近三年高考全国卷理科立体几何真题

合集下载

2016年-2019年立体几何大题全国卷高考真题

2016年-2019年立体几何大题全国卷高考真题

2016年-2019年立体几何大题全国卷高考真题1、(2015年1卷18题)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AFC⊥平面AEC;(Ⅱ)求直线AE与直线CF所成有的余弦值。

(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, 2、90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.3(2016年2卷19题)(本小题满分12分) CA BD EF如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置10OD '=. (I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.4、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=?.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=?,求二面角A PB C --的余弦值.5.(2018年1卷18题)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.⑴证明:平面PEF ⊥平面ABFD ;⑵求DP与平面ABFD所成角的正弦值.6.(2018年新课标Ⅱ理)如图,在三棱锥P-ABC中,AB=BC=22,P A =PB=PC=AC=4,O为AC的中点.(1)求证:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.18.(2019年1卷18题)(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.8.(12分)(2019年新课标Ⅱ理)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.。

高考数学近三年真题立体几何(理科专用)

高考数学近三年真题立体几何(理科专用)

三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。

2012-2021十年全国高考数学(理科)真题分类汇编解析 立体几何大题

2012-2021十年全国高考数学(理科)真题分类汇编解析  立体几何大题
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成Байду номын сангаас的正弦值.
5.(2020年高考数学课标Ⅲ卷理科)如图,在长方体 中,点 分别在棱 上,且 , .
(1)证明:点 平面 内;
(2)若 , , ,求二面角 的正弦值.
7.(2019年高考数学课标全国Ⅱ卷理科)如图,长方体 的底面 是正方形,点 在棱 上, .
证明: 平面 ;
若 ,求二面角 的正弦值.
8.(2019年高考数学课标全国Ⅰ卷理科) 如图,直四棱柱 的底面是菱形, 分别是 , , 的中点.
(1)证明: 平面 ;
(2)求二面角 的正弦值.
9.(2018年高考数学课标Ⅲ卷(理))(12分)如图,边长为 的正方形 所在平面与半圆弧 所在的平面垂直, 是弧 上异于 的点.
( )证明平面 ;
( )求二面角 的余弦值.
18.(2015高考数学新课标2理科)(本题满分12分)如图,长方体 中, , , ,点 , 分别在 , 上, .过点 , 的平面 与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线 与平面 所成角的正弦值.
6.(2019年高考数学课标Ⅲ卷理科)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
(1)证明:平面 平面 ;

历年高考真题专题04立体几何

历年高考真题专题04立体几何

专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。

4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。

2016年-2019年立体几何大题全国卷高考真题及答案

2016年-2019年立体几何大题全国卷高考真题及答案

1、(2015年1卷18题)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.试题解析:(Ⅰ)连接BD ,设BD∩AC=G,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1,由∠ABC=120°,可得AG=GC=3. 由BE ⊥平面ABCD ,AB=BC 可知,AE=EC , 又∵AE ⊥EC ,∴EG=3,EG ⊥AC ,在Rt △EBG 中,可得BE=2,故DF=22. 在Rt △FDG 中,可得FG=62. 在直角梯形BDFE 中,由BD=2,BE=2,DF=22可得EF=322, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC∩FG=G,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (030),E (2),F (-1,0,22),C (030),∴AE =(132),CF =(-1,3,22).…10分故cos ,3||||AE CF AE CF AE CF ⋅<>==-. 所以直线AE 与CF 所成的角的余弦值为3. 2、(2016年1卷18题)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,C F 60∠E =.从而可得(C -.所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n⎧⋅E =⎪⎨⋅EB =⎪⎩,即40x y ⎧+=⎪⎨=⎪⎩, 所以可取(3,0,n =.CABDEF设m 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-. 故二面角C E -B -A 的余弦值为21919-.3(2016年2卷19题)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=.(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CF AD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF DH'⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥, ∴4OB =,∴1AE OH OD AO=⋅=,∴3DH D H '==,∴222'OD OH D H '=+, ∴'D H OH ⊥.又∵OH EF H =,∴'D H ⊥面ABCD .⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =,,,()'133AD =-,,,()060AC =,,,设面'ABD 法向量()1n x y z =,,,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-,,.同理可得面'AD C 的法向量()2301n =,,, ∴12129575cos 255210n n n n θ⋅+===⋅,∴295sin 25θ=4、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --的余弦值. 【解析】(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD(2)取AD 中点O ,BC 中点E ,连接PO ,OE ∵AB CD∴四边形ABCD 为平行四边形 ∴OE AB由(1)知,AB ⊥平面PAD∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ∴OE PO ⊥,OE AD ⊥ 又∵PA PD =,∴PO AD ⊥ ∴PO 、OE 、AD 两两垂直∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz - 设2PA =,∴()002D -,,、()220B ,,、()002P ,,、()202C -,,, ∴()022PD =--,,、()222PB =-,,、()2200BC =-,,设()n x y z =,,为平面PBC 的法向量由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得2220220x y z x ⎧+-=⎪⎨-=⎪⎩令1y =,则2z =,0x =,可得平面PBC 的一个法向量()012n =,, ∵90APD ∠=︒,∴PD PA ⊥又知AB ⊥平面PAD ,PD ⊂平面PAD ∴PD AB ⊥,又PA AB A = ∴PD ⊥平面PAB即PD 是平面PAB 的一个法向量,()022PD =--,, ∴23cos 323PD n PD n PD n⋅-===-⋅, 由图知二面角A PB C --为钝角,所以它的余弦值为33-5.(2018年1卷18题)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. ⑴证明:平面PEF ⊥平面ABFD ; ⑵求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角, 由PE PF EF PH ⋅=⋅,∴23234PH ⋅==, 而4PD =,∴3sin 4PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值34. 6.(2018年新课标Ⅱ理)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)求证:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值.【解析】(1)证明:∵AB =BC =22,AC =4,∴AB 2+BC 2=AC 2,即△ABC 是直角三角形. 又O 为AC 的中点,∴OA =OB =OC . ∵P A =PB =PC ,∴△POA ≌△POB ≌△POC . ∴∠POA =∠POB =∠POC =90°.∴PO ⊥AC ,PO ⊥OB ,OB ∩AC =0,∴PO ⊥平面ABC .(2)以O 坐标原点,OB ,OC ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系如图所示.易知A (0,-2,0),P (0,0,23),C (0,2,0),B (2,0,0),BC →=(-2,2,0). 设BM →=λBC →=(-2λ,2λ,0),0<λ<1,则AM →=BM →-BA →=(-2λ,2λ,0)-(-2,-2,0)=(2-2λ,2λ+2,0), 则平面P AC 的一个法向量为m =(1,0,0).设平面MP A 的法向量为n =(x ,y ,z ),则PA →=(0,-2,23), 则n ·PA →=-2y -23z =0,n ·AM →=(2-2λ)x +(2λ+2)y =0. 令z =1,则y =-3,x =(λ+1)31-λ,即n =⎝ ⎛⎭⎪⎫(λ+1)31-λ,-3,1.∵二面角M -P A -C 为30°,∴cos 30°=m ·n |m ||n |=32,即(λ+1)3λ-1⎝ ⎛⎭⎪⎫(λ+1)31-λ2+1+3×1=32,解得λ=13或λ=3(舍去). ∴n =(23,-3,1),PC →=(0,2,-23).PC 与平面P AM 所成角的正弦值sin θ=|cos 〈PC →,n 〉|=⎪⎪⎪⎪⎪⎪-23-2316·16=4316=34.18.(2019年1卷18题)(12分)如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ﹣MA 1﹣N 的正弦值.解答】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且,又MB∥AA1,MB=,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(,,2),M(,1,2),A1(,﹣1,4),,,设平面A1MN的一个法向量为,由,取x=,得,又平面MAA1的一个法向量为,∴cos<>===.∴二面角A﹣MA1﹣N的正弦值为.8.(12分)(2019年新课标Ⅱ理)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BEEC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩ 所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --3.。

历年全国理科数学高考试题立体几何部分精选(含答案)

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,==,则棱锥AB BC-的体积为。

O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

1.D2.3. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。

(1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=u u u r u u u r00z =-=因此可取n=设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=u u u ru u u r可取m=(0,-1, cos ,m n == 故二面角A-PB-C 的余弦值为1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 232. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4- (B)3-+ (C) 4-+3-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SBSB =SD DB DE SB ==-EB SE SB EB ====所以,SE=2EB(Ⅱ) 由1,2,,SA AB SE EB AB SA ===⊥知1,AD=1AE ==又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则,AF DE AF ⊥==. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角.连接AG,A G=,3FG ==, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥ 又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角 于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A (B (C (D) 342. 已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到β,Q 到α的距离为则P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。

新课标全国卷历年高考立体几何真题(含答案)

新课标全国卷历年高考立体几何真题(含答案)

新课标全国卷历年高考立体几何真题(含答案)班别: ______________________ 姓名:___________________1.(2011年全国卷)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA ⊥BD ; (Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.2.(2012年全国卷)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;(Ⅱ)求二面角11C BD A --的大小.3.(2013年全国Ⅱ卷)如图,直棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=2AB. (Ⅰ)证明:BC 1//平面A 1CD , (Ⅱ)求二面角D-A 1C-E 的正弦值4.(2013年全国Ⅰ卷)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =, 601=∠BAA .(Ⅰ)证明C A AB 1⊥;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.5.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,,求三棱锥E-ACD 的体积.6.(2014年全国Ⅰ卷)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.7.(2015年全国Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.8.(2015年全国Ⅰ卷)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.9.(2016年全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到'D EF ∆位置,OD '=(Ⅰ)证明:D H'⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.10.(2016年全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.11.(2016年全国3卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.自我总结:新课标全国卷历年高考例题几何真题(广西多用2卷)1.解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD = 从而BD 2+AD 2= AB 2,故BD⊥AD;又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴射线DB 为y 轴的正半轴,射线DP 为z 轴的正半轴,建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P.(1),(1,0,0)ABPB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n =(x,y,z ),则0⎧⋅=⎪⎨⋅=⎪⎩n AB n PB ,即00x z -+=-= 因此可取n =设平面PBC 的法向量为m ,则0⎧⋅=⎪⎨⋅=⎪⎩m PB m BC 可取m =(0,-1,,cos 7<>==-m,n 故二面角A-PB-C 的余弦值为 . 2.证明(Ⅰ)(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=,同理:1114590A DC CDC ︒︒∠=⇒∠=,得:1,DC DC DC BD DC ⊥⊥⇒⊥又∵11,DC DC DC BD DC ⊥⊥⇒⊥平面1BCD DC BC ⇒⊥. (Ⅱ)(2)11,DC BC CC BC BC ⊥⊥⇒⊥平面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H ,1111111AC B C C O A B =⇒⊥,C 1O ⊥A 1D 1C O ⇒⊥面1ABD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合 ,即1C DO ∠是二面角11C BD A --的平面角 设AC a =,则1C O =111230C D C O C DO ︒==⇒∠= 即二面角11C BD A --的大小为30︒.3.(1)连接1AC ,交1A C 于点F ,连结1,DF BC ,则F 为1AC 的中点,因为D 为AB 的中点,所以DF//1BC ,又因为111FD ACD BC AC D ⊂⊄平面,平面,所以11//BC ACD 平面. (2)由AA 1AC CB AB ===,可设:AB =2a,则1,AA AC CB ===所以AC BC ⊥,又因为ABC-A 1B 1C 1为直三棱柱,所以以点C 为坐标原点,建立空间直角坐标系如图.则C (0,0,0)、)1,0A D ⎫⎪⎪⎝⎭、、,E ⎛⎫⎪ ⎪⎝⎭()122,0,2,,0CA a a CD a ⎛⎫== ⎪⎪⎝⎭,.CE ⎛⎫= ⎪ ⎪⎝⎭设平面1A CD 的法向量为(),,,n x y z =则0n CD ⋅=且10,n CA ⋅=可解得,y x z =-=令1,x =得平面1A CD 的一个法向量为()1,1,1n =--,同理可得平面1A CE 的一个法向量为()2,1,2m =-,则3cos ,n m <>=,所以6sin ,n m <>=所以二面角1D A C E -- 4.【解析】(Ⅰ)取AB 的中点O ,连结OC ,1OA ,B A 1.因为CB CA =,所以AB OC ⊥.由于1AA AB =, 601=∠BAA ,故B AA 1∆为等边三角形,所以AB OA ⊥1.因为O OA OC =1 ,所以⊥AB 面C OA 1.又⊂C A 1平面C OA 1,故C A AB 1⊥. (Ⅱ)由(Ⅰ)知,AB OC ⊥,AB OA ⊥1,又平面⊥ABC 平面11BB AA ,交线为AB ,所以⊥OC 平面11BB AA ,故OA ,OC ,1OA 两两互相垂直.以O 为坐标原点,的方向为x 轴的正方向,||为单位长度,建立如图所示的空间直角坐标系xyz O -,则有)0,0,1(A ,)0,3,0(1A ,)3,0,0(C ,)0,0,1(-B .则)3,0,1(=, )0,3,1(1-==AA BB , )3,3,0(-=.设平面C C BB 11的法向量为),,(z y x =,则有⎪⎩⎪⎨⎧=⋅=⋅01BB ,即⎪⎩⎪⎨⎧=+-=+0303y x z x ,可取)1,1,3(-=.故510||||,cos 111-=⋅>=<C A n C A n C A n ,所以直线C A 1与平面C C BB 11所成角的正弦值为510.5.【解析】(1) 连接BD 交AC 于点为G,连接EG.在三角形PBD 中,中位线EG ∥PB, 且EG 在平面AEC 上,所以PB ∥平面AEC.(2)设CD=m,分别以AD,AB,AP 为x,y,z 轴建立坐标系,则A(0,0,0),D(,0,0),E 12⎫⎪⎪⎝⎭,C(,m,0).所以AD=(,0,0), AE=12⎫⎪⎪⎝⎭,AC=),0m .设平面ADE 的法向量为1n =(x 1,y 1,z 1),则1n AD ⋅=0, 1n AE ⋅=0,解得一个1n =(0,1,0).同理设平面ACE 的法向量为2n =(x 2,y 2,z 2),则2n AC ⋅=0, 2n AE ⋅=0,解得一个2n因为cos 3π=|cos<12,n n >|=1212n n n n⋅==12,解得m=32. 设F 为AD 的中点,则PA ∥EF,且PA=2EF =12,EF ⊥面ACD,即为三棱锥E-ACD 的高. 所以V E-ACD =·S △ACD ·EF=13×12×32×12.所以,三棱锥E-ACD .为坐标原点,方向,||为单位长度,的方向为y 轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,∵∠,,(0,,0) =,,=,=设向量=,可取,)的一个法向量,),>=A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(0,-6,8).=+080z .由∠ABC=120°,可得AG=GC=.由BE ⊥平面ABCD,AB=BC可知AE=EC.又AE ⊥EC,所以EG=,且EG ⊥AC.在Rt △EBG 中,可得BE=,故DF=.在Rt △FDG 中,可得FG=.在直角梯形BDFE 中,由BD=2,BE=,DF=,可得EF=.从而EG 2+FG 2=EF 2,所以EG ⊥FG.,又AC ∩FG=G,可得EG ⊥平面AFC.又因为EG ⊂平面AEC,所以平面AEC ⊥平面AFC. (2)如图,以G 为坐标原点,分别以,的方向为x 轴,y 轴正方向,||为单位长度,建立空间直角坐标系G-xyz.由(1)可得(,)A 00,(,E 10,(,F -10,()C 00, 所以(AE =1,(,CF =-1. 故cos ,||||AE CF AE CF AE CF ⋅<>==-3.所以直线AE 与直线CF所成角的余弦值为3 9.【解析】⑴∵ABEF 为正方形 ∴AF EF ⊥ ∵90AFD ∠=︒ ∴AF DF ⊥∵=DF EF F ∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=︒∵AB EF ∥ AB ⊄平面EFDC EF ⊂平面EFDC ∴AB ∥平面ABCD AB ⊂平面ABCD ∵面ABCD 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建标系,设FD a =()()000020E B a ,,,, ()02202a CA a a ⎛⎫ ⎪ ⎪⎝⎭,,, ()020EB a =,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,()200AB a =-,,设面BEC 法向量为()m x y z =,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩, ()301m =-,,设面ABC 法向量为()222n x y z =,, =00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即222220220a x ay ax ⎧-+=⎪⎨⎪=⎩,()034n=, 设二面角E BC A --的大小为θ.cos 3m nm n θ⋅===+⋅ ∴二面角E BC A --的余弦值为 10.【解析】⑴证明:∵54AE CF ==,∴AE CF AD CD=,∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AE OH OD AO=⋅=,∴3DH D H '==,∴222'OD OH D H '=+, ∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD .⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r ,,,设面'ABD 法向量()1n x y z =,,u r ,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345xy z=⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r ,,,∴1212cos n n n n θ⋅===u r u u r u r u u r∴sin θ=11.设),,(z y x =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM , 即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=, 于是2558|||||,cos |==><AN n .。

《高考真题》三年(2017-2019)高考真题数学(理)分项汇编专题06立体几何(解答题)(原卷版)

《高考真题》三年(2017-2019)高考真题数学(理)分项汇编专题06立体几何(解答题)(原卷版)

专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.2.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.3.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.4.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.5.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.6.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.8.【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.9.【2018年高考全国II 卷理数】如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.10.【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.11.【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.C(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.12.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .13.【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.14.【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.15.【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.16.【2017年高考全国Ⅰ卷理数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.17.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .18.【2017年高考江苏卷】如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.19.【2017年高考山东卷理数】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点. (1)设是上的一点,且,求的大小;ABCD AB 120︒G DF P CE AP BE ⊥CBP ∠(2)当,时,求二面角的大小.20.【2017年高考全国Ⅱ理数】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.21.【2017年高考全国Ⅲ理数】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .3AB =2AD =E AG C --(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.23.【2017年高考北京卷理数】如图,在四棱锥P −ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD,PAB CD E点M 在线段PB 上,PD//平面MAC ,PA =PD ,AB =4.(1)求证:M 为PB 的中点;(2)求二面角B −PD −A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.24.【2017年高考天津卷理数】如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为21,求线段AH 的长.。

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。

近三年高考全国卷理科立体几何真题

近三年高考全国卷理科立体几何真题

新课标卷近三年高考题1、(20XX 年全国I 高考)如图,在以A , B , C, D , E, F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, . AFD =90,且二面角 D - AF - E 与二面角 C - BE- F 都是60 .(I) 证明:平面 ABEF_平面EFDC (II) 求二面角E - BG A 的余弦值. 【解析】 ⑴•/ ABEF 为正方形 ••• AF _ EF I . AFD =90 • AF _ DF■/ DF EF =F• AF _面 EFDC•平面 ABEF _平面EFDC(2)由⑴知.三DFE ECEF =60•/ AB II EFAB 二平面 EFDCEF 平面EFDC• AB II 平面 ABCDAB 二平面 ABCD•/面 ABCD 面 EFDC =CD •四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD 二a设面BEC 法向量为x , ■ 一2a y =0m EB =0 ■. -- ,即 a _m BC =0E 0 , 0 ,0 B 0 , 2a , 0 A 2a , a ,EB =[0 , 2a , 0 ,B#,-2a ,基 a2AB = -2a , 0, 0AF _ 面 ABEF▲I• AB II CD 二 CD II EF -x -2a%=0X i 二m = .3 ,0 , -1设面ABC 法向量为n = x 2, y 2, z 2设二面角E —BC —A 的大小为-.COS T-m n=制 | J 3+1(3+16•••二面角E _B C A 的余弦值为一睜2、(20XX 年全国II 高考)如图,菱形 ABCD 的对角线AC 与BD 交于点O ,5AB=5,AC=6,点 E,F 分别在 AD,CD 上, AE 二 CF ,EF 交 BD 于点 H •将 4DEF 沿EF 折到 D 'EF 位置,OD '」;10 .(I)证明:D H 一平面ABCD ; (U)求二面角B-DA-C 的正弦值.【解析】⑴证明::AE =CF =54• •• EF II AC . •••四边形ABCD 为菱形,• EF _BD ,• EF _DH•/ AC =6,• AO =3 ;又 AB =5,AO_OB ,• OB =4,f — lidn BC=0 n AB =0.即! 2X 2 —2ay 2 +#az 2 =02ax 2 二 0◎二 0, y 2 二.3, Z 2 二 4_ 21919.AE _ CF'AD CDAC _ BD ,• EF D HAE二OH OD =1,二DH =D H =3 , AO2 2 2••• |OD] =|OH| +|D'H|,二D'H 丄OH .又T OH I EF =H , • D'H _面ABCD .⑵建立如图坐标系H _xyz .sin*2 95B 5, 0, 0 ,C 1 , 3, 0 , D' 0, 0 ,3 , A1 , - 3, 0 , urn uuur uuuAB = 4 , 3 , 0 , AD'=—1 , 3 , 3 , AC = 0 ,6 , 0 ,设面ABD '法向量厲=x , y , z ,由m AB=O得4x 3y=°n, AD T -x 3y 3z =0|x = 3 取y - -4 ,iz =5ir• • n i = 3 , —4 , 5 .ui同理可得面AD'C的法向量n =[3 , 0, 1 ,ir urni n2|9+5|A;5n i TUTn25^2*10-25 ,D■253、(20XX年全国III高考)如图,四棱锥P — ABC中,PA丄地面ABCD , AD P BC ,AB = AD = AC = 3 , PA = BC = 4 , M 为线段AD 上一点,AM =2MD,N为PC的中点.(I )证明MN -平面PAB ;(II )求直线AN与平面PMN所成角的正弦试题解折:(I )由已知得曲f »取肿的中点八连接AriN,由.V为PC中点知TNQRG , jy = ^BC = 2-又ADHPC ,故ZV平行且等于AM }四边形AMXT为平行四边形,于是XIXAT.因为AT u平面PAB r MX Z平面PAB r所以MN平面PAB.(11)取丘0的中点£,连结AE r由AB = AC得川从而辺,且AE = J AB 匚 BE: = ^AB1一(竽):=运.以川为坐标原点.AE的方向为兀轴正方向」建立如團所示的空间直角坐标系A-xyz,由题知,円取之卑IT),丽岸丄2).设n =(x, y, z)为平面PMN的法向量,n 二(0,2,1),|n AN| 8、5于是|cos :: n, AN |=|n|| AN | 25 则n PM “ n PN=02x - 4z = 0即5,可取x y _2z = 02^(0.0.4), Af(0.2.0)4、【2015高考新课标2,理19】如图,长方体 ABCD —AB I GD ,中,AB=16 , BC=10 , AA ,=8,点 E , F 分别在AB , CQ 上, AE =UF =4 •过点E , F 的平面a 与此长方体的面相交,交 线围成一个正方形.(I)在图中画出这个正方形(不必说出画法和理由); (U)求直线AF 与平面〉所成角的正弦值.【答案】(I)详见解析;(U) 4 5 .15【解析】(I )交线围成的正方形EHGF 如图:(II )作EM _ AD r 垂足为”,= EM Al =S ,因次EHGF 为正方形,所以EH = EF = BC = 10.于是 '虫=品于_&" =6,所以AH TQ .以D 为坐标原点,刃的方向再耳轴的正方向,建立如图所示的空间直角坐标系D -聊;则型10卫卩7/(1040,0), £(]0:4:8),HOJ.S), ^£ = (10^.0),・设 n=(x,y t z)是平面EHGF 的法向輦,则10<=0;所以可取 ^ = (0JJ).又五二(-10.4. S),故 —6y + Sz=0.线普与平甌所成朋正弦值为誓【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.Di F Cin-AF cos < n.■—--1 jAF【名师点睛】根据线面平行和面面平行的性质画平面:与长方体的面的交线;由 交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法, 但因 其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相 关点,先求出面口的法向量,利用sin 日=cosc n,AF a 求直线AF 与平面c (所成 角的正弦值. 5、【2015高考新课标1,理18】如图,四边形ABCD 为菱形,/ ABC=120°, E ,F 是平面ABCD 同一侧的两点, BE 丄平面 ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄 EC.(I)证明:平面 AEC 丄平面AFC ; (U)求直线AE 与直线CF 所成角的余弦值.【答案】(I)见解析⑴33【解析】试题分析;(I )连接50,设夕连接三G, FG 57-在菱形QCD 中,不妨设L-5=l 易证三G 丄通过计算可证三G 丄FG 根据线面垂直判定定理可知三G 丄平面.夕匕由面面垂頁判定定理知平面辛 面仝G (II )以G 为坐标原总 分别\^GB,GC 的育向为工轴,;,轴正方向,GB 淘单位长匡 建立空间 直甬坐标系 仇二 利用向壘法可求出异面直线上三与CF 所廡甬的余弦值.试题解析’ (I )连接3D,设3D 'AC=G.连接EG, FG, EF,在觌 A3CD 中,不妨设山去1,由二£01二匚 可得MOGO JT由召三丄平面上占CD, .i3=3C R TM I 仝三C 、 又••• AE 丄 EC ,: EG= 3 , EG 丄 AC ,为单位长度,建立空间直角坐标系G-xyz ,由(I)可得A (0,—茨,0), E(1,0,I'_ —二二==J 2), F (—1,0,丄),C (0,站 3 , 0), • AE = (1, P 3 , < 2 ), CF = (-1, 2 -J 3, —2 ).…10 分2在Rt A EBG 中,可得BE= 2 , 故 DF= 2 .2在Rt A FDG 中,可得FG= 62在直角梯形BDFE 中, 由 BD=2, BE= 2 ,DF=22 可得 EF =322,••• EG 2 FG 2 =EF 2 ,••• EG 丄 FG ,••• ACAFG=G ,二 EG 丄平面AFC ,6分(n)如图,以G 为坐标原点,分别以GB,GC 的方向为x 轴,y 轴正方向,|GB|【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推 理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路 1:几何法,先由线 线垂直证明线面垂直,再由线面垂直证明面面垂直;思路 2:利用向量法,通过 计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所 成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就 是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出 异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角6 [2014新课标全国卷U ]如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形, FA 丄平面ABCD ,E 为PD 的中点.(1) 证明:PB //平面AEC ;(2) 设二面角D-AE-C 为60°,AP = 1, AD = 3,求三棱锥 E-ACD 的体积.解:(1)证明:连接BD 交AC 于点0,连接EO.因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO / PB. 因为EO?平面AEC ,PB?平面AEC , 所以PB //平面AEC.(2)因为PA 丄平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直. 如图,以A 为坐标原点,AB ,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向, |AP|为单位长,建立空间直角坐标系 A-xyz ,则D (0,也,0),E 0, 豎,2,產故COS :::丿 ____ MM* A _____________ -------------------------------------- ----------- ---------------|AE||CF 「3所以直线AE 与CF 所成的角的余弦值为 3 .12分设 B(m , 0, 0)(m>0),则 C(m , 3, 0), AC= (m , , 3, 0). 设n i = (x , y , z)为平面ACE 的法向量,n i • AC = 0, mx + 向二0, 则 一 即_j in i • Afe = 0, . 2 y + 2z = 0, 又n 2= (1, 0, 0)为平面DAE 的法向量,1由题设易知|cos 〈n i , n 2〉| = 2,即3解得m =》7、[2014新课标全国卷I ]如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB 丄B 1C.图1-5(1)证明:AC = AB 1;⑵若 AC 丄AB 1, / CBB 1 = 60°, AB = BC ,求二面角 A -A 1B 1 -C 1 的余弦值. 解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱 形,所以BQ 丄BC 1,且O 为B 1C 及BC 1的中点.又AB 丄B 1C ,所以B 1C 丄平面ABO.由于AO?平面ABO , 故 B 1C 丄AO.又 B 〔O = CO ,故 AC = AB 1.(2)因为AC 丄AB 1,且O 为B 1C 的中点,所以AO = CO.因为E 为PD 的中点,所以三棱锥 1E-ACD 的高为㊁•三棱锥E-ACD 的体积VD可取n i =-1,又因为AB= BC,所以△ BOA也△ BOC.故OA丄OB,从而OA, OB, OB1 两两垂直.以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系0- xyz. 因为/ CBB i A0,。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)

2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)1.(2021年高考全国甲卷理科)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上地点.11BF A B ⊥(1)证明:BF DE ⊥。

(2)当1B D 为何值时,面11BB C C 与面DFE 所成地二面角地正弦值最小?2.(2021年高考全国乙卷理科)如图,四棱锥P ABCD -地底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 地中点,且PB AM ⊥.(1)求BC 。

(2)求二面角A PM B --地正弦值.3.(2020年高考数学课标Ⅰ卷理科)如图,D 为圆锥地顶点,O 是圆锥底面地圆心,AE 为底面直径,AE AD =.ABC 是底面地内接正三角形,P 为DO 上一点,PO =.的(1)证明:PA ⊥平面PBC 。

(2)求二面角B PC E --地余弦值.4.(2020年高考数学课标Ⅱ卷理科)如图,已知三棱柱ABC -A 1B 1C 1地底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1地中点,P 为AM 上一点,过B 1C 1和P 地平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F 。

(2)设O 为△A 1B 1C 1地中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角地正弦值.5.(2020年高考数学课标Ⅲ卷理科)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内。

(2)若2AB =,1AD =,13AA =,求二面角1A EF A --地正弦值.6.(2019年高考数学课标Ⅲ卷理科)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成地一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中地A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE 。

历年全国理科数学高考试题立体几何部分(含答案)

历年全国理科数学高考试题立体几何部分(含答案)

1. 在一个几何体的三视图中,正视图和俯视图女口右图所示,则相应的俯视图可以为2. 已知矩形ABCD的顶点都在半径为4的球0的球面上,且AB 6,BC 2・.3,则棱锥O ABCD的体积为____________ 。

3. 如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB=60,AB=2AD,PDL底面ABCD.(I )证明:PA! BD;(H )若PD=AD,求二面角A-PB-C的余弦值71.D2.8.33.解:(I)因为 DAB 60 ,AB 2AD ,由余弦定理得BD , 3AD 从而 BD 2+AD 2= AB 2,故 BD AD 又PD 底面ABCD,可得BD PD 所以BD 平面PAD.故PA BD(H)如图,以D 为坐标原点,AD 的长为单位长,射线 DA 为X 轴的正半轴建立空间直角坐标系D-xyz ,则A 1,0,0 ,B 0,301,.'3,0 , P 0,0,1。

uuu m PB 0, uuu m BC 0,uuv - uuvAB ( 1, 3,0), PB(0, ■ 3,uuv1),BC ( 1,0,0)设平面PAB 的法向量为 n= (x , y , z ),则{: uuu ABuu u PB0, 0,即因此可取n=(,3,1, 3)可取 m= (0, -1, .3)cos m, n4 2.72.7 7故二面角A-PB-C 的余弦值为2.7设平面PBC 的法向量为 m ,则1.正方体ABCD-A BQD !中,B B l 与平面AC D i 所成角的余弦值为A -2B -2C 2D _63 3 3 3uuv uuv2.已知圆0的半径为1, PA 、PB 为该圆的两条切线,A B 为俩切点,那么 PA?PB 的最小值为(A)4 2(B)3 2 (C)4 2 2 (D)3 2、22的球面上有 A 、B 、C D 四点,若AB=CD=2则四面体ABCD 勺体积的最大值为4.如图,四棱锥 S-ABCD 中, SD 底面 ABCD AB//DC , AD DC=SD=2 E 为棱SB 上的一点,平面 EDC 平面SBC .(I)证明:SE=2EB(n)求二面角 A-DE-C 的大小.(A )223(B)2,3(D)8.3 33.已知在半径为 DC AB=AD=11. D2. D3. B4.解法一:(I )连接BD,取DC 的中点G,连接BG,由此知 DG GC BG 1,即 ABC 为直角三角形,故 BC BD .又SD 平面 ABCD,故 BC SD , 所以, BC 平面 BDS,BC DE . 作BKEC,K 为垂足,因平面 EDC 平面SBC ,故BK 平面EDC , BK DE,DE 与平面SBC 内的两条相交直线 BK BC 都垂直 DE !平面 SBC DEL EC,DE ± SB故ADE 为等腰三角形..SD 2 DB 2SDgDB 2 SB3.DB 2- DE 2SE=2EBSD 2 AD 2SB DEEB所以, .6 (,SE SB-EB32EB,AB SA,知1,又 AD=1取ED 中点F,连接AF ,则AFDE,AF 「AD 2 DF 2 f所以,AFG是二面角A DE C的平面角连接FG,则FG //EC, FG DE . 连接AG,AG=、2, FG DG"DF2寸,cos AFG AF2 FG2 AG2 2gAF gFG解法以D 为坐标原点,射线 DA 为x 轴的正半轴,建立如图所示的直角坐标系 D xyz ,故 SE=2EB2 2 2 1 1 1 uur 2 11(□)由(【)知 E(—,,),取 DE 的中点 F ,则 F(-,, ), FA (一,,3 3 3 3 3 3 3 3 3uuu uuir故FAgDE 0,由此得FA DEuuu 2 4 2 uuu uuu又 EC (,,),故 ECgDE 0,由此得 EC DE ,3 3 3uuu uuu向量FA 与EC 的夹角等于二面角 A DE C 的平面角uur uuu… ,出u uu 、 FA (EC 1 于是cos(FA, EC) ULU ^Eiuu -|FA||EC| 2设 A(1,0,0),贝U B(1,1,0),C(0,2,0),S(0,0,2)uur uuu (I) SC (0,2,-2), BC (-1,1,0)设平面SBC 的法向量为n=(a, b, c)uur uuu uuu uuu 由 n SC, n BC ,得 ngSC 0, ngBC故 2b-2c=0,-a+b=0 uir uuu 又设SEEB (0),则2 、E(— J .J .)1 1 1uuu2 uurDE (1‘1,1 -),DC (0,2,0)设平面 CDE 的法向量m=(x,y,z)由mDE,mDC,得m DE 0 , mDC 0故x y2z 0,2y 0111令x 2 ,则m (2,0,).令 a=1,贝U由平面 DECL 平面 SBC 得 ml n, mgn 0,2 0,2)1. 已知三棱柱 ABC A \B i C i 的侧棱与底面边长都相等,A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与CC !所成的角的余弦值为(面积等于 _______________ 。

近年高考理科立体几何大题汇编.docx

近年高考理科立体几何大题汇编.docx

近几年高考理科立体几何大题汇编1.(2018 年 III 卷)如图,边长为 2 的正方形ABCD 所在的平面与半圆弧M 是CD 所在平面垂直,CD 上异于 C ,D的点.(1)证明:平面 AMD ⊥平面BMC;(2)当三棱锥M ABC体积最大时,求面 MAB 与面MCD所成二面角的正弦值.2、[2014 ·新课标全国卷Ⅱ ] 四棱锥 P-ABCD 中,底面ABCD 为矩形, PA⊥平面 ABCD, E 为 PD 的中点.(1)证明: PB∥平面 AEC;(2)设二面角 D-AE-C 为 60°, AP=1, AD= 3,求三棱锥 E-ACD 的体积.13.( 2017? 新课标Ⅰ卷)如图,在四棱锥 P﹣ ABCD 中, AB∥CD,且∠BAP= ∠CDP=90°.(1)证明:平面 PAB⊥平面 PAD;(2)若 PA=PD=AB=DC ,∠APD=90°,求二面角 A﹣ PB﹣C 的余弦值.4.(菱形建系) [2014 新·课标全国卷Ⅰ ] 如图三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1 C.(1)证明: AC= AB1;(2)若 AC⊥AB1,∠ CBB1= 60°, AB= BC,求二面角 A -A1B1 - C1的余弦值.25.(菱形建系)【 2015 高考新课标 1】如图,四边形 ABCD 为菱形,∠ ABC=120 °,E,F 是平面 ABCD 同一侧的两点, BE⊥平面 ABCD, DF⊥平面 ABCD,BE=2 DF,AE⊥EC. (Ⅰ)证明:平面 AEC⊥平面 AFC;(Ⅱ)求直线 AE 与直线 CF 所成角的余弦值 .6.(翻折) (2018 年 I 卷 )如图,四边形ABCD为正方形,E, F分别为AD , BC的中点,以DF 为折痕把△ DFC 折起,使点 C 到达点 P 的位置,且 PF BF .( 1)证明:平面 PEF 平面 ABFD ;( 2)求 DP 与平面 ABFD 所成角的正弦值.37.(翻折)(2016 年全国 II 高考)如图,菱形ABCD 的对角线 AC 与 BD 交于点 O ,AB 5, AC 6 ,点 E, F 分别在 AD , CD 上, AE CF 5,EF交BD于点H.将4DEF 沿 EF 折到D' EF 位置,OD10 .(Ⅰ)证明: D H平面ABCD;(Ⅱ)求二面角 B D A C 的正弦值.8. (动点问题)( 2018 年 II 卷)如图,在三棱锥P ABC中,AB BC 2 2,PA PB PC AC 4,O为AC的中点.P( 1)证明:PO平面 ABC ;( 2)若点 M 在棱BC上,且二面角M PA C 为 30,求 PC 与平面PAM所成角的正弦值.AOCMB4近几年高考理科立体几何大题汇编1.(2018 年 III 卷)如图,边长为 2 的正方形ABCD 所在的平面与半圆弧M 是CD 所在平面垂直,CD 上异于 C ,D的点.( 1)证明:平面AMD ⊥平面BMC;( 2)当三棱锥M ABC 体积最大时,求面MAB 与面MCD所成二面角的正弦值.1.解:( 1)由题设知 ,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以 BC⊥平面 CMD,故 BC⊥ DM.因为 M 为 CD 上异于 C, D 的点,且 DC为直径,所以DM⊥ CM.又BC I CM= C,所以 DM⊥平面 BMC.而DM 平面 AMD,故平面 AMD⊥平面 BMC.uuur(2)以D为坐标原点 , DA的方向为x轴正方向 ,建立如图所示的空间直角坐标系D- xyz.当三棱锥 M- ABC体积最大时, M 为 CD 的中点.由题设得 D (0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), M (0,1,1) ,uuuur uuur uuurAM ( 2,1,1), AB (0, 2,0), DA(2,0,0)设 n ( x, y, z) 是平面 MAB 的法向量,则5n uuuur0,2x y z 0, AMn uuur0.即0. AB 2 y可取 n(1,0,2) .uuurDA 是平面 MCD 的法向量,因此uuuruuur5 n DAcos n, DA uuur,| n || DA |5sinuuur 2 5 n, DA,5所以面 MAB与面 MCD所成二面角的正弦值是2 5 .52、[2014 ·新课标全国卷Ⅱ ] 如图 1-3,四棱锥 P-ABCD 中,底面 ABCD 为矩形, PA⊥平面 ABCD,E 为 PD 的中点.(1)证明: PB∥平面 AEC;(2)设二面角 D-AE-C 为 60°, AP=1,AD=3,求三棱锥 E-ACD 的体积.图 1-32,解: (1)证明:连接 BD 交 AC 于点 O,连接 EO.因为 ABCD 为矩形,所以 O 为 BD 的中点.又E 为 PD 的中点,所以 EO∥ PB.因为 EO? 平面 AEC, PB?平面 AEC,所以 PB∥平面 AEC.(2)因为 PA⊥平面 ABCD,ABCD 为矩形,所以 AB,AD,AP 两两垂直.→→如图,以 A 为坐标原点, AB, AD, AP 的方向为 x 轴、 y 轴、 z 轴的正方向, |AP|D (0,31→为单位长,建立空间直角坐标系A-xyz,则3,0), E 0,2,2, AE =310,2,2 .6→3,0).设 B(m ,0,0)(m>0),则 C(m , 3,0),AC =(m ,设 n 1= ,, z) 为平面 ACE 的法向量,(x yn 1 →mx + 3y =0,·AC =0,即 3则→11=0, y + z = 0,22n ·AE可取 n 1= m 3,- 1, 3 .又 n 2=(1, 0,0)为平面 DAE 的法向量,1由题设易知 |cos 〈n 1,n 2〉|=2,即3 1 3 .2= ,解得 m = 3+4m 2 2因为 E 为 PD 的中点,所以三棱锥 E-ACD 的高为1三棱锥E-ACD 的体积V =1×2.31 3 1 3 2× 3×2×2= 8 .3. ( 2017? 新课标Ⅰ卷)如图,在四棱锥 P ﹣ ABCD 中,AB ∥CD ,且∠BAP= ∠CDP=90°.(1) 证明:平面 PAB ⊥平面 PAD ;(2) 若 PA=PD=AB=DC ,∠APD=90°,求二面角 A ﹣ PB ﹣C的余弦值.3. 【答案】 ( 1 )证明:∵∠ BAP=∠ CDP=90°,∴ PA ⊥ AB , PD ⊥ CD , ∵ AB ∥ CD ,∴ AB ⊥ PD , 又 ∵ PA ∩PD=P , 且 PA ?平 面 PAD ,PD ? 平 面PAD, ∴ AB⊥ 平面PAD ,又 AB ?平 面PAB, ∴平面PAB⊥平面PAD;( 2)解:∵ AB ∥ CD , AB=CD ,∴四边形 ABCD 为平行四边形, 由( 1)知 AB ⊥平面 PAD ,∴ AB ⊥AD, 则 四 边 形ABCD为矩形,7在△ APD中,由PA=PD,∠ APD=90°,可得△ PAD为等腰直角三角形,设PA=AB=2a,则取AD 中点 O, BC 中点以O 为坐标原点,分别以AD=.E ,连接PO、 OE,OA、 OE、 OP 所在直线为x 、 y、 z轴建立空间直角坐标系,则: D (),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1 ,得.∵AB ⊥平面PAD ,AD ?平面PAD ,∴AB ⊥AD ,又PD⊥PA,PA∩AB=A,∴ PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.(菱形建系) [2014 新·课标全国卷Ⅰ ] 如图三棱柱 ABC - A1B1C1中,侧面 BB1C1C 为菱形, AB⊥B1 C.(1)证明: AC= AB1;(2)若 AC⊥ AB1,∠ CBB1=60°, AB=BC,求二面角 A -A1B1 - C1的余弦值.4 解: (1)证明:连接 BC1,交 B1C 于点 O,连接 AO,因为侧面 BB1C1 C 为菱形,所以 B1C⊥ BC1,且 O 为 B1C 及 BC1的中点.又AB⊥ B1C,所以 B1C⊥平面 ABO.8由于 AO? 平面 ABO ,故 B 1C ⊥AO. 又 B 1O =CO ,故 AC =AB 1 .(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO.又因为 AB =BC ,所以△ BOA ≌ △BOC.故 OA ⊥OB ,从而 OA , OB ,OB 1 两两垂直.以 O 为坐标原点, OB 的方向为 x 轴正方向, |OB|为单位长,建立如图所示的空间直角坐标系 O- xyz.因为∠ CBB 1=60°,所以△ CBB 1 为等边三角形,又AB = BC ,则 A 0 , , 3 ,3B(1, 0, 0),B 1 , 3, 0 ,C ,-3, 0.0 3 0 3→33→, ,- 3 ,AB 1= ,,-,A 1 B 1=AB =331 03→3,0 .B 1C 1=BC = - 1,- 3设 n = (x ,y ,z)是平面 AA 1 1 的法向量,则B3 3n ·AB =0,3 y - 3 z = 0,1所以可取 n =(1,3, 3).→即30 n ·A B x - 3 z =0.设 m 是平面 A 11 1 的法向量,B C→则 m ·A 1B 1=0,同理可取 m =(1,- 3, 3).→ 1=0,1m ·B C则 cos 〈 n , m 〉= n ·m 1|n||m|= 7.1所以结合图形知二面角 A -A1B1 - C1的余弦值为7.5.(菱形建系)【 2015 高考新课标 1】如图,四边形 ABCD为菱形,∠ ABC=120 °,E,F 是平面 ABCD 同一侧的两点, BE⊥平面 ABCD, DF⊥平面 ABCD,BE=2 DF,AE⊥EC.(Ⅰ)证明:平面 AEC⊥平面 AFC;(Ⅱ)求直线 AE 与直线 CF 所成角的余弦值 .5.,【答案】(Ⅰ )见解析(Ⅱ )33又∵AE⊥EC,∴EG= 3 ,EG⊥ AC,在 Rt△ EBG中,可得 BE= 2 ,故 DF= 2 .2在Rt△ FDG 中,可得 FG= 6 .2在直角梯形 BDFE 中,由 BD=2 , BE= 2 , DF=2可得 EF=3 2 ,22∴ EG 2FG 2EF 2,∴EG⊥FG,∵ AC∩ FG=G,∴ EG⊥平面 AFC,10∵ EG 面 AEC ,∴平面 AFC ⊥ 平面 AEC⋯⋯6分.uuur uuuruuur( Ⅱ)如 ,以 G 坐 原点,分 以GB ,GC 的方向 x , y 正方向, | GB|位 度,建立空 直角坐 系G-xyz ,由( Ⅰ )可得 A (0,- 3 , 0), E(1,0,2 ) , F (- 1,0 , 2), ( , 3 , ), ∴ uuur = ( 1,3 , uuur2 ), CF = ( -1 ,2C 0 0 AE2 )- 3 ,.⋯ 分210uuur uuuruuur uuur3 故 cosAE ?CFAE ,CFuuuruuur.| AE ||CF |3所以直 AE 与 CF 所成的角的余弦3 . 分 ⋯⋯ 1236. (翻折) (2018 年 I 卷 )如图,四边形 ABCD 为正方形, E, F 分别为 AD , BC 的中点,以DF 为折痕把 △ DFC 折起,使点 C 到达点 P 的位置,且 PFBF .( 1)证明:平面 PEF平面 ABFD ;( 2)求 DP 与平面 ABFD 所成角的正弦值 .6. 解:( 1)由已知可得, BF ⊥ PF , BF ⊥ EF ,所以 BF ⊥平面 PEF .又 BF 平面 ABFD ,所以平面 PEF ⊥平面 ABFD .11(2)作 PH ⊥EF ,垂足为 H .由( 1)得, PH ⊥平面 ABFD .uuuruuur以 H 为坐标原点, HF 的方向为 y 轴正方向, | BF | 为单位长,建立如图所示的空间直角坐标系 H - xyz .由( 1)可得, DE ⊥ PE .又 DP =2 , DE =1 ,所以 PE = 3 .又 PF =1 ,EF =2 ,故 PE ⊥PF .可得 PH3 3, EH.22则 H (0,0,0), P(0,0,3), D ( 1, 3 uuur (1, 3 , 3 ), uuur3) 为平面 ABFD 的,0), DP HP (0,0,2 2 2 22法向量 .uuur uuur 设 DP 与平面 ABFD 所成角为HP DP,则 sin | uuur uuur || HP | | DP |343.34所以 DP 与平面 ABFD 所成角的正弦值为3 .4(翻折)( 2016 年全国 II 高考)如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O ,7.AB 5, AC6 ,点 E, F 分别在 AD , CD 上, AE CF5, EF 交 BD 于点 H .将4DEF 沿 EF 折到 D ' E F 位置, OD10 . (Ⅰ)证明: D H 平面 ABCD ;(Ⅱ)求二面角 B D A C 的正弦值.7.【解析】⑴证明:∵AE CF5,∴AE CF,4AD CD∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴12AC BD ,∴ EF BD ,∴ EFDH ,∴ EF D H .∵ AC 6 ,∴ AO 3;又 AB 5, AO OB ,∴ OB 4 , ∴ OHAEOD 1 , ∴ DH D H 3 , ∴ OD 2OH 2D ' H 2, ∴AOD ' H OH .又∵ OH I EFH ,∴ D 'H面 ABCD .⑵建立如图坐标系 H xyz .B 5,0,0 ,C 1,3,0 ,D ' 0,0,3 , A 1, 3,0 ,uuuruuur 1 ,3,3, ,, AD ',AB 4 3 0ur设面 ABD ' 法向量 n 1x ,y ,z ,uuurAC0 ,6 ,0 ,uur uuur4x 3 y 0x 3n 1 AB 0,取 yur3,,.由 uuruuuur得4 ,∴ n 14 5 n 1 ADx3 y 3z 0z 5uur同理可得面 AD 'C 的法向量 n 23,0 ,1 ,ur uur∴ cosn 1 n 2 9 5 7 5,∴ sin2 95 .ur uurn 1 n 2 5 2 1025258. (动点问题)( 2018 年 II 卷)如图,在三棱锥P ABC 中, AB BC 2 2 ,PA PB PCAC 4 , O 为 AC 的中点.13( 1)证明:PO平面ABC;( 2)若点 M 在棱BC上,且二面角M PA C 为 30 ,求 PC 与平面PAM所成角的正弦值.解:( 1)因为AP CP AC 4 , O 为 AC 的中点,所以 OP AC ,且OP2 3 .连结 OB .因为AB BC2AC ,所以△ABC为等腰直角三角形,2且 OB AC ,OB 1AC2. 2由 OP2OB2PB 2知PO OB .由 OP OB , OP AC 知PO平面 ABC .uuurO xyz .(2)如图,以O为坐标原点,OB的方向为x轴正方向,建立空间直角坐标系uuur由已知得 O(0,0,0), B(2,0,0), A(0, 2,0), C(0,2,0), P(0,0,23), AP (0,2,2 3), 取平面 uuur PAC 的法向量 OB(2,0,0) .uuur设 M (a,2 a,0)(0a2),则 AM (a,4 a,0) .设平面 PAM 的法向量为n(x, y, z) .14uuur uuur n 0 得 2y2 3z0 ,可取 n (3( a4), 3a, a) ,由 AP n 0, AMax (4a) y 0所以 cos uuur2 3( a 4).由已知得 | cos uuur| 3 . OB, na 2 OB, n2 3(a 4) 2 3a 22 所以2 3 | a 4| a 2 =3.解得 a 4 (舍去), a4 . 2 3(a 4) 2 3a 2 23所以 n(83 ,4 3 ,uuur (0,2, 2 3) ,所以 cos uuur3 . 4) .又 PCPC, n3334所以 PC 与平面 PAM 所成角的正弦值为3 .415。

近三年高考全国卷理科立体几何真题(2021年整理)

近三年高考全国卷理科立体几何真题(2021年整理)

近三年高考全国卷理科立体几何真题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(近三年高考全国卷理科立体几何真题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为近三年高考全国卷理科立体几何真题(word版可编辑修改)的全部内容。

新课标卷高考真题1、(2016年全国I高考)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90∠=,且二面角D AF E与二面角C BE FAFD都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E BC A的余弦值.2、(2016年全国II高考)如图,菱形ABCD的对角线AC与BD交于点O,5,6AB AC==,点,E F分别在,AD CD上,54AE CF==,EF交BD于点H.将DEF∆沿EF折到'D EF∆位置,10OD'=.(Ⅰ)证明:D H'⊥平面ABCD;(Ⅱ)求二面角B D A C'--的正弦值.3【2015高考新课标1,理18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1。

3,四棱锥P。

ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D­AE。

(完整版)近三年高考全国卷理科立体几何真题(可编辑修改word版)

(完整版)近三年高考全国卷理科立体几何真题(可编辑修改word版)

新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD = 90 ,且二面角D -AF -E 与二面角C -BE - F 都是60 .(I)证明:平面ABEF ⊥平面EFDC;(II)求二面角E - BC - A 的余弦值.10 2、( 2016 年全国 II 高考) 如图, 菱形 ABCD 的对角线 AC 与 BD 交于点 O ,AB = 5, AC = 6 , 点 E , F 分别在 AD , CD 上, AE = CF = 5 , EF 交 BD 于点 H4.将∆DEF 沿 EF 折到∆D 'EF 位置, OD ' = .(Ⅰ)证明: D 'H ⊥ 平面 ABCD ;(Ⅱ)求二面角 B - D 'A - C 的正弦值.3【2015 高考新课标 1,理 18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD= 3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1­C1的余弦值.6、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M﹣AB﹣D 的余弦值.7(、2017•新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.8、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.m n ⋅ -4 3 + 1 ⋅ 3 + 16 m 1 1 1 m 1【解析】⑴ ∵ ABEF 为正方形∴ AF ⊥ EF ∵ ∠AFD = 90︒∴ AF ⊥ DF ∵ D F EF =F∴ AF ⊥ 面 EFDC AF ⊥ 面 ABEF∴平面 ABEF ⊥ 平面 EFDC⑵ 由⑴知∠DFE = ∠CEF = 60︒∵ AB ∥ EF AB ⊄ 平面 EFDCEF ⊂ 平面 EFDC ∴ AB ∥平面 ABCDAB ⊂ 平面 ABCD∵面 ABCD 面 EFDC = CD∴ AB ∥CD ,∴ CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点, 如图建立坐标系,FD = aE (0 ,0 ,0)B (0 ,2a ,0)C ⎛ a ,0 , 3 a ⎫ A (2a ,2a ,0)2 2 ⎪ ⎝ ⎭ ⎛ a3 ⎫EB = (0 ,2a ,0) , BC = 2 ,- 2a , 2 a ⎪ , AB = (-2a ,0 ,0)⎝ ⎭设面 BEC 法向量为= ( x ,y ,z ) . ⎧ ⎧2a ⋅ y 1 = 0 ⎪m ⋅ EB = 0 ,即⎪ ⎨ ⋅ = 0 ⎨ a ⋅ x - 2ay + 3 a ⋅ z = 0 ⎪⎩m BC ⎪⎩ 2 1 1 2 1x = 3 ,y = 0 ,z = -1 = ( 3 ,0 ,- 1)设面 ABC 法向量为 = ( x ,y ,z ) ⎧ n 2 2 2 ⎧ a ⎪n ⋅ BC =0 .即⎪ x 2 - 2ay 2 + az 2 = 0 x = 0 ,y = 3 ,z = 4 ⎨ ⎨ 2 22 2 2⎪⎩n ⋅ AB = 0⎪⎩2ax 2 = 0 n = (0 , 3 ,4)设二面角 E - BC - A 的大小为. cos =∴二面角 E - BC - A 的余弦值为-2 19 19 m ⋅ n = = - 2 19 19 3u r u u r n 1 ⋅ n 2 u r u u r n 1 n 2 7 5 2 95 ⋅ ' ⎩ ⎩ 2【解析】⑴证明:∵ AE = CF = 5 ,∴AE = CF , 4 AD CD∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴ AC ⊥ BD , ∴ EF ⊥ BD ,∴ EF ⊥ DH ,∴ EF ⊥ D 'H .∵ AC = 6 ,∴ AO = 3 ;又 AB = 5 , AO ⊥ OB ,∴ OB = 4 , ∴ O H = AE⋅ OD = 1 ,∴ D H = D 'H = 3 ,∴ OD ' 2 = O H 2 + D ' H 2 ,∴ D ' H ⊥ O H AO .又∵ OH I EF = H ,∴ D ' H ⊥ 面 ABCD .⑵建立如图坐标系 H - xyz .B (5 , 0 , 0) ,C (1, 3,0) , D '(0 , 0 , 3) , A (1, - 3, 0) ,AB = (4 , 3, 0) , AD ' = (-1, 3,3) , AC = (0 , 6 , 0) ,设面 ABD ' 法向量n 1 = ( x ,y ,z ) ,⎧ ⎧x = 3 由⎪n 1 ⋅ AB = 0 得⎧4x + 3y = 0 ,取⎪ y = -4 ,∴ n = (3, - 4 , 5) . ⎨ ⎪⎩n 1 A D = 0 ⎨-x + 3y + 3z = 0 ⎨ 1 ⎪z = 5同理可得面 AD 'C 的法向量n 2 = (3, 0 , 1) ,∴ cos= = = ,∴ s in = . 25 253,【答案】(Ⅰ)见解析(Ⅱ) 339 + 5 5 2 ⋅ 103 2 2 32 GB , G C又∵AE ⊥EC ,∴EG = ,EG ⊥AC , 在 Rt △EBG 中,可得 BE = ,故 DF =2 .2在 Rt △FDG 中,可得 FG =6 .2在直角梯形 BDFE 中,由 BD =2,BE = ,DF = 2可得 EF = 3 2, 2 2 ∴ EG 2 + FG 2 = EF 2 ,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面 AFC , ∵EG ⊂ 面 AEC ,∴平面 AFC ⊥平面 AEC .……6 分(Ⅱ)如图,以 G 为坐标原点,分别以 的方向为 x 轴,y 轴正方向,| GB |为单位长度,建立空间直角坐标系 G-xyz ,由(Ⅰ)可得 A (0,- ,0),E (1,0,),F (-1,0, ),C (0, ,0),∴ AE =(1, , ), C F =(-1,- 2 , 2 ).…10 分 23 2 3 2 33 3 3 33 AE ,C F >= •1AP |为单位长,建立空间直角坐标系 A -xyz ,则 D (0, 3,0),E 0, 2 , 2,AE = 0 2 , 2 = - { 即 故cos < AE CF 3 . | AE || C F | 3 所以直线 AE 与 CF 所成的角的余弦值为3 .……12 分3 4,解:(1)证明:连接 BD 交 AC 于点 O ,连接 EO .因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO ∥PB .因为 EO ⊂平面 AEC ,PB ⊄平面 AEC ,所以 PB ∥平面 AEC . (2)因为 PA ⊥平面 ABCD ,ABCD 为矩形, 所以 AB ,AD ,AP 两两垂直.如图,以 A→ AD ,AP 的方向为 x 轴、y 轴、z 轴的正方向,| 为坐标原点,AB , →( 1)→ (, 1).设 B (m ,0,0)(m >0),则 C (m ,3,0) →(m ,3,0).,AC = 设 n 1=(x ,y ,z )为平面 ACE 的法向量,→ n 1·AC =0,则 → ) {m x + 3y =0,)n 1·AE =0, 2 y + z =0,可取 n 1=(2,-1, ).又 n 2=(1,0,0)为平面 DAE 的法向量,1由题设易知|cos 〈n 1,n 2〉|= ,即2 13 = ,解得 m = .22 1因为 E 为 PD 的中点,所以三棱锥 E -ACD 的高为 .三棱锥 E -ACD 的体积 V =21 1 3 1 × × 3× × = . 3 22 2 83m 3 3+4m 233 3 3 3 1(( )B 1C 1=BC = -1,- 3,0 . {{335 解:(1)证明:连接 BC 1,交 B 1C 于点 O ,连接 AO ,因为侧面 BB 1C 1C 为菱形,所以 B 1C ⊥BC 1,且 O 为 B 1C 及 BC 1 的中点.又 AB ⊥B 1C ,所以 B 1C ⊥平面 ABO . 由于 AO ⊂平面 ABO ,故 B 1C ⊥AO . 又 B 1O =CO ,故 AC =AB 1.(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO .又因为 AB =BC ,所以△BOA ≌ △BOC .故 OA ⊥OB ,从而 OA ,OB ,OB 1 两两垂直.以 O 为坐标原点,OB 的方向为 x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系 O ­ xyz .(3)因为∠CBB 1=60°,所以△CBB 1 为等边三角形,又 AB =BC ,则 A 0,0, 3 ,B (1,0,0),B (0, 3,0),C (0,- 3,0).→ AB 1= 0, 3 ,- 3)3 → 3 ,A 1B 1=AB =1,0,- , 3 3 3→ ( )设 n =(x ,y ,z )是平面 AA 1B 1 的法向量,则n ·AB 1=0,3 y - z =0,)→n ·A 1B 1=0,)即所以可取 n =(1,3, 3).x - z =0.{设m 是平面A1B1C1的法向量,→m·A1B1=0,则→m·B1C1=0,)同理可取m=(1,-3, 3).n·m 1则cos〈n,m〉==.|n||m| 71所以结合图形知二面角 A -A1B1­ C1的余弦值为.76、【答案】(Ⅰ)证明:取PA 的中点F,连接EF,BF,因为E 是PD 的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,∴BCEF 是平行四边形,可得CE∥BF,BF⊂平面PAB,CF✪平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM 与底面ABCD 所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接MQ,所以∠MQN 就是二面角M﹣AB﹣D 的平面角,MQ== ,二面角M﹣AB﹣D 的余弦值为: = .7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接BO,OD.∵△ABC 是等边三角形,∴OB⊥AC.△ABD 与△CBD 中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2 .∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D,h E.则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴ = = =1.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= =.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.。

近三年高考全卷理科立体几何真题

近三年高考全卷理科立体几何真题

设面BEC 法向量为m x , y , z .IT uur2am EB 0 即IT uura3m BC 0X 2ay i■—a z 022X i3, y 0, z1新课标卷近三年高考题1、(2016年全国I 高考)如图,在以A , B , C, D , E, F 为顶点的五面体中,面 ABEF 为正方形,AF=2FD, AFD 90°,且二面角 D - AF - E 与二面角 C - BE- F都是60° . (I) 证明:平面 ABEF 平面EFDC (II) 求二面角E - BG A 的余弦值. 【解析】 ⑴ •/ ABEF 为正方形 ••• AF EF •/ AFD 90 • AF DF •/ DF I EF=F• AF 面 EFDC•平面 ABEF 平面 EFDC⑵由⑴知 DFECEF 60•/ AB II EFAF 面 ABEFAB 平面EFDC EF 平面EFDC• AB II 平面 ABCDAB 平面ABCD•/面 ABCD I 面 EFDC CD•- AB II CD •- CD II EFJ•四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD aB 0 , 2a , 0A 2a , 2a , 0uur muiEB 0, 2a , 0 , BC2a,子uu u AB2a , 0 , 0m 3, o, i设面ABC法向量为n x2, y2, z2面角E BC A的余弦值为2空192、(2016年全国II高考)如图,菱形ABCD的对角线AC与BD交于点O ,5AB 5, AC 6,点E,F 分别在AD,CD 上, AE CF ,EF 交BD 于点H .将4 DEF 沿EF 折到D'EF 位置,OD .10 .(I)证明:D H 平面ABCD ;(U)求二面角B D A C的正弦值.• •• EF II AC .• EF BD,• EF DH ,• EF D H .•/ AC 6,• AO 3;又AB 5,AO OB,• OB 4,uuu —X22ax22ay2-2az22 X2 0, y2 3, Z2 4BC A的大小为4.厂.3 162.1919【解析】⑴证明:••• AE CFAE CF ADCD,•••四边形ABCD为菱形, • AC BD,nrnBC=°即AB 0设二面角Ecosur rm n54AE二OH OD 1 ,••• DH D H 3 ,AO2 2 2• |OD 2 |OH| |D'H| , • D'H OH .又T OH I EF H , • D'H 面ABCD .⑵建立如图坐标系H xyz .B 5 , 0 , 0 ,C 1 , 3 , 0 , D' 0 ,uuu uuurAB 4 , 3, 0 , AD'uuu,AC 设面ABD'法向量niu舟n1由iuuuiABUUUTAD0得4X0 x3y3y3zir同理可得面AD'C的法向量uun0, 1 …cosir inni n2up2届--sin -------------257 525 ,TX# BC f TN^\B C = 1.又TD .•眈,故平行且等于川Mj 四边形AS/XT 为平行四边形,于罡胚V 口「 因为AT^L 平面PAB f XfN x 平面PAB f 所以A&M 平面Mg.(ID 取的中点 E, ^AE ?由 AB = AC^AE-^C ?从 ^AE-AD, & AE 二上曲 _ BE ; = J AS :-(~y =庚.以川为坐标原点,川应的方向为x 轴正万冋,建立如團所示的空间直角坐标系A-xyz }由题知;2x 4z 0,即-5 ,可取 x y 2z 02n (0,2,1),| n AN |8、、5 于是 | cos n, AN ||n || AN |25尸(024〕「C 辰皿》(芈丄2),PW 三(027儿毂三*T ,益■(芈4■ 丄刁. (x, y, z )为平面PMN 的法向量,则n PMn PN3、(2016年全国III 高考)如图,四棱锥P ABC 中,PA 地面ABCD , AD P BC , ABAM试题解析;(I 〉由已知得型厶斗Q 二」収恥的中点匚连接川仁由“为巩?中点知4、【2015高考新课标2,理19】如图,长方体 ABCD AB I GU 中,AB=16, BC=10, AA , 8,点 E , F 分别在AB , C ,D , 上, A ,E D ,F 4 •过点E , F 的平面 与此长方体的面相交,交 线围成一个正方形.(I)在图中画出这个正方形(不必说出画法和理由); (U)求直线AF 与平面 所成角的正弦值.【答案】(I)详见解析;(U) 4 5 .15【解析】(I )宏线围成的正方彪EZTGF 如圈*(II)作垂足冷 4 则= 因为EZTGF 丸正方形】所以EH=EF = BC = 10・于是曲= =6,所乩也=10・以D 为坐标原鼠丙的方向沖工轴的正方向,建立如图所示的空间直角坐标系D —2 则皿阿 H(1CUO” EQCU 罔,— _ _ G 一盘=QF(0.4.£), F£ = (10.0.0),肛= (0—6一股.设是平面的法向矍,则二— 刀 I 小【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.座.所以直5平航所唤正弦值为爭【名师点睛】根据线面平行和面面平行的性质画平面与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相r uuu关点,先求出面的法向量,利用sin cos n,AF 求直线AF与平面所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD为菱形,/ ABC=120°, E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF 丄平面ABCD,BE=2DF,AE丄EC.(I)证明:平面AEC丄平面AFC;【答案】(I)见解析⑴33【解析】试題分析I( I [连接03设珀二06连接EG FG詁在菱形中,不妨设匚41易证EG丄通过计胃可证亘G丄芒,申瞬线面垂直判定定理可知前丄平面丄y 由而面垂宜判宦定理知平而仝c丄平面2_^C ; (ID 取G 为坐标原虽,分别\iXGB.GC 的方向为工轴'「轴正方向,至 为单位民既 崔立空阊直角坐标系 g,利用向重法可求出异面直线总与 疔所成角的余弦值试題解析匚(I 〉连援设站IOG,连接三G, 56, 口 在觌萌中,不蛎设C-S=l,由厶L *O 匕冃 可得上G*=GC= .由呢丄平面尙0 .i3=3C 可知,出又••• AE 丄 EC ,: EG= 3 , EG 丄 AC ,厉在 Rt A EBG 中,可得 BE= 2,故 DF= .2在Rt A FDG 中,可得FG= 6 .2J 2o /2 在直角梯形BDFE 中,由BD=2, BE= 2 , DF= 可得EF= 3,22•'• EG 2 FG 2 EF 2,二 EG 丄 FG ,••• ACAFG=G , • EG 丄平面 AFC , ••• EG 面AEC ,:平面 AFC 丄平面AEC.……6分F(n)如图,以G 为坐标原点,分别以GB,GC 的方向为x 轴,y 轴正方向,|GB| 为单位长度,建立空间直角坐标系G-xyz ,由(I)可得A (0,—崩,0), E(1,0,J 2), F (— 1,0, 22 ), C (0, +3 , 0) , • AE = (1, P 3,、: 2 ) , CF = (-1 ,2-■73, —2) (10)分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角6 [2014新课标全国卷U ]如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,FA丄平面ABCD,E为PD的中点.(1) 证明:PB//平面AEC;(2) 设二面角D-AE-C为60°,AP= 1, AD = 3,求三棱锥E-ACD的体积.解:(1)证明:连接BD交AC于点0,连接EO.因为ABCD为矩形,所以O为BD的中点. 又E为PD的中点,所以EO / PB.因为EO?平面AEC,PB?平面AEC,所以PB//平面AEC.(2)因为PA丄平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB,AD,AP的方向为x轴、y轴、z轴的正方向,|AP|为单位长,建立空间直角坐标系A-xyz,则D(0,3, 0),E 0, 土,琏uuur uuuuu uuu AE?CF故cos AE,CF uuur ' uuu|AE||CF| 3所以直线AE与CF所成的角的余弦值为3 .12分设 B(m , 0, 0)(m>0),则 C(m , 3, 0), AC= (m , 3, 0).设n i = (x ,y,z)为平面ACE 的法向量,可取 ni = m ,— 1,.3.又n 2= (1, 0, 0)为平面DAE 的法向量,1由题设易知|cos 〈n i , n 2〉| = 2, 即卩1因为E 为PD 的中点,所以三棱锥E-ACD 的高为㊁•三棱锥E-ACD 的体积V7、[2014新课标全国卷I ]如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB 丄B 1C.(1) 证明:AC = AB 1;(2) 若 AC 丄 AB 1, / CBB 1 = 60°, AB = BC ,求二面角 A -A 1B 1 -C 1 的余弦值. 解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱 形,所以B 1C 丄BC 1,且O 为B 1C 及BC 1的中点.又AB 丄B 1C ,所以BQ 丄平面ABO.由于AO?平面ABO , 故 B 1C 丄AO.又 B 1O = CO , 故 AC = AB 1.(2)因为AC 丄AB 1,且O 为B 1C 的中点,所以 AO = CO.又因为 AB = BC ,所以△ BOA 也 △ BOC.故 OA 丄OB ,从而 OA , OB , OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB|为单位长,建立如图所示mx + 3y = 0, •心 0, mx + ,3y = 0,n i • AC = 0,n i • AE = 0,,图1-5的空间直角坐标系0- xyz.因为/ CBB iA 0, 0, f ,0), B i 0, f, 0 , Co ,BC ,则又AB i 3,0.B(1,3, 0,—3 ,J3A iB i = AB = 1, 0,—-3 ,BC i = BC = — 1,-f, 0 -z)是平面AA i B i 的法向量,则多-詐0, 即 X -亍=0-AB i = 0,设 n = (x , y ,n AB i = 0, n A ?B i = 0,所以可取 n = (1,〔3, •. 3).设m 是平面A i B i C i 的法向量, m A i B i = 0, 则 一m B I CI ^ 0,同理可取m = (1,— 3,3).m >所以结合图形知二面角A -A i B i1C i 的余弦值为7-。

历年全国理科数学高考试题立体几何部分精选(含答案)

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23==,则棱锥AB BC-的体积为。

O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

1.D2.833. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。

(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=可取m=(0,-1,3-) 27cos ,727m n ==- 故二面角A-PB-C 的余弦值为 27-1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 632. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SB226SB SD DB =+=3SD DB DE SB == 22626-,-EB DB DE SE SB EB ==== 所以,SE=2EB (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则226,AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2) (Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角 于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A 3(B 5(C 7 (D) 342. 已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,P 3,Q 到α的距离为3则P 、Q 两点之间距离的最小值为( ) (A) (B)2 (C) 33. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标卷近三年高考题1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【解析】 ⑴ ∵ABEF 为正方形 ∴AF EF ⊥∵90AFD ∠=︒ ∴AF DF ⊥∵=DF EF F I ∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=︒ ∵AB EF ∥AB ⊄平面EFDC EF ⊂平面EFDC ∴AB ∥平面ABCD AB ⊂平面ABCD ∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()020EB a =u u u r ,,,322a BC a ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,()200AB a =-u u u r ,,设面BEC 法向量为()m x y z =u r,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r ,即1111203202a y a x ay z ⋅=⎧⎪⎨⋅-⋅=⎪⎩ 设面ABC 法向量为()222n x y z =r,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r u u u r r u u u r .即2222320220a x ay ax ⎧-=⎪⎨⎪=⎩ 222034x y z ===,设二面角E BC A --的大小为θ.∴二面角E BC A --的余弦值为 2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到'D EF ∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值. 【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥, ∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴12129575cos 255210n n n n θ⋅+===⋅u r u u r u r u u r , ∴295sin 25θ=. 3、(2016年全国III 高考)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC P ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN P 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.设),,(z y x n =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=,于是2558|||||||,cos |=⋅=><AN n AN n AN n . 4、【2015高考新课标2,理19】如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.DD 1C 1A 1E FA BCB 1【名师点睛】根据线面平行和面面平行的性质画平面α与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面α的法向量,利用sin cos ,n AF θ=<>r u u u r求直线AF 与平面α所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值. 【答案】(Ⅰ)见解析(Ⅱ)33又∵AE ⊥EC ,∴EG 3,EG ⊥AC , 在Rt △EBG 中,可得BE 2DF 2. 在Rt △FDG 中,可得FG 6在直角梯形BDFE 中,由BD =2,BE 2DF 2可得EF 32 ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E (1,0,),F (-1,0),C (0,0),∴AE u u u r =(1),CF u u u r =(-1,).…10分故cos ,||||AE CF AE CF AE CF •<>==u u u r u u u ru u u r u u u r u u u r u u u r .所以直线AE 与CF . ……12分 【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角. 6、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ; (2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.图1-3解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为P A ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz ,则D ()0,3,0,E ⎝⎛⎭⎪⎫0,32,12,AE→=⎝⎛⎭⎪⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC→=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎨⎧mx +3y =0,32y +12z =0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38.7、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图1-5(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1 ­C 1的余弦值.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO .又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O ­ xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0.AB 1→=⎝⎛⎭⎪⎫0,33,-33, A 1B 1→=AB =⎝ ⎛⎭⎪⎫1,0,-33, B 1C →1=BC =⎝ ⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎪⎨⎪⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A -A 1B 1 ­ C 1的余弦值为17.。

相关文档
最新文档