导数应用:含参函数的单调性讨论教师版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数应用:含参函数的单调性讨论教师版

work Information Technology Company.2020YEAR

导数应用:含参函数的单调性讨论教师版

一、思想方法:

上为常函数

在区间时上为减函数

在区间时上为增函数

在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...

,)(...0)('...

,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔> 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。

二、典例讲解

例1 讨论x a x x f +

=)(的单调性,求其单调区间 解:x

a x x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x x

a x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,

此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,

即)(x f 的增区间是)0,(-∞和),0(+∞;

II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)(' a x x a x x f <<<<-⇔≠<00)0(0)('或

此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,

)(x f 在)0,(a -和),0(a 都是单调减函数,

即)(x f 的增区间为),(a --∞和),(+∞a ;

)(x f 的减区间为)0,(a -和),0(a .

步骤小结:1、先求函数的定义域,

2、求导函数(化为乘除分解式,便于讨论正负),

3、先讨论只有一种单调区间的(导函数同号的)情况,

4、再讨论有增有减的情况(导函数有正有负,以其零点分界),

5、注意函数的断点,不连续的同类单调区间不要合并。

变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间

解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+=x x

a x x a x f (它与a x x g +=)(同号)

I )当0≥a 时,)0(0)('>>x x f 恒成立,

此时)(x f 在),0(+∞为单调增函数,

即)(x f 的增区间为),0(+∞,不存在减区间;

II) 当0⇔>>)0(0)(';

a x x x f -<<⇔><0)0(0)('

此时)(x f 在),(+∞-a 为单调增函数,

)(x f 在),0(a -是单调减函数,

即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.

例2.讨论x ax x f ln )(+=的单调性

解:x ax x f ln )(+=的定义域为),0(+∞ )0(11)('>+=+

=x x ax x a x f (它与1)(+=ax x g 同号) I ) 当0=a 时,)0(0)('>>x x f 恒成立 (此时a

x x f 10)('-

=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II ) 当0>a 时,)0(0)('>>x x f 恒成立, (此时a

x x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞

III) 当0

x x f 10)('-

=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)

所以, 此时)(x f 在),0(a -为单调增函数,)(x f 在),1(+∞-a

是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a

.

小结:

导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内

的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。

变式练习2. 讨论x ax x f ln 21)(2+=

的单调性 解:x ax x f ln 2

1)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x x

ax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,

当0≥a 时,无解;当0

a a x --=-

=1(另一根不在定义域内舍去)

i)当0=a 时,)0(0)('>>x x f 恒成立 (此时a

x x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ ii)当0>a 时,)0(0)('>>x x f 恒成立,

(此时 方程012=+ax 判别式0<∆,方程无解)

此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞

iii) 当0

当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)

)在),1(+∞-a

是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a

. 小结:

一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。

对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。

例3 设函数f (x )=13x 3-a 2

x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;

相关文档
最新文档