动能和动能定理 知识讲解

合集下载

高考物理科普动能与动能定理

高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。

在高考物理中,学生需要对动能与动能定理有一定的了解。

本文将介绍什么是动能以及动能定理的含义和应用。

一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。

简单来说,物体的动能与物体的质量和速度有关。

动能的单位是焦耳(J)。

动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。

例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。

二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。

它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。

净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。

根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。

当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。

三、动能定理的应用动能定理在物理学中具有很多应用。

以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。

例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。

2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。

例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。

3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。

例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。

四、总结动能与动能定理是高考物理中的重要知识点。

高中物理(人教版)必修第二册讲义—动能和动能定理

高中物理(人教版)必修第二册讲义—动能和动能定理

A. 建材重力做功为- mah C. 建材所受的合外力做功为 mgh 【答案】D
B. 建材的重力势能减少了 mgh D. 建材所受钢绳拉力做功为 m(a g)h
【解析】
【详解】A. 建筑材料向上做匀加速运动,上升的高度为 h,重力做功:W=-mgh,故 A 错误;
B. 物体的重力势能变化量为 Ep W mgh
与半径有关,可知 vP<vQ;动能与质量和半径有关,由于 P 球的质量大于 Q 球的质量,悬挂 P
球的绳比悬挂 Q 球的绳短,所以不能比较动能的大小.故 AB 错误;在最低点,拉力和重力
的合力提供向心力,由牛顿第二定律得:F-mg=m
v2 R
,解得,F=mg+m
v2 R
=3mg,a向
F
mg =2g m
mv
2 2
表示物体的初动能
(3)W 表示物体所受合力做的功,或者物体所受所有外力对物体做功的代数和。
3.适用范围
(1)动能定理既适用于求恒力做功,也适用于求变力做功。
(2)动能定理及适用于直线运动,也适用于曲线运动
1.判断下列说法的正误. (1)某物体的速度加倍,它的动能也加倍.( × ) (2)两质量相同的物体,动能相同,速度一定相同.( × ) (3)合外力做功不等于零,物体的动能一定变化.( √ ) (4)物体的速度发生变化,合外力做功一定不等于零.( × ) (5)物体的动能增加,合外力做正功.( √ ) 2.如图所示,质量为 m 的物块在水平恒力 F 的推动下,从粗糙山坡底部的 A 处由静止运动至 高为 h 的坡顶 B 处,并获得速度 v,A、B 之间的水平距离为 x,重力加速度为 g,则重力做功 为______,恒力 F 做功为________,物块的末动能为________,物块克服摩擦力做功为________.

动能与动能定理

动能与动能定理

动能与动能定理动能是物体运动时所具有的能量,是描述物体运动状态的重要物理量。

本文将介绍动能的概念、计算方法以及动能定理的原理和应用。

一、动能的概念与计算方法动能是物体运动时所具有的能量,它与物体的质量和速度有关。

动能的计算公式为:动能 = 1/2 ×质量 ×速度的平方式中,“质量”表示物体的质量,单位为千克,“速度的平方”表示物体的速度的平方,单位为米每秒。

二、动能定理的原理与表达方式动能定理是描述物体运动过程中能量变化的定理,它表明,当物体受到合外力作用时,物体的动能会发生变化。

动能定理可用以下方式表达:动能的变化量 = 物体所受合外力的功其中,“动能的变化量”表示物体动能的增量或减量,“物体所受合外力的功”表示作用在物体上的合外力所做的功。

三、动能定理的应用动能定理在物理学中有广泛的应用,以下是其中两个重要方面:1. 机械能守恒原理根据动能定理,当物体只受重力做功或只受弹力做功时,物体的总机械能保持不变。

即动能和势能之和保持不变。

2. 动能定理与运动的描述动能定理可以用来分析和描述物体的运动过程。

通过计算物体在不同位置或不同时间点的动能变化量,可以了解物体的运动状态和受力情况,进而预测物体的运动轨迹。

四、总结动能是物体运动时所具有的能量,可以通过物体质量和速度来计算。

动能定理描述了物体受到合外力作用时动能的变化规律,可以用来研究和描述物体运动的特性。

在实际应用中,动能定理在机械能守恒和运动分析等方面发挥着重要的作用。

通过本文的介绍,相信读者对动能与动能定理有了更深入的理解,能够运用这些概念和定理解决有关的物理问题。

《动能和动能定理》 讲义

《动能和动能定理》 讲义

《动能和动能定理》讲义一、引入在我们的日常生活和物理学的研究中,经常会遇到物体运动的情况。

当物体运动时,它就具有了一种能够做功的能力,这种能力被称为动能。

那么,什么是动能?动能的大小与哪些因素有关?动能定理又是什么呢?接下来,让我们一起深入探讨这些问题。

二、动能的定义动能,简单来说,就是物体由于运动而具有的能量。

一个物体的动能与其质量和速度的平方成正比。

如果用字母Ek 表示动能,m 表示物体的质量,v 表示物体的速度,那么动能的表达式可以写成:Ek = 1/2 mv²。

从这个表达式可以看出,物体的质量越大,速度越快,它所具有的动能就越大。

例如,一辆高速行驶的汽车比一辆缓慢行驶的自行车具有更大的动能;一个质量较大的铅球比一个质量较小的乒乓球在相同速度下具有更大的动能。

三、动能定理动能定理是物理学中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。

当一个力作用在物体上,并且使物体在力的方向上发生了位移,这个力就对物体做了功。

力所做的功等于力与在力的方向上移动的距离的乘积。

假设一个物体受到一个恒力 F 的作用,在力的方向上移动的距离为s,那么力 F 所做的功 W = Fs 。

根据牛顿第二定律 F = ma (其中 a 是物体的加速度),以及运动学公式 v² v₀²= 2as (其中 v 是末速度,v₀是初速度),我们可以推导出动能定理的表达式。

对 v² v₀²= 2as 进行变形,得到:s =(v² v₀²) / 2a 。

将 s =(v² v₀²) / 2a 代入 W = Fs 中,得到:W = F ×(v² v₀²) / 2a 。

又因为 F = ma ,所以 W = ma ×(v² v₀²) / 2a ,化简后得到:W = 1/2 mv² 1/2 mv₀²。

知识讲解动能动能定理基础

知识讲解动能动能定理基础

物理总复习:动能、动能定理编稿:李传安审稿:张金虎【考纲要求】1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系;2、会用动能定理分析相关物理过程;3、熟悉动能定理的运用技巧;4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。

【知识络】【考点梳理】考点一、动能动能是物体由于运动所具有的能,其计算公式为212k Emv?。

动能是标量,其单位与功的单位相同。

国际单位是焦耳(J)。

考点二、动能定理1、动能定理合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。

2、动能定理的表达式21kk WEE??。

式中W为合外力对物体所做的功,2k E为物体末状态的动能,1k E为物体初状态的动能。

动能定理的计算式为标量式,v为相对同一参考系的速度,中学物理中一般取地球为参考系。

要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。

2、应用动能定理解题的基本步骤(1)选取研究对象,明确它的运动过程。

(2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。

(3)明确物体在始、末状态的动能1k E和2k E。

(4)列出动能定理的方程21kk WEE??及其他必要的辅助方程,进行求解。

动能定理中的W总是物体所受各力对物体做的总功,它等于各力做功的代数和,即123=WWWW??????总若物体所受的各力为恒力时,可先求出F合,再求cosWFl??总合3、一个物体动能的变化k E?与合外力做的功W总具有等量代换的关系。

因为动能定理实质上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。

0k E??,表示物体动能增加,其增加量就等于合外力做的功;0k E??,表示物体动能减少,其减少量就等于合外力做负功的绝对值;0k E??,表示物体动能不变,合外力对物体不做功。

动能和动能定理资料ppt课件

动能和动能定理资料ppt课件

T 变力
h mg
求变力做功问题
瞬间力动做能功和动问能定题理
运动员踢球的平均作用力为200N,把一个静止 的质量为1kg的球以10m/s的速度踢出,水平面 上运动60m后停下,则运动员对球做的功?如果 运动员踢球时球以10m/s迎面飞来,踢出速度仍 为10m/s,则运动员对球做的功为多少?
vo
v=0
A、 1:2
B、 2:3
C、 2:1
D、 3:2
AmA gLA
0
1 2
mAv02
BmB gLB
0
1 2
mBv02
LA B 3 LB A 2
例与练
动能和动能定理
5、质量为2Kg的物体沿半径为1m的1/4圆 弧从最高点A由静止滑下,滑至最低点B时 速率为4m/s,求物体在滑下过程中克服阻 力所做的功。
(4)根据动能定理列方程求解;
例与练
动能和动能定理
1、同一物体分别从高度相同,倾角不同的 光滑斜面的顶端滑到底端时,相同的物理量 是( )
A.动能
B.速度
C.速率
D.重力所做的功 WG mgh
mgh 1 mv2 0 2
v 2gh
例与练
动能和动能定理
2、质量为m=3kg的物体与水平地面之间的
动能和动能定理
二、动能的表达式
v22 v12 2al
a v22 v12 2l
又F ma m v22 v12
2l
WF
Fl
m v22 v12 2l
l
1 2
mv22
1 2
mv12
二、动能的表达式
动能和动能定理
WF
1 2
mv22
1 2

动能和动能定理

动能和动能定理

动能和动能定理动能是物体运动过程中所具有的能量,它是物体动力学性质的一种表现。

在物理学中,动能被定义为物体具有的使其能够进行相互作用的能力。

一、动能的定义和计算公式动能是与物体的质量和速度有关的物理量。

它可以通过以下公式进行计算:动能(K) = 1/2 * m * v^2其中,m为物体的质量,v为物体的速度。

二、动能与能量转换动能在物体运动的过程中可以转化为其他形式的能量,例如势能、热能等。

这种能量的转化过程可以通过动能定理来描述。

动能定理表明,物体所具有的动能变化等于物体所受到的净作用力所做的功。

数学表示为:∆K = W其中∆K表示动能的变化,W表示外力所做的功。

三、动能的应用动能的概念和定理在物理学中有广泛的应用。

1. 运动物体的动能计算:通过动能的定义和计算公式,可以计算质点、刚体等运动物体所具有的动能,进一步分析物体的运动状态。

2. 能量转化和守恒:通过动能定理,我们可以理解能量是如何在不同形式之间转化的,例如机械能转化为热能、光能等。

3. 力学分析中的应用:动能定理是力学分析中的重要工具之一,通过应用动能定理,可以计算物体受到的净作用力,进而研究物体的运动规律。

四、动能定理的局限性虽然动能定理在描述物体运动和能量转化方面具有重要意义,但也存在一定的局限性。

1. 仅适用于刚体系统:动能定理的推导基于刚体的运动,对于柔软物体的运动无法直接应用。

2. 需满足牛顿力学前提:动能定理基于牛顿力学的假设和前提,只适用于符合牛顿力学规律的物体。

3. 不考虑其他能量损失:在实际情况下,物体的运动中可能还存在其他能量的损失,例如空气阻力、摩擦等,这些因素在动能定理中没有考虑。

五、结论动能是物体运动过程中所表现出的能量,可以通过物体的质量和速度来计算。

动能定理描述了动能与净作用力所做的功之间的关系,进一步解释了能量转化的过程。

在物理学中,动能和动能定理被广泛应用于分析物体的运动和能量转化过程。

然而,动能定理也存在一定的局限性,在实际问题中需要综合考虑其他因素。

动能定理

动能定理

7动能和动能定理一、动能和动能定理1.基本知识(1)动能 ①定义: 物体由于 而具有的能.②表达式: E k =12mv 2,式中v 是瞬时速度.③单位 动能的单位与功的单位相同,国际单位都是 ,符号为J. 1 J =1 kg·m 2/s 2=1 N·m. ④对动能概念的理解a .动能是标量,只有 ,没有 ,且动能为非负数.b .动能是状态量,在某一时刻,物体具有一定的速度,也就具有一定的动能. ⑤动能的变化量 即末状态的动能与初状态的ΔE k =12mv 22-12mv 21.ΔE k >0,表示物体的 .ΔE k <0表示物体的 .(2)动能定理的推导①建立情景 如图所示,质量为m 的物体,在恒力F 作用下,经位移l 后,速度由v 1增加到v 2.②推导依据外力做的总功:W = 由牛顿第二定律:F =由运动学公式:l =v 22-v 212a.③结论:W =12mv 22-12mv 21 即W =E k2-E k1=ΔE k .(3)动能定理的内容力在一个过程中对物体所做的功,等于物体在这个过程中 。

(4)动能定理的表达式 ①W =12mv 22-12mv 21. ②W =E k2-E k1. 说明:式中W 为 ,它等于各力做功的 。

(5)动能定理的适用范围不仅适用于 做功和 运动,也适用于 做功和 运动情况.二、对动能、动能定理的理解1.动能的特征(1)是状态量:与物体的运动状态(或某一时刻的速度)相对应.(2)具有相对性:选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.(3)是标量:只有大小,没有方向;只有正值,没有负值.2.对动能定理的理解(1)内容:外力对物体做的总功等于其动能的增加量,即W =ΔE k . (2)表达式W =ΔE k 中的W 为外力对物体做的总功.(3)ΔE k =12mv 22-12mv 21为物体动能的变化量,也称作物体动能的增量,表示物体动能变化的大小.(4)动能定理描述了做功和动能变化的两种关系.①等值关系:某物体的动能变化量总等于合力对它做的功.②因果关系:合力对物体做功是引起物体动能变化的原因,合力做功的过程实质上是其他形式的能与动能相互转化的过程,转化了多少由合力做了多少功来度量.例1. 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变化,则物体所受合力一定为零规律总结: 动能与速度的关系1.瞬时关系:动能和速度均为状态量,二者具有瞬时对应关系.2.变化关系:动能是标量,速度是矢量,当动能发生变化时,物体的速度(大小)一定发生了变化,当速度发生变化时,可能仅是速度方向的变化,物体的动能可能不变.训练1.(2014·苏州高一检测)一物体做变速运动时,下列说法正确的有( ) A .合力一定对物体做功,使物体动能改变 B .物体所受合力一定不为零 C .合力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 动能定理的应用及优越性1.应用动能定理解题的基本步骤2.优越性(1)对于变力作用或曲线运动,动能定理提供了一种计算变力做功的简便方法.功的计算公式W=Fl cos α只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化ΔE k与合力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化ΔE k=E k2-E k1,就可以间接求得变力做功.算,运算简单不易出错.注意:动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理同样成立.例2.一架喷气式飞机质量m=5×103 kg,起飞过程中从静止开始滑行的路程s=5.3×102 m时(做匀加速直线运动),达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的k倍(k=0.02).求飞机受到的牵引力.规律总结:动能定理与牛顿运动定律在解题时的选择方法1.动能定理与牛顿运动定律是解决力学问题的两种重要方法,一般来讲凡是牛顿运动定律能解决的问题,用动能定理都能解决,但动能定理能解决的问题,牛顿运动定律不一定都能解决,且同一个问题,用动能定理要比用牛顿运动定律解决起来更简便.2.通常情况下,其问题若涉及时间或过程的细节,要用牛顿运动定律去解决;其问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决.训练2.一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6 m,如果以v2=8 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为( ) A.6.4 m B.5.6 m C.7.2 m D.10.8 m三、用动能定理求变力的功例3.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR规律总结:1.本题中摩擦力的大小、方向都在变化,应用功的定义式无法直接求它做的功,在这种情况下,就要考虑利用动能定理.2.物体的运动过程分为多个阶段时,我们尽量对全过程应用动能定理,如果这样不能解决问题,我们再分段处理.如本题中我们直接对由A →B →C 的全过程应用动能定理,就比分为两个阶段由A →B 和由B →C 分别来处理简单一些.动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便. 例4.如图所示,ABCD 为一竖直平面的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为零.求:(g 取10 m/s 2)(1)物体与BC 轨道间的动摩擦因数. (2)物体第5次经过B 点时的速度.(3)物体最后停止的位置(距B 点多少米).当堂双基达标1.对于动能的理解,下列说法错误的是( )A .动能是机械能的一种表现形式,凡是运动的物体都具有动能B .动能总为正值C .一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态2.(多选)关于动能,下列说法正确的是( )A .公式E k =12mv 2中的速度v 是物体相对于地面的速度B .动能的大小由物体的质量和速率决定,与物体运动的方向无关C .物体以相同的速率向东和向西运动,动能的大小相等但方向不同D .物体以相同的速率做匀速直线运动和曲线运动,其动能不同3.(多选)一质量为0.1 kg 的小球,以5 m/s 的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A .Δv =10 m/sB .Δv =0C .ΔE k =1 JD .ΔE k =0 4.关于动能定理,下列说法中正确的是( ) A .某过程中外力的总功等于各力做功的绝对值之和 B .只要合外力对物体做功,物体的动能就一定改变 C .在物体动能不改变的过程中,动能定理不适用 D .动能定理只适用于受恒力作用而加速运动的过程5.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是( ) A .如果物体所受的合力为零,那么合力对物体做的功一定为零 B .如果合力对物体做的功为零,则合力一定为零C .物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零D .如果物体的动能不发生变化,则物体所受合力一定是零6.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.第一次小球在水平拉力F 1作用下,从平衡位置P 点缓慢地移到Q 点,此时绳与竖直方向夹角为θ(如图7­7­4所示),在这个过程中水平拉力做功为W 1.第二次小球在水平恒力F 2作用下,从P 点移到Q 点,水平恒力做功为W 2,重力加速度为g ,且θ<90°,则( )A .W1=F 1l sin θ,W 2=F 2l sin θ B .W 1=W 2=mgl (1-cos θ)C .W 1=mgl (1-cos θ),W 2=F 2l sin θD .W 1=F 1l sin θ,W 2=mgl (1-cos θ)7.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为( )A.32mv 2 B .-32mv 2 C.52mv 2 D .-52mv 2 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s ,如图7­7­6所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A .力F 对甲物体做功多B .力F 对甲、乙两个物体做的功一样多C .甲物体获得的动能比乙大D .甲、乙两个物体获得的动能相同9.有一质量为m 的木块,从半径为r 的圆弧曲面上的a 点滑向b 点,如图所示,如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )A .木块所受的合力为零B .因木块所受的力都不对其做功,所以合力做的功为零C .重力和摩擦力做的功代数和为零D .重力和摩擦力的合力为零10.物体在合外力作用下做直线运动的v ­t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合力做正功B .在0~2 s 内,合力总是做负功C .在1~ 2 s 内,合力不做功D .在0~3 s 内,合力总是做正功11.(多选)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )12.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零.设A 、B 两点高度差为h ,则它与挡板碰前的速度大小为( )A. 2gh +v 204B.2ghC.2gh +v 202D.2gh +v 2013.质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为( )A.mgL4B.mgL3C.mgL2D.mgL14.物体在合外力的作用下做直线运动的v-t图像如图所示,下列表述中正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1s~2s内,合外力不做正功D.在0~3s内,合外力总是做正功15.(多选)物体沿直线运动的v­t图象如图所示,已知在第1秒内合力对物体做功为W,则( )A.从第1秒末到第3秒末合力做功为4WB.从第3秒末到第5秒末合力做功为-2WC.从第5秒末到第7秒末合力做功为WD.从第3秒末到第4秒末合力做功为-0.75W16.如图所示,在距沙坑表面高h=8 m处,以v0=22 m/s的初速度竖直向上抛出一质量m=0.5 kg的物体,物体落到沙坑并陷入沙坑d=0.3 m深处停下.若物体在空中运动时的平均阻力是重力的0.1倍(g=10 m/s2).求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?17.如图所示,滑雪者从高为H的山坡上A点由静止下滑,到B点后又在水平雪面上滑行,最后停止在C点.A、C两点的水平距离为s,求滑雪板与雪面间的动摩擦因数μ.18.如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.。

动能与动能定理的解析

动能与动能定理的解析

动能与动能定理的解析动能是描述物体运动状态的物理量,是物体运动所具有的能量形式。

在物理学中,动能可以通过物体质量和速度的平方来计算。

动能定理则是表明物体的动能变化量与外力所做的功等于物体所受的净作用力所做的功的关系。

一、动能的定义及计算公式动能是物体由于运动而具有的能量,它与物体的质量和速度有关。

动能的定义公式为:动能 = 1/2 ×质量 ×速度的平方,用数学表达式表示为:K = 1/2mv²。

其中,K代表动能,m代表物体的质量,v代表物体的速度。

二、动能与速度的关系动能与物体的速度呈正比关系。

当物体的速度增加时,其动能也会相应增加。

这意味着速度越大,物体运动所具有的能量就越多,动能也就越大。

相反,当物体的速度减小时,其动能会减小。

三、动能与质量的关系动能与物体的质量呈正比关系。

质量越大,动能也就越大;质量越小,动能也就越小。

这是因为相同速度下,质量较大的物体具有更大的惯性,需要更多的能量来维持其运动状态。

四、动能定理的解析动能定理是描述物体运动状态变化的一个重要定理。

它表明,物体的动能变化量等于外力所做的功。

动能定理的数学表达式为:∆K = W,其中∆K代表动能的变化量,W代表外力所做的功。

根据动能定理,当物体受到净作用力时,它的动能会发生变化。

当物体受到正向作用力(如推力、引力等)时,该作用力所做的功为正,导致物体的动能增加;当物体受到负向作用力(如阻力、制动力等)时,该作用力所做的功为负,导致物体的动能减小。

动能定理可用来解析物体在不同情况下的动能变化。

例如,在施加恒定力的作用下,物体的速度会随时间增加,由动能定理可推导出速度与时间的关系。

同样,当物体在阻力作用下停止运动时,也可以应用动能定理来计算作用力所做的功和动能的变化量。

动能定理也可以用于解析机械能守恒的情况。

当物体只受重力等保守力的作用时,机械能(势能和动能之和)保持不变。

根据动能定理,作用力所做的功等于动能的变化量为零,从而得出机械能守恒的结论。

动能、动能定理

动能、动能定理

(一)动能1. 定义:物体由于运动而具有的能。

2. 表达式:221mv E k = 3. 特点:(1)动能是状态量,221mv E k =中的v 必须是瞬时速度而不能代入平均速度,动能具有相对性。

(2)动能是标量且总为正值。

(3)动能和功之间没有直接的关系。

(4)物体的速度改变了,动能不一定改变。

如:匀速圆周运动物体的动能改变了,速度一定改变。

(二)动能定理1. 内容:合外力做的功等于物体动能的增量2. 表达式:W =221t mv 2021mv - 或K K K E E E W 12∆=-=3. 对动能定理的理解 (1)物理意义动能定理指出了物体动能的变化是通过外力做功的过程(即力对空间的积累)来实现的,并且通过功来量度,即外力对物体做的总功,对应着物体动能的变化。

动能定理的表达式中等号的意义是一种因果关系,表明了数值上是相等的,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“做功引起物体动能的变化”。

(2)动能定理的计算式是标量式,v 、s 为相对于同一参考系(一般为地面)的运动量,且式中只涉及动能和功,无其他形式的能。

(3)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系,反映外力所做的功引起动能变化的规律。

(4)动能定理适用于物体的直线运动,也适用于曲线运动,适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以各力同时作用,也可以分阶段作用,只要求知道在作用过程中各力做功的多少和正负即可,这些正是应用动能定理的优越性所在。

(5)任意外力做的功都能引起动能的变化。

而只有重力或弹力做功才能引起重力势能、弹性势能的变化,要注意这种对应关系的区别。

①动能定理只强调初末状态动能的变化,在一段过程中初末位置的动能变化量为零,并不意味着在此过程中的各个时刻动能不变化。

②物体所受合力不为零时,其动能不一定变化,比如合力方向始终与速度方向垂直时,动能就不会变化。

4. 动能定理的应用 (1)研究对象的选取可以是单个物体,也可以是多个物体组成的一个物体系。

《动能和动能定理》 讲义

《动能和动能定理》 讲义

《动能和动能定理》讲义一、引入在我们的日常生活中,运动的物体随处可见。

比如飞驰的汽车、投掷出去的铅球、飞行中的子弹等等。

当这些物体运动时,它们似乎具有一种能够对外做功的能力。

那么,这种能力究竟是如何描述和衡量的呢?这就引出了我们今天要探讨的主题——动能和动能定理。

二、什么是动能简单来说,动能就是物体由于运动而具有的能量。

想象一下,一辆快速行驶的汽车和一辆缓慢行驶的汽车,哪一辆具有更大的“冲击力”或者说能够做更多的功呢?显然是快速行驶的那一辆。

这是因为它的运动速度更快,所以具有更大的动能。

动能的大小与物体的质量和速度有关。

其表达式为:$E_k =\frac{1}{2}mv^2$ ,其中$E_k$ 表示动能,$m$ 表示物体的质量,$v$ 表示物体的速度。

从这个表达式中,我们可以看出以下几点:1、动能与物体的质量成正比。

质量越大的物体,在相同速度下具有的动能就越大。

比如一辆大卡车和一辆小汽车以相同的速度行驶,大卡车具有更大的动能。

2、动能与速度的平方成正比。

这意味着速度对动能的影响更为显著。

速度增加一倍,动能将增加到原来的四倍。

所以,即使物体的质量较小,但如果速度足够快,也能具有较大的动能。

例如,一颗子弹虽然质量很小,但由于其高速飞行,具有很大的动能,可以造成巨大的杀伤力。

三、动能定理有了对动能的理解,接下来我们来学习动能定理。

动能定理表述为:合外力对物体所做的功等于物体动能的变化量。

用数学表达式可以写成:$W =\Delta E_k$ ,其中$W$ 表示合外力对物体做的功,$\Delta E_k$ 表示动能的变化量。

假如一个物体在初始时刻的动能为$E_{k1}$,经过一段时间,在外力的作用下,其动能变为$E_{k2}$,那么动能的变化量$\Delta E_k = E_{k2} E_{k1}$。

为了更好地理解动能定理,我们来看几个例子。

例 1:一个质量为$m$ 的物体在光滑水平面上,受到一个水平恒力$F$ 的作用,从静止开始运动,经过一段距离$s$ 后,速度达到$v$ 。

第十七讲:动能和动能定理讲义

第十七讲:动能和动能定理讲义

第十六讲:动能和动能定理讲义知识点1动能物体由于运动而具有的能叫动能。

动能的大小:E K=mv2/2。

动能是标量。

注意:(1)动能是状态量,也是相对量。

因为v是瞬时速度,且与参照系的选择有关。

(2)动能是标量,动能和速度的方向无关,如在匀速圆周运动中,瞬时速度虽然是变化的,但是其动能是不变的。

(3)动能有相对性,由于物体的速度是与参照物的选择有关,故可知动能也与参照物的选取有关,即具有相对性。

小鸟能在空中把飞机撞坏,充分说明了这一点。

[例1]以初速度v0竖直上抛一个小球,若不计空气阻力,在上升的过程中,从抛出小球到小球动能减小一半所经历的时间是()A.v0/g B.v0/2g Cv0/g D.(/2)v0/g[解析]设物体的动能减小一半时速度为v1,则根据动能的定义式E K=mv12/2有mv12/2=1/2×mv02/2,可解得:v1v0/2小球在上抛的过程中,做a=g的匀减速运动,设所经历的时间为t,则有:t=( v0- v1)/g=(1-/2)·v0/g[答案] D[总结]动能与速度的方向无关.因此该题中,从抛出小球到小球动能减小一半时的速度可能有两个。

若在该题中只是问:从抛出小球到小球动能减小一半所经历的时间为多少?则答案应该是两个,即在上升和落回时各有一个。

[变式训练1]关于动能,下列说法中正确的是()①公式E K=mv2/2中的速度v是物体相对于地面的速度②动能的大小由物体的质量和速率决定,与物体运动的方向无关③物体以相同的速率向东和向西运动,动能的大小相等但方向不同④物体以相同的速率做匀速直线运动和曲线运动,其动能不同A.①② B.②③ C.③④ D.①④[答案] A知识点2 动能定理(1)内容:合力所做的功等于物体动能的变化(2)表达式:W合=E K2-E K1=ΔE或W合= mv22/2- mv12/2 。

其中E K2表示一个过程的末动能mv22/2,E K1表示这个过程的初动能mv12/2。

动能知识点总结高中

动能知识点总结高中

动能知识点总结高中一、动能的基本概念动能是物体由于运动而具有的能量,是一种宏观的能量形式。

当物体运动速度增加或者质量增加时,动能都会增加。

动能的大小与物体的质量和速度有关,可以用公式表示为:动能= 1/2 * m * v^2,其中m为物体的质量,v为物体的速度。

动能的单位是焦耳(J)。

二、动能定理动能定理是描述物体动能变化的原理,即当物体速度发生改变时,动能也会发生相应的变化。

动能定理可以用公式表示为:ΔKE = W,其中ΔKE为物体动能的变化量,W为物体所受的合外力做功。

根据动能定理,当外力做功使物体动能增加时,外力对物体做正功;当外力做功使物体动能减小时,外力对物体做负功。

三、动能与机械能1. 动能与重力势能动能和重力势能是机械能的两种基本形式,它们可以相互转化。

当物体在重力作用下运动时,它既具有动能,又具有重力势能。

动能可以转化为重力势能,反之亦然。

2. 动能与弹性势能当物体在弹簧的作用下发生弹性变形时,它既具有动能,又具有弹性势能。

动能可以转化为弹性势能,反之亦然。

四、动能守恒定律动能守恒定律是机械能守恒定律的特殊情况,即在没有非弹性碰撞和外力做功的情况下,系统的总动能保持不变。

动能守恒定律适用于质点系统和刚体系统的运动。

根据动能守恒定律,如果一个物体在密闭系统内运动,它所具有的总动能将保持不变,即初始状态的总动能等于末状态的总动能。

五、动能的应用1. 自行车运动在自行车运动过程中,骑手给脚蹬施加力,驱动脚蹬转动,从而使车轮旋转,车轮又通过链条和后轮相连,推动自行车前进。

通过骑手的脚蹬和车轮的旋转运动,自行车获得动能,从而实现前进。

2. 物体的抛射运动在物体抛射运动中,物体具有初始的动能,随着抛射物体的速度减小和高度的减小,动能逐渐转化为重力势能,最终物体达到最大高度时,动能全部转化为重力势能,而后重力势能又转化为动能,使物体重新以一定速度运动。

以上就是动能的基本概念、动能定理、动能与机械能、动能守恒定律以及动能的应用的知识点总结。

动能和动能定理 课件

动能和动能定理    课件
动能和动能定理
一、动能 (Ek)
1、定义: 物体由于运动而具有的能 叫动能
2、公式:
Ek
1 2
mv2
▲ 质量越大、 速度越大,物体的动能就越大
▲ 动能是标量
下面关于一定质量的物体的动能的说法 哪些是对的?
• A 物体速度变化,其动能一定变化 • B 物体的动能变化,其运动状态一定发生改变 • C 物体的速度变化越快,其动能变化也一定越快 • D 物体所受合外力不为零,其动能一定变化
s
解法二:(过程整体法)物体从A由静止滑到B的过程中,由
动能定理有: mgh mgl cosq mgSCB 0 …….①
而 l cosq SCB S
…….②
由①和②式得 h
s小结:Βιβλιοθήκη 1. 动能:Ek1 mv2 2
2. 动能定理:
W总
1 2
mv22
1 2
mv12
外力对物体所做的总功等于物体动能的变化。
3
2
确 定 各
F mv 2 kmg 2s
4建方程
力 做
5.0 10 3 60 2 2 5.310 2
0.02 5.0 10 3
9.8

1.8 10 4 N
启发:此类问题,牛顿定律和动能定理都适用, 但动能定理更简洁明了。解题步骤:1、2、3、4
例2、如图所示,物体从高为h的斜面体的顶端 A由静止开始滑下,滑到水平面上的B点静止, A到B的水平距离为S,求: 物体与接触面间的动摩擦因数(已知:斜面体 和水平面都由同种材料制成)
二、动能定理
内容:外力对物体所做的总功等于物体动能的变化。
1、合外力做功。 2、外力做功之和。
动能变化

物理高一动能和动能定理知识点归纳

物理高一动能和动能定理知识点归纳

物理高一动能和动能定理知识点归纳
一、动能
如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.ek=mv2,
其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理
做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量.w1+w2+w3+=mvt2-mv02
1.反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2.增量是末动能减初动能.ek0表示动能增加,ek0表示动能减小.
3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、*力、摩擦力、电场力等.。

高一物理必修2动能和动能定理--知识讲解有答案

高一物理必修2动能和动能定理--知识讲解有答案

动能和动能定理要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J ).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。

动能与动能定理

动能与动能定理

动能与动能定理动能是描述物体的运动状态和能量的一种物理量。

在物理学中,动能通常用符号K表示,其计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。

动能定理则描述了动能的改变与物体所受合外力的关系。

本文将从动能的概念、计算公式,以及动能定理的推导和应用等方面进行探讨。

1. 动能的概念动能是物体在运动过程中所具有的能量,它随着物体的速度增加而增加。

当物体停止运动时,动能为零。

动能的单位是焦耳(J)。

在经典物理学中,动能的计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。

正如计算公式所示,动能与物体的质量和速度的平方成正比。

2. 动能定理的推导动能定理描述了物体运动的改变与物体所受合外力的关系。

根据牛顿第二定律F=ma,将其代入动能的计算公式K=½mv²中,可得到K=½m(v²-0)。

根据牛顿第二定律的形式F=ma,我们知道力可以表示为F=dp/dt,其中p是物体的动量,t是时间。

代入动量的定义p=mv,可得到F=mdv/dt。

将这个方程代入动能的计算公式中,可得到K=½mdv/dt *v。

对动能公式进行简化后,可得到K=d(½mv²)/dt,即动能的变化率等于物体所受合外力的功率。

3. 动能定理的应用动能定理可以应用于多种物理问题的求解和分析。

首先,我们可以利用动能定理来计算物体的速度和位移。

通过已知物体的质量、起始速度、物体所受合外力的功率等信息,可以利用动能定理来求解相应的物理量。

其次,动能定理可以帮助我们理解和解释物体的能量转化过程。

例如,当一个物体从较高的位置下落时,它的重力势能被转化为动能,从而使其速度增加。

在碰撞等过程中,动能定理也可以用于分析和计算能量的守恒与转化。

总结:动能是物体运动时所具有的能量,与物体的质量和速度的平方成正比。

动能定理描述了动能的变化与物体所受合外力的关系,通过动能定理可以计算物体的速度和位移,并用于分析能量的转化过程。

第5章 第2讲 动能 动能定理

第5章 第2讲 动能  动能定理

1.(单选)静置于光滑水平面上坐标原点处的小 物块,在水平拉力F作用下,沿x轴方向运动,拉 力F随物块所在位置坐标x的变化关系如图5-2-3 所示,图线为半圆.则小物块运动到x0处时的动能 为( )
A. 0 C.

4
1 B Fm x0 2 Fm x0 D.

4
2 x0
解析:图象与横坐标轴包围的面积表示 拉力做的功,再根据动能定理即可求得最后 的动能. 答案:C
(1)了解由哪些过程构成,选哪个过程研究;
(2)分析每个过程物体的受力情况;
(3)分析各个力的做功情况; (4)从总体上把握全过程,表达出总功,找出 初、末状态的动能;
(5) 对 所 研 究 的 全 过 程 运 用 动 能 定 理 列 方 程.
例3:物体从高出地面H处,由 静止自由下落,如图5-2-2所示, 不考虑空气阻力,落至地面进入沙 坑深h处停止,求物体在沙坑中受 到的平均阻力是其重力的多少倍?
问题:什么情况下优先使用动能定理?
解析:研究对象是单个物体或者没有相对 运动的物体系,在曲线运动和变力问题中,不 涉及加速度和时间时,可优先考虑使用动能定 理,这样可以不考虑和分析运动过程的细节, 使问题简单化,解题过程清晰容易.实际上我 们在解题时,往往首先考虑看能不能用动能定 理求解,然后再考虑其他办法,牛顿运动定律 一般是我们最后考虑的方法.
D.取决于斜面的倾角
解析:设OD=x,OA=h,斜面倾角为,物体 从D点出发,沿DBA滑动到顶点A,过B点(或C点)时 物体与斜面碰撞没有机械能损失,由动能定理得: h 1 2 -mgh- mgcos - mg ( x-hcot )=0- mv0 sin 2 1 2 即 mgx+mgh= mv0 2 解得:v0= 2 g x +h 由上式可见,物体的初速度跟斜面倾角无关.

动能和动能定理

动能和动能定理

动能和动能定理知识点一:1动能定义:物体由于而具有的能叫动能.公式:E k=12m v2 .单位:,1 J=1 N·m=1 kg·m2/s2.矢标性:动能是,只有正值.状态量:动能是,因为v是瞬时速度.2动能定理内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中.表达式:W=12m v22-12m v12.物理意义:合外力的功是物体动能变化的量度.适用条件:(1)动能定理既适用于直线运动,也适用于.(2)既适用于恒力做功,也适用于.(3)力可以是各种性质的力,既可以同时作用,也可以.3对动能定理的理解动能定理公式中“=”的意义(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因.对动能定理的理解(1)动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.即为任何力。

(2)利用动能定理可以讨论合力做功或某一个力做功的情况应用动能定理的技巧:(1)动能定理虽然是在恒力作用、直线运动中推导出来的,但也适用于变力作用、曲线运动的情况.(2)动能定理是标量式,不涉及方向问题.在不涉及加速度和时间的问题时,可优先考虑动能定理.(3)对于求解多个过程的问题可全过程考虑,从而避开考虑每个运动过程的具体细节,具有过程简明、运算量小等优点.典型题:如图所示,电梯质量为M,它的水平地板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动.当上升高度为H时,电梯的速度达到v,则在这段过程中,下列说法中正确的是()A.电梯地板对物体的支持力所做的功等于12mv2B.电梯地板对物体的支持力所做的功大于12mv2C.钢索的拉力所做的功等于MgH+12Mv2D.钢索的拉力所做的功大于MgH+12Mv2典型题:人通过滑轮将质量为m的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h,到达斜面顶端的速度为v,如图所示.则在此过程中[ ]A.物体所受的合外力做功为mgh+mv2B.物体所受的合外力做功为mv2C.人对物体做的功为mghD.人对物体做的功大于mgh4动能定理在多过程中的应用优先考虑应用动能定理的问题:(1)不涉及加速度,时间的问题(2)有多个物理过程切不需要研究整个过程中的中间状态的问题(3)变力作功的问题(4)含有F,l,m,v,W,E等物理量的力学问题典型题:如图所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R,2R,3R和4R,R=0.5m,水平部分长度L=2m,轨道最低点离水平地面高h=1m.中心有孔的钢球(孔径略大于细钢轨道直径),套在钢轨端点P处,质量为m=0.5kg,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v0=13m/s.取g=10m/s2.求:(1)钢球运动至第一个半圆形轨道最低点A时对轨道的压力.(2)钢球落地点到抛出点的水平距离.典型题:如图所示,物体在蒙有动物毛皮的斜面上运动.由于毛皮表面的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时毛皮产生的阻力可以忽略;②逆着毛的生长方向运动会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8m,质量为m=2kg的小物体M从斜面顶端A由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=530,动摩擦因数均为μ=0.5,其余各处的摩擦不计,g=10m/s2,下滑时逆着毛的生长方向,求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零)(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程5用动能定理求变力做的功A状态分析法:动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理编稿:周军 审稿:隋伟【学习目标】1.通过设计实验探究功与物体速度的变化关系.2.明确动能的表达式及含义.3.能理解和推导动能定理.4.掌握动能定理及其应用.【要点梳理】要点一、探究功与速度变化的关系要点诠释:1.探究思路让小车在橡皮绳的弹力下弹出,沿木板滑行。

由于橡皮绳对小车做功,小车可以获得速度,小车的速度可以通过打点计时器测出。

这样进行若干次测量就可以得到多组数据,通过画图的方法得出功与速度的关系。

2. 操作技巧(1)功的变化我们可以通过由一根橡皮绳逐渐增加到若干根的方法得到。

(2)要将木板倾斜一定角度,使小车在木板上沿斜面向下的重力的分力与其受的摩擦力相等,目的是让小车在木板上可以做匀速直线运动。

3.数据的处理以单根橡皮绳做的功为横坐标,以速度的平方为纵坐标描点连线,画出图象。

4.实验结论画出2W v -图象,图象为直线,即2W v ∝。

要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J ).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。

2.动能定理的应用技巧(1)由于动能定理反映的是物体在两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制。

(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而往往用动能定理求解简捷;可是有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解。

可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识。

要点五、动能定理与牛顿第二定律的联系和区别在推导动能定理的过程中应用了只能在惯性参考系中成立的牛顿第二定律,因而动能定理也只适用于惯性参考系.而对于不同的惯性参考系,虽然力对物体做的功、物体的动能、动能的变化都不相同,但动能定理作为一个力学规律在不同的参考系中仍然成立.动能定理适用于在惯性参考系中运动的任何物体. 要理解动能定理与牛顿第二定律的联系与区别,应该从两者反映的物理规律的本质上加以认识.我们知道力的作用效果能够使物体的运动状态发生改变,即速度发生变化,而两者都是来描述力的这种作用效果的.前者对于一个力作用下物体的运动过程着重从空间积累的角度反映作用结果,而后者注重反映该过程中某一瞬时力的作用结果.动能定理是从功的定义式出发,结合牛顿第二定律和动力学公式推导出来的,所以它不是独立于牛顿第二定律的运动方程,但它们有较大的区别:牛顿第二定律是矢量式,反映的是力与加速度的瞬时关系,即力与物体运动状态变化快慢之间的联系;动能定理是标量式,反映的是力对物体持续作用的空间累积效果,即对物体作用的外力所做功与物体运动状态变化之间的联系,因而它们是研究力和运动的关系的两条不同途径.把对一个物理现象每个瞬时的研究转变成对整个过程的研究,是研究方法上的一大进步.动能定理适用于直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功.力可以是各种性质的力,既可以是同时作用,也可以是分段作用,只要能够求出作用过程中各力做功的多少和正负即可.这些正是动能定理解题的优越性所在.【典型例题】类型一、对“探究功与速度变化的关系”实验的考查例1、在“探究功与速度变化的关系”实验中,小车运动中会受到阻力作用,这样,在小车沿木板滑行的过程中,除橡皮筋对其做功外,还有阻力做功,这样便会给实验带来误差,我们在实验中想到的办法是使木板略微倾斜,对于木板的倾斜程度,下面说法正确的是( )①木板只要稍微倾斜一下即可,没有什么严格的要求。

②木板的倾斜角度在理论上应满足下面的条件:重力沿斜面的分力应等于小车受到的阻力. ③如果小车在倾斜的木板上能做匀速运动,则木板的倾斜程度是满足要求的.④其实木板不倾斜,问题也不是很大,因为实验总是存在误差的.A .①②B .②③C .③④D .①④【解析】有两个标准可以验证木板是否满足实验要求:(1)理论上小车的重力沿斜面上的分力应等于小车自由运动时所受的阻力.(2)运动状态上,小车能在木板上做匀速直线运动.【答案】B类型二、对动能、动能变化的理解例2、一辆汽车的速度从10/km h 增加到20/km h ,动能的增量为1k E ∆;若速度从40/km h 增加到50/km h ,动能的增量为2k E ∆,则( )A. 12k k E E ∆=∆B. 12k k E E ∆<∆C. 12k k E E ∆>∆D.无法判断【思路点拨】 本题考察动能的变化k E ∆【答案】B 【解析】222121************((222 3.62 3.6k K K E E E mv mv m m ∆=-=-=-=210)())()3.6 222243432111501900((222 3.62 3.6k k k E E E mv mv m m ∆=-=-=-=240)())()3.6 【总结升华】物体速度大小变化相等时,物体的动能变化大小是不相同的。

举一反三【变式】关于对动能的理解,下列说法中正确的是( )A.动能是能的一种表现形式,凡是运动的物体都具有动能。

B.动能总为正值,但对于不同的参考系,同一物体的动能大小是不同的C.一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化。

D.动能不变的物体,一定处于平衡状态。

【答案】ABC【解析】动能是由于物体运动而具有的能量,所以运动的物体就有动能,A 正确;由于212K E mv =,而v 与参考系的选取有关,所以B 正确;由于速度是矢量,当方向变化时,其速度大小不变,故动能并不改变,C 正确;做匀速圆周运动的物体动能不变,但并不处于平衡状态,平衡状态指合外力为零,故D 错误。

类型三、动能定理求匀变速直线运动问题例3、如图所示,物体从高为h 的斜面上的A 点由静止滑下,恰好停在平面上的B 点,若使其从B 点开始运动且能回到斜面上的A 点,则物体在B 点的初速度应为多大?【思路点拨】因为在两次运动过程中摩擦阻力做功相同,两过程可分别应用动能定理求解。

【解析】物体从A 到B 应用动能定理:0f mgh W -= (1)物体从B 到A 应用动能定理:212f mgh W mv --=-(2) 由(1)、(2)式可得v =【总结升华】恒力做功时,既可用牛顿定律求解,也可用动能定理求解,显然用动能定理求解要简单。

举一反三【高清课程:动能和动能定理 例6】【变式】如图所示,质量为m 的物体从斜面上的A 处由静止滑下,在由斜面底端进入水平面时速度大小不变,最后停在水平面上的B 处。

量得A 、B 两点间的水平距离为s ,A 高为h ,已知物体与斜面及水平面的动摩擦因数相同,则此动摩擦因数μ= 。

【答案】=μh s类型四、动能定理求曲线运动问题例4、过山车是游乐场中常见的设施.如图所示是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径R 1=2.0 m 、R 2=1.4m .一个质量为m =1.0 kg 的小球(视为质点),从轨道的左侧A 点以v 0=12.0 m /s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0 m .小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g =10 m /s 2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B 、C 间距L 应是多少;(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R 3应满足的条件;小球最终停留点与起点A 的距离.【思路点拨】解题的关键是抓住小球到最高点恰无作用力,此时重力作为向心力,在应用动能表达式时,搞清初、末状态.【解析】(1)设小球经过第一个圆轨道的最高点时的速度为v 1,根据动能定理22111011222mgL mgR mv mv μ--=-. ① 小球在最高点受到重力mg 和轨道对它的作用力F ,根据牛顿第二定律211v F mg m R +=. ② 由①②得 F =10.0 N . ③(2)设小球在第二个圆轨道最高点的速度为v 2,由题意222v mg m R =, ④ 22122011()222mg L L mgR mv mv μ-+-=-. ⑤ 由④⑤得L =12.5 m . ⑥(3)要保证小球不脱离轨道,可分两种临界情况进行讨论:Ⅰ.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R =, ⑦ 22133011(2)222mg L L mgR mv mv μ-+-=-. ⑧ 由⑥⑦⑧得 R 3=0.4m . ⑨Ⅱ.轨道半径较大时,小球上升的最大高度为R 3,根据动能定理21301(2)02mg L L mgR mv μ-+-=-. 为了保证圆形轨道不重叠,R 3最大值应满足(如图所示).2222332()()R R L R R +=+-, 解得327.9m R =.综合I 、Ⅱ。

相关文档
最新文档