关系,先建立线性回归方程然后看其是否能通过检验线性回归分析的系数模型 非标准化系数标准化系数T 值 P 值95% 系数的置信区间β值 学生残差 β值下限上限 1 常数项 193.951 46.796 4.145 0.003 86.039 301.862x1.8010.6850.6812.629 0.030 0.2213.381由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
统计学第三章---课后习题(精编文档).doc
【最新整理,下载后即可编辑】1.略2 .某技术小组有12人,他们的性别和职称如下,现要产生一名幸运者。
试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师,(4)女性或工程师。
并说明几个计算结果之间有何关系?师(1)P(A)=4/12=1/3(2)P(B)=4/12=1/3(3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/23.向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是0.06、0.09,而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。
试求炸毁这两个军火库的概率有多大。
解:本题考查互斥事件的概率,是一个基础题,解题的关键是看清楚军火库只要一个爆炸就可以,所以知军火库爆炸是几个事件的和事件.P(A)=0.06+0.09=0.154. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。
某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。
求该选手两发都脱靶的概率。
解:设A =第1发命中。
B =命中碟靶。
求命中概率是一个全概率的计算问题。
再利用对立事件的概率即可求得脱靶的概率。
)|()()|()()(A B P A P A B P A P B P +==0.8×1+0.2×0.5=0.9脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.15. 已知某产品的合格率是98%,现有一检查系统,它能以0.98的概率准确的判断出合格品,而对不合格品进行检查时,有0.05的可能性判断错误,该检查系统产生错判的概率是多少?解:考虑两种情况,一种就是将合格品判断错误,概率为98%*(1-0.98)=0.0196另一种情况就是将不合格品判断错误,概率为(1-98%)*0.05=0.001所以该检查系统产生错判的概率是0.0196+0.001=0.02066. 有一男女比例为51:49的人群,一直男人中5%是色盲,女人中0.25%是色盲,现随机抽中了一个色盲者,求这个人恰好是男性的概率?954163.0026725.00.050.51P(B))A ()P(A )P(A 026725.00.00250.490.050.51 )A ()P(A )A ()P(A P(B) 111221121=⨯===⨯+⨯=+====B P B B P B P B A A 抽到色盲抽到女性。
概率论与数理统计(经管类)第三章课后习题答案
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1
p·
16
4
20
0
25 25 25
4
1
1
1
25 25
5
p·
20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~
概率论与数理统计第三章课后习题及参考答案
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。
应用数理统计--第三章习题及答案
习题三2.设总体的分布密度为:(1),01(;)0,x x f x ααα+<<=⎧⎨⎩其它1(,,)n X X 为其样本,求参数α的矩估计量1ˆα和极大似然估计量2ˆα .现测得样本观测值为:0.1,0.2,0.9,0.8,0.7,0.7,求参数α的估计值 . 解 计算其最大似然估计:()()11111(,)11ln (,)ln(1)ln nnnn i i i i nn ii L x x x x L x x n x αααααααα===⎡⎤=+=+⎣⎦=++∏∏∑1121ln (,)ln 01ˆ10.2112ln nn i i n ii d n L x x x d nx ααααα====+=+=--=∑∑ 其矩估计为:()1 3.40.10.20.90.80.70.766X =+++++= 3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以:12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑, 12ˆˆ0.3077,0.2112αα≈≈.3. 设元件无故障工作时间X 具有指数分布,取1000个元件工作时间的记录数据,经分组后得到它的频数分布为:如果各组中数据都取为组中值,试用最大似然法求参数的点估计. .解 最大似然估计:11(,),ln ln i nx n nx n i L x x e e L n nx λλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05X λ==.4. 已知某种灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(单位:小时)为:1067,919,1196,785,1126,936,918,1156,920,948 设总体参数都未知,试用极大似然法估计这个星期中生产的灯泡能使用1300小时以上的概率.解 设灯泡的寿命为x ,2~(,)x N μσ,极大似然估计为:2211ˆˆ,()ni i x x x n μσ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.81μσ== . 经计算得,这个星期生产的灯泡能使用1300小时的概率为0.0075.5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆 菌的个数(假定一升水中大肠杆菌个数服从Poisson 分布),其化验结果如下:试问平均每升水中大肠杆菌个数为多少时,才能使上述情况的概率为最大? 解 设x 为每升水中大肠杆菌个数,~()x P λ,Ex λ=,由3题(2)问知,λ的最大似然估计为x ,所以().150/1*42*310*220*117*0ˆ=++++==X L λ所以平均每升氺中大肠杆菌个数为1时,出现上述情况的概率最大 .8. 设1,...,n X X 是来自总体X 的样本,并且EX =μ,DX = 2σ,2,X S 是样本均值和样本方差,试确定常数c ,使22X cS -是2μ的无偏估计量 .解2222222222()E X cS EX cES DX E X c c nσσμσμ-=-=+-=+-=所以1c n =.9. 设1ˆθ,2ˆθ是θ的两个独立的无偏估计量,并且1ˆθ的方差是2ˆθ的方差的两倍 .试确定常数c 1, c 2,使得11ˆc θ+22ˆc θ为θ的线性最小方差无偏估计量 . 解: 设22122,2D D θσθσ==112212121221(()11E c c c c c c c c c c θθμμμμ+=+=+=+==-),,()()222222211221211(2221D c c c c c c θθσσσ+=+=+-)()222111121321c c c c +-=-+当1212*33c -=-=,上式达到最小,此时21213c c =-= .10. 设总体X 具有如下密度函数,1,01(,)0,x x f x θθθθ-<<=>⎧⎨⎩,0其它1,...,n X X 是来自于总体X的样本,对可估计函数1()g θθ=,求()g θ的有效估计量ˆ()gθ,并确定R-C 下界 .解 因为似然函数1111L(,),ln ln (1)ln i i nn n n n i i x x x x L n x θθθθθ--====+-∑∏∏111ln ln ln ln ()0i i i d n L x n x n x g d n n θθθθ⎛⎫⎛⎫=+=---=---= ⎪ ⎪⎝⎭⎝⎭∑∑∑ 所以取统计量1ln i T x n=-∑ 11111101ln ln ln ln i E X x x dx xdx x x x dx θθθθθθ--===-=-⎰⎰⎰得1ET θ==()g θ,所以1ln i T x n=-∑是无偏估计量 令()c n θ= 由定理2.3.2知 T 是有效估计量,由221()1()g DT c n n θθθθ-'===- 所以 C-R 方差下界为21n θ.11. 设1,...,n X X 是来自于总体X 的样本,总体X 的概率分布为:||1||(,)()(1),1,0,1,012x x f x x θθθθ-=-=-≤≤1) 求参数θ的极大似然估计量ˆθ; 2) 试问极大似然估计ˆθ是否是有效估计量?如果是,请求它的方差ˆD θ和信息量()I θ; 3 试问θ是否是相合估计量?(书上没有这个问题) 解 1)()()111(,)1122ln ln (n )ln(1)iii ix x nx n x n i i i L x x L x x θθθθθθθ--=∑⎛⎫⎛⎫∑=-=- ⎪ ⎪⎝⎭⎝⎭=+--∏∑∑n 1ln 01(1)n xi xi d n L xi d θθθθθθ-⎛⎫=-=-= ⎪--⎝⎭∑∑∑ 得到θ最大似然估计量1ˆxi nθ=∑ 2)()()110011,10122Exi E xi E xi n n θθθθθ⎛⎫⎛⎫==-++-= ⎪ ⎪⎝⎭⎝⎭∑∑所以11Exi E xi n nθ==∑∑ 所以ˆθ是无偏估计量,()(1)n c θθθ=-,由定理2.3.2得到1ˆxi nθ=∑是θ有效估计量信息量c()1()(1)I n θθθθ==-3)1(1)ˆD 0,(n )c()nθθθθ-==→→∞ 所以,T 也是相合估计量 .12 从一批螺钉中随机地取16枚,测得其长度(单位:cm)为:2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15, 2.12,2.14,2.10,2.13,2.11,2.14,2.11设钉长分布为正态,在如下两种情况下,试求总体均值μ的90%置信区间,1)若已知σ=0.01cm ; 2)若σ未知;解 因为 2.125,16,0.171,X n s ===()0.950.9510.95, 1.65,15 1.7532t αμ===-1) 计算0.950.952.1209, 2.1291X b a X αμμ-===+== 所以 置信区间为[]1.1212.129,2)3) 计算((0.950.9515 2.1175,15 2.1325X t b X t α-==+==所以 置信区间为[]2.1152.135,.13 随机地取某种炮弹9发做试验,测得炮口速度的样本标准差s=11(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为95%的置信区间 .解 由题意标准差σ的置信度为0.95的置信区间为0.9750.0252222(1)(1)(,)(8)(8)n S n S χχ-- 计算得0.9750.0252222(1)(1)11,9,0.05,7.431,21.072(8)(8)n S n S S n a b αχχ--=======所以 置信区间为 [7.431,21.072].14. 随机地从A 批导线中抽取4根,并从B 批导线中抽取5根,测得其电阻(Ω)为:A 批导线:0.143,0.142,0.143,0.137B 批导线:0.140,0.142,0.136,0.138,0.140设测试数据分别服从21(,)N μσ和22(,)N μσ,并且它们相互独立,又212,,μμσ均未知,求参数12μμ-的置信度为95%的置信区间 .解 由题意,这是两正太总体,在方差未知且相等条件下,对总体均值差的估计:置信区间为121221(2)X Y tn n S n α--±+-计算得2626A B 120.14125,0.1392,8.25*10, 5.2*10,4,5,0.05x y S S n n α--======= 26W W 0.9756.5710,0.00255,(7) 2.365,0.0022,0.0063S S t a b -====-=所以[0.0022,0.0063]-.15. 有两位化验员A 、B ,他们独立地对某种聚合物的含氯量用相同方法各作了10次测定,其测定值的方差2s 依次为0.5419和0.6065,设2A σ与2B σ分别为A 、B 所测量数据的总体的方差(正态总体),求方差比2A σ/2B σ的置信度为95%的置信区间 . 解 由题意,这是两正太总体方差比的区间估计:置信区间为22AA22BB1212(,)1(1,1)(1,1)22S S S S F n n Fn n -----计算得 22A B 120.5419,0.6065,10,0.05S S n n α=====22AA22B B0.9750.0250.2217, 3.6008(9,9)(9,9)S S S S a b F F ====所以置信为 [0.2217,3.6008].。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案
《应⽤数理统计》吴翊李永乐第四章-回归分析课后作业参考答案第四章回归分析课后作业参考答案4.1 炼铝⼚测得铝的硬度x与抗张强度y的数据如下:i x68 53 70 84 60 72 51 83 70 64i y288 298 349 343 290 354 283 324 340 286(1)求y 对x的回归⽅程(2)检验回归⽅程的显著性(05.0=α) (3)求y在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果⼀元线性回归模型εββ++=x y 10只有⼀个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机⼲扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使⽤普通最⼩⼆乘法估计参数10,ββ上述参数估计可写为95.193??,80.1?101=-===x y L L xxxy βββ所求得的回归⽅程为:x y80.195.193?+= 实际意义为:当铝的硬度每增加⼀个单位,抗张强度增加1.80个单位。
2、软件运⾏结果根据所给数据画散点图过检验由线性回归分析系数表得回归⽅程为:x y801.1951.193?+=,说明x 每增加⼀个单位,y 相应提⾼1.801。
(2) 1、计算结果①回归⽅程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性⽔平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为⽅程的线性回归效果显著②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/?1=-=n Q L t e xx β在给定显著性⽔平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
应用数理统计课后习题参考答案
应用数理统计课后习题参考答案1. 描述性统计问题1描述性统计是一种对数据进行整理、呈现和分析的方法。
它可以提供数据的基本特征,包括数据的中心趋势、离散程度和分布形状。
常见的描述性统计方法有:•平均数:用于衡量数据的中心趋势,是所有数据值的总和除以数据的个数。
•中位数:将数据按大小顺序排列,中间位置的数值即为中位数。
•众数:数据中出现次数最多的数值。
•范围:数据的最大值减去最小值。
•方差:用于衡量数据的离散程度,是每个数据与平均数之差的平方的平均值。
•标准差:方差的正平方根。
问题2对于给定数据集,以下是计算描述性统计的步骤:1.求出数据的个数。
2.计算数据的总和。
3.求出数据的平均数。
4.将数据按大小顺序排列。
5.求出数据的中位数。
6.找出数据中出现次数最多的数值,即众数。
7.计算数据的范围。
8.计算数据的方差。
9.计算数据的标准差。
2. 概率分布问题1概率分布是用来描述随机变量的分布规律的函数。
常见的概率分布包括:•二项分布:适用于具有两个可能结果的离散型随机变量,如投硬币的结果。
•泊松分布:适用于描述单位时间或单位空间内随机事件发生次数的离散型随机变量。
•正态分布:也称为高斯分布,是一种连续型概率分布,常用于描述自然界中许多现象的分布情况,如身高、体重等。
问题2对于给定的概率分布,以下是计算概率的步骤:1.对于离散型概率分布,计算每个可能结果的概率,并将其加总为1。
2.对于连续型概率分布,计算指定区间内的概率,可以使用积分来进行计算。
3.根据需要计算特定事件的概率,可以使用概率密度函数(PDF)或累积分布函数(CDF)来计算。
3. 统计推断问题1统计推断是一种利用样本数据对总体特征进行估计和推断的方法。
常见的统计推断方法有:•置信区间估计:对总体参数进行估计时,构造一个区间,使得真实值以一定概率包含在该区间内。
•假设检验:用于判断一个总体参数是否等于某个特定值。
•方差分析:用于比较两个或多个总体的均值是否有显著差异。
《应用数理统计》吴翊李永乐第四章回归分析课后作业参考答案
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案Word版
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
概率论与数理统计第三章课后习题答案
概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域?≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin 4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=??0012e d d(1e)(1e)0,0, 0,0,y y u vx yu v y x-+---->>==其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499. x yP X Yx y-+--=<≤<≤5.设随机变量(X,Y)的概率密度为f(x,y)=<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=?? 如图1.542127d (6)d .832x x y y =--=?(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??如图b240212d (6)d .83xx x y y -=--=?题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=?>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤??其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x +∞-∞=12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x +∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==?得214c =. (2) ()(,)d X f x f x y y +∞-∞=212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x +∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=??<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=1d 2,01,0,.xx y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ====≠===g 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠===故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1)因1,01,()0,X x f x <1e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z Pz Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2)当0<="" p="">1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==??336231010101=d 12y y zy z +∞-=-即 11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故 21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g< p="">g g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-?=-<=-Φ=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= -=∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律. 【解】(1){2,2} {2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =V =max(X ,Y ) 0 1 2 3 4 5 P0.040.160.280.240.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+ ==∑∑ 0,1,2,3,i =U =min(X ,Y ) 0 1 2 3 P 0.28 0.30 0.250.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.020.060.130.190.240.190.120.05R X Y (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}. 题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=</g<>。
00907701《应用数理统计》教学大纲
《运用数理统计》教学大纲课程名称:运用数理统计英文名称:ApplicationofMathematicalStatistics课程编号:00907701课程学时:32课程学分:2课程性质:学位课有用专业:全校各专业预修课程:初等数学,线性代数〔大年夜学工科〕,概率论与数理统计〔大年夜学工科〕大纲执笔人:周大年夜勇一、课程目的与恳求本课程讨论基础数理统计的数学实践跟方法,包括数理统计的全然不雅念,抽样分布,参数估计,假设检验,方差分析,回归分析,正交试验跟质量把持末尾,为众多学科专业需要较多统计货色的研究生,供应随机数学方面的训练,打下扎实的基础。
数理统计是关于数据资料的收集﹑拾掇﹑分析跟揣摸的学科,通过对本课程的深造,使老师在本科工程数学的基础上,进一步较收入地把持数理统计的全然实践跟方法,培养运用数理统计的方法分析跟处置有关理论征询题的才干,并为当前深造后继课程打下需要的基础。
二、教学内容及学时安排第一章抽样跟抽样分布4学时一、母体跟子样二、一些常用的抽样分布第二章参数估计8学时一、点估计跟估计量的求法二、估计量的好坏标准三、区间估计第三章假设检验8学时一、假设检验初述,二类差错二、检验母体平均数三、检验母体方差四、单侧假设检验五、分布假设检验第四章方差分析、正交试验方案6学时一、一元方差分析二、二元方差分析三、正交试验方案第五章回归分析6学时一、一元线性回归中的参数估计二、一元线性回归中的假设检验跟猜想三、可线性化的意愿非线性回归三、讲义及要紧参考书1、杨虎,刘琼荪,钟波《数理统计》初等教诲出版社,20042、汪荣鑫《数理统计》西安交通大年夜学出版社,19863、吴翊,李永乐,胡庆军《运用数理统计》国防科大年夜出版社,19954、朱勇华,邰淑彩,孙韫玉《运用数理统计》武汉大年夜学出版社,20005、茆诗松、王静龙《数理统计》华东师范大年夜学出版社,1990。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 假设检验课后作业参考答案某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H ,(2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平下确定这批元件是否合格。
解:{}01001:1000, H :1000950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高 解:(1)提出假设0100::μμμμ>=H H ,(2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
某批矿砂的五个样品中镍含量经测定为(%):设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为解:0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴本题中,接受认为这批矿砂的镍含量为。
确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受使用A(电学法)与B(混合法)两种方法来研究冰的潜热,样品都是C o 72.0-的冰块,下列数据是每克冰从C o 72.0-变成C o 0水的过程中吸收的热量(卡/克); 方法A :,,,,,,,,,,, 方法B :,,,,,,,假设每种方法测得的数据都服从正态分布,且他们的方差相等。
检验:0H 两种方法的总体均值相等。
(05.0=α)解:()()481222413122181131106.881,104.51319788.7981,0208.80131-=-===⨯=-=⨯=-=====∑∑∑∑i i i i i i i i Y Y S X X S Y Y X X(1)提出假设211210::μμμμ≠=H H ,(2)构造统计量()98.32222211212121=+-+-+=S n S n YX n n n n n n t (3)否定域()()()⎭⎬⎫⎩⎨⎧-+>=⎭⎬⎫⎩⎨⎧-+>⋃⎭⎬⎫⎩⎨⎧-+<=--22221212121212n n t t n n t t n n t t V ααα(4)给定显著性水平05.0=α时,临界值()()0930.2192975.02121==-+-t n n tα(5) ()22121-+>-n n tt α,样本点在否定域内,故拒绝原假设,认为两种方法的总体均值不相等。
今有两台机床加工同一种零件,分别取6个及9个零件侧其口径,数据记为61,,X X X 及921,,Y Y Y ,计算得∑∑∑∑========9129161261173.15280,8.307,93.6978,6.204i i i i i i i iY Y X X假设零件的口径服从正态分布,给定显著性水平05.0=α,问是否可认为这两台机床加工零件口径的方法无显著性差异 解:357.01,345.011222212221=-==-=∑∑==n i i n i i Y Y n S X X n S(1)提出假设2221122210::σσσσ≠=H H ,(2)构造统计量()()031.11122122121=--=S n n S n n F (3)否定域()()()⎭⎬⎫⎩⎨⎧-->=⎭⎬⎫⎩⎨⎧-->⋃⎭⎬⎫⎩⎨⎧--<=--1,11,11,121212121212n n F F n n F F n n F F V ααα(4)给定显著性水平05.0=α时,临界值()()82.48,51,1975.02121==---F n n Fα(5) ()1,12121--<-n n F F α,样本点在否定域之外,故接受原假设,认为两台机床加工零件口径的方差无显著性影响。
用重量法和比色法两种方法测定平炉炉渣中2SiO 的含量,得如下结果 重量法:n=5次测量,120.5%,0.206%X S == 比色法:n=5次测量,221.3%,0.358%Y S == 假设两种分析法结果都服从正态分布,问 (i )两种分析方法的精度σ()是否相同 (ii )两种分析方法的μ均值()是否相同0.01α=() 解:(i )121122121221212121211H : H :n (1) F=n (1)H FF 11(11)(11)V H 0.015, n S n S n n n n n n n αασσσσα-=≠----⎧⎫⎧⎫----⎨⎬⎨⎬⎩⎭⎩⎭==00220提出原假设:对此可采用统计量在下,(,),我们可取否定域为V=F<F ,F>F ,此时 P()=本题中,111 x 20.5%, S =0.206% 5, y 21.3%, S =0.358%n ===212122120.0050.9950.0050.995n (1)5(51)0.206%F=0.3311n (1)5(51) F 0.0669 F F F H n S n S -*-*==-*-*=∴220代入上式得:()(0.358%)1(5,5)=14.94(5,5)=14.94由于 (5,5)<F<(5,5)接受即无明显差异。
(ii)1202122222121112012H H :11() ()H 2 V=n n i i i i X Y S X X S Y Y n n t n n t μμμμσ===≠=-=-+-∑∑11提出假设::这种未知的场合,用统计量其中在成立时,服从自由度为的分布。
否定域为:12121111t ((2))V H 0.015, x 20.5%, S =0.206% 5, y 21.3%, S =0.358%)t n n n n X Y αα-⎧⎫>+-⎨⎬⎩⎭======0此时 P()=本题中,代入上式得:120.9951-2121-20 =-3.8737t (2)t (8) 3.3554t(2),n n t n n H αα+-==>+-∴拒绝即差距显著。
设总体116(,4),,,XN X X μ为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.975120120.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50) =1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。