导数应用:含参函数的单调性讨论教师版
高中数学_导数类型题求含参函数单调性教学设计学情分析教材分析课后反思
教学设计一.教学目标确立依据(一)课程标准要求及解读1.课程标准要求:导数在研究函数中的应用,能利用导数研究函数的单调性,会求不超过三次的多项式的单调区间,函数的单调性尤其是含有参数的函数的单调性更是一大难点,也是高考经常考查的考点之一。
2.课程标准解读:微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。
导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性中的作用,能够通过数学结合,分类讨论,化归转化等数学思想学好含参函数单调性的研究。
(二)教材分析1.教材的地位和作用本节课是新课标高中数学人教B版选修2-2第一章第三节的内容,是在学习了函数单调性的定义,导数的概念及运算的基础上展开的另一个研究函数单调性的方法。
本节的教学内容属导数的应用,特别是含参函数单调性的判断难度相对较大,学好本节课的类型专训既可加深对导数的理解,又为函数的极值和最值打好基础,也可以培养学生的数形结合和分类讨论的能力。
2.(1)知识与技能目标:借助于函数的单调性与导数的关系,培养学生的观察能力,归纳能力,增强分类讨论思想.(2)过程与方法目标:会判断含参函数在给定区间的单调性,会求含参函数的单调区间。
(3)情感、态度与价值观目标:通过实例探究函数的单调性与导数关系的过程,体会知识间的相互联系和运动变化的观点,提高理性思维能力。
3.本节课通过求含参函数的导数,观察分析参数讨论点,找出函数的单调区间,判断函数的大体走向,了解函数的大致图像,可以增强对函数直观认识.同时导数也蕴涵着丰富的数学思想方法,是培养学生辨证思维和逻辑思维的重要载体.也是高考命题的生长点和热点.导数又提供了研究函数单调性的一种有效的方法和手段.鉴于此,本节重点难点确定如下:重点利用导数判断含参函数的单调性.难点通过讨论参数与区间端点,零等特殊点的关系,进而求出函数的单调区间,并且能提高灵活应用导数法解决有关函数单调性问题的能力。
用导数讨论含参函数的单调性
单调性是描述函数的变化趋势的重要概念,其中,用导数讨论含参函数的单调性尤为重要。
首先,我们来解释“含参函数”一词的意思。
含参函数是指具有参数的函数,也叫带参数函数,它们可以用参数来控制函数的变化趋势。
其次,让我们来看看如何用导数讨论含参函数的单调性。
在微积分中,导数是用来表示函
数变化率的重要概念,它可以帮助我们确定函数的单调性。
通常情况下,当函数的导数大于0时,函数在此处是单调递增的;当函数的导数小于0时,函数在此处是单调递减的。
例如,考虑函数$y=ax^2+bx+c$,其中a,b,c均为常数。
该函数的导数为$y'=2ax+b$。
因此,当$2a>0$时,函数是单调递增的;当$2a<0$时,函数是单调递减的。
更一般地,如果函数$f(x)$的导数$f'(x)$满足$f'(x)>0$,则函数$f(x)$在$[a, b]$内是单调递
增的;如果$f'(x)<0$,则函数$f(x)$在$[a, b]$内是单调递减的。
再比如,考虑函数$y=sin(x)$,其导数为$y'=cos(x)$,当$cos(x)>0$时,函数$y=sin(x)$是单调递增的;当$cos(x)<0$时,函数$y=sin(x)$是单调递减的。
总之,用导数讨论含参函数的单调性是很有用的,我们可以用它来判断函数是单调递增还是单调递减。
正如著名数学家高斯所说:“数学是一种分析、综合和抽象的技术,它既是
一种艺术,也是一种科学。
”。
使用导数来解决含参函数单调性的讨论方法的总结
155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。
函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。
求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。
因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。
这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。
以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。
(1)偶次根式,根号下整体不小于0。
(2)分式,分母不等于0。
(3)对数,真数大于0。
第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。
导函数是分式一般先通分,并且还要考虑能不能因式分解。
第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。
(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。
(2)21x x =,得到参数的讨论点。
(3)21x x >,得到参数的讨论点。
(4)21x x <,得到参数的讨论点。
第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。
以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。
关于含参函数单调性问题导数解法的研究
关于含参函数单调性问题导数解法的研究陈小祥 (江苏省徐州市侯集高级中学 221121) 导数的引入极大地方便了对函数单调性的研究和相关问题的解决,然而源于高中阶段目前的知识体系下学生无法深入学习理解极限、导数等高等数学基础内容等原因,中学相关教材中(苏教版)对导数与函数单调性关系做了简化处理,教参中也提出了不必深究的建议.然而不论在教学中还是在高考中都出现了相关的问题,这些问题引起了师生教与学的困惑.本文主要对含参函数单调性问题的导数解法中出现的一些问题作一浅显的研究,并给出合适的解决策略,不当之处,敬请指正.苏教版必修1中对函数的单调性作了这样的定义:定义1 一般地,设函数狔=犳(狓)的定义域为犃,区间犐 犃,如果对于区间犐内的任意两个值狓1,狓2,当狓1<狓2(狓1<狓2)时,都有犳(狓1)<犳(狓2)(犳(狓1)>犳(狓2)),那么就说狔=犳(狓)在区间犐上是单调增(减)函数,如果函数狔=犳(狓)在区间犐上是单调增(减)函数,那么就说狔=犳(狓)在区间犐上有单调性.选修1 1中对函数单调性则这样描述:定义2 设函数狔=犳(狓)在某个区间内可导,如果犳′(狓)>0(犳′<0),则函数狔=犳(狓)为这个区间上的增(减)函数.利用定义1结合导数定义证明定义2并不难,这里略去,但是利用定义2解决以下教学中常见问题时会遇到不少困惑和争议:问题1 求函数狔=狓3的单调区间;问题2 函数狔=犪狓3-狓在(-∞,+∞)上是减函数,求实数犪的范围檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪;阳引力潮的合成用下面的函数表示:犳(狓)=sin(2π犜1狓)+2.17sin(2π犜2狓+φ),其中犜1=12,犜2=122560,φ=-2犽π15,犽∈犣,整理化简可得犳(狓)=sin(π6狓)+2.17sin(24π149狓-2犽π15),犽∈[0,30]∩犣,其中犽表示农历初一到三十中的某一天,狓表示第犽天中的某一时刻,犳(狓)表示该时刻海潮的相对高度.3 电脑演示,检验模型观察图象的变化,很容易看到初一、十五涨大潮(图1),初八、二十三涨小潮(图2).另外,当犽=0时,3:00时刻达到第一次大潮,16天后,即犽=16时,16:00时刻达到第一次大潮,所以平均每天第一次大潮后移时间为16-316=48.75min≈50min.图1图24 继续思考,寻找规律到此学生的两个问题都得到了比较好的回答,但继续思考我们会发现,上述潮汐模型其实就是两个相近频率的正弦波的叠加问题,那么两个相近频率的正弦函数之和在(-∞,+∞)上的图象是什么样子的呢?通过几何画板我们可以看到图3.图3此类问题在声学中被称为拍现象,在数学上我们姑且可以称为鱼形函数.它在测高速运动物体的速度上有很好的应用.·25· 中学数学月刊 2014年第4期 问题3 函数狔=犪狓-1狓+1在(-1,+∞)上单调递增,求实数犪的范围;问题4 (2013江苏高考第20题)设函数犳(狓)=ln狓-犪狓,若函数在(1,+∞)上是单调减函数,求实数犪的范围.1 教学中常见问题与争议概述对于问题1,易知其单调增区间是(-∞,+∞),然而若用定义2,即因为狔′=3狓2,令狔′>0得狓∈(-∞,0)∪(0,+∞),所以函数的单调增区间为(-∞,0),(0,+∞),为什么不是(-∞,+∞)?如果是,为什么可以将(-∞,0),(0,+∞)并起来成为(-∞,+∞)?于是教学中可能会结合函数狔=狓3函数图象得到:函数狔=犳(狓)在某个区间(犪,犫)内可导,若犳′(狓)>0,则狔=犳(狓)在某个区间(犪,犫)内递增,反之不成立.即在区间(犪,犫)内,犳′(狓)>0是犳(狓)在区间(犪,犫)内单调递增的充分不必要条件,进而直接引出所谓的充要条件:函数狔=犳(狓)在某个区间(犪,犫)内可导,则函数犳(狓)在这个区间内单调递增(减)的充要条件是犳′(狓)≥0(犳′(狓)≤0)在区间(犪,犫)内恒成立.对于问题2,利用上面得到的结论,因为狔′=3犪狓2-1,由题意狔′=3犪狓2-1≤0恒成立,利用分离参变量或者二次函数根的分布理论(需讨论参数)易得犪≤0,看似无懈可击;对于问题3,因为狔′=犪+1(狓+1)2≥0在(-1,+∞)上恒成立,则犪≥-1.问题是当犪=-1时,原函数狔=-1,按照高中函数单调性定义1,此时函数没有单调性,即犪不能等于1.为什么会出现这样的问题?如何解决?于是教学中可能会总结出这样的解决办法———验证端点取值.以本题为例,当犪=-1时,原函数无单调性,故舍去,从而实数犪的范围是(-1,+∞).但为什么要验证呢?对于问题4,江苏高考题的标准解法不同于以上思路,大体是这样给出的:令犳′(狓)=1-犪狓狓<0,因为定义域为(0,+∞),所以解得狓∈1犪,+∞().由题意,函数在(1,+∞)上单调减,所以(1,+∞)1犪,+∞(),所以1≥1犪,故犪≥1.若用上述问题2~3的解法,犳′(狓)=1-犪狓狓≤0在(1,+∞)上恒成立,易得犪≥1狓恒成立,因此犪≥1.问题是,若将原题改为“设函数犳(狓)=ln狓-犪狓,若函数在[1,+∞)上是单调减函数,求实数犪的范围”呢,用此种解法得到的结果就是错解犪>1了,为什么呢?2 导数与函数单调性关系深层次探究我们知道,定义2给复杂函数单调性的判断带来了极大的便利,但使用其解决关于单调性的逆向问题时,则有点力不从心.因为逆向问题的解决至少应考虑单调性的必要条件,当然充要条件更好.华东师大《数学分析》教材(高等教育出版社,1991年版)对于这个问题给出的答案是:定理 若函数犳(狓)在区间(犪,犫)内可导,则犳(狓)在区间(犪,犫)内严格递增(递减)的充要条件是:(1)对一切的狓∈(犪,犫),有犳′(狓)≥0(犳′(狓)≤0);(2)在(犪,犫)的任何子区间上犳′(狓)不恒为0.需说明的是:(1)这里的严格递增指高中教材中所说的递增,即对应定义1;(2)此定理的证明需涉及超出高中知识范畴的新知识,所以教参中的不必深究应是指此原因,但实际教学中完全可以由具体实例引导学生直观得到并理解这一定理,如可由狔=狓3,狔=狓,狔=1狓以及常数函数等图象去直观阐述;(3)定理中(2)事实上是指犳′(狓)=0在区间(犪,犫)上至多只有孤立解(离散解).综上,若已知含参函数在某开区间上的单调性求参数范围问题,完全可以等价地转化为求同时满足下列两个条件的新问题:犳′(狓)=0在此区间上至多有孤立解和犳′(狓)≥0(犳′(狓)≤0)在此区间上恒成立.具体讨论如下:2.1 导数解决含参函数单调性问题的策略一对于问题2,令狔′=3犪狓2-1=0,若犪≤0,此方程无解,故此时狔′=3犪狓2-1<0在(-∞,+∞)上都成立,显然符合;若犪>0,方程根为狓=±13槡犪,是两个孤立解,此时只需狔′=3犪狓2-1≤0在(-∞,+∞)上都成立即可,易得犪≤0,与犪>0矛盾,故舍去.综上犪≤0.对于问题3,令狔′=犪+1(狓+1)2=0,得犪=-1.当犪=-1时,方程解集为区间(-1,+∞),由定理知函数在(-1,+∞)上不单调递增,舍去;当犪≠-1时,狔′≠0,所以只需狔′=犪+1(狓+1)2>0在(-1,+∞)上恒成立即可,易得犪>-1.·35·2014年第4期 中学数学月刊 对于问题4,令犳′(狓)=1-犪狓狓=0,由于狓∈(0,+∞),所以1-犪狓=0.若犪=0,则此方程无解,此时只需1-犪狓<0在(1,+∞)恒成立即可.易得犪>1,与犪=0矛盾(或者若犪=0,则1-犪狓=1>0),舍去;若犪≠0,方程根为狓=1犪,为一孤立解,所以此时只需1-犪狓≤0在(1,+∞)上恒成立即可,易得犪≥1.综上犪≥1.对于问题1,因为狔′=3狓2=0时,狓=0为一孤立解,所以令狔′=3狓2≥0,解得狓∈犚.利用此种策略解题时往往需要根据参数范围分类讨论解狔′=0方程,若有解:①在某一子区间上都有解,因不符合定理中条件,直接舍去;②若有孤立解,则可等价地转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立问题,结合初始范围求解;若无解,直接转化为犳′(狓)>0(犳′(狓)<0)在区间上恒成立问题,结合初始范围求解.此策略的优点是逻辑顺序合理清晰,但因需先分类求解含参方程,再转化为恒成立问题,运算量较大,如问题5:若函数犳(狓)=13狓3-12犪狓2+(犪-1)狓+1在区间(1,4)内为减函数,求实数犪的范围.为此可以优化为策略二.2.2 导数解决含参函数单调性问题的策略二由定理可知,已知含参函数在某开区间上的单调性求参数范围问题,可以等价地转化为定理中两个条件同时成立时求参数范围的问题.条件(1)即为恒成立问题;事实上,在条件(1)成立的前提下,也暗含了犳′(狓)=0这一方程的可能的解.因为根据不等式与方程的关系,不等式解集中的非“±∞”的端点可能是相应方程的根;反之,方程若有解,其解也一定在相应不等式的解集的端点中.鉴于此,可将策略一的逻辑顺序颠倒,如针对问题5:由题意令狔′=狓2-犪狓+犪-1=(狓-1)[狓-(犪-1)]≤0在(1,4)内恒成立,易得只需犪-1≥4,即犪≥5.又犪=5时,狔′=(狓-1)(狓-4)=0,其两根均不在(1,4)内,故符合题意.事实上,当犪-1>1时,不等式狔′≤0解集为[1,犪-1],易得犪-1≥4即可,所以犪≥5.而当犪-1≤1时不符合题意,故犪≥5.而当犪≥5时,方程狔′=0的另外一解是犪-1,亦即另外一解事实上为犪∈[4,+∞)内的任一元素.之所以只验证犪-1=4,因为这是狔′=0除1外的最小的可能解了,若它不在(1,4)内,则都不在其内,从而狔′≤0恒成立就够了.策略二的优点是简化了运算求解过程,不足的是逻辑顺序不如策略一清晰自然.纵观近几年高考题中所涉及的部分函数类型,由狔=犪狓+犫,狔=犪狓2+犫狓+犮,狔=ln狓,狔=e狓等基本初等函数组成的复合函数类型:狔=犪1狓狀+犪2狓狀-1+…+犪1狓+犪0(其中犪1,犪2,…,犪0不全为零),狔=犪sin狓+犫cos狓,狔=犪ln狓+犫,狔=犪ln狓+犫狓+犮,狔=犪狓ln狓+犫狓+犮,狔=犪ln狓狓2,狔=犪e狓+犫狓+犮等,其导数只要不为常数,结合方程理论,应该可以发现,即使在某开区间上有根,也只可能是孤立解,亦即事实上利用定理的条件(1)将问题转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立的问题就可以求解.当然这里需要进一步严格的证明,感兴趣的读者可继续研究.2.3 导数解决含参函数单调性问题的策略三利用定义2,亦即函数在狔′>0(狔′<0)的(每个)解集(区间)上单调增(减),所以若含参函数在某个给定的区间上单调增(减),则这个区间应该是狔′>0(狔′<0)的(某个)解集(区间)的子集,如问题4的“标准解法”,优点是避开了争议,逻辑清楚自然,也易于高中学生接受,缺点是往往运算量较大,对含参不等式求解较繁的问题解决效率较低,同时在解决正余弦类的含参复合函数问题上无能为力,如:若狔=sin狓-犪狓2在π,3π()2上单调减,求实数犪的范围问题.3 关于此类问题求解策略的教学建议就我省教参和高考阅卷导向来看,建议首先教授策略三,原因是此法立足于定义2本身,逻辑清晰简单,涉及方法知识本身不超纲.尽管有时运算较繁,但不失为一定范围内的通性通法,而且和高一的含参不等式联系紧密,属于知识交汇处的一般解法;对于程度较好的班级和学生,策略一和二是绝佳的探究材料,不仅因为其解决问题的范围和效率较策略三广和高,而且解法本身联系了高一的恒成立这类典型热点问题,还链接了高等数学初步的一些基础内容,可谓承上启下的典型载体,所以不应错过.教学上可以通过一些具体的初等函数图象引导学生发现并解决为什么仅仅转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立是不够的?为什么还需要另一个条件?如何准确规范求解?等问题,再结合一些具体实例习题来进一步巩固强化学生的理解,最好是采取开放的探究式教学形式,即在教师设计的问题引导下采取学生小组合作、讨论探究、展示解法、探讨错因等方式教学效果可能较好.·45· 中学数学月刊 2014年第4期。
含参函数单调性的讨论教案
(提示:导函数是二次函数,讨论根的情况,再看根是否在定义域内,并比较根的大小)
教学关键:⑴引导学生寻找分类的标准,怎样做到水到渠成,不死记硬背分类方法;
⑵教会学生用数形结合的思想,通过导函数草图判断导函数的正负,进而判断原函数增减.
方法总结
步骤小结:1、先求函数的定义域,
课后讨论
1.已知函数 ,讨论函数 的单调区间
2.已知函数 ,求函数 的单调区间
自我总结
小结:
求单调区间要确定定义域,确定导函数符号的关键是看分子相对应函数,所以讨论点有:第一是类型(一次与二次的根个数显然不同);第二有没有根(二次的看判别式),第三是有根是否为增根(在不在定义根内;第四有根的确定谁大;第五看区间内导函数的正负号(二次函数要看开口)。确记要数形结合,多数考题不会全部讨论点都要讨论的,题中往往有特别条件,很多讨论点会同时确定(即知一个就同时确定另一个)。判别式与开口的讨论点先谁都能够,但从简单优先原则下可先根据判别式讨论,因为当导函数无根时它只有一种符号,相对应原函数在定义域内(每个连续的区间)为单调函数较简单。
若 在区间 上恒成立 在区间 上;
若 在区间 上恒成立 在区间 上.
2.已知函数 ,函数 的单调增区是,
单调减区间是.
尝试练习
1.已知函数 ,求函数 的单调区间.
(通过练习发现要利用导函数判断单调性,必须对导函数的正负情况实行讨论,所以将导函数变形为因式积或商的形式.如本题导函数提取公因式后变为恒正函数与一次函数积的形式,故导函数正负与该一次函数பைடு நூலகம்负性相同,而我么知道,一次函数正负由二次项系数决定,所以自然找到分类的标准)
2、求导函数(化为乘除分解式,便于讨论正负),
导数应用-含参函数的单调性讨论
导数应用:含参函数的单调性讨论(一)一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。
二、典例讲解例1 讨论xax x f +=)(的单调性,求其单调区间步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。
变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间例2.讨论x ax x f ln )(+=的单调性 小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。
即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。
一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。
变式练习2. 讨论x ax x f ln 21)(2+=的单调性小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。
对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)
图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
导数应用之含参函数单调性的讨论(含答案)
1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。
2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。
(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。
2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。
三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。
2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。
5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。
6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。
四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。
8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。
9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。
3
4。
导数的应用之与三角函数有关的函数单调性解析版
导数的应用之与三角函数有关的函数单调性
【知识导图】
【例题精讲】
一、可因式分解求函数单调性
二、可因式分解求函数单调性类型1、二次求导求函数单调性
类型2、放缩(指对函数值域)求函数单调性
例3.(2023·江苏苏州·模拟预测)已知函数()e cos 2x f x ax x =-+-.若()f x 在()0,∞+上单调递增,求实
数a 的取值范围;
【分析】根据题意转化为e sin x a x ≤-在()0,∞+上恒成立,然后转化为最值问题,求导即可得到结果;
【详解】因为()f x 在()0,∞+上单调递增,所以()e sin 0x f x a x '=--≥在()0,∞+上恒成立,
即e sin x a x ≤-.令()e sin x h x x =-.
因为e 1x >且cos 1≤x ,
所以()e cos 0x h x x =->'在()0,∞+上恒成立.
所以()h x 在()0,∞+上单调递增,所以()()01h x h >=,所以1a ≤.
三、三角函数有关的函数应用
类型1、零点的判定与证明问题
例2.已知函数()=sin +ln (1+).
证明:(1)()在区间(0,)存在唯一极大值点;
(2)()有且仅有1个零点.。
对含参函数单调性的讨论优秀教学设计
《对含参函数单调性的讨论》教学设计一、教材分析高考中导数类的题目占据了重要地位,而其中对含参函数的考查必不可少。
利用导数分析含参函数的单调性,进而分析极值,最值,零点及趋势图像是解题的基础。
高二选修课教材中给出了对具体函数单调性的求解范例,对含参函数论述较少。
含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论的关键是要明确分类讨论的依据,做到分类准确恰当,不重不漏。
二、学情分析本节课是高三的一轮复习课。
高三的学生虽然经过高二的学习,但面对含参函数时常常思路不够清晰,特别在思考分类次序,明确分类依据,准确划分类别等方面存在困难,难以做到分类准确恰当,不重不漏。
本节课以题组的形式对两大类常见题型给予针对性讲解和训练,以期突破难点。
三、教学目标1、知识与技能:利用分类讨论思想进行含参函数单调性的讨论2、过程与方法:分类讨论思想的应用3、情态与价值:探究问题与解决问题的意识与能力三、教学重难点教学重点:利用分类讨论思想进行含参函数单调性的讨论教学难点:明确分类讨论的依据四、课时安排:1课时五、教学策略:题组探究,分类总结六、教学设计:1、提出问题含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论最难就是要做到不重不漏,今天我们重点来看看如何把握常见的含参函数单调性的分类讨论依据。
问题1、回顾具体函数的单调性的求解步骤是什么?[设计意图] 引导学生回顾具体函数单调性求解的解题步骤,有助于学生思考比较含参函数在求解过程中所遇到的不确定性,明确为什么要进行分类讨论。
2、方法统领,明确方向问题2、含参函数相对于具体函数而言,不确定的因素可能存在于哪里?我们讨论的次序是怎样的?[设计意图] 此处预留空间让学生思考,讨论,激发学生的探究热情。
即使学生回答得不全面也没有关系,教师后面可做补充,并概述要讨论的四个方面。
3、题组探究,分类总结问题3、对于以下题组,观察参数在导函数中的位置,思考:不确定的因素可能在哪里?要分多少个层次进行讨论,每个层次分类的依据是什么?是否能做到不重不漏?题组一、导函数是非二次函数型例1、(2016.山东卷节选),2()ln (2-1),f x x x ax a x a R =-+∈设'()(),()g x f x g x =令求的单调区间例2、(2017全国I 卷节选)2()(),0,()x x f x e e a a x a f x =--≤其中参数讨论的单调性例3、(2016全国I 卷改编)2()(2)(1),()x f x x e a x f x =-+-已知函数讨论的单调性调性[师生活动]学生思考,尝试完成以上各题,小组交流,展示思考及解题过程,教师给予完善和评价。
专题5导数的应用-含参函数的单调性讨论(答案)-13页文档资料
〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数,即)(x f 的增区间为)1,0(a-;)(x f 的减区间为),1(+∞-a .小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论. [典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间. II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(a a -.小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。
含参单调性的讨论
4a
2a
4a 4a
2a 2a
设g(x) ln x x 1,则g'(x) 1 1. x
当x (0,1)时,g'(x) 0;当x (1, )时,g'(x) 0.
所以g(x)在(0,1)单调递增,在(1,)单调递减,在x 1处g(x)有最大值g(1) 0. 所以当x 0时,g(x) 0.
【2017】解:(1) f (x)的定义域为(0,), f '(x) 1 2ax 2a 1 (x 1)(2ax 1)
x
x
若a 0,则当x (0,)时,f '(x) 0,故f (x)在(0,)上单调递增;
若a 0,则当x (0, 1 )时,f '(x) 0;当x ( 1 ,)时,f '(x) 0.
令f
'(x)
0得x1
0,
x2
2 a
.
(1)a 0时,当x 0或x 2 时,f '(x) 0;当0 x 2 时,f '(x) 0.
a
a
f (x)的增区间是(,0),( 2 ,);减区间是(0, 2).
a
a
(2)a 0时,当x 0或x 2 时,f '(x) 0;当 2 x 0时,f '(x) 0.
2
2
所以f (x)在(0, a )递增,在( a ,)递减。
2
2
例2 讨论f (x) (a 1) ln x x a 的单调性。 x
不要只顾着比较两根1与-a大小,而要注意定义域大于0 的限制!
思考题2 f (x) 1 x2 ax (a 1) ln x 2
解:x 0. f '(x) x a a 1 x2 ax (a 1) (x 1)[x (a 1)]
导数专题:含参函数单调性讨论问题(解析版)
导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。
讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。
三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。
1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2
1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第1.3.1节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。
利用导数讨论含参函数的单调性
利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。
在此,主要讨论含参函数单调性的讨论方法。
函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。
含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。
在此,我们将提出三种方法。
一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。
(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。
若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。
1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。
专题10 分类讨论法解决含参函数单调性问题(解析版)
专题10分类讨论法解决含参函数单调性问题1.函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整.2.利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程3.口诀记忆导数取零把根找,先定有无后大小;有无实根判别式,两种情形需知晓.因式分解见两根,逻辑分类有区分;首项系数含参数,先论系数零正负.首项系数无参数,根的大小定胜负;定义域,紧跟踪,两根是否在其中.题型一可求根或因式分解1.已知函数f (x )=x -a ln x (a ∈R),讨论函数f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -ax,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增,②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.2.已知函数f (x )=a ln x -ax -3(a ∈R).讨论函数f (x )的单调性.解析:函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减;当a =0时,f (x )为常函数.3.已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )4.已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解析:函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x .①当0<a <1时,1a >1,∴x ∈(0,1)f ′(x )>0;x f ′(x )<0,∴函数f (x )在(0,1)②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增;③当a >1时,0<1a <1,∴x (1,+∞)时,f ′(x )>0;x f ′(x )<0,∴函数f (x )(1,+∞)综上,当0<a <1时,函数f (x )在(0,1)当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )(1,+∞)5.设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性.解析:函数f (x )的定义域为(0,+∞).f ′(x )=ax +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1).(1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.(3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )6.已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析:易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a2<e ,即0<a <2e ,当x f ′(x )>0,当x f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0,所以f (x )②若a2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x f ′(x )<0,当x f ′(x )>0,所以f (x )综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )7.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程;(2)判断函数f (x )的单调性.解析:(1)∵a =e ,∴f (x )=e x -e x -1,∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1.(2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0,∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.8.已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.解析:(1)g ′(x )=1x +2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴,得g ′(1)=1+2a +b =0,所以b =-2a -1.(2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞),所以当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.当a >0时,令g ′(x )=0,得x =1或x =12a,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )(1,+∞)若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1)若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0,即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )(1,+∞)9.已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性.解析:因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x.由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a ,若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a <x <1,即函数f (x )(1,+∞)若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a ,即函数f (x )在(0,1)若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增.综上可得,当0<a <12时,函数f (x )在(0,1)当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )减,在(1,+∞)上单调递增.10.函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.解析:因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a(x 2+1)2·(x -a (1)a >0时x (-∞,-a -1)(-a -1,a )(a ,+∞)f ′(x )-+-f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.(2)当a <0时,x (-∞,a )(a ,-a -1)(-a -1,+∞)f ′(x )+-+f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.11.已知函数f (x )=ln(x +1)-axx +a(a >1),讨论f (x )的单调性.解析:f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,x (-1,0)(0,a 2-2a )(a 2-2a ,+∞)f ′(x )+-+综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增.12.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性.解析:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =当x ∞,f ′(x )<0;当x f ′(x )>0.故f (x )∞,13.已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解析:f ′(x )=a x +1-a -2x 令f ′(x )=0,得x =0或x =-a +22f (x )的定义域为(-1,+∞),①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.②当-1<-a +22<0,即-2<a <0时,若x 1f ′(x )<0,则f (x )单调递减;若x -a +22,f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x f ′(x )>0,则f (x )单调递增;若x -a +22,+f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )1-a +22,(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)-a +22,+14.已知函数f (x )=x 2+2cos x ,g (x )=e x ·(cos x -sin x +2x -2),其中e 是自然对数的底数.(1)求函数g (x )的单调区间;(2)讨论函数h (x )=g (x )-af (x )(a ∈R)的单调性.解析:(1)g ′(x )=(e x )′·(cos x -sin x +2x -2)+e x (cos x -sin x +2x -2)′=e x (cos x -sin x +2x -2-sin x -cos x +2)=2e x (x -sin x ).记p (x )=x -sin x ,则p ′(x )=1-cos x .因为cos x ∈[-1,1],所以p ′(x )=1-cos x ≥0,所以函数p (x )在R 上单调递增.而p (0)=0-sin 0=0,所以当x <0时,p (x )<0,g ′(x )<0,函数g (x )单调递减;当x >0时,p (x )>0,g ′(x )>0,函数g (x )单调递增.综上,函数g (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h (x )=g (x )-af (x )=e x (cos x -sin x +2x -2)-a (x 2+2cos x ),所以h ′(x )=2e x (x -sin x )-a (2x -2sin x )=2(x -sin x )(e x -a ).由(1)知,当x >0时,p (x )=x -sin x >0;当x <0时,p (x )=x -sin x <0.当a ≤0时,e x -a >0,所以x >0时,h ′(x )>0,函数h (x )单调递增;x <0时,h ′(x )<0,函数h (x )单调递减.当a >0时,令h ′(x )=2(x -sin x )(e x -a )=0,解得x 1=ln a ,x 2=0.①若0<a <1,则ln a <0,所以x ∈(-∞,ln a )时,e x -a <0,h ′(x )>0,函数h (x )单调递增;x ∈(ln a ,0)时,e x -a >0,h ′(x )<0,函数h (x )单调递减;x ∈(0,+∞)时,e x -a >0,h ′(x )>0,函数h (x )单调递增.②若a =1,则ln a =0,所以x ∈R 时,h ′(x )≥0,函数h (x )在R 上单调递增.③若a >1,则ln a >0,所以x ∈(-∞,0)时,e x -a <0,h ′(x )>0,函数h (x )单调递增;x ∈(0,ln a )时,e x -a <0,h ′(x )<0,函数h (x )单调递减;x ∈(ln a ,+∞)时,e x -a >0,h ′(x )>0,函数h (x )单调递增.综上所述,当a ≤0时,函数h (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a <1时,函数h (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a ,0)上单调递减;当a =1时,函数h (x )在R 上单调递增;当a >1时,函数h (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.题型二导函数不可因式分解1.已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析:由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞2.已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性.解析:由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增;当k >0时,令f ′(x )=0,得x =±k 3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3,所以f (x )-k 3,∞k3,+3.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性.解析:由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增.当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增;②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a,x 2=-1+1-1a.x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增;x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减;x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.所以f (x )∞,-11+1-1a,+1-1-1a,-1综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )∞,-11+1-1a,+1-1-1a ,-14.已知函数f (x )=1x-x +a ln x ,讨论f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x f ′(x )<0;当x f ′(x )>0.所以f (x )综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )5.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性.解析:(1)因为g (x )=ln x (x >0),所以g (1)=0,g ′(x )=1x ,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1.(2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x =a -14.①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得1=1-1-4a 2a >0,x 2=1+1-4a 2a>0,且x 2>x 1,故F (x )④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a <0,F (x )6.已知函数f (x )=x 3+ax 2+x +1.(1)讨论函数f (x )的单调区间;(2)设函数f (x )-23,-a 的取值范围.解析:(1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增;②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.x(-∞,x 1)(x 1,x 2)(x 2,+∞)f ′(x )+-+所以f (x )的单调递增区间是(-∞,x 1),(x 2,+∞);单调递减区间是(x 1,x 2).(2)因为f (x )-23,--23,-(x 1,x 2).所以f ′(x )=3x 2+2ax +1≤0-23,-所以2a ≥-3x -1x在-23,-a ≥2.7.已知函数f (x )=x -2x+1-a ln x ,a >0,讨论f (x )的单调性.解析:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2.由f ′(x )<0,得x 1<x <x 2.所以f (x )在。
专题10 导数含参单调性讨论详述版(解析版)
导数章节知识全归纳专题10 导数含参单调性讨论(详述版)一.知识点归纳:核心知识:1.函数的单调性与导数(1)设函数)(x f y =在某个区间),(b a 可导,如果'f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(<x ,则)(x f 在此区间上为减函数。
(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常函数。
总结:含参单调性讨论主要针对学生对于含有参数的函数进行单调性讨论存在严重问题,时常分不清楚何时讨论参数,以及先哪一步在哪一步:这里君哥给大家总结如下:第一类:简单含参--独立含参,先讨论恒成立,再分类。
第二类:多位置含参数:首先考虑是否可以进行十字相乘,在讨论根的大小,再讨论单调性。
第三类:二次函数型含参:必考虑∆,在讨论根的大小,最后讨论单调性。
第四类:其他函数型含参:画图看交点。
二.导数含参单调性讨论典型例题:类型一:独立含参讨论:例:1.已知函数()()ln f x x ax a R =-∈.(1)讨论函数()f x 的单调性;解:【分析】(1)求导,对参数a 进行分类讨论判断导函数的正负,最后判断原函数的单调。
【详解】(1)解:函数()f x 的定义域为()0,∞+,()()110ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+内单调递增;当0a >时,令()0f x '=,得1x a =,所以当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,()f x 单调递增; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,()f x 单调递减, 综上所述,当0a ≤时,()f x 在()0,∞+内单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. 例:2.已知函数()ln ()f x x ax a R =+∈.(1)讨论()f x 的单调性;解:【分析】(1)对参数a 分类讨论,分别求得对于范围内的单调区间;【详解】(1)函数()ln f x x ax =+的定义域为()0,∞+当0a ≥时,()10f x a x'=+>恒成立,故函数f (x )在()0,∞+上单调递增 当0a <时,令()10ax f x x +'=>,得10x a<<-;令()0f x '<,得1x a>-. 故函数()ln f x x ax =+在10,a ⎛⎫-⎪⎝⎭上递增,在1,a ⎛⎫-+∞ ⎪⎝⎭递减 变式:1.函数()ln 2.f x x mx =-+(1)求函数()y f x =的单调区间;解:【分析】(1)求导,分别讨论0m ≤和0m >两种情况()f x '的正负,即可求得()y f x =的单调区间.【详解】(1)()11,(0).mx f x m x x x-'=-=> 当0m ≤时,()0f x '>,所以()y f x =在()0,∞+为增函数,当0m >时,令()0f x '=,解得1x m=; 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()y f x =为增函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ()y f x =为减函数, 综上:当0m ≤时,()y f x =的单调增区间为()0,∞+,当0m >时,()y f x =的单调增区间为10,m ⎛⎫ ⎪⎝⎭,单调减区间为1,m ⎛⎫+∞ ⎪⎝⎭. 变式:2.已知函数()21ln 2f x x a x =-,其中a ∈R .(1)讨论函数()f x 的单调性;解:【分析】(1)对参数a 进行分类讨论,根据导函数的正负判断函数的单调性;【详解】(1)()2a x a f x x x x-'=-=,0x >, 当0a ≤时,()0f x '>,故()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x =从而()f x 在(上单调递减,在)+∞上单调递增.变式:3.已知函数()e xf x ax =-,()ln xg x x a =-. (1)求函数()g x 的单调区间;解:【分析】(1)先求导得到()'g x ,再分0a <和0a >两种情况讨论()g x 的单调性和单调区间;【详解】解:(1)由题意知()g x 的定义域是()0,∞+,()11g x x a '=-, 当0a <时,()110g x x a-'=>恒成立,所以()g x 在()0,∞+上单调递增; 当0a >时,由()110a x g x x a ax -'=-=>得0x a <<,所以()g x 在()0,a 上单调递增, 由()110a x g x x a ax-'=-=<得x a >,所以()g x 在(),a +∞上单调递减.综上所述,当0a <时,()g x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,()g x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.类型二:独立含参难:例:1.已知函数()x f x e ax =-,()212g x ax ax x =-+. (1)讨论函数()f x 的单调性;解:【分析】(1)求导()x f x e a '=-,分0a ≤,0a >讨论求解;【详解】(1)∵()x f x e a '=-,当0a ≤时,()0xf x e a '=->在R 上恒成立, ∵()f x 在(),-∞+∞上是递增的.当0a >时,令()0f x '>,则ln x a >;令()0f x '<,则ln x a <.∵()f x 在(),ln a -∞上递减,在()ln ,a +∞上递增.综上所述,当0a ≤时,()f x 是(),-∞+∞上的增函数,当0a >时,()f x 在(),ln a -∞是减函数,在()ln ,a +∞上是增函数.例2.已知函数()ln 1()f x a x x a =++∈R .(1)讨论()f x 的单调性;解:【分析】(1)首先对函数进行求导,通过对a 进行分类讨论,可得()f x 的单调性;【详解】(1)函数()f x 的定义域为(0,)+∞,'()1a x a f x x x+=+=, 当0a ≥时,0f x ,所以()f x 在(0,)+∞上单调递增;当0a <时,若0x a <<-,则0f x ;若x a >-,则0f x , 所以()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增.综上:当0a ≥时,()f x 在(0,)+∞上单调递增,当0a <时,()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增;例3.已知函数()2ln(1)1f x ax x =-++,a R ∈.(1)讨论()f x 的单调性;解:【分析】(1)先写定义域,对函数求导,再讨论0a ≤时和0a >时导数的正负情况,即得函数的单调性;【详解】解:(1)()f x 的定义域为 (1,)-+∞,1()21f x a x =-+', ①当0a ≤时,()0f x '<,即()f x 在(1,)-+∞上单调递减; ②当0a >时,221()1ax a f x x '+-=+,由()0f x '>解得122a x a ->,由()0f x '<解得1212a x a--<<, 即()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增; 综上所述,当0a ≤时,()f x 在(1,)-+∞上单调递减; 当0a >时,()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增. 变式:1.已知函数()()1x f x ax e =+.(1)讨论()f x 的单调性;解:【分析】(1)先求导函数,然后分析导函数符号只与含参一次因式有关,所以对a 分0,0,0a a a >=<三种情况进行讨论;【详解】解:(1)因为()()1x f x ax e =+,所以()()()11x x x f x ae ax e ax a e '=++=++. 若0a =,则()0f x '>,()f x 是R 上的增函数;若0a >,则当1a x a -->时,()0f x '>;当1a x a--<时,()0f x '<. 故()f x 的单调递增区间为1,a a --⎛⎫+∞⎪⎝⎭,单调递减区间为1,a a --⎛⎫-∞ ⎪⎝⎭; 若0a <,则当1a x a -->时,()0f x '<;当1a x a--<时,()0f x '>, 故()f x 的单调递减区间为1,a a --⎛⎫+∞ ⎪⎝⎭,单调递增区间为1,a a --⎛⎫-∞ ⎪⎝⎭.变式:2.已知函数2()(1)12ln f x m x x =+--.(1)讨论()f x 的单调性;解:【分析】(1)求导()22()1f x mx mx x'=+-,分0m =,0m >,0m <讨论求解; 【详解】(1)函数2()(1)12ln f x m x x =+--, 求导得:()222()2(1)1f x m x mx mx x x'=+-=+-, 当0m =时,2()0f x x=-<',所以()f x 在()0,∞+上递减; 当0m >时,240m m ∆=+>,令()0f x '=,则方程210mx mx +-=有两个不同的根,.10x =<,20x =>, 当()20,x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,所以()f x 在()20,x 上递减,在()2,x +∞上递增;当0m <时,()21y m x =+在()0,∞+上递减,1ln y x =--在()0,∞+上递减, 所以()f x 在()0,∞+递减;类型三:二次函数类型含参:例:1.已知函数()31f x x ax =-+,a R ∈. (1)讨论函数()f x 的单调性;解:【分析】(1)先求函数的导数,()23f x x a '=-,再分0a ≤和0a >两种情况讨论函数的单调性;【详解】(1)由题意()f x 的定义域为R ,()23f x x a '=-, ①若0a ≤,则()0f x '≥,所以()f x 在R 上为单调递增函数;②若0a >,由()230f x x a '=-=解得13x =-,23x =,()0f x '>的解为3x <-或3x >,()0f x '<的解为33x -<<,即()f x 的增区间为,3⎛-∞- ⎝⎭,,3⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为33⎛⎫- ⎪ ⎪⎝⎭. 例2.已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程;(2)讨论()f x 的单调性;解:【分析】(1)利用导数的几何意义,直接求切线方程;(2)首先求函数的导数()22222ax f x ax x x-'=-=,()0x >,分0a ≤和0a >两种情况讨论函数的单调性; 【详解】当2a =时,()()2212ln f x x x =--,0x >, ()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x > 当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得:x >,令()0f x '<,解得:0x <<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是0,a ⎛⎫ ⎪ ⎪⎝⎭,综上可知:0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. 变式:1.已知函数()2ln 1f x a x x =++,其中a R ∈且0a ≠ (1)求函数()f x 的单调区间;解:【分析】(1)求出()222a x a f x x x x='+=+,然后分a >0、a <0两种情况讨论即可; 【详解】(1)函数的定义域为(0,+∞),()222a x a f x x x x ='+=+,当a >0时,()0f x '>,f (x )在(0,+∞)上单调递增,此时()f x 的增区间为(0,+∞);当a <0时,令()0f x '=,解得x =x =),则0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减;,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增.此时()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭综上,当a >0时,()f x 的增区间为(0,+∞);当a <0时,()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭变式:2.已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性. 解:【分析】(1)求导,分2160a ∆=-≤,2160a ∆=->情况讨论导函数的正负,可得原函数的单调性; 【详解】(1)解:2222'()2x ax f x x a x x-+=-+=. 当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得x =.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+ ⎪⎝⎭,上单调递减.变式:3.已知函数()22ln kx f x x x +-=.(1)讨论()f x 的单调性; 解:【分析】(1)明确函数的定义域,求出导函数,对参数分类讨论,结合导函数与单调性的关系得到结果; 【详解】(1)()f x 的定义域是()0,∞+,求导得()()21221220kx x f x kx x x x+-'=+-=>.记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增;②当0k >时,480k ∆=+>,()0g x x =⇒==,当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增; ③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减.若1,02k ⎛⎫∈-⎪⎝⎭,则480k ∆=+>,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫ ⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减. 综上,当0k =时,函数增区间为1,2⎛⎫+∞⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0k >时,函数增区间为⎫+∞⎪⎪⎝⎭,减区间为⎛ ⎝⎭; 当12k ≤-时,函减区间为()0,∞+,无增区间;当102k -<<时,函数增区间为⎝⎭,减区间为10,2k ⎛⎫ ⎪ ⎪⎝⎭,1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭; 类型四:多参函数讨论: 例:1.已知函数()(1),()af x x a lnx a R x=--+∈. (1)当2a =时,求()f x 的极值; (2)若0a >,求()f x 的单调区间. 解:【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间. 【详解】解:(1)因为当2a =时,2()3f x x lnx x=--, 所以2232()(0)x x f x x x-+'=>,由()0f x '=得1x =或2x =, 当x 变化时,()f x ',()f x 的变化情况列表如下:所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -. (2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .例2.已知函数()221()2ln 2()2f x x ax x x ax a =--+∈R . (1)若0a =,求()f x 的最小值; (2)求函数()f x 的单调区间. 解:【分析】(1)若0a =,221()ln 2f x x x x =-利用导数得出()f x 在()0,∞+的单调性即可求解.(2)()()22ln f x x a x '=-再讨论0a ≤、01a <<、1a =、1a >函数()f x 的单调区间即可. 【详解】(1)若0a =,221()ln 2f x x x x =-定义域为()0,∞+, 21()2ln 2ln f x x x x x x x x'=+⨯-=,由()0f x '>可得1x >, 由()0f x '<可得01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 的最小值为1(1)2f =-; (2)()()()21()22ln 2222ln f x x a x x ax x a x a x x'=-+-⋅-+=- ①当0a ≤时,220x a ->,由()0f x '>可得1x >, 由()0f x '<可得01x <<,此时()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, ②当01a <<时,由()0f x '>可得0x a <<或1x > 由()0f x '<可得1<<a x ,此时()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, ③当1a =时,()0f x '≥恒成立,此时()f x 的单调递增区间为()0,∞+,④当1a >时,由()0f x '>可得01x <<或x a >, 由()0f x '<可得1x a <<,此时()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,综上所述:当0a ≤时,()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, 当01a <<时,()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, 当1a =时, ()f x 的单调递增区间为()0,∞+,当1a >时,()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,变式:1.已知函数()()24ln 22f x x a x a x =-+-,a R ∈.(1)当1a =时,求证:()4ln 2f x ≥-; (2)当0a ≤时,讨论函数()f x 的单调性. 解:【分析】(1)当1a =时,可得()24ln 2f x x x x =--,利用导数求得()min 4ln 2f x =-,由此可证得结论成立;(2)求得()()()22x a x f x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()f x 单调递增区间和递减区间. 【详解】(1)当1a =时,()24ln 2f x x x x =--,该函数的定义域为()0,∞+,()()()2212422422x x x x f x x x x x+---'=--==, 当02x <<时,()0f x '<,此时函数()f x 单调递减; 当2x >时,()0f x '>,此时函数()f x 单调递增.所以,()()min 24ln 2f x f ==-,因此,当1a =时,求证:()4ln 2f x ≥-;(2)当0a ≤时,函数()()24ln 22f x x a x a x =-+-的定义域为()0,∞+,()()()()()22224224222x a x a x a x af x x a x x x+--+-'=-+-==. ①当0a -=时,即当0a =时,则()()22f x x '=-. 由()0f x '<可得02x <<,由()0f x '>可得2x >.此时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; ②当02a <-<时,即当20a -<<时,由()0f x '<可得2a x -<<,由()0f x '>可得0x a <<-或2x >.此时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞;③当2a -=时,即当2a =-时,则()()2220x f x x-'=≥对任意的0x >恒成立,此时,函数()f x 的单调递增区间为()0,∞+; ④当2a ->时,即当2a <-时,由()0f x '<可得2x a <<-,由()0f x '>可得02x <<或x a >-.此时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞. 综上所述,当0a =时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; 当20a -<<时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞; 当2a =-时,函数()f x 的单调递增区间为()0,∞+;当2a <-时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞.变式:2.已知函数()ln ()mf x x mx m x=--∈R . (1)讨论函数()f x 的单调性; 解:【分析】(1)2221()m mx x m f x m x x x++'=---=-,0x >,分0m =,0m ≠两种情况,根据二次函数的性质,利用判别式结合函数的定义域,由导数的正负判断; 【详解】(1)2221()m mx x mf x m x x x++'=---=-,0x >, 若0m =,则1()0f x x'=-<,函数()f x 在(0,)+∞上单调递减. 若0m ≠,则二次函数2y mx x m =++的判别式214m ∆=-,当0∆≤,即12m ≤-或12m ≥时,若12m ≤-,则()0f x '≥,等号不恒成立,函数()f x 在(0,)+∞上单调递增; 若12m ≥,则()0f x '≤,等号不恒成立,函数()f x 在(0,)+∞上单调递减.当0∆>,即1122m -<<且0m ≠时, 令()0f x '=,即20mx x m ++=,此时112x m -=212x m-+=,121x x m +=-,121=x x ,若102m <<,则1x ,20x <,此时()0f x '<恒成立,函数()f x 在(0,)+∞上单调递减; 若102m -<<,则210x x <<,当()20,x x ∈时,()0f x '>, 当()21,x x x ∈时()0f x '<,当()1,x x ∈+∞时,()0f x '>, 即函数()f x 在()20,x 和()1,x +∞上单调递增,在()21,x x 上单调递减. 综上,当0m ≥时,函数()f x 在(0,)+∞上单调递减;当12m ≤-时,函数()f x 在(0,)+∞上单调递增;当102m -<<时,函数()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 变式:3.已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性; 解【分析】(1)求导后得()()()()221010ax ax f x x x +-'=<<;分别在110a ≥和1010a<<两种情况下,根据()f x '的符号可确定()f x 的单调性;【详解】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<,20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 类型五:其他函数含参讨论:例:1.已知函数()1x f x ke x -=-.(1)讨论()f x 的单调性;解:【分析】(1)对函数求导,分0k ≤和0k >两种情况,分别得出函数的单调性;【详解】(1)()11x f x ke -=-',当0k ≤时,()0f x '<,()f x 在(),-∞+∞上单调递减;当0k >时,令()0f x '=,得1ln x k =-,当(),1ln x k ∈-∞-时,()0f x '<;当()1ln ,x k ∈-+∞时,()0f x '>.故()f x '在(),1ln k -∞-上单调递减,在()1ln ,k -+∞上单调递增.例2..已知函数()22x f x xe ax ax =++,e 为自然对数的底数. (1)讨论()f x 的单调性;解:【分析】(1)求导()()()12x f x x e a '=++,分0a ≥,102a e-<<,12a e =-,12a e <-讨论求解.【详解】(1)()()()12x f x x e a '=++, ①当0a ≥时,20x e a +>,(),1x ∈-∞-,()0f x '<,()f x 单调递减,()1,x ∈-+∞,()0f x '>,()f x 单调递增.②当102a e-<<时,()ln 21a -<-, ()(),ln 2x a ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()ln 2,1x a ∈--,20x e a +>,()0f x '<,()f x 单调递减,()1,x ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增,③当12a e =-时,()()()110x f x x e e -'=+-≥,(),x ∈-∞+∞,()f x 单调递增 ④当12a e<-时,()ln 21a ->-, (),1x ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()1,ln 2x a ∈--,20x e a +<,()0f x '<,()f x 单调递减,()()ln 2,x a ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增.例3.已知函数()e 1xx a f x =-+(a ∈R ). (1)讨论函数()f x 的单调性;解:【分析】(1)求导后,分类讨论a ,利用导数的符号可得函数()f x 的单调性;【详解】(1)()f x 的定义域为(),-∞+∞,且()1e xf x a ='-.当0a ≤时,()0f x '>,则()f x 在(),-∞+∞上单调递增.当0a >时,若(),ln x a ∈-∞-,则()0f x '>,()f x 在(),ln a -∞-上单调递增; 若()ln ,x a ∈-+∞,则()0f x '<,()f x 在()ln ,a -+∞上单调递减.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞-上单调递增,在()ln ,a -+∞上单调递减.变式:1.设()()ln a f x ax x =+,()11ln x g x b e x x-=⋅+,其中,a b ∈R ,且0a ≠. (1)试讨论()f x 的单调性;解:【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;【详解】(1)()221a x a f x x x x'-=-=, ①当0a <时,由0ax >得:0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增;②当0a >时,由0ax >得:0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.变式:2.已知函数()()()ln 1f x a a x x a =++∈R .(1)求讨论函数()f x 的单调性;解:【分析】(1)当0a =时,()1f x =是常数函数,可得结论,当0a ≠时,求出()f x '分0a >和0a <进行讨论得到答案.【详解】(1)函数()()()ln 1f x a a x x a =++∈R 的定义域是()0,∞+,()()1a a x a f x a x x +⎛⎫'=+= ⎪⎝⎭. 当0a =时,()1f x =是常数函数,不具有单调性;当0a >时,()0f x '>对任意()0,x ∈+∞恒成立,故函数()f x 在()0,∞+上单调递增; 当0a <时,令()0f x '<,得x a >-,令()0f x '>,得0x a <<-,故函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.综上:当0a >时,函数()f x 在()0,∞+上单调递增;当0a =时,()f x 不具有单调性;当0a <时,函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.变式:3.已知函数()()2e 21x f x x a x x =+++,a ∈R .(1)求()f x 的单调区间;解:【分析】(1)利用导数的基本运算可得()()()12x f x x e a '=++,讨论0a ≥、102a e -<<或12a e <-,利用导数与函数单调性之间的关系即可得出结果.【详解】解:(1)由题意得()()()12xf x x e a '=++, 令()()()12xg x x e a =++, 当0a ≥时,()10g -=,即当(),1x ∈-∞-时,()()0g x f x ='<;当()1,x ∈-+∞时,()()0g x f x '=>,故()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e<-时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x <,故()f x 的单调递减区间为()()1,ln 2a --,单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x =,满足()()0g x f x '=≥,故()f x 在R 上单调递增;当102a e-<<时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x >,故()f x 的单调递减区间为()()ln 2,1a --,单调递增区间为()(),ln 2a -∞-,()1,-+∞. 综上,当0a ≥时,()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e -<时,()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,()f x 的单调递增区间为(),-∞+∞; 当102a e -<<时,()f x 的单调递减区间为()()ln 2,1a --, 单调递增区间为()(),ln 2a -∞-,()1,-+∞.。
分类讨论证明或求函数的单调区间(含参)(教师版)--2024新高考数学导数微专题训练
专题14分类讨论证明或求函数的单调区间(含参)1.设函数21()sin cos 2f x x x x ax =+-.(1)当12a =时,讨论()f x 在(,)ππ-内的单调性;(2)当13a >时,证明:()f x 有且仅有两个零点.【答案】(1)在,03π⎛-⎫ ⎪⎝⎭或,3ππ⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫-- ⎪⎝⎭或0,3π⎛⎫ ⎪⎝⎭上单调递增;(2)证明见解析.【分析】(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;(2)先判断出函数为偶函数,则问题转化为()f x 在(0,)+∞有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出.【详解】(1)当12a =时,21()sin cos 4f x x x x x =+-,11()sin cos sin (cos 22f x x x x x x x x ∴'=+--=-,令()0f x '=,解得0x =或3x π=,3x π=-,当()0f x '<时,解得03x π-<<或3x ππ<<,当()0f x '>时,解得3x ππ-<<-或03x π<<,()f x ∴在(3π-,0)或(3π,)π上单调递减,在(,)3ππ--或(0,)3π上单调递增;(2)()f x 的定义域为(,)-∞+∞,2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=+-= ,()f x ∴为偶函数,(0)10f => ,()f x ∴有且仅有两个零点等价于()f x 在(0,)+∞有且只有一个零点,()(cos )f x x x a '=- ,当1a 时,cos 0x a -,()0f x '恒成立,()f x ∴在(0,)+∞上单调递减,2211()sin cos 1022f a a ππππππ=+-=--< ,(0)·()0f f π∴<,()f x ∴在(0,)+∞上有且只有一个零点,当113a <<时,令()(cos )0f x x x a '=-=,即cos x a =,可知存在唯一(0,)2πθ∈,使得cos a θ=,当(0,)x θ∈或(22,22)x k k ππθππθ∈+-++时,k ∈N ,()0f x '>,函数()f x 单调递增,当(2,22)x k k πθππθ∈++-时,k ∈N ,()0f x '<,函数()f x 单调递减,由tan θ=113a <<,可得0tan θ<<,当k ∈N ,22tan 2(k ππθθπ++->,2221113(22tan )10(22)[(22tan )1][(22tan )1]022626k f k a k k a ππθθππθππθθππθθ++--∴++=-++--+<-++--+=-<,()f x ∴在(0,)+∞上有且只有一个零点,综上所述,当13a >时,()f x 有且仅有两个零点.【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.2.已知函数2()2ln 2(1)f x mx x m x =-+-.(1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x-+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明.【详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅,当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-,当1m =-时,2(1)()2·0x f x x-'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<,当1(0,x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>,∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,m.综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1),当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2)证明:要证2286ln 3521x x x x x x---<-,即证3226(1ln )23501x x x x x -+--<-,令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--,由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''(1)0=,()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x -+--<-,即22863521x xlnx x x x---<-.【点睛】含有参数的函数单调性讨论常见的形式:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.3.已知函数()()1ln f x ax x a R =--∈.(1)若1a =,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为0,无极大值;(2)答案见解析.【分析】(1)当1a =时,求得()1x f x x-=,利用导数分析函数()f x 的单调性,由此可求得函数()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)求得()()10ax f x x x-'=>,分0a ≤和0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间.【详解】(1)当1a =时,()1ln f x x x =--,所以,()()1110x f x x x x-¢=-=>,列表;x1,1e ⎡⎫⎪⎢⎣⎭1(]1,e ()f x '-+()f x 单调递减极小单调递增所以,()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的有极小值()10f =,无极大值;(2) 函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=.当0a ≤时,10ax -<,从而()0f x '<,故函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax -<,从而()0f x '<;若1x a>,则10ax ->,从而()0f x '>.故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,函数()f x 的单调递减区间为()0,∞+,无单调递增区间;当0a >时,函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭.【点睛】方法点睛:讨论含参数函数的单调性,通常以下几个方面:(1)求导后看函数的最高次项系数是否为0,需分类讨论;(2)若最高次项系数不为0,且最高次项为一次,一般为一次函数,求出导数方程的根;(3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性.4.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤.【答案】(1)答案不唯一见解析;(2)证明见解析.【分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证;【详解】解析:(1)因为(1)(1)()xx mx m f x e --'+=-,①当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;②当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<,当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减;③当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增.(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max 1()(1)f x f e==;当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤.【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.5.已知函数()e x f x ax =,a 为非零常数.(1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.【答案】(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a =的图象的交点的个数,利用导数可求得结果.【详解】(1)()(1)e x x x f x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-;②若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()exx g x x +=,所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a =的图象的交点的个数,因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=,由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增;当()()1,00,x ∈-+∞ 时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞;当()1,0x ∈-时,()(),0g x ∈-∞;当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法:(1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解6.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ .【答案】(1)答案见解析;(2)存在,2a e =;(3)证明见解析.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;(3)先构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,证明其小于零,即得1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,再将1nx n =+代入求和即证结论.【详解】解:(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=,0x >.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去当1a e >时10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e =故2a e =时,使函数()g x 的最小值为2.(3)构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,则119()3033x h x x x -'=-=>,故1()ln 313h x x x =-+在1,12x ⎡⎫∈⎪⎢⎣⎭上递减,111111()ln 3120232232h x h ⎛⎫≤=-⨯+=--< ⎪⎝⎭,故1ln 3103x x -+<,即1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,而11,1112n n N x n n *⎡⎫∈==-⎪⎢++⎣⎭,故13ln 1311n n n n >++⋅+,即[]ln(13ln 131)1n n n n ->++⋅+,将n *∈N 依次代入并相加得[]()1ln1ln 12313ln 2ln 3...ln(1)ln 1231ln 4323n n n n n n n ⎛⎫++++>-+-++-+-+ ⎭+⎪+⎝= ,即1233ln 2341n n n ⎛⎫++++>- ⎪+⎝⎭ .【点睛】本题解题关键在于观察证明式1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ ,构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,以证明13ln 13x x >+,将1n x n =+代入求和即突破难点.用导数解决与正整数n 有关的不等式证明问题,属于难点,突破点就在于观察构造合适的函数,通过导数证明不等式,再将关于n 的式子代入即可.7.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;【答案】(1)答案见解析;(2)存在,2a e =.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;【详解】(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫ ⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭,所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2.【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,讨论不等式何时()0f x '>和()0f x '<③对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.8.已知函数()()()ln 1f x x ax a =+-∈R .(1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求得()f x 的定义域和导函数()'fx ,对a 分成0a ≤和0a >两种情况进行分类讨论,由此求得()f x 的单调区间.(2)求得()g x 的表达式,求得()'g x ,利用根与系数关系得到12,x x 的关系式以及1x 的取值范围,将()()12g x g x -表示为只含1x 的形式,利用构造函数法求得()()12g x g x -的最小值,从而证得不等式成立.【详解】(1)由题意得,函数()f x 的定义域为(1,)-+∞,()11f x a x '=-+.当0a ≤时,()101f x a x '=->+,∴函数()f x 在(1,)-+∞上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在(1,)-+∞上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+Q ,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,()240321a a ∆=+⇒-≥>121x x a ∴+=+,121=x x ,211x x ∴=.32a ≥Q ,512a +≥,12x x <111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x⎛⎫=-- ⎪⎝⎭.设()221112ln 022x h x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210x h x x x x x-'=--=-<,∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭.32a ∴≥时,()()12152ln 28x g x g -≥-成立.【点睛】求解含有参数的函数的单调性题,求导后要根据导函数的形式进行分类讨论.9.已知函数()2xf x e ae x =-.(1)讨论()f x 的单调区间;(2)当0a <时,证明:()2ln f x e x >.【答案】(1)当0a ≤时,()f x 的增区间为(),-∞+∞,无减区间;当0a >时,()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞,(2)证明见解析【分析】(1)先求出函数的定义域,再求导数,分0a ≤和0a >,分别由导数大于零和小于零,可求得函数的单调区间;(2)要证明22ln x ae x e x e ->,只要证2ln 0x e e x ->,构造函数()2ln xg x e e x =-,然后利用导数求出此函数的最小值即可,或要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->,构造函数()()20x g x ae x x e =->,然后用导数求其最小值,构造函数()()2ln 0x h x e x x=>,然后利用导数求其最大值,或要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->,构造函数()()()222222ln ln x x g x e e x e x e x e e e e x =-=-++--,令()()220x h x e e x e x =-+>,()222ln m x e x e e x =--,再利用导数求其最小值即可【详解】(1)解:()f x 的定义域为(),-∞+∞,()2x f x e ae '=-.当0a ≤时,()0f x ¢>,则()f x 的增区间为(),-∞+∞,无减区间.当0a >时,由()0f x ¢=,得2ln x a =+.当(),2ln x a ∈-∞+时,()0f x ¢<;当()2ln ,x a ∈++∞时,()0f x ¢>,所以()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞.(2)证明:法一:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()2ln xg x e e x =-,则()2xg x e e x '=-,()220xg x e xe ''=+>,所以()g x '在()0,+¥上是增函数.又()210g e e '=-<,()2222022e g ee '=-=>,所以存在()01,2x ∈,使得()02000x g e x e x '=-=,即020x e e x =,00ln 2x x =-.所以当()00,x x ∈时,()0g x ¢<;当()0,x x ∈+∞时,()0g x ¢>,因此()g x 在()00,x 上是减函数,在()0,x +∞上是增函数,所以()g x 有极小值,且极小值为()()022222222000000ln 22220x g x e e x e x e x e e e x e x e =-=--=+->-=.因此()0gx >,即2ln 0x e x -->.综上,当0a <时,()2ln f x e x >.法二:要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->.设()()20x g x ae x x e =->,则()()21x x e g x x-'=.当01x <<时,()0g x ¢<;当1x >时,()0g x ¢>,所以()g x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()g x 的极小值点,也是最小值点,且()()2min 1g x g e ae ==-.令()()2ln 0xh x e x x =>,则()()221ln x h x xe -'=.当0x e <<时,()0h x '>;当e x >时,()0h x '<,所以()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以x e =是()h x 的极大值点,也是最大值点,且()()max h x h e e ==,所以当0a <时,()()2g x e ae e h x ≥->≥,即22ln x e x xe x ae ->.综上,当0a <时,()2ln f x e x >.法三:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()()()222222ln ln xxg x e e x e x ex ee e e x =-=-++--,令()()220xh x e e x ex =-+>,则()2x h x e e '=-,当02x <<时,()0h x '<;当2x >时,()0h x '>,所以()h x 在()0,2上是减函数,在()2,+¥上是增函数,所以2x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 20h x h ==.设()222ln m x e x e e x =--,则()()2221x e m x e x xe-'=-=.当01x <<时,()0m x '<;当2x >时,()0m x '>,所以()m x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()m x 的极小值点,也是()m x 的最小值点,即()()min 10m x m ==.综上,()0h x ≥(当且仅当2x =时取等号),()0m x ≥(当且仅当1x =时取等号),所以()()()0g x h x m x =+>,故当0a <时,()2ln f x e x >.【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,解题的关键是将不等式等价转化,然后构造函数,利用导数求函数的最值,考查数学转化思想,属于较难题10.已知函数2()ln f x x ax x =-+.(1)试讨论函数()f x 的单调性;(2)对任意0a <,满足2()ln f x x ax x =-+的图象与直线y kx =恒有且仅有一个公共点,求k 的取值范围.【答案】(1)当0a ≤时,在(0,)+∞单调递增;当0a >时,在10,4a ⎛-+ ⎝⎭单调递增,在14a ⎛⎫-+∞ ⎪ ⎪⎝⎭单调递减;(2)1k ≤或3221k e -+≥.【分析】(1)首先求函数的导数2121'()21(0)ax x f x ax x x x-++=-+=>,分0a ≤和0a >两千情况讨论导数的正负,确定函数的单调性;(2)由方程()f x kx =,转化为2ln x ax xk x -+=,构造函数()2ln x ax x h x x-+=,利用二阶导数判断函数的单调性,并分情况讨论()h x '最小值的正负,并结合零点存在性定理,确定函数的性质,根据2ln x ax xk x-+=有唯一解,确定k 的取值范围.【详解】(1)2121'()21(0)ax x f x ax x x x-++=-+=>当0a ≤时,恒有'()0f x >,所以()f x 在(0,)+∞单调递增;当0a >时,令2210ax x -++=,则180a ∆=+>,则10x =,211804x a-=<(舍去),当1(0,)4x a -+∈时,'()0f x >,()f x 在1(0,)4a-+单调递增;当)x ∈+∞时,'()0f x <,()f x在)+∞单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在118(0,)4a -单调递增,()f x 在118()4a-+∞单调递减.(2)原命题等价于对任意0a <,2ln x ax x kx -+=有且仅有一解,即2ln x ax xk x-+=;令ln ()1x h x ax x =-+则21ln '()x h x a x -=-,332(ln )2''()x h x x -=,令''()0h x =得32x e =所以)'(h x 在32(0,)e 上递减,在32(,)e +∞上递增,3232min 331ln 1'()'()2e h x h e a ae e -==-=--当312a e ≤-时,'()0h x ≥,所以()h x 在R 上单调递增,又当0x →时,ln ,0xax x→-∞-→,所以()h x →-∞;当x →+∞时,ln ,xax x→+∞-→+∞,所以()h x →+∞.所以()h x 在R 上必存在唯一零点,此时k ∈R ;当3102a e-<<时,32min '()'()0h x h e =<,同时又当0x →时,21ln ,x a x-→+∞-→+∞,所以'()h x →+∞;当x →+∞时,21ln 0,x a x-→-→+∞,所以'()h x →+∞.所以方程'()0h x =存在两根12,x x ,即2211221ln 1ln 0x ax x ax --=--=且332212(0,),(,)x e x e ∈∈+∞,所以()h x 在1(0,)x 上单调递增,12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以()h x 的极大值为1()h x ,极小值为2()h x 要使有方程2ln x ax xk x-+=唯一解,必有1()k h x >或2()k h x <,又2222222222ln ln 1ln 2ln 1()111x x x x h x ax x x x x --=-+=-+=+,又322(,)x e ∈+∞,则2ln 1()1x x x ϕ-=+,232ln '()0x x xϕ-=<,所以()ϕx 在32(,)e +∞递减,且x →+∞时,2ln 1()11x x xϕ-=+→,所以1k ≤;同理1112ln 1()1x h x x -=+,321(0,)x e ∈,2ln 1()1x x x ϕ-=+在32(0,)e 递增,3322322()()121x e eeϕϕ-<=+=+,所以3221k e -+≥.综上可得,1k ≤或3221k e -+≥.【点睛】思路点睛:本题是一道利用导数研究函数性质,零点的综合应用题型,属于难题,一般利用导数研究函数零点或方程的实数根时,需根据题意构造函数()f x ,利用导数研究函数在该区间上的单调性,极值,端点值等性质,以及零点存在性定理等研究函数的零点.11.设函数223223()3,()33,22a a f x x x ax g x ax x a ⎛⎫=-+=-++-∈ ⎪⎝⎭R .(1)求函数()f x 的单调区间;(2)若函数[]()23()()()0,222a x f x g x x x ϕ=--∈在0x =处取得最大值,求a 的取值范围.【答案】(1)当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭;(2)6,5⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对()f x 求导,对导函数分3a ≥和3a <两种情况讨论即可.(2)因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,利用分离参数法转化为不等式恒成立问题,求函数的最值即可.【详解】解:(1)()22()36313f x x x a x a '=-+=-+-,当3a ≥时,()0f x '≥,所以()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,令()0f x '>,得13x <-或13x >+,所以()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭令()0f x '<,得1133x -<<+,所以()f x 的单调递减区间为9393133⎛-+ ⎝⎭.综上,当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为,1⎛-∞- ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为9393133⎛⎫-+ ⎪ ⎪⎝⎭.(2)由题意得[]322133()(1)3,0,2222x ax a x x a x ϕ=+--+∈.因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,即[]3213(1)30,0,222ax a x x x +--∈,当0x =时,显然成立.当(]0,2x ∈时,得()21313022ax a x +--≤,即()()()()()22323232322221+2x x ax xx x x x ++==++-+-+--.令(]22,4t x =+∈,则2()1,(2,4]th t t t =--∈,()2210h t t '=+>恒成立,所以2()1,(2,4]t h t t t =--∈是增函数,5()0,2h t ⎛⎤∈ ⎥⎝⎦,所以3625(2)12x x +--+,即65a ,所以a 的取值范围为6,5⎛⎤-∞ ⎥⎝⎦.【点睛】思路点睛:对含参数的函数求单调区间,根据导函数分类讨论是解决这类题的一般方法;已知函数的最大值求参数的取值范围,往往转化为不等式恒成立问题,如果能分离参数的话,分离参数是解决这类题的常用方法,然后再求函数的最值即可.12.已知函数()()()21ln 1f x x a x x =-+-+(0a >).(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围.【答案】(1)答案不唯一,见解析;(2)02a <≤.【分析】(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可;(2原不等式化为:ln 2x a x x ≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,求出函数的导数,再令()221ln g x x x =-+,根据函数的单调性求出a 的范围即可.【详解】(1)()()()1121121x f x x a x a x x -⎛⎫⎛⎫'=-+-=-+⎪ ⎪⎝⎭⎝⎭()()()()12121a x x a x x xx---=--=,()0,x ∈+∞,令()0f x '=,则2ax =或1x =,当02a <<时,函数()f x 在区间0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在区间,12a ⎛⎫⎪⎝⎭上单调递减,当2a =时,函数()f x 在()0+∞,上单调递增,当2a >时,函数()f x 在区间()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫⎪⎝⎭上单调递减;(2)原不等式化为:ln 2xa x x≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,()2221ln 21ln 2x x x h x x x--+'=-=,令()221ln g x x x =-+,则()140g x x x '=+>,所以()g x 在()1+∞,上单调递增,()()110g x g >=>,所以()0h x '>,则函数()h x 在()1+∞,上单调递增,且()12h =,02a ∴<≤.【点睛】方法点睛:本题考查利用导数研究单调性(含参),考查利用导数研究恒成立问题,解决第(2)问的关键是将原不等式转化为ln 2xa x x≤-在()1+∞,上恒成立,进而利用导数研究函数的单调性,从而得解,考查逻辑思维能力和运算求解能力,考查转化和划归思想,属于常考题.13.已知函数()ln 2ag x x x x=++.(1)讨论()g x 的单调性;(2)当10a e <<时,函数()()222a f x xg x x x ⎛⎫=-+- ⎪⎝⎭在其定义域内有两个不同的极值点,记作1x 、2x ,且11x x <,若m 1≥,证明:112m mx x e +⋅>.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数()g x 的定义域,求得()222x x a g x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()g x 的单调递增区间和递减区间;(2)利用分析法得出所证不等式等价于()()()121212121ln0m x x x x x x x mx +-<>>+,令()120,1x t x =∈,构造函数()()()11ln m t h t t t m+-=-+,其中()0,1t ∈,利用导数证明出()0h t <对任意的()0,1t ∈恒成立,由此可证得原不等式成立.【详解】(1)函数()ln 2ag x x x x=++的定义域为()0,∞+,()()222122a x x ag x a R x x x+-'=+-=∈,方程220x x a +-=的判别式18a ∆=+.①当18a ≤-时,0∆≤,()0g x '≥,()g x 在()0,∞+为增函数;②当18a >-时,0∆>,方程220x x a +-=的两根为114x -'=,214x -'=,(i )当108a -<≤时,120x x ''<≤,对任意的0x >,()0g x '>,()g x 在()0,∞+为增函数;(ii )当0a >时,120x x ''<<,令()0g x '<,可得20x x '<<,令()0g x '>,可得2x x '>.所以,()g x在1,4⎛⎫+∞⎝⎪⎪⎭为增函数,在10,4⎛⎤- ⎥ ⎝⎦为减函数.综上所述:当0a ≤时,()g x 的增区间为()0,∞+,无减区间;当0a >时,()g x的增区间为1,4⎛⎫+∞- ⎝⎪⎪⎭,减区间10,4⎛⎤- ⎥ ⎝⎦;(2)证明:()()2ln 2a f x x x x x a a R =--+∈ ,所以()ln f x x ax '=-,因为()f x 有两极值点1x 、2x ,所以11ln x ax =,22ln x ax =,欲证112mm x x e +⋅>等价于要证:()112ln ln m m x x e +⋅>,即121ln ln m x m x +<+,所以()1212121ln ln m x m x ax max a x mx +<+=+=+,因为m 1≥,120x x <<,所以原不等式等价于要证明121ma x mx +>+.又11ln x ax =,22ln x ax =,作差得()1122lnx a x x x =-,1212ln x x a x x ∴=-,所以原不等式等价于要证明()()112211212212ln11ln x m x x x x m x x x mx x x mx +-+>⇔<-++,令12x t x =,()0,1t ∈,上式等价于要证()()11ln m t t t m+-<+,()0,1t ∈,令()()()11ln m t h t t t m+-=-+,所以()()()()221t t m h t t t m --'=+,当m 1≥时,20t m -<,则()0h t '>,所以()h t 在()0,1上单调递增,因此()()10h t h <=,()()11ln m t t t m+-∴<+在()0,1t ∈上恒成立,所以原不等式成立.【点睛】利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.14.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.【答案】(1)答案见解析;(2)6ln 4,05⎛⎫- ⎪⎝⎭.【分析】(1)对函数求导,按照110a ≥、1010a<<分类,求得()0f x '<、()0f x '>的解集即可得解;(2)由极值点的性质可得1a =,由导数的几何意义可得1b 、2b 及()12122x x x x =+,转化条件为1211212221ln 1x x x b b x x x ⎛⎫- ⎪⎝⎭-=++,构造新函数结合导数即可得解.【详解】(1)由题意,()()()()222212010ax ax a f x a x x x x+-'=-++=<<,0a > ,010x <<,∴20ax +>,①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)∵1x =是()f x 的极值点,∴()10f '=,即()()210a a +-=,解得1a =或2a =-(舍),此时()2ln f x x x x =++,()2211f x x x'=-++,1l ∴方程为()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭,令0x =,得1114ln 1b x x =+-,同理可得2224ln 1b x x =+-,12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-,又12010x x <<<,则1112102x x x <<-,解得1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++,令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭,设()()211ln ,,114t g t t t t -⎛⎫=+∈ ⎪+⎝⎭,则()()()()222141011t g t t t t t -'=-+=>++,()g t ∴在1,14⎛⎫⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=-⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭.【点睛】关键点点点睛:解决本题的关键是利用导数的几何意义转化条件,再构造新函数,结合导数即可得解.15.已知函数32()23(1)6()f x x m x mx x R =+++∈.(1)讨论函数()f x 的单调性;(2)若(1)5f =,函数2()()(ln 1)0f x g x a x x=+-≤在(1,)+∞上恒成立,求证:2a e <.【答案】(1)答案不唯一,见解析(2)证明见解析【分析】(1)求导后分解因式,分类讨论即可得到函数的单调性;(2)由题意求出0m =,转化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,利用导数求出23()(1)ln 1x h x x x +=>+的最小值,即可求解.【详解】(1)()()()'22661661fx x m x m x m x m ⎡⎤=+++=+++⎣⎦6(1)()x x m =++若1m =时,()0f x '≥,()f x 在R 上单调递增;若1m >时,1m -<-,当x m <-或1x >-时,()0f x '>,()f x 为增函数,当1m x -<<-时,()0f x '<,()f x 为减函数,若1m <时,1m ->-,当1x <-或x m >-时,()0f x '>,()f x 为增函数,当1x m -<<-时,()0f x '<,()f x 为减函数.综上,1m =时,()f x 在R 上单调递增;当1m >时,()f x 在(,)-∞-m 和(1,)-+∞上单调递增,在(,1)m --上单调递减;当1m <时,()f x 在(,1)-∞-和(,)m -+∞上单调递增,在(1,)m --上单调递减.(2)由(1)23(1)65f m m =+++=,解得0m =,所以32()23f x x x =+,由(1,)x ∈+∞时,ln 10x +>,可知()(ln 1)230g x a x x =+--≤在(1,)+∞上恒成立可化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,设23()(1)ln 1x h x x x +=>+,则22132(ln 1)(23)2ln ()(ln 1)(ln 1)x x x x x h x x x +-+⨯-'==++,设3()2ln (1)x x x x ϕ=->,则223()0x x xϕ'=+>,所以()ϕx 在(1,)+∞上单调递增,又3ln163(2)2ln 2022ϕ-=-=<,3()20e eϕ=->所以方程()0h x '=有且只有一个实根0x ,且00032,2ln .x e x x <<=所以在0(1,)x 上,()0h x '<,()h x 单调递减,在0(,)x +∞上,()0,()h x h x '>单调递增,所以函数()h x 的最小值为0000002323()223ln 112x x h x x e x x ++===<++,从而022.a x e ≤<【点睛】关键点点睛:解答本题的难点在于得到232ln ()(ln 1)x x h x x -'=+后,不能求出()h x '的零点,需要根据()h x '的单调性及零点存在定理得到0x 的大致范围,再利用0x 的范围及0032ln x x =证明不等式.16.设()1,,54m h x x x x ⎡⎤=+∈⎢⎥⎣⎦,其中m 是不等于零的常数,(1)写出()4h x 的定义域;(2)求()h x 的单调递增区间;【答案】(1)15,164⎡⎤⎢⎥⎣⎦;(2)答案见解析.【分析】(1)由已知得出1454x ⎡⎤∈⎢⎥⎣⎦,,解出x 可得()4h x 的定义域;(2)对函数()h x 求导,按0m <,1016m <≤,12516m <<和25m ≥四种情况,分别求出函数的单调递增区间即可.【详解】(1)∵1454x ⎡⎤∈⎢⎥⎣⎦,,∴15164x ⎡⎤∈⎢⎥⎣⎦,∴()4h x 的定义域为15164⎡⎤⎢⎥⎣⎦,(2)()21m h x x '=-0m <时,()0h x '>恒成立,()h x 在154⎡⎤⎢⎥⎣⎦,递增;0m >时,令()0h x '>,解得x >或x <,即函数的单调增区间为(,-∞,)+∞14≤即1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增当154<<即12516m <<时,()h x 在⎤⎦递增5≥即25m ≥时,()h x 在154⎡⎤⎢⎥⎣⎦,无递增区间综上可得:0m <时,()h x 在154⎡⎤⎢⎥⎣⎦,递增;1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦递增;12516m <<时,()h x 在⎤⎦递增【点睛】关键点点睛:本题考查函数的定义域,考查导数研究函数的单调性,解决本题的关键是令()0h x '>求出函数的单调增区间,讨论定义域的区间端点和单调区间的关系,考查了学生分类讨论思想和计算能力,属于中档题.17.已知1,12k ⎛⎤∈⎥⎝⎦,函数2()(1)x f x x e kx =--.( 2.71828e = 为自然对数的底数).(1)求函数()f x 的单调区间;(2)求函数()f x 在[0,]k 上的最大值.【答案】(1)单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k ;(2)3(1)k k e k --.【分析】(1)由题得()(2)x f x x e k '=-,再利用导数求函数的单调区间得解;(2)证明0(2)ln k k <<,列出表格得出单调区间,比较区间端点与极值即可得到最大值.【详解】(1)由题得()(1)2(2)x x x f x e x e kx x e k '=+--=-,令0()0,20x x f x e k >⎧'>∴⎨->⎩或020x x e k <⎧⎨-<⎩,因为1,12k ⎛⎤∈⎥⎝⎦,所以122k <≤,所以不等式组的解为ln 2x k >或0x <,所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,;令0()0,20x x f x e k >⎧'<∴⎨-<⎩或020x x e k <⎧⎨->⎩,解之得0ln 2x k <<,所以函数()f x 的单调减区间为(0,ln 2)k ;所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k .(2)令()(2)k k ln k ϕ=-,1(2k ∈,1],11()10k k k k ϕ-'=-=所以()k ϕ在1(2,1]上是减函数,ϕ∴(1)1()()2k ϕϕ<,112()2ln k k ϕ∴-<<.即0(2)ln k k<<所以()'f x ,()f x 随x 的变化情况如下表:x(0,(2))ln k (2)ln k ((2)ln k ,)k ()'f x -0+()f x极小值(0)1f =-,()(0)f k f -3(1)(0)k k e k f =---3(1)1k k e k =--+3(1)(1)k k e k =---2(1)(1)(1)k k e k k k =---++2(1)[(1)]k k e k k =--++。
专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数应用:含参函数的单调性讨论教师版work Information Technology Company.2020YEAR导数应用:含参函数的单调性讨论教师版一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔> 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。
二、典例讲解例1 讨论x a x x f +=)(的单调性,求其单调区间 解:xa x x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,即)(x f 的增区间是)0,(-∞和),0(+∞;II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)(' a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。
变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号)I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞,不存在减区间;II) 当0<a 时 a x x x f ->⇔>>)0(0)(';a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.例2.讨论x ax x f ln )(+=的单调性解:x ax x f ln )(+=的定义域为),0(+∞ )0(11)('>+=+=x x ax x a x f (它与1)(+=ax x g 同号) I ) 当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II ) 当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III) 当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a -为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。
即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。
一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。
变式练习2. 讨论x ax x f ln 21)(2+=的单调性 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aa a x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii) 当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a. 小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。
对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。
例3 设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围. 解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x)max =-22, 当且仅当x =2x即x =-2时等号成立. 所以满足要求的a 的取值范围是(-∞,-22).引申探究:在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解?解 方法一 ∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立, ∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3].方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立,即a ≤x +2x 在(-2,-1)上恒成立, 又y =x +2x,x ∈(-2,-1)的值域为(-3,-2 2 ], ∴a ≤-3,∴实数a 的取值范围是(-∞,-3].2.若g (x )的单调减区间为(-2,-1),求a 的值.解 ∵g (x )的单调减区间为(-2,-1),∴x 1=-2,x 2=-1是g ′(x )=0的两个根,∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是(-∞,-3]∪[-22,+∞),故g (x )在(-2,-1)上不单调,实数a 的取值范围是(-3,-22).思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e x ln x -a e x (a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1ex +1垂直,求a 的值; (2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x-a +ln x )e x , f ′(1)=(1-a )e ,由(1-a )e·1e=-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x , 若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立.即1x-a +ln x ≤0,在x >0时恒成立. 所以a ≥1x+ln x ,在x >0时恒成立. 令g (x )=1x+ln x (x >0), 则g ′(x )=-1x 2+1x =x -1x 2(x >0), 由g ′(x )>0,得x >1;由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值).故f (x )不可能是单调递减函数.若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x-a +ln x ≥0,在x >0时恒成立, 所以a ≤1x+ln x ,在x >0时恒成立,由上述推理可知此时a ≤1. 故实数a 的取值范围是(-∞,1].三、巩固作业:1. 已知函数()ln .a f x x x=-,求()f x 的单调区间. 解:()221+,a x a f x x x x+'∞=+=函数的定义域为(0,), ()'0f x x a ==-令得:()()()()()()000,(0,)000,0(,)a a f f x a a f f f x a '-≤≥>∴+∞''-><><∴-+∞若即,则x 在上单调递增;若即,则由x 得x>-a 由x 得x<-a在上单调递增,在0,-a 上单调递减. ()()() 0(0,)0(,)a f x a f x a ≥+∞<-+∞总之,当时,在上单调递增; 当时,在上单调递增,在0,-a 上单调递减.2.已知函数f(x)=21x 2-a x+(a -1)ln x ,讨论函数()f x 的单调性,求出其单调区间。