离散数学第四版答案
离散数学第四版课后答案(第9章).docx
第9章习题解答9. 1有5片树叶.分析设T有x个1度顶点(即树叶)•则T的顶点数n = 3 + 2 + x = 5 + x,T的边数m = n- \ =4 + x.由握手定理得方程.2m = 2(4 + x) = y^J(v f) = 3x3 + 2x2 + l- x = 13 + x./=1由方程解出*5.所求无向树T的度数列为1, 1, 1, 1, 1, 2, 2, 3, 3, 3.由这个度数列可以画多棵非同构的无向树,图9. 6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.分析设T中有x个3度顶点,则T中的顶点数n = l + x,边数加= "-l = 6 + x,由握手定理得力程.2m = 12 + 2x =》d(片)=3x + 7/=!rtl方程解出x=5.所求无向树T的度数列为1, 1, 1, 1, 1, 2, 2, 3, 3, 3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.要析设T中有x个3度顶点,则T中的顶点数"7 +小边数加1=6 + .由握手定理得方程.由此解出"5,即T中有5个3度顶.T的度数列为1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3.由于T中只有树叶和3度顶点, 因而3度顶点可依次相邻,见图9. 7所示.还有棵与它非同构的树,请读者自己i田i出.9. 3力肛-1条新边才能使所得图为无向树.分析设具有£个连通分支的森林为G,则G有k个连通分支人込,…八/全为树,心1,2,…&加新边不能在7;内部加,否则必产生回路.因而必须在不同的小树之间加新边.每加一条新边后,所得到的森林就减少一个连通分支.恰好加-1条新边,就使得图连通且无回路,因而是树•在加边过程屮,只需注意,不在同一人连通分支中加边.下面给出一种加边方法,取v,为7;中顶点,加新边(v,,v,+l)z = l,2,---J-l,则所得图为树, 见图9. 8给出的一个特例.图中虚线边为新加的边.9. 4不一定.分析n阶无向树T具有“-I条边,这是无向树T的必要条件,但不是充公条件•例如,阶圈(即“-1个顶点的初级回路) 和一个孤立点组成无向简单图具有”-1条边,但它显然不是树.图9.89. 5非同构的无向树共有2棵,如图9. 9所示.困9.9分析由度数列1, 1, 1, 1,2,2, 4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况. 因而是两棵非同构的树. o 、O O9.6有两棵非同构的生I ,——V(1) (2)成树,见图9. 10所示. 图9.10分析图9. 10是5阶图(5个顶点的图),5阶非同构的无向树只有3棵,理由如下.5 阶无向树中,顶点数"=5,边数加=4,各顶点度数Z和为&度数分配方案有3种,分别为①1, 1, 1, 1,4;②1, 1, 1,2,3;③1, 1,2, 2. 2.每种方案只有一棵非同构的树•图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树,但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树.但在图9. 10中已经找出了两个非同构的生成树, 其中(1)的度数列为③,(2)的度数列为②,因而该图准确地有两棵非同构的牛成树.9. 7 基本回路为:C c = cbad,C e = ead,C g = gfa,C h =hfab.基本回路系统为{C c,C e,C g,C h}.基本回路系统为{S a,S h,S d,S f}.分析1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2°基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的:设弦e = (fj),则%,Vj在生成树T中,且在T中, 之间存在唯一的路径「订与e = (v,,v y)组成的回路为G中对应弦e的基本回路.3°基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝e = (i;,Vj),则e为T中桥,于是T-e (将e从T 中支掉),产生两棵小树7;和0,则={e \e在G中且e的两端点分别在7;和3中} S。
离散数学第四版答案
浅谈高中数学新教材中课本例题的教学无锡市辅仁高级中学王文俊文章提要:搞好课本例题的多种形式教学,能使学生的数学思维能力得到进一步提高。
本文从以下几个方面进行说明。
首先,课本例题是解题规范参照的最佳样本;其次,课本例题是将设问引申的最理想起点;第三、课本例题是一题多解的最佳展示台;第四、课本例题是变式教学的最丰富源泉。
关键词:课本例题规范引申一题多解变式《普通高中数学课程标准》指出:教师不仅是新课程的实施者,而且也是课程的研究、建设和资源开发的重要力量。
《普通高中课程标准实验教科书—数学》,即通常所说的教材,具有完备的知识体系,又具有权威性,是教师进行数学教学的主要依据,也是学生学习数学基础知识的重要依据。
而课本例题更是经过编者反复论证精心设计的,具有典型的范例作用,蕴含着基本的解题思想和方法,具有很高的教学价值。
新教材中例题的选择更是力求与生活实际接近,许多情景甚至完全可以通过实际活动来表现。
在高中数学教学中,搞好例题教学,特别是搞好课本例题的多种形式教学,不仅能加深基础知识的理解和掌握,更重要的是在开发学生智力、培养和提高学生能力等方面,能发挥其独特的功效。
但是对课本例题的教学,很多老师有时会照本宣科,或认为课本例题太过一般,不值得花费时间讲解,一带而过,而改用自己在其他参考书上找来的例题。
事实上,这正是教师对课程、教材研究不深入的表现。
只要教师认真钻研教材,深刻理解例题的用意,充分挖掘例题的价值,结合学生的实际情况和教学的实际需要,进行适当的引申和拓展,就可以满足不同层次教学的要求。
下面就新教材中课本例题的教学,谈一下笔者几点简单的想法。
一、课本例题是解题规范参照的最佳样本解题是深化知识、发展智力、提高数学能力的重要手段。
规范的解题能够养成良好的学习习惯,提高思维水平。
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。
因此,语言叙述必须规范。
规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。
《离散数学》题库及标准答案
《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。
在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
离散数学第四版课后答案(第3章)
( A B C) ( A B) ((A B) ( A B)) (C ( A B))
= (C ( A B)) C ( A B). 易 见 , C (A B) C, 但 不 一 定 有 C (A B) C.如 令 A B C {1}.时,等式(4)不为真。类假地,等式(5)的左 边经化简后得 (A C) B ,而 (A C) B 不一定恒等于 A-C。 3.17 (1)不为真。(2),(3)和(4)都为真。对于题 (1)举反例如下:令 A {1}, A {1}, B {1,4},C {2}, D {2,3}, 则 A B 且 C B ,但 A C B D ,
这是 S T 的充公必要条件,从而结论为真. 对 于 假 命 题 都 可 以 找 到 反 例 , 如 题 (2) 中 令 S {1,2},T z{1}, M {2}即可;而对于题(5),只要 S 即可. 3.9 (2),(3)和(4)为真,其余为假. 3.10 (1) A {0,1,2}. (2) A {1,2,3,4,5} (3) A {1} (4) A { 0,0 , 0,1 1,0 , 0,2 , 1,1 , 2,0 , 0,3 ,
A B .
(4)易见,当 A=B 成立时,必有 A-B=B-A。反之,由 A-B=B-A 得
( A B) B (B A) B
化简后得 B A ,即 B A,同理,可证出 A B ,从而 得到 A=B。
3.18 由| P(B) | 64 可知|B|=6。又由| P(A B) | 256 知| A B | 8 , 代入包含排斥原理得
{,{1},{2},{1,2}}}.
(4) P( A) {,{{1}},{{1,2}},{{1}},{{1,2}} (5) P( A) {,{1},{1},{2},{1,1},{1,2}{1,2}{1,1,2}. 分析 在做集合运算前先要化简集合,然后再根据题目 要求进行计算.这里的化简指的是元素,谓词表示和集合公 式三种化简. 元素的化简——相同的元素只保留一个,去掉所有冗余 的元素。 谓词表示的化简——去掉冗余的谓词,这在前边的题解 中已经用到。 集合公工的化简——利用简单的集合公式代替相等的 复杂公式。这种化简常涉及到集合间包含或相等关系的判别。 例如,题(4)中的 A {{1,1},{2,1},{1,2,1}}化简后得 A {{1},{1,2}}, 而题(5)中的 A {x | x R x3 2x2 x 2 0} 化 简为 A {1,1,2}。 3.15
离散数学第四版课后答案(第9章)
第9章 习题解答9.1 有5片树叶.分析 设T 有x 个1度顶点(即树叶).则T 的顶点数Tx x n ,523+=++=的边数.41x n m +=-=由握手定理得方程.∑=+=⋅+⨯+⨯==+=ni ix x vd x m 1.1312233)()4(22由方程解出.5=x所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.分析 设T 中有x 个3度顶点,则T 中的顶点数,7x n +=边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122由方程解出x=5.所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.要析 设T 中有x 个3度顶点,则T 中的顶点数x n +=7,边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122.由此解出5=x ,即T 中有5个3度顶.T 的度数列为1,1,1,1,1,1,1,3,3,3,3,3.由于T 中只有树叶和3度顶点,因而3度顶点可依次相邻,见图9.7所示. 还有一棵与它非同构的树,请读者自己画出.9.3 加1-k 条新边才能使所得图为无向树.分析 设具有k 个连通分支的森林为G,则G 有k 个连通分支i K T T TT ,,,21全为树,.,,2,1k i =加新边不能在i T 内部加,否则必产生回路.因而必须在不同的小树之间加新边. 每加一条新边后,所得到的森林就减少一个连通分支. 恰好加1-k 条新边,就使得图连通且无回路,因而是树.在加边过程中,只需注意,不在同一人连通分支中加边. 下面给出一种加边方法,取iv 为iT 中顶点,加新边1,,2,1),(1-=+k i vv i i,则所得图为树,见图9.8 给出的一个特例.图中虚线边为新加的边.9.4 不一定.分析 n 阶无向树T 具有1-n 条边,这是无向树T 的必要条件,但不是充公条件.例如, 阶圈(即1-n 个顶点的初级回路)和一个孤立点组成无向简单图具有1-n 条边, 但它显然不是树.9.5 非同构的无向树共有2棵,如图 9.9所示.分析由度数列1,1,1,1,2,2,4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况.因而是两棵非同构的树.9.6 有两棵非同构的生成树,见图9.10所示.分析图9.10 是5阶图(5个顶点的图), 5阶非同构的无向树只有3棵,理由如下. 5阶无向树中,顶点数5=n,边数4=m,各顶点度数之和为8,度数分配方案有3种,分别为①1,1,1,1,4;②1,1,1,2,3;③1,1,2,2.2.每种方案只有一棵非同构的树.图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树, 但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树. 但在图9.10 中已经找出了两个非同构的生成树,其中(1)的度数列为③,(2) 的度数列为②,因而该图准确地有两棵非同构的生成树.9.7 基本回路为: .,,,hfab C gfa C ead C cbad C h g e c====基本回路系统为}.,,,{h g e cC C C C基本割集为:},,{},,{},,,{},,,,,{h g f Sc ed S h c b S h g ce a S fd b a ====基本回路系统为},,,{f d b aS S S S.分析 1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2° 基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的: 设弦),(j iv ve =,则jiv v,在生成树T 中,且在T 中,ji v v ,之间存在唯一的路径ji ,Γ与),(j iv ve =组成的回路为G 中对应弦e 的基本回路.3° 基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝),(j iv ve =,则e 为T 中桥,于是eT-(将e 从T中支掉),产生两棵小树1T 和2T ,则}|{21'''中和的两端点分别在中且在T T e G e e S e =e S 为树枝e 对应的基本割集. 显然ee S S e ,∈中另外的边全是弦. 注意,两棵小树1T 和2T ,中很可能有平凡的树(一个顶点).aT -得两棵小树如图9.11中(1) 所示. G 中一个端点在i T 中,另一个端点在2T 中的边为a(树枝), h g c e ,,,,它们全是弦,于是},,,,{h g c e a Sa=bT - 得两棵小树如图9.11中(2) 所示, 其中有一棵为平凡树. G 中一个端点在1T 中,另一个端点在2T 中的边数除树枝b 外,还有弦,,h c 所以, },,{h c b Sb=dT -产生的两棵小树如图9.11中(3) 所示 . G 中一个端点在1T 中,另中一个端点在2T 中的边,除树枝d 外,还有两条弦e c ,,所示, },,{e c d Sd=fT -产生的两棵小树如图9.11中(4) 所示. 由它产生的基本割集为},,{h g f Sf=9.8 按Kruskal 求最小生成树的算法,求出的图9.3(1)的最小生成树T 为图9.12中(1) 所示, 其7)(=T W .(2) 的最小生成树T 为图9.12中(2)所示,其.11)(=T W9.9 421,,B B B为前缀码.分析 在421,,B B B中任何符号串都不是另外符号串的前串,因而它们都是前缀码.而在3B 中, 1是11,101的前缀,因而3B不是前缀码. 在5B 中,,a 是ac aa ,等的前缀,因而5B 也不是前缀码.9.10 由图9.4 (1) 给出的2元前缀码.}11,011,01010,0100,00{1=B由(2) 给出的3元前缀码为.}.2,1,022,0202,0201,0200,01,00{2=B分析 1B 是2元树产生的2元前缀码(因为码中的符号串由两个符号0,1组成),类似地,2B 是由3元树产生的3元前缀码(因为码中符号串由3个符号0,1,2组成).一般地,由r 元树产生r 元前缀码.9.11 (1) 算式的表达式为ji h g f e d c b a *)*()()*)*((((++÷-+.由于使其成为因而可以省去一些括号优先于,,,*,-+÷ji h g f e d c b a **)()*)*((++÷-+.(2) 算式的波兰符号法表达式为.****hij fg bcde a ++-÷+(3) 算式的逆波兰符号法表达式为.****+÷+-+jI hi fg e d abc9.12 答案 A:①; B ②; C:④; D:⑨.分析 对于每种情况都先求出非同构的无向树,然后求出每棵非同构的无向树派生出来的所有非同构的根树.图9.13 中,(1),(2),(3),(4)分别画出了2阶,3阶,4阶,5阶所有非同构的无向树,分别为1棵,1棵,2棵和3棵无向树.2阶无向树只有1棵,它有两个1度顶点,见图9.13中(1)所示,以1个顶点为树根,1个顶点为树叶,得到1棵根树.3阶非同的无向树也只有1棵,见图9.13中(2)所示.它有两个1度顶点,1个2度顶点,以1度顶点为根的根树与以2度顶点为根的树显然是非同构的根树,所以2个阶非同构的根树有两棵.4阶非同构的无向树有两棵,见图9.13中(3)所示. 第一棵树有3片树叶,1个3度顶点, 以树叶为根的根树与以3度顶点为根的树非同构.所以,由第一棵树能生成两个非同构的根树, 见图9.14 中(1)所示. 第二棵树有两片树叶,两个2度顶点,由对称性,以树叶为根的根树与2度顶点为根的根树非同构,见图9.14中(2) 所示. 所以,4阶非同构的根树有4棵.5阶非同构的无向树有3棵,见图9.13中(4)所示. 由第一棵能派生两棵非同构的根树, 由第二棵能派生4棵非同构的根树,由第三棵能派生3棵非同构的根树,所以,5阶非同构的根树共有9棵,请读者将它们都画出来.9.13 答案 A:②; B:②; C:③; D:③; E:③;F:④; G: ④; H:③.分析 将所有频率都乘100,所得结果按从小到大顺序排列:.35,20,15,10,10,5,5=======a b c d e f g w w w w w w w以以上各数为权,用Huffman 算法求一棵最优树,见图9.15所示.对照各个权可知各字母的前缀码如下:a ——10,b ——01,c ——111,d ——110,e ——001,f ——0001,g ——0000.于是,a,b 的码长为e d c ,,,2的码长为g f ,,3的码长为4. W(T)=255(各分支点的权之和),W(T)是传输100按给定频率出现的字母所用的二进制数字,因则传输104个按上述频率出现的字母要用25500⨯个二进制数字..24=1055最后还应指出一点,在画最优树叶, 由于顶点位置的不同,所得缀码可能不同,即有些字母的码子在不同的最优树中可能不同,但一般说来码长不改变.特别是,不同的最优树,它们的权是固定不变的.9.14 答案 A:②; B:④分析用2元有序正则树表示算式,树叶表示参加运算的数,分支点上放运算符,并将被减数(被除数)放在左子树上,所得2元树如图9.16所示.用前序行遍法访问此树,得波兰符号表示法为abc-++de-*.**ghf用后序行遍法访问此树,得逆波兰符号表示法为dec*fghab--++**。
大学_《离散数学》课后习题答案
《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
第7章图论离散数学离散数学第四版清华出版社1
为止。最后得到的通路是u到v的基本通路,显然它 的长度应小于等于n-1。类似地可证定理的后半部分。
9/21/2019 4:36 AM
第四部分:图论(授课教师:向胜军)
23
例:
(1) 画出4个顶点3条边的所有可能非同构的 无向简单图。
(2) 画出3个顶点2条边的所有可能非同构的 有向简单图。
• (1)
(2)
9/21/2019 4:36 AM
第四部分:图论(授课教师:向胜军)
24
§2 通路、回路、图的连通性
证明思路:将图中顶点的度分类,再利用定理1。
9/21/2019 4:36 AM
第四部分:图论(授课教师:向胜军)
9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
n
n
d (vi ) d (vi ) m.
i 1
9/21/2019 4:36 AM
第四部分:图论(授课教师:向胜军)
8
[定理1 (握手定理Handshaking)] 设无向图
G=<V, E>有n个顶点,m条边,则G中所有
顶点的度之和等于m的两倍。即
n
d(vi ) 2m.
i 1
证明思路:利用数学归纳法。
[定理2] 无向图中度为奇数的顶点个数恰有 偶数个。
狼菜
狼
菜
羊
空(成功)
离散数学课后答案(四)
--------------------------------------------------------------------------------
8、证明如下:设<S,*>为一个独异点,则它有一个幺元.
设在<S,*>中e是关于*的幺元,若对于任意a∈S,存在b∈S且b*a=e,则b是a的左逆元。
晓津认为题中所给<R,O>中的O应为o;答案中的(3)幺元是0,而不是[0].
--------------------------------------------------------------------------------
5、
晓津证明如下:
反证法:若V不是独异点,则V不存在幺元.
而因为x是任意的,则当x=a时,有
(c) : 不可交换、具有幂等性,无幺元。
(d) : 可交换、不具有幂等性、有幺元 a ,a有逆元a.
--------------------------------------------------------------------------------
6、
证明: 设a,b,c∈I+
a*(b△c)=a^(b.c)
2、证明:二元运算□是可结合的。
根据结合律: (x□y)□z=x□(y□z)
(x□y)□z=(x*a*y)*a*z
x□(y□z)=x*a*(y*a*z)
由于*满足结合律,故:
(x*a*y)*a*z=x*a*(y*a*z)
=> (x□y)□z=x□(y□z)
=> 二元运算□是可结合的
离散数学第四版课后答案(第2章)
离散数学课后答案第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x(是鸟F:)x(会飞翔.G:)xx命题符号化为xFx→∀.))G((x)((2)令x(为人.xF:)(爱吃糖G:)xx命题符号化为GxFx→⌝∀(x))()(或者xFx⌝∧∃(xG))(()(3)令xF:)(为人.xG:)(爱看小说.xx命题符号化为xF∃.Gx∧(x()))((4) x(为人.xF:)G:)(爱看电视.xx命题符号化为Fx⌝⌝∃.x∧(x))()G(分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)(x F 都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为))()((x G x F x ∧∀即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),a中均符号化为b(c(),∃xH)(x其中.1(bH此命题在)(),a中均为假命题,在(c)中为(=5:)xx真命题。
分析 1°命题的真值与个体域有关。
2°有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。
离散数学参考答案
离散数学参考答案答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.答题: A. B. C. D.12.(单选题) 设:p:派⼩王去开会。
q:派⼩李去开会。
则命题:“派⼩王或⼩李中的⼀⼈去开会” 可符号化为:()答题: A. B. C. D. (已提交)参考答案:B问题解析:答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.问题解析:20.(单选题) 下⾯“”的等价说法中,不正确的为A.p是q的充分条件B.q是p的必要条件C.q仅当p D.只有q才p答题: A. B. C. D. (已提交)参考答案:C问题解析:答题: A. B. C. D.22.(单选题) 下列式⼦是合式公式的是( )A.(P ú ? Q)B.?(P ù(Q ú R))C.(P ? Q)D.ù Q ? ù R答题: A. B. C. D. (已提交)参考答案:B问题解析:23.(单选题) 公式?((p?q)ù(q ? p))与的共同成真赋值为( ) A.01,10 B.10,01 C.11,00 D.01,11答题: A. B. C. D. (已提交)参考答案:A问题解析:24.(单选题) p,q都是命题,则p?q的真值为假当且仅当( ) A.p为假,q为真B.p为假,q也为假C.p为真,q也为真D.p为真,q为假答题: A. B. C. D. (已提交)参考答案:D问题解析:25.(单选题) n个命题变元组成的命题公式,有( )种真值情况A.n B.C. D.2n答题: A. B. C. D. (已提交)参考答案:C问题解析:26.(单选题) 设A , B 代表任意的命题公式,则德?摩根律为(A ù B)?( )A.?A ù ?B B.?A ú ?BC.A ù ?B D.AúB答题: A. B. C. D. (已提交)参考答案:B问题解析:27.(单选题) 设P , Q 是命题公式,德?摩根律为:(P ú Q)?( )A.?P ù ?Q B.?P ú ?QC.P ù ?Q D.PúQ答题: A. B. C. D. (已提交)问题解析:28.(单选题) 命题公式A与B是等值的,是指()。
《离散数学》题库答案
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校
(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校
答:(1) Q P (2) P Q (3) P Q (4) P Q
8、设个体域为整数集,则下列公式的意义是( )。
(1) xy(x+y=0) (2) yx(x+y=0)
答:2 不是偶数且-3 不是负数。
12、永真式的否定是( )
(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能
答:(2)
13、公式( P Q) ( P Q)化简为(
),公式 Q (P (P Q))可化简为
( )。
答: P ,Q P
14、谓词公式x(P(x) yR(y)) Q(x)中量词x 的辖域是( )。
(5) 前进!
(6) 给我一杯水吧!
答:(1) 是,T (4) 是,T
(2) 是,F (5) 不是
(3) 不是 (6) 不是
6、命题“存在一些人是大学生”的否定是(
),而命题“所有的人都是要
死的”的否定是(
)。
答:所有人都不是大学生,有些人不会死
1
7、设 P:我生病,Q:我去学校,则下列命题可符号化为( )。
R (2) R-1 。
答:(1)R={<1,1>,<4,2>} (2) R 1 ={<1,1>,<2,4>}
29、举出集合 A 上的既是等价关系又是偏序关系的一个例子。( )
答:A 上的恒等关系
30、集合 A 上的等价关系的三个性质是什么?(
)
答:自反性、对称性和传递性
31、集合 A 上的偏序关系的三个性质是什么?(
离散数学第四版课后答案(第8章)
第8 章 习题解答8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式.8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了.分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了.8.3 完全二部图,,s r K 中的边数rs m =.分析 设完全二部图s r K ,的顶点集为V, 则∅==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的边互不相同,所以,边数rs m =.8.4 完全二部图s r K ,中匹配数},m in{1s r =β,即1β等于s r ,中的小者.分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到2V 的完备匹配,设M 为一个完备匹配,则1V 中顶点全为M 饱和点,所以,.1r =β8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务.分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向图>=<E V G ,,则G 为二部图,见图8.7 所示.本题是求图中完美匹配问题. 给图中一个完美匹配就对应一个分配方案.图8.7 满足Hall 定理中的相异性条件,所以,存在完备匹配,又因为,3||||21==V V 所以,完备匹配也为完美匹配.其实,从图上,可以找到多个完美匹配. 取)},(),,(),,{(1c b a M 丙乙甲=此匹配对应的方案为甲完成a,乙完成b, 丙完成c,见图中粗边所示的匹配.)},(),,(),,{(2c a b M 丙乙甲=2M 对应的分配方案为甲完成b,乙完成a,丙完成c.请读者再找出其余的分配方案.8.6 本题的答案太多,如果不限定画出的图为简单图,非常容易地给出4族图分别满足要求.(1) n (n 为偶数,且2≥n )阶圈都是偶数个顶点,偶数条边的欧拉图.(2) n (n 为奇数,且1≥n )阶圈都是奇数个顶点,奇数条边的欧拉图.(3) 在(1) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为偶数个顶点,奇数条边的欧拉图.(4)在(2) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为奇数个顶点,偶数条边的欧拉图.分析 上面给出的4族图都是连通的,并且所有顶点的度数都是偶数,所以,都是欧拉图.并且(1),(2) 中的图都是简单图.而(3),(4)中的图都带环,因而都是非简单图. 于是,如果要求所给出的图必须是简单图,则(3),(4)中的图不满足要求.其实,欧拉图是若干个边不重的图的并,由这种性质,同样可以得到满足(3),(4)中要求的简单欧拉图.设k G G G ,,,21 是长度大于等于3的k 个奇圈(长度为奇数的圈称为奇圈),其中k 为偶数,将1G 中某个顶点与2G 中的某顶点重合,但边不重合, 2G 中某顶点与3G 中某顶点重合,但边不重合,继续地,最后将1-k G 中某顶点与k G 中某顶点重合,边不重合,设最后得连通图为G,则G 中有奇数个顶点,偶数条边,且所有顶点度数均为偶数,所以,这样的一族图满足(4)的要求,其中一个特例为图8.8中(1)所示.在以上各图中,若k G G G ,,,21 中有一个偶圈,其他条件不变,构造方法同上,则所得图G 为偶数个顶点,奇数条边的简单欧拉图,满足(3)的要求,图8.8中(2)所示为一个特殊的情况.8.7 本题的讨论类似于8.6题,只是将所有无向圈全变成有向圈即可,请读者自己画出满足要求的一些特殊有向欧拉图.8.8 本题的答案也是很多的,这里给出满足要求的最简单一些图案,而且全为简单图.(1) n (3≥n )阶圈,它们都是欧拉图,又都是哈密尔顿图.(2) 给定k (2≥k )个长度大于等于3的初级回路,即圈k G G G ,,,21 ,用8.6题方法构造的图G 均为欧拉图,但都不是哈密尔顿图,图8.8给出的两个图是这里的特例.(3)n (4≥n )阶圈中,找两个不相邻的顶点,在它们之间加一条边,所得图均为哈密尔顿图,但都不是欧拉图.(4) 在(2)中的图中,设存在长度大于等于4的圈,比如说1G ,在1G 中找两个不相邻的相邻顶点,在它们之间加一条新边,然后用8.6题方法构造图G,则G 既不是欧拉图,也不是哈密尔顿图,见图8.9所示的图.分析 (1) 中图满足要求是显然的.(2) 中构造的图G 是连通的,并且各顶点度数均为偶数,所以,都是欧拉图,但因为G 中存在割点,将割点从G 中删除,所得图至少有两个连通分支,这破坏了哈密尔顿图的必要条件,所以,G不是哈密尔顿图.(3) 中构造的图中,所有顶点都排在一个圈上,所以,图中存在哈密尔顿回路,因而为哈密尔顿图,但因图中有奇度顶点(度数为奇数的顶点),所以,不是欧拉图. 由以上讨论可知,(4) 中图既不是欧拉图,也不是哈密尔顿图.其实,读者可以找许多族图,分别满足题中的要求.8.9 请读者自己讨论.8.10 其逆命题不真.分析若D是强连通的有向图,则D中任何两个顶点都是相互可达的,但并没有要求D中每个顶点的入度都等于出度. 在图8.2 所示的3个强连通的有向图都不是欧拉图.8.11 除K不是哈密尔顿图之外, n K(3≥n)全是哈密尔2顿图.K(n为奇数)为欧拉图. 规定1K(平凡图)既是欧拉图, n又是哈密尔顿图.分析从哈密尔顿图的定义不难看出,n阶图G是否为哈密尔顿图,就看是否能将G中的所有顶点排在G中的一个长为n的初级回路,即圈上.K(3≥n)中存在多个这样的生成n圈(含所有顶点的图), 所以K(3≥n)都是哈密尔顿图.n在完全图K中,各顶点的度数均为n-1,若n K为欧拉图,n则必有1-n为偶数,即n为奇数,于是,当n为奇数时,K连通n且无度顶点,所以,K(n为奇数) 都是欧拉图.当n为偶数时,n各顶点的度数均为奇数,当然不是欧拉图.8.12 有割点的图也可以为欧拉图.分析 无向图G 为欧拉图当且仅当G 连通且没有奇度顶点.只要G 连通且无奇度顶点(割点的度数也为偶数),G 就是欧拉图.图8.8所示的两个图都有割点,但它们都是欧拉图.8.13 将7个人排座在圆桌周围,其排法为.abdfgeca 分析 做无向图>=<E V G ,,其中,},,,,,,{g f e d c b a V =},|),{(有共同语言与且v u V v u v u E ∈=图G 为图8.10所示.图G 是连通图,于是,能否将这7个人排座在圆桌周围,使得每个人能与两边的人交谈,就转化成了图G 中是否存在哈密尔顿回路(也就是G 是否为哈密尔顿图).通过观察发现G 中存在哈密尔顿回路, abdfgeca 就是其中的一条哈密尔顿回路.8.14 用i v 表示颜色.6,,2,1, =i i 做无向图>=<E V G ,,其中 },,,,,,{654321v v v v v v V =}.,,|),{(能搭配与并且且v u v u V v u v u E ≠∈=对于任意的)(,v d V v ∈表示顶点v 与别的能搭配的颜色个数,易知G 是简单图,且对于任意的V v u ∈,,均有633)()(=+≥+v d u d ,由定理8.9可知,G 为哈密尔顿图,因而G 中存在哈密尔顿回路,不妨设1654321i i i i i i i v v v v v v v 为其中的一条,在这种回路上,每个顶点工表的颜色都能与它相邻顶点代表的颜色相.于是,让1i v 与2i v ,3i v 与4i v ,5i v 与6i v 所代表的颜色相搭配就能织出3种双色布,包含了6种颜色.8.15∑=⨯======300321,10220)deg(.12)deg(,3)deg(,1)deg(,4)deg(i i R R R R R 而本图边数m=10.分析 平面图(平面嵌入)的面i R 的次数等于包围它的边界的回路的长度,这里所说回路,可能是初级的,可能是简单的,也可能是复杂的,还可能由若干个回路组成.图8.1所示图中,321,,R R R 的边界都是初级回路,而0R 的边界为复杂回路(有的边在回路中重复出现),即432110987654321e e e e e e e e e e e e e e ,长度为12,其中边65,e e 在其中各出现两次.8.16 图8.11中,实线边所示的图为图8.1中图G,虚线边,实心点图为它的对偶图的顶点数*n ,边数*m ,面数*r 分别为4,10和8,于是有分析 从图8.11还可以发现,G 的每个顶点位于的一个面中,且的每个面只含G 的一个顶点,所以,这是连通平面图G 是具有k 个连通分支的平面图2≥k ,则应有1*+-=k n r .读者自己给出一个非连通的平面图,求出它的对偶图来验证这个结论.另外,用图8.1还可以验证,对于任意的*v (*G 中的顶点),若它处于G 的面i R 中,则应有)deg()(*i R v d =.8.17 不能与G 同构.分析 任意平面图的对偶图都是连通的,因而与都是连通图,而G 是具有3个连通分支的非连通图,连通图与非连通图显然是不能同构的.图 8.12 中, 这线边图为图8.2中的图G,虚线边图为G 的对偶图,带小杠的边组成的图是*G 的对偶图,显然.~**G G ≠ 8.18 因为彼得森图中有长度为奇数的圈,根据定理8.1可知它不是二部图.图中每个顶点的度数均为3,由定8.5可知它不是欧拉图.又因为它可以收缩成5K ,由库拉图期基定理可知它也不是平面图.其实,彼得森图也不是哈密尔顿图图,这里就不给出证明了.8.19 将图8.4重画在图8.13中,并且将顶点标定.图中afbdcea 为图中哈密尔顿回路,见图中粗边所示,所以,该图为哈密尔顿图.将图中边),(),,(),,(d f f e e d 三条去掉,所得图为原来图的子图,它为3,3K ,可取},,{1c b a V =},,{2f e d V =,由库拉图期基定理可知,该图不是平面图.8.20 图8.14所示图为图8.25所示图的平面嵌入.分析 该图为极大平面图.此图G 中,顶点数9=n ,边数.12=m 若G 是不是极大平面图,则应该存在不相邻的顶点,,v u 在它们之间再加一条边所得'G 还应该是简单平面图, 'G 的顶点数131,6''=+===n m n n ,于是会有.126313''=->=n m这与定理8.16矛盾,所以,G 为极大平面图.其实,n ( 3≥n )阶简单平面图G 为极大平面图当且仅当G 的每个面的次数均为3.由图8.14可知,G 的每个面的次数均为3,所以,G 为极大平面图.8.21 答案 A,B,C,D 全为②分析 (1) 只有n 为奇数时命题为真,见8.11的解答与分析.(2) 2≠n 时,命题为真,见8.11的解答与分析.(3) 只有m n ,都是偶数时,m n K ,中才无奇度数顶点,因而m n K ,为欧拉图,其他情况下,即m n ,中至少有一个是奇数,这时m n K ,中必有奇度顶点,因而不是欧拉图.(4) 只有m n =时, m n K ,中存在哈密尔顿回路,因而为哈密尔顿图.当m n ≠时,不妨设m n <,并且在二部图m n K ,中,m V n V ==||,||21,则n V m V G p =>=-||)(11,这与定理8.8矛盾. 所以, m n ≠时, m n K ,不是哈密尔顿图.8.22 答案 A:②;B ②;C ②.分析图8.15中,两个实边图是同构的,但它们的对偶力(虚边图)是不同构的.(2) 任何平面图的对偶图都是连通图.设G 是非连通的平面图,显然有.**~G G ≠(3) 当G 是非连通的平面图时,,1*+-=k n r 其中k 为G 的连通分支数.8.23 答案 A:④;B ②;C ②.分析 根据库期基定理可知,所求的图必含有5K 或3,3K 同胚子图,或含可收缩成5K 或3,3K 的子图.由于顶点数和边数均已限定,因而由3,3K 加2条边的图可满足要求,由5K 增加一个顶点,一条边的图可满足要求,将所有的非同构的简单图画出来,共有4个,其中由K产生的有2个,由5K产生的有2个.3,3见图8.16所示.。
离散数学第四版课后标准答案
离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学课后习题答案
离散数学课后习题答案离散数学课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了诸多数学概念与技巧,为计算机科学的理论基础打下了坚实的基础。
在学习离散数学的过程中,课后习题是巩固知识、提高能力的重要途径。
然而,有时候我们会遇到一些难以解答的问题,需要参考一些答案来进行思考与学习。
本文将为大家提供一些离散数学课后习题的答案,希望能对大家的学习有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
2. 证明:任意集合A和B,有(A-B)∪(B-A)=(A∪B)-(A∩B)。
答案:首先,对于任意元素x,如果x属于(A-B)∪(B-A),那么x属于A-B或者x属于B-A。
如果x属于A-B,那么x属于A∪B,但x不属于A∩B;如果x属于B-A,同样有x属于A∪B,但x不属于A∩B。
所以(A-B)∪(B-A)属于(A∪B)-(A∩B)。
另一方面,对于任意元素x,如果x属于(A∪B)-(A∩B),那么x属于A∪B,但x不属于A∩B。
所以x属于A或者x属于B。
如果x属于A,但x不属于B,那么x属于A-B;如果x属于B,但x不属于A,那么x属于B-A。
所以x属于(A-B)∪(B-A)。
所以(A∪B)-(A∩B)属于(A-B)∪(B-A)。
综上所述,(A-B)∪(B-A)=(A∪B)-(A∩B)。
证毕。
二、逻辑与证明1. 证明:如果p为真命题,那么¬p为假命题。
答案:根据命题的定义,命题要么为真,要么为假,不存在其他情况。
所以如果p为真命题,那么¬p为假命题。
2. 证明:对于任意整数n,如果n^2为偶数,则n为偶数。
答案:假设n为奇数,即n=2k+1(k为整数)。
那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。
根据偶数的定义,2(2k^2+2k)为偶数,所以n^2为奇数。
离散数学参考答案
1.(单选题)A.明年“五一”是晴天。
B.这朵花多好看呀!。
C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。
C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。
Q:刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。
离散数学屈婉玲版课后答案
离散数学屈婉玲版课后答案【篇一:离散数学第四版课后答案】xt>第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然??,但是??”、“不仅??,而且??”、“一面??,一面??”、“??和??”、“??与??”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月 13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
离散数学课后答案
离散数学课后答案第一章离散数学基础题目1问题:证明集合A和集合B的笛卡尔积的基数等于集合A 和集合B的基数的乘积。
答案:设集合A的基数为|A|,集合B的基数为|B|。
我们要证明集合A和集合B的笛卡尔积的基数等于集合A和集合B的基数的乘积,即|(A x B)| = |A| * |B|。
首先,我们可以将集合A x B表示为{(a, b) | a∈A, b∈B}。
由于A和B是两个集合,集合A x B中的元素可以看作是将A 中每个元素与B中每个元素组成的有序对。
因此,集合A x B 中的元素个数等于A中元素的个数乘以B中元素的个数,即|(A x B)| = |A| * |B|。
题目2问题:对任意两个集合A和B,证明A∩(A∪B) = A。
答案:要证明A∩(A∪B) = A,首先我们需要理解集合的交和并的定义。
- 集合的交:集合A∩B表示同时属于集合A和集合B的元素组成的集合。
- 集合的并:集合A∪B表示属于集合A或集合B的元素组成的集合。
现在,我们开始证明。
首先,根据集合的并的定义,A∪B 表示属于集合A或集合B的元素组成的集合。
因此,任意属于集合A的元素也一定属于A∪B,即A⊆A∪B。
其次,根据集合的交的定义,A∩(A∪B)表示同时属于集合A和集合A∪B的元素组成的集合。
由于A⊆A∪B,所以A中的元素一定属于A∪B,因此A∩(A∪B) = A。
综上所述,对任意两个集合A和B,A∩(A∪B) = A成立。
第二章命题逻辑题目1问题:证明合取命题的真值表达式。
答案:合取命题的真值表达式表示命题P和命题Q同时为真时合取命题为真,否则为假。
假设命题P和命题Q的真值分别为真(T)或假(F),那么合取命题的真值可以通过以下真值表得出:P Q P∧QT T TT F FF T FF F F从上述真值表可以看出,只有P和Q都为真时,合取命题才为真。
如果其中一个或两个命题为假,则合取命题为假。
题目2问题:证明命题的等价关系。
离散数学第四版课后答案(第4章)
第4章 习题解答4.1 A :⑤; B :③; C :①; D :⑧; E :⑩4.2 A :②; B :③; C :⑤; D :⑩; E :⑦4.3 A :②; B :⑦; C :⑤; D :⑧; E :④分析 题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的}2,2,1,2,2,1,1,1{},2,2,1,1{><><><><=><><=s s E I};2,2,2,1,1,1{><><><=s I而题4.2中的}.1,4,4,3,1,2,4,1,1,1{><><><><><=R为得到题4.3中的R 须求解方程123=+y x ,最终得到}.1,9,2,6,3,3{><><><=R求R R 有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将ranR ran domR domR,, 的元素列出来,如图4.3所示。
然后检查R 的每个有序对,若R y x >∈<,,则从domR 中的x 到ranR 中的y 画一个箭头。
若danR 中的x 经过2步有向路径到达ranR 中的y ,则R R y x >∈<,。
由图4.3可知}.1,3,4,2,1,2,4,4,1,44,1,1,1{><><><><>><<><=R R如果求G F ,则将对应于G 中的有序对的箭头画在左边,而将对应于F 中的有序对的箭头画在右边。
对应的三个集合分别为ranF domF ran domG ,, ,然后,同样地寻找domG 到ranF 的2步长的有向路径即可。
离散数学屈婉玲课后习题答案
离散数学屈婉玲课后习题答案【篇一:离散数学第四版课后答案】xt>第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然??,但是??”、“不仅??,而且??”、“一面??,一面??”、“??和??”、“??与??”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月 13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
离散数学答案-第四章习题解答.doc
习题四1.用归结法证明:(1)\= p^q^r(2)p T r , q — r# pvqir(3)p W 匕(p T q)v(p f r)(4)p /\q r |= (/? ^ r) v(t? r)(5)p v v r , p t r A q v『⑹(〃T q) T O T 厂)f= p T (q T r)解(1)首先将p I q , p I f , 7p T q八门化为合取范式。
p T q o —\p 7 q , p T r o —yp v r ,—>(# T q /\ 厂)u> -1(-1/? v(q A /*)) u> /? /\ (—v -i厂)给出子句集\rpy q’rpy l ”,p,->^rv—»r}的反驳如下。
①rpy q②~yp v r③p④-it?v—«r⑤q由①和③⑥r由②和③⑦由④和⑤⑧口由⑥和⑦因此,p — q , p T r b p I q z⑵将p T r, q T厂7p v q —厂)化为合取范式。
/? T 厂O -1〃\/儿q t ro-yq 7 丫、-i( p v q r) <=> (p v q) /\—^r 给111子句集{ v r, v r, p v ty, -.r}的反驳如下:—p v r②->q v r③p y q④—if⑤q 7 T rti①和③⑥r由②和⑤⑦□由④和⑥因此,p—> r, q T r 匕p v q T r。
⑶首先将p t qy r, -•((/?^^)v(p^r))化为合取范式。
p T q \z 厂 o -yp v <7 v r ,T q) \/ (p —> r)) o -i((-ip v^) v (-i/? v r))<=> p A —yq A -ir给出子句集\rp7 q\/ F ,p, -yq , 的反驳如下。
—7 q7 丫 Prq—>rq7 丫由①和② r由③和⑤ □由④和⑥①②③④⑤⑥⑦因此,p T qvr \= (j?->(7)v(/?^r)(4)首先将 p /\qf r, -i((pr) v ((? -> r))化为合取范式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高中数学新教材中课本例题的教学无锡市辅仁高级中学王文俊文章提要:搞好课本例题的多种形式教学,能使学生的数学思维能力得到进一步提高。
本文从以下几个方面进行说明。
首先,课本例题是解题规范参照的最佳样本;其次,课本例题是将设问引申的最理想起点;第三、课本例题是一题多解的最佳展示台;第四、课本例题是变式教学的最丰富源泉。
关键词:课本例题规范引申一题多解变式《普通高中数学课程标准》指出:教师不仅是新课程的实施者,而且也是课程的研究、建设和资源开发的重要力量。
《普通高中课程标准实验教科书—数学》,即通常所说的教材,具有完备的知识体系,又具有权威性,是教师进行数学教学的主要依据,也是学生学习数学基础知识的重要依据。
而课本例题更是经过编者反复论证精心设计的,具有典型的范例作用,蕴含着基本的解题思想和方法,具有很高的教学价值。
新教材中例题的选择更是力求与生活实际接近,许多情景甚至完全可以通过实际活动来表现。
在高中数学教学中,搞好例题教学,特别是搞好课本例题的多种形式教学,不仅能加深基础知识的理解和掌握,更重要的是在开发学生智力、培养和提高学生能力等方面,能发挥其独特的功效。
但是对课本例题的教学,很多老师有时会照本宣科,或认为课本例题太过一般,不值得花费时间讲解,一带而过,而改用自己在其他参考书上找来的例题。
事实上,这正是教师对课程、教材研究不深入的表现。
只要教师认真钻研教材,深刻理解例题的用意,充分挖掘例题的价值,结合学生的实际情况和教学的实际需要,进行适当的引申和拓展,就可以满足不同层次教学的要求。
下面就新教材中课本例题的教学,谈一下笔者几点简单的想法。
一、课本例题是解题规范参照的最佳样本解题是深化知识、发展智力、提高数学能力的重要手段。
规范的解题能够养成良好的学习习惯,提高思维水平。
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。
因此,语言叙述必须规范。
规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。
数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。
在高中数学的学习中,有些题目的解答过程是有严格的规范和要求的,比如函数单调性的证明,立体几何证明等等。
例1、求证:函数在区间上是单调增函数.(苏教版高中数学《必修1》第35页例2)例2、已知、分别是平面的垂线和斜线,、分别是垂足和斜足,,.求证:.(苏教版高中数学《必修2》第36页例2)(解答过程略)通过例1,教师应要求学生掌握解题的基本步骤是:①设所证区间内任意两个变量(通常情况下)②作差③变形(通常化成几个因式的乘积或商的形式)④判断差的正负⑤给出结论。
教师可以通过让学生对照课本上该例题的解题过程来“回扣”函数单调性的定义,并强调凡是证明函数的单调性,必须严格按照这个解题规范来解答。
通过这个例题,可以让学生明白,用定义解题,回扣课本,才是体现数学基础知识掌握好坏的一个重要方面。
在立体几何解题过程中,证明过程的书写规范是体现学生立体几何学习水平的一个重要方面。
而公理定理成立的条件,相关角和距离的说明等等,也一直是许多学生不能既简洁又准确书写到位的环节。
例2就是一道立体几何证明题,只是立几部分课本例题中的一例。
它的书写结构是最清晰的“联立大括号+推出符号”形式,而且证明过程中顺序合理,层次清楚,条件和结论书写都很规范,是学生以后证明立几问题时参照的最佳范本。
课本例题已经为学生的解题规范作了最好的示范,而重视解题的规范化将对学生的数学学习带来积极的影响。
新课程中加入《算法》的内容,学习流程图,也从一个方面说明了新课程强调数学解题要步骤清晰,规范到位。
二、课本例题是将设问引申的最理想起点课本例题的最大特点是针对性强,基础性强,但大多数课本例题是一题一问,给学生的思维空间较小。
尽管和老教材相比,新教材在部分例题解答后面安排了“思考”这个环节,对例题进行了一些挖掘,但大多数例题仍缺乏纵向和横向的引申。
为了培养思维的深刻性和广阔性,激发学生的学习积极性,结合教学的实际情况,适当地对课本例题的设问进行引申是非常必要的。
ABCDPA1B1C1D1例1、如图,在长方体ABCD-A1B1C1D1中,P为棱BB1的中点,画出由A1、C1、P三点所确定的平面与长方体表面的交线.(苏教版高中数学《必修2》第23页例2)例2、求下列函数的最小值:(1);(2),.(苏教版高中数学《必修1》第36页例4)在解决了书中提出的设问后,针对例1,可以再提问学生:平面A1PC1与平面ABCD有没有公共点?事实上,部分空间想象能力较弱的学生会因为一时的表面现象而给出“平面A1PC1与平面ABCD无公共点”的错误答案,经同学和老师指正后,回忆起了“平面是无限延展的”这一性质,明确了平面A1PC1与平面ABCD应该也有一条交线。
教师这时可适时提问:“如何作出这条交线?”一下子激发起学生强烈的探究欲望。
通过和原题的比较,学生就会类似地利用所学的公理去寻找两个平面的公共点,从而得到答案。
这样的设问引申可以极大地调动广大学生课堂思考的积极性,再次巩固了前面所学的公理并能更好的运用,也为后续的学习打下一个良好的注脚。
针对例2,可以再提问学生:如何更改(1)中函数(保持解析式不变),可以使得该函数既有最小值,又有最大值?又如何进行更改可以使得该函数的最小值保持不变?学生通过思考后能说出若干不同的答案,并明确:保持解析式不变,虽然改变了函数的定义域,但最值、值域仍然可能相同。
这样的引申能使学生更好的把握函数定义域与值域的关系,以及函数定义域对值域的影响,又能与书中第33页习题13和第94页习题19形成前后呼应。
以上两题的解决过程并不困难,大多数学生很快就能得出答案。
但若在教学过程中就题讲题,不再引申,就会丧失拓展学生创新思维的大好时机,很难激发学生的学习兴趣,造成教师、学生争相“扔掉”课本而投身到大量写板书抄笔记的运动中去,这是完全和新课程的理念背道而驰的。
三、课本例题是一题多解的最佳展示台课本例题大部分是一题一解,目标明确,且解法的基础性强,符合大多数学生的认知要求。
但这样做不利于发散性思维的培养,不利于求异思维和创新能力的培养,同样也不利于知识的融会贯通和综合解题能力的提高。
一题多解的思想具有对所学知识加以融会贯通的作用,不仅体现了解题能力的强弱,更重要的是其具有开放式思维特点,是一种培养创新能力的重要思维方法。
因此,一题多解应当成为教师和学生掌握数学知识和探索数学思维规律的重要手段。
αβ例、如图,三个相同的正方形相接,求证:.(苏教版高中数学《必修4》第103页例3)OABxyβα证法1(三角函数法):由,可得,又,所以.证法2(解析几何法):如图,由,,利用到角公式可求得直线OA到直线OB的角的正切等于1,所以.αβABCDEF证法3(平面几何法):如图,设每个小正方形边长为1,易得EA=EF=,AF=,故△EAF是等腰直角三角形,可得∠EAF=,所以.αBAEDCFβ证法4(相似三角形法):如图,设每个小正方形边长为1,易得,故△EAF∽△ECA,所以.以上是针对本题的4种解法,分别是利用了三角、解几、平几(沟股定理)、相似三角形的相关知识。
相信对于此题,很多老师在教学中都会介绍除书本解法外的其他解法。
这样做,使学生既加深了对各部分知识的理解,又找到了各部分知识之间的联系,积累了研究问题的经验,提高了解决问题的能力。
在教学中,教师应积极地引导学生从各种途径,用多种方法思考问题,培养学生积极探索的能力与意识。
这样,即可暴露学生解题的思维过程,增加教学透明度,又能拓宽学生的解题思路,发展学生的思维能力,使学生熟练掌握知识的内在联系。
四、课本例题是变式教学的最丰富源泉变式教学,就是引导学生在解答某些数学题之后,进行观察、联想、判断、猜想,对数学题的内容、形式、条件和结论作进一步的探索,从不同的侧面深入思考数学题的各种变化,并对这些“变式题”进行解答,从而培养学生灵活、深刻、广阔、发散的数学思维能力。
在数学教学中,若将课本例题充分挖掘,注重对课本例题进行变式教学,不但可以抓好基础知识点,还可以激发学生的探求欲望,提高创新能力;不仅能让教师对教材的研究更加深入,对教学目标和要求的把握更加准确,同时也让学生的数学思维能力得到进一步提高,并逐渐体会到数学学习的乐趣。
例、长为(是正常数)的线段AB的两端点A、B分别在互相垂直的两条直线上滑动,求线段AB中点M的轨迹.(苏教版高中数学《选修2—1》第57页例1)变题1:长为(是正常数)的线段AB的两端点A、B分别在互相垂直的两条直线上滑动,延长AB到点M,且使AB=BM,求点M的轨迹.变题2:长为(是正常数)的线段AB的两端点A、B分别在互相垂直的两条直线上滑动,点M在直线AB上且(),求点M的轨迹.变题3:长为(是正常数)的线段AB的两端点A、B分别在互相垂直的两条直线上滑动,点C在直线AB上,若MC⊥AB 且(其中为非零常数),求点M的轨迹.上面这个例题只是最基本的求轨迹问题(转移法),但在三个变题中先是将转移点的位置进行了变化,轨迹由圆变化为椭圆,接着转移点的数量一般化,化简出轨迹方程后需经过分类讨论来说明所表示的曲线类型,最后一个变题则更进一步要求学生综合运用求轨迹的知识,合理化简轨迹方程,并通过分类讨论描述轨迹。
在题目条件背景相同的情况下,以这个例题为基础变化出了三个层次渐进的变题,由易到难,由浅入深,使学生进一步巩固了轨迹问题的求解,并且也让学生注意到了分类讨论的解题思想在求轨迹问题中的应用。
新教材中可以这样进行变式教学的例题还有很多,还有许多看似平淡但却很精彩的题目,忽视对这些题目的研究和运用,是很可惜的。
所以,进行变式教学,请记住:课本例题就在你的手边。
纵观近几年高考数学试卷,源于课本的题型占了很大的比重,大多是将课本题型进行变式提高,灵活应用,这与高考命题中的“源于课本,高于课本”的原则是一致的。
所以,只有讲好,学好,用好课本,发挥课本例题的最大作用,才能在高考中取得好成绩。
课本例题一般都具有典型性、示范性和关联性,它们或是渗透着某些数学方法,或是体现了某种数学思想,或提供某种重要结论。
教师应该让学生充分认识例题本身所蕴含的教育价值,学会怎样进行数学思维,怎样运用数学知识进行思考、解题,如何表述自己的解题过程等等。
教师只有充分地利用教材,发挥课本例题的潜能,才能达到优化学生的认知结构,开阔学生的眼界,活跃学生的思维,提高学生解题能力的目的。
参考文献1 教育部. 《普通高中数学课程标准(实验)》北京:人民教育出版社,20032 单墫. 普通高中课程标准实验教科书(必修). 南京:江苏教育出版社,20053 刘占溪.挖掘习题资源培养思维品质. 中学数学教学参考,2006,84 陈凌,宗平芬. 再议“一题多解”及其教学策略. 中学数学教学参考,2006,10。