传感器与检测技术(知识点总结)
传感检测技术知识点总结(仅供参考)
《传感与检测技术》考试总结20121030第一章:概论(P1)1.1 静态特性(P6):在稳态信号作用下,传感器输出量与输入量的关系,主要指标(线性度,精度,灵敏度,重复性)。
1.1.1线性度(P6):研究传感器线性特性时,有三种特殊情况(图):①理想特性曲线②仅有偶次非线性项时,特性曲线没有对称性,可取的线性范围较小,传感器设计应该避免出现这种曲线③仅有奇次项时,以原点为对称点,可获得较大的线性范围,差动传感器就具有这样的特性拟合直线(P8):“线性化”是指用割线或切线近似地代替实际曲线的一段,是能反映校准曲线的变化趋势且使误差的绝对值最小的直线,大多采用端点连线法得到拟合直线线性度公式(P8)lδ指非线性误差,即线性度;F Sy∙指满量程输出量,max∇指最大非线性绝对误差,1.1.2灵敏度(P8):指传感器在稳态下输出增量对输入量之比值,对于线性传感器系统, 灵敏度就是拟合直线的斜率,是个常数,公式对于非线性传感器系统,灵敏度不是常数,公式:1.1.3重复性(P9):是指传感器在输入量按同一方向做全量程连续多次测试时所得输入输入曲线不重合程度,是反映精密度的一个指标,产生原因与迟滞性基本相同,重合性越好,误差越小 )3100%F S y σ⨯z δ——重复性误差;σ——标准误差1.1.4 精 度(精确度)(P10S %”所得m δ的值就是仪表的精密等级,如0.05级,1.2 动态特性(P10):反映传感器对于(随时间变化的输入量)的响应特性,为了记录波形参数,传感器要有较好的动态响应特性。
1.2.1数学模型(P10):通常以线性时不变系统来描述传感器的动态特性,就是用常系数微分方程建立传感器输出量y 与输入量x 之间的数学关系,公式:线性时不变系统有两个十分重要性质:叠加性和频率保持性,频率保持性指线性系统稳态响应时输出信号的频率与输入信号的频率保持相同1.2.2时域特性(P11)1.2.2.1一阶传感器单位阶跃响应(P11):1.2.2.2时域特性指标(P13):①时间常数τ——一阶传感器输出量上升到稳态值的0.632倍所需要的时间,τ越小,稳态响应时间越短②上升时间tr ——传感器输出量由稳态值的③延迟时间ts ——传感器输出量达到稳态值的50%所需时间④超调量σ——传感器输出的最大值与稳态值的偏差,公式:()()()y tp yyσ-∞∞=;y(tp)——输出的最大值; y(∞)——输出的稳态值1.2.3频域特性1.2.3.1一阶传感器的正弦响应(P14)1.2.3.2频域特性指标(P15):①通频带:传感器输出量保持在一定值(幅频特性曲线上相对于幅值衰减3dB)内所对应的频率范围;②工作频率:传感器输出幅值误差在±5%(或±10%)所对应的频率范围③相对误差:在工作频带范围内输出量的相位偏差,应小于5°(或10°)1.3测量误差分析基础1.3.1.1系统误差(P18)是指服从于某一确定规律(定值或规律性变化值)的测量误差,产生原因有以下4方面,是可预知的:①测试环境没有达到标准②测试仪表不够完善③测试电路的搭建或系统的安装不正确④测试人员的不良操作或视觉偏差1.3.1.2系统误差消除方法(P19①引入修正值:当系统误差为恒值时,修正值是一个定值;当系统误差为变差时,修正值是一个数表或者曲线或者修正计算式。
传感器与检测技术总结
传感器与检测技术 第一章 概 述一、 传感器的作用是:传感器是各种信息的感知、采集、转换、传输和处理的功能器件,具有不可替代的重要作用。
二、 传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
三、 传感器的组成:被测量---敏感元件---转换元件----基本转换电路----电量输出四、 传感器的分类:按被测量对象分类(内部系统状态的内部信息传感器{位置、速度、力、力矩、温度、导演变化}、外部环境状态的外部信息传感器{接触式[触觉、滑动觉、压觉]、非接触式[视觉、超声测距、激光测距);按工作机理分类(结构型{电容式、电感式}、物性型{霍尔式、压电式});按是否有能量转换分类(能量控制型[有源型]、能量转换型[无源型]);按输出信号的性质分类(开关型[二值型]{接触型[微动、行程、接触开关]、非接触式[光电、接近开关]}、模拟型{电阻型[电位器、电阻应变片],电压、电流型[热电偶、光电电池],电感、电容型[电感、电容式位置传感器]}、数字型{计数型[脉冲或方波信号+计数器]、代码型[回转编码器、磁尺]})。
五、 传感器的特性主要是指输出与输入之间的关系。
当输入量为常量,或变化极慢时,称为静态特性;输出量对于随时间变化的输入量的响应特性,这一关系称为动态特性,这一特性取决于传感器本身及输入信号的形式。
可以分为接触式环节(以刚性接触形式传递信息)、模拟环节(多数是非刚性传递信息)、数字环节。
动态测量输入信号的形式通常采用正弦周期(在频域内)信号和阶跃信号(在时域内)。
六、 传感器的静态特性:线性度(以一定的拟合直线作基准与校准曲线比较%100max⨯∆=Y L L δ)、迟滞、重复性、灵敏度(K 0=△Y/△X=输出变化量/输入变化量=k 1k 2···k n )和灵敏度误差(r s =△K 0/K 0×100%、稳定性、静态测量不确定性、其他性能参数:温度稳定性、抗干扰稳定性。
传感器与检测技术(重点知识点总结)
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
【2019年整理】传感器与检测技术知识点总结(20210128085411)
传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测址并按照一定规律转换成可输出信号的器件或装宜。
一、传感器的组成2:传感器一般由敬感元件,转换元件及基木转换电路三部分组成。
①敏感元件是直接感受被测物理址.并以确定关系输出另一物理塑的元件(如弹性墩感元件将力,力矩转换为位移或应变输出九②转换元件是将敬感元件输岀的非电址转换成电路参数(电阻,电感.电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电虽。
二、传感器的分类1、按被测屋对象分类(1)内部信息传感器主要检测系统内部的位宜.速度.力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感辭、滑动觉传感器.压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主婆有:光电式传感器. 压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器:③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测址位移,温度传感器用于测址温度。
4、按工作原理分类主要是有利于传感器的设汁和应用。
5、按传感器能绘源分类(1)无源型:不需外加电源。
而是将被测址的相关能址转换成电虽输出(主要有:压电式、磁电感应式.热电式、光电式)又称能虽转化型:(2)有原型:需要外加电源才能输出电氐又称能虽控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF):(2)模拟型:输出是与输入物理虽变换相对应的连续变化的电址,其输入/输出可线性,也可非线性:(3)数字型:① 11遨型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入址成正比:②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入址变化。
传感器与检测技术重点知识点总结
1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类传感器与检测技术知识总结主要检测系统的外部环境状态,它有、传感器的分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6按输出信号的性质分类(1)开关型(二值型):是“ 1”和“0”或开(ON)和关(OFF;(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术(知识点总结)汇编
传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2 :传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型: 不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有: 压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“ 1 ”和“ 0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3 )数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术重点知识点总结
传感器与检测技术重点知识点总结
1. 传感器的基本概念及分类
传感器是一种能够将被检测物理量转换为可被检测设备处理的电信号输出的器件。
根据被检测物理量的不同,传感器可分为光学传感器、声学传感器、温度传感器、压力传感器、流量传感器等。
2. 传感器的检测原理
传感器的检测原理通常分为以下几种:电学检测、磁学检测、光学检测、化学检测、声学检测、机械检测等。
3. 传感器的基本参数
传感器的基本参数包括:灵敏度、线性度、分辨率、重复性、稳定性、响应时间等。
4. 传感器的生产工艺
传感器的生产工艺主要包括晶体生长、半导体制备、陶瓷材料制备、薄膜技术、微加工技术等。
5. 传感器的应用领域
传感器广泛应用于工业控制、仪器仪表、环境监测、医疗设备、航空航天等领域。
6. 传感器与物联网技术的结合
传感器与物联网技术的结合,将传感器与互联网技术相结合,实现远程监测、智能控制与预警等功能,具有广泛的应用前景。
7. 检测技术的应用
除了传感器技术,还有其他的检测技术,如光谱分析、物质检测、图像识别等,在环境监测、工业检测与医疗诊断等领域有着重要的应用。
传感器与检测技术重点知识点总结
传感器与检测技术重点知识点总结传感器是一种能够感知、收集并转换物理量或化学量等信息的装置。
它广泛应用于各个行业和领域,如工业生产、环境监测、医疗设备、汽车等。
以下是传感器与检测技术的一些重点知识点总结。
1.传感器的基本原理-传感器是通过感知或测量物理量或化学量等信息,并将其转化为可用的电信号输出。
-常见的物理量包括温度、压力、湿度、光照强度、流量等;化学量包括气体浓度、pH值等。
-传感器的工作原理包括电学、热学、光学、化学以及机械等不同的原理。
-传感器的输出信号可以是电压、电流、频率、电阻等形式。
2.传感器的分类-按照感知的物理量或化学量的不同,传感器可以分为温度传感器、压力传感器、光敏传感器、流量传感器等。
-按照测量原理的不同,传感器可以分为电阻传感器、电容传感器、电感传感器、化学传感器等。
-按照输出信号类型的不同,传感器可以分为模拟输出传感器和数字输出传感器。
3.传感器的特性与参数-灵敏度:传感器响应物理量变化的能力,它决定了传感器的测量范围和分辨率。
-精度:传感器测量值与真实值之间的偏差,包括系统误差、随机误差等。
-响应时间:传感器从感知到输出响应所需的时间。
-可靠性:传感器在一定环境条件下长时间稳定工作的能力。
-线性度:传感器输出信号与输入物理量之间的线性关系。
-温度影响:传感器在不同温度下性能的稳定性。
-零点漂移:在长时间使用过程中,传感器输出信号发生的零点偏移。
-跨度漂移:在长时间使用过程中,传感器输出信号的量程偏移。
-电磁兼容性:传感器在干扰条件下的工作能力。
4.传感器的应用领域-工业生产:用于监测和控制工艺过程中的温度、压力、流量等参数,提高生产效率和质量。
-环境监测:用于监测大气污染、水质污染、噪声等环境参数,保护生态平衡和人类健康。
-汽车行业:用于汽车发动机的温度、压力、氧气浓度等参数的监测和控制,提高汽车性能和安全性。
-医疗设备:用于监测病人的体温、心率、血压等生理参数,辅助医疗诊断和治疗。
检测与传感器知识点总结
第一章1.传感器的功能:信息收集,信号数据的转换2.传感器的组成:传感器通常由敏感元件、转换元件、调解转换电路3部分组成3.衡量传感器静态特性的重要指标是线性度、灵敏度、迟滞、重复性和零点漂移等线性度:是指传感器输出与输入之间的线性程度灵敏度:是指传感器在稳态下的输出变化量与引起变化的输入变化量之比,用S表示迟滞:传感器在正(输入量增大)反(输入量减小)行程期间,其输出--输入特性曲线不重合的现象重复性:是指在同一工作条件下,输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度零点漂移:当传感器无输入时,每隔一段时间对传感器的输出进行读数,其输出偏离零值的情况,即为零点漂移温度漂移:是指温度变化时传感器输出值偏离程度4.传感器的动态特性:最大超调量、延迟时间、上升时间、峰值时间、响应时间第二章1、应变式传感器可以测量力、荷重、应变、位移、速度、加速度等各种参数。
2、电阻应变效应:金属丝的电阻随其所受机械形变(拉伸或压缩)的大小变化。
3、电阻应变主要有四部分组成:电阻丝、基片、覆盖层和引出线。
4、按应变片敏感栅所用的材料不同,应变片可以划分为金属应变片和半导体应变片,其中金属应变片分为体型和薄膜型;半导体应变片分为体型、薄膜型、扩散型、PN结型及其他型。
5、半导体应变片的工作原理是基于半导体的压阻效应,压阻效应是指对半导体施加压力时半导体的电阻率会发生改变的现象。
6、产生应变片温度误差的主要因素有:(1)、敏感栅金属丝电阻本身随温度发生变化(2)、试件材料和电阻丝的线膨胀系数的影响7、电阻应变片的温度补偿方法有:线路补偿法和应变片自补偿两类。
8、应变片自补偿有选择式自补偿应变片和双金属敏感栅自补偿应变片。
9、根据电桥电源的不同,可分为直流电桥和交流电桥。
第三章1.电感式传感器主要有自感式,互感式和涡流式三种2.自感式电感传感器由线圈、铁心和衔铁三部分组成3.自感式电感传感器的结构类型有变间隙式、变面积式、螺线管式(变气隙导磁系数)4.自感式电感传感器的转换电路有交流电桥式、交流变压器式以及谐振式几种形式,其中交流电桥式最为常用,谐振式转换电路有谐振式调幅电路和谐振式调频电路5.互感式电感传感器由一、二次绕组,铁心,衔铁三部分组成6.互感式电感传感器的主要特性:输出电压特性,灵敏度,温度特性,零点残余电压的消除方法(提高互感式电感传感器的组成结构及电磁特性的对称性,引入相敏整流电路,采用外电路补偿法)7.电涡流传感器的结构:变间隙式,变面积式,螺线管式,低频透射式,高频反射式8.影响电涡流式传感器的灵敏度的因素:被测体材料对测量的影响,被测体大小和形状对测量的影响,传感器形状和大小对传感器灵敏度的影响9.电涡流传感器的转换电路:调频式电路,调幅式电路10.电涡流式传感器的应用:电涡流式传感器的应用领域很广,可进行位移,厚度,转速,振动,温度等多参数的测量第四章1、电容式传感器:把某些非电量的变化通过一个可变电容转化成电容变化的装置。
《传感器与检测技术》知识点总结
《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。
(3)功能:检测和转换。
(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。
(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。
2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。
0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。
分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。
4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。
开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。
传感器及检测技术重点知识点总结
传感器及检测技术重点知识点总结传感器是一种能够感知环境中各种参数并将其转化为可量化的电信号输出的设备。
检测技术则是利用传感器对环境中各种参数进行检测和监测的技术。
以下是传感器及检测技术的重点知识点总结:1.传感器的基本原理:传感器的基本原理是将被测物理量转化为与之成正比的电信号输出。
传感器中常用的原理包括电阻、电容、电感、磁电效应、光电效应等。
2.传感器的分类:传感器可以根据测量参数的类型进行分类,如力传感器、温度传感器、湿度传感器、压力传感器等;也可以根据传感器的工作原理进行分类,如光传感器、声传感器、气体传感器、生物传感器等。
3.传感器的特性:传感器的特性包括精度、灵敏度、稳定性、线性度、响应时间等。
精度是指传感器输出与实际值之间的偏差;灵敏度是指传感器输出信号随被测量变化的程度;稳定性是指传感器输出信号在长时间内的稳定程度;线性度是指传感器输出与被测量之间的线性关系;响应时间是指传感器从检测到信号输出的时间。
4.传感器信号的处理和调节:传感器输出的信号常常需要经过放大、滤波、校准和线性化处理后才能得到有效的结果。
放大可以增大传感器输出信号的幅度;滤波可以去除传感器输出信号中的噪声;校准可以修正传感器输出的非线性特性;线性化可以将传感器输出信号与被测量参数之间建立线性关系。
5.传感器网络和通信技术:近年来,随着物联网的兴起,传感器网络和通信技术也得到了迅速发展。
传感器网络是一种由分布在空间中的大量传感器节点组成的网络,通过无线通信技术实现节点之间的数据传输。
这种网络可以实现大范围的环境监测和数据采集。
6.检测技术的应用领域:传感器及检测技术广泛应用于各个领域,如环境监测、医疗健康、交通运输、工业自动化等。
在环境监测方面,传感器可以用于测量环境中的温度、湿度、气体含量等;在医疗健康方面,传感器可以用于监测人体的心率、体温、血压等;在交通运输方面,传感器可以用于监测车辆的速度、加速度、位置等;在工业自动化方面,传感器可以用于监测生产线上的温度、压力、流量等。
(完整版)传感器与检测技术第二版知识点总结
传感器知识点一、电阻式传感器1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。
2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 ● 应变电阻式传感器1) 应变:在外部作用力下发生形变的现象。
2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化a. 组成:弹性元件+电阻应变片b. 主要测量对象:力、力矩、压力、加速度、重量。
c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等点的输出。
3) 电阻值:ALR ρ=(电阻率、长度、截面积)。
4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变)5) 应力与力和受力面积的关系:(面积)(力)(应力)A F =σ应注意的问题:a. R3=R4;b. R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值;c. 补偿片的材料一样,个参数相同;d. 工作环境一样;二、电感式传感器1) 电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L 或互感系数M的变化。
2) 种类:变磁阻式、变压器式、电涡流式。
3) 主要测量物理量:位移、振动、压力、流量、比重。
● 变磁阻电感式传感器1) 原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。
2) 自感系数公式:)(2002气隙厚度(截面积)(磁导率)δμA L N=。
3) 种类:变气隙厚度、变气隙面积4) 变磁阻电感式传感器的灵敏度取决于工作使得当前厚度。
5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。
P56 6)应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化)● 差动变压器电感式传感器1) 原理:把非电量的变化转化为互感量的变化。
2) 种类:变隙式、变面积式、螺线管式。
3) 测量电路:差动整流电路、相敏捡波电路。
● 电涡流电感式传感器1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动势,电动势将在导体表面形成闭合的电流回路。
传感器与检测技术知识点概括
1、传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
2、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。
3、要实现不失真测量,检测系统的幅频特性应为常数4、传感器静态特性是指传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。
5,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨率、灵敏度、漂移、稳定性、温度稳定性、各种抗干扰稳定性等。
(请写出反映传感器的五种性能指标,及写出三种解释传感器指标?精度、分辨率、灵敏度、线性度、迟滞。
反映传感器准确度的指标是精度,反映传感器灵敏度的指标是灵敏度,反映传感器稳定性的指标是迟滞)6,传感器对随时间变化的输入量的响应特性叫传感器动态性。
7,动态特性中对一阶传感器主要技术指标有时间常数。
动态特性中对二阶传感器主要技术指标有固有频率、阻尼比。
8,从时域(延迟时间,上升时间,响应时间,超调量)和频域(幅频特性,相频特性)两个方面分别采用瞬态响应法和频率响应法来分析动态特性。
9,幅频特性是指传递函数的幅值随被测频率的变化规律,相频特性是指传递函数的相角随被测频率的变化规律。
传感器中超调量是指超过稳态值的最大值□A (过冲)与稳态值之比的百分数。
电阻式传感器10,金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
11,半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
12,金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。
13,金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器与检测技术知识点
第一章传感与检测技术理论基础1.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
2.用测量范围为-50~+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差2140142=-=∆kPa 实际相对误差%43.1%100140140142=⨯-=δ标称相对误差%41.1%100142140142=⨯-=δ引用误差%1%10050150140142=⨯---=)(γ3.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
通过增加测量次数估计随机误差可能出现的大小,从而减少随机误差对测量结果的影响。
第二章传感器概述2-1什么叫传感器?它由哪几部分组成?它们的作用及相互关系如何?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常由敏感元件和转换元件组成。
敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部份。
传感器与检测技术总复习(精华)
填空:1.传感器是把外界输入的非电信号转换成(电信号)的装置。
2.传感器是能感受规定的(被测量)并按照一定规律转换成可用(输出信号)的器件或装置。
3.传感器一般由(敏感元件)与转换元件组成。
(敏感元件)是指传感器中能直接感受被测量的部分(转换元件)是指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。
4.半导体应变片使用半导体材料制成,其工作原理是基于半导体材料的(压阻效应)。
5.半导体应变片与金属丝式应变片相比较优点是(灵敏系数)比金属丝高50~80倍。
6.压阻效应是指半导体材料某一轴向受到外力作用时,其(电阻率ρ)发生变化的现象。
7.电阻应变片的工作原理是基于(应变效应), 即在导体产生机械变形时, 它的电阻值相应发生变化。
8.金属应变片由(敏感栅)、基片、覆盖层和引线等部分组成。
9.常用的应变片可分为两类: (金属电阻应变片)和(半导体电阻应变片)。
半导体应变片工作原理是基于半导体材料的 (压阻效应)。
金属电阻应变片的工作原理基于电阻的(应变效应)。
10.金属应变片有(丝式电阻应变片)、(箔式应变片)和薄膜式应变片三种。
11.弹性敏感元件及其基本特性:物体在外力作用下而改变原来尺寸或形状的现象称为(变形),而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为(弹性变形)。
12.直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,园弧部分使灵敏系数K↓下降,这种现象称为(横向效应)。
13.为了减小横向效应产生的测量误差, 现在一般多采用(箔式应变片)。
14.电阻应变片的温度补偿方法1) 应变片的自补偿法这种温度补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的,应变片的自补偿法有(单丝自补偿)和(双丝组合式自补偿)。
15.产生应变片温度误差的主要因素有下述两个方面。
1) (电阻温度系数)的影响2) 试件材料和电阻丝材料的(线膨胀系数不同)的影响16.写出三种能够测量加速度的传感器( 电阻应变片式传感器 )(电容传感器)(压电传感器)17.根据电容式传感器工作原理可以将电容传感器分成三类(变介电常数型)、变面积型和(变极距型)。
【2019年整理】传感器与检测技术知识点总结(20210128085411)
传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测址并按照一定规律转换成可输出信号的器件或装宜。
一、传感器的组成2:传感器一般由敬感元件,转换元件及基木转换电路三部分组成。
①敏感元件是直接感受被测物理址.并以确定关系输出另一物理塑的元件(如弹性墩感元件将力,力矩转换为位移或应变输出九②转换元件是将敬感元件输岀的非电址转换成电路参数(电阻,电感.电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电虽。
二、传感器的分类1、按被测屋对象分类(1)内部信息传感器主要检测系统内部的位宜.速度.力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感辭、滑动觉传感器.压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主婆有:光电式传感器. 压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器:③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测址位移,温度传感器用于测址温度。
4、按工作原理分类主要是有利于传感器的设汁和应用。
5、按传感器能绘源分类(1)无源型:不需外加电源。
而是将被测址的相关能址转换成电虽输出(主要有:压电式、磁电感应式.热电式、光电式)又称能虽转化型:(2)有原型:需要外加电源才能输出电氐又称能虽控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF):(2)模拟型:输出是与输入物理虽变换相对应的连续变化的电址,其输入/输出可线性,也可非线性:(3)数字型:① 11遨型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入址成正比:②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入址变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器与检测技术(知识点总结)一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
其代码“1”为高电平,“0”为低电平。
三、传感器的特性及主要性能指标1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。
2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。
表征传感器静态特性的指标有线性度,敏感度,重复性等。
3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。
传感器的动态特性取决于传感器的本身及输入信号的形式。
传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节;③数字环节。
评定其动态特性:正弦周期信号、阶跃信号。
4、传感器的主要性能要求是:1)高精度、低成本。
2)高灵敏度。
3)工作可靠。
4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。
7)结构简单、小巧,使用维护方便等;四、传感检测技术的地位和作用1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。
2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。
应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。
五、基本特性的评价1、测量范围:是指传感器在允许误差限内,其被测量值的范围;量程:则是指传感器在测量范围内上限值和下限值之差。
2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。
过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。
3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X之比。
4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。
灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。
K值越大,对外界反应越强。
5、反映非线性误差的程度是线性度。
线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax断状态,输出高或低的电平信号,以表示是否发生接触。
11:硅橡胶触觉传感器的工作原理是硅橡胶与金属电极对置,接触,硅橡胶受压其电阻值就改变,当金属电极受力压硅橡胶时,输出电压相应变化。
12:压觉传感器定义通过高密度配置这种传感器,可以获得同物体接触时各部分不同的压力,将该压力变换成相应处的电压信号,可以获得关于物体形状的信息。
特点:动作准确,精度高,缺点是体积大,不能高密度配置。
13:滑动觉传感器应用于工业机器人手指把持面与操作对象之间的相对运动,以实现实时控制指部的夹紧力。
第六章温度传感器1:温度代表物质的冷热程度,是物体内部分子运动剧烈程度的标志。
测量温度的方法有接触式和非接触式。
2:接触式的特点是感温元件与被测对象直接物理接触,进行热传导。
3:非接触式的特点是感温元件与被测对象不物理接触,而是通过热辐射进行热传递。
4:热电偶式温度传感器属于接触式热电动势型传感器,它的工作原理是热电效应。
热点效应:当两种不同金属导体两端相互紧密地连接在一起组成一个闭合电路时,由于两个接触点温度T和T0不同,回路中将产生热电动势,并有电流通过,这种把热能转换成电能的现象称为热电效应。
5:热电动势由接触电动势和温差电动势组成。
6:接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。
7:温差电动势是在同一根导体中由于两端温度不同而产生的电动势。
中间导体定律:导体a,b组成的热电偶,当引入第三个导体时,只要保持其两端温度相同,则对总热电动势无影响,这一结论被称为中间导体定律8:热电偶通常由热电极,绝缘材料,接线盒和保护套组成。
9:热电偶可分为:(1)普通热电偶:主要用于测量液体和气体的温度。
(2)铠装热电偶(缆式热电偶):特点是测量结热容量小,热惯性小,动态响应快,挠性好,适用于普通热电偶不能测量的空间温度。
(3)薄膜热电偶:主要用于测量固体表面小面积瞬时变化的温度,特点是热容量小,时间常数小,反应速度快。
(4)并联热点偶:它是把几个同一型号的热电偶的同性电极参考端并联在一起。
适用于测量平均温度。
(5)串联热电偶:(热电堆)10:热电偶参考端电位补偿法有:恒温法,温度修正法,电桥补偿法,冷端补偿法,电位补偿法。
11:电位补偿法是在热电偶回路中接入一个自动补偿的电动势。
12:热电阻式传感器可分为金属热电阻式和热敏电阻式。
13:金属热电阻式温度传感器是电阻体,电阻体是由金属导体构成的。
14:热电阻的结构主要由不同材料的电阻丝绕制而成,为了避免通过交流电时产生感抗,或有交变磁场时产生感应电动势,在绕制时采用双线无感绕制法。
15:热敏电阻式温度传感器的感温元件是对温度非常敏感的热敏电阻,所用材料是陶瓷半导体,其导电性取决于电子-空穴的浓度。
其特点是热敏电阻的温度系数比金属热电阻大,体积小,重量轻,很适用于小空间温度测量,它的热惯性小,反应速度快,适用于测量快速变化的温度。
16:非接触式温度传感器采用热辐射和光电检测的方法。
其工作机理是当物体受热后,电子运动的动能增加,有一部分热能转变为辐射能量的多少与物体的温度有关,当温度较低时,辐射能力很弱;当温度较高时,辐射能力很强。
17:非接触式温度传感器可分为全辐射式温度传感器,亮度式温度传感器和比色式温度传感器。
18:全辐射温度传感器是利用物体的全光谱范围内总辐射能量与温度的关系测量温度。
特点是适用于远距离,不能直接接触的高温物体,其范围是(100~2000度)19:亮度式温度传感器利用物体的单色辐射亮度随温度变化的原理,并以被测物体光谱的一个狭窄区域内的亮度与标准辐射体亮度进行比较来测量温度。
特点是量程较宽,有较高的测量精度,一般用于测量(700~3200度)范围的浇铸。
轧钢,锻压,热处理时的温度。
20:比色温度传感器以测量两个波长的辐射亮度之比为基础。
特点是用于连续自动检测钢水,铁水,炉渣和表面没有覆盖物的高温物体温度,其量程为(800~2000)度,测量精度为0、5%。
它的优点是反应速度快,测量范围宽,测量温度接近于实际值。
21:半导体温度传感器以半导体P-N结的温度特性为理论基础的。
是利用晶体二极管与晶体三极管为感温元件。
采用半导体二极管作温度传感器,有简单,价廉的优点,用它可制成半导体温度计,测量范围在(0~50)度。
用晶体三极管制成的温度传感器测量精度高,测量范围较宽在(-50~150)度之间,因而用于工业,医疗等领域的测量仪器或系统。
都还有很好的长期稳定性第七章气敏、湿度、水份传感器一、气敏传感器1:气敏传感器是一种将检测到的气体成分和浓度转换为电信号的传感器。
2:气敏元件的工作机理是吸附效应。
半导瓷气敏电阻值将随吸附气体的数量和种类而改变。
3:如果材料的功函数大于吸附分子的离解能,吸附分子将向材料释放电子而成为正离子吸附。
氧气和氮氧化合物倾向于负离子吸附,称为氧化型气体。
4:氢气,CO碳氢化合物和酒类倾向于正离子吸附,称为还原型气体。
5:半导瓷气敏元件与半导体单晶体相比,具有工艺简单,使用方便,价格便宜,对气体浓度变化响应快,即使在低浓度下灵敏度也很高等优点,故可用于制作多种具有实用价值的气敏元件。
其缺点是稳定性差,老化较快。
6:常用气敏元件的种类按其结构可分为:烧结型,薄膜型和厚膜型。
7:(1)烧结型器件的一致性较差,机械强度也不高,但它价格便宜,工作寿命较长,应用广泛。
(2)薄膜型气敏元件(如氧化锡,ZnO气敏性最好)为物理性附着系统,器件之间的性能差异仍较大。
(3)厚膜气敏元件的一致性较好,机械强度高,适于批量生产。
8:气敏元件的几种应用实例有:①气敏电阻检漏报警器。
②矿灯瓦斯报警器。
③一氧化碳报警器。
④煤气传感器。
它可分为半导式和接触燃烧式。
二、湿度传感器9:湿敏元件是利用湿敏材料吸收空气中的水份而导致本身电阻值发生变化的原理制成的。
优点是灵敏度高,体积小,寿命长,可以进行遥测和集中控制。
10:湿度是指大气中所含的水蒸气量。
最常用的两种方法是绝对湿度和相对湿度。
11:绝对湿度是指一定大小空间中水蒸气的绝对含量。
12:相对湿度是指为某一被测蒸气压与相同温度下饱和蒸气压比值的百分数,这是一个无量纲值。
13:氯化锂湿敏电阻式利用吸湿性盐类潮解,离子导电率发生变化而制成的测湿元件。
14:负特性湿敏半导瓷是由于它们的电阻率随湿度的增加而下降。
15:正特性湿敏半导瓷是一类材料(Fe3O4半导瓷)的电阻率随着湿度的增加而增大。
16:半导体陶瓷湿敏元件的材料,主要是不同类型的金属氧化物。
半导体湿敏元件具有较好的热稳定性,较强的抗沾污能力,能在恶劣,易污染的环境中测得准确的湿度数据,而且有响应快,使用温度范围宽(可在150度以下使用),可加热清洗。