最新单招数学试卷
单招数学考试题及答案带解释
单招数学考试题及答案带解释一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = e^x \)答案:C解释:奇函数的定义是对于所有x,都有\( f(-x) = -f(x) \)。
选项A是偶函数,因为\( (-x)^2 = x^2 \);选项B是奇函数,因为\( (-x)^3 = -x^3 \);选项C是奇函数,因为\( \sin(-x) = -\sin(x) \);选项D既不是奇函数也不是偶函数。
2. 计算极限\( \lim_{x \to 0} \frac{\sin(x)}{x} \)的值是多少?A. 0B. 1C. 2D. \( \infty \)答案:B解释:根据极限的性质,我们知道\( \lim_{x \to 0}\frac{\sin(x)}{x} = 1 \),这是一个基本的极限公式。
3. 以下哪个不等式是正确的?A. \( 2x + 3 > 5 \)B. \( 3x - 2 < 7 \)C. \( x^2 - 4x + 4 \leq 0 \)D. \( x^2 - 2x + 1 \geq 0 \)答案:D解释:选项A简化为\( x > 1 \),选项B简化为\( x < 3 \),选项C 简化为\( (x-2)^2 \leq 0 \),只有当\( x = 2 \)时成立,而选项D 简化为\( (x-1)^2 \geq 0 \),对于所有实数x都成立。
4. 计算定积分\( \int_0^1 x^2 dx \)的值是多少?A. 0B. \( \frac{1}{3} \)C. 1D. 2答案:B解释:根据定积分的计算公式,\( \int_0^1 x^2 dx =\left[ \frac{x^3}{3} \right]_0^1 = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \)。
全国2023年单独招生考试数学卷(答案) (2)
2023年全国单独招生考试数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分)1.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项的和是()A.65B.-65C.25D.-252.椭圆2222by a x =1(a >b >0)的长轴被圆x 2+y 2=b 2与x 轴的两个交点三等分,则椭圆的离心率是()A.21 B.22 C.33 D.3223.甲、乙、丙投篮一次命中的概率分别为51、31、41,现三人各投篮一次至少有1人命中的概率为()A.601 B.6047 C.53 D.60134.正四面体棱长为1,其外接球的表面积为()A.3π B.23π C.25π D.3π5.如图,正四棱柱ABCD —A 1B 1C 1D 1,底面边长为1,侧棱长为2,E 为BB 1中点,则异面直线AD 1与A 1E 所成的角为()A.arccos510 B.arcsin 510C.90° D.arccos 10106.已知,命题p :x +x 1的最小值是2,q :(1-x )5的展开式中第4项的系数最小,下列说法正确的是()A.命题“p 或q ”为假B.命题“p 且q ”为真C.命题“非p ”为真D.命题q 为假7.E,F 是随圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠EPF 的最大值是()A.15°B.30°C.60°D.45°8.已知角β终边上一点(4,3)P -,则cos β=()A.35- B.45 C.34- D.549.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1-C.12D.12-10.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π二、填空题:(本题共2小题,每小题10分,共20分.)1、在∆ABC 中,AC=1,BC=4,cosA=则cos B=_____.2、已知函数有最小值8,则a=_____.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(1)当a=﹣1时,解不等式f(x)≤1;(2)若x∈[0,3]时,f(x)≤4,求a 的取值范围.2.在△ABC 中,角A,B,C 所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA 的值;(2)若b=3,点M 在线段BC 上,=2,||=3,求△ABC 的面积.3.在如图所示的圆台中,AB,CD 分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE 为圆台的一条母线,且与底面ABE 成角.(Ⅰ)若面BCD 与面ABE 的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.参考答案:一、选择题1-5题答案:DDCBA6-10题答案:CBBBD二、填空题1、2、2三、解答题1.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(1)当a=﹣1时,解不等式f(x)≤1;(2)若x∈[0,3]时,f(x)≤4,求a的取值范围.【解答】解:(1)当a=﹣1时,不等式为|x+1|﹣|x+3|≤1;当x≤﹣3时,不等式转化为﹣(x+1)+(x+3)≤1,不等式解集为空集;当﹣3<x<﹣1时,不等式转化为﹣(x+1)﹣(x+3)≤1,解之得;当x≥﹣1时,不等式转化为(x+1)﹣(x+3)≤1,恒成立;综上所求不等式的解集为.(2)若x∈[0,3]时,f(x)≤4恒成立,即|x﹣a|≤x+7,亦即﹣7≤a≤2x+7恒成立,又因为x∈[0,3],所以﹣7≤a≤7,所以a的取值范围为[﹣7,7].2.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.【解答】(本题满分为12分)解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以.…(5分)(2)∵=2,两边平方得:=4,由b=3,||=3,,可得:,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)3.在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.。
单招数学考试题库及答案
单招数学考试题库及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x^2 - 3x + 1,下列关于该函数的描述正确的是()。
A. 函数是奇函数B. 函数是偶函数C. 函数是增函数D. 函数是减函数答案:C2. 若a > 0,b > 0,且a + b = 1,则下列不等式中正确的是()。
A. ab ≤ 1/4B. ab ≥ 1/4C. ab ≤ 1/2D. ab ≥ 1/2答案:A3. 已知数列{an}的通项公式为an = 3n - 2,该数列的前n项和Sn为()。
A. n^2B. 3n^2 - 5n + 2C. 3n^2 - 2nD. 3n^2 - 5n + 1答案:B4. 函数y = x^3 - 3x^2 + 2在区间(1,2)内()。
A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C5. 若直线x + 2y - 3 = 0与直线2x - y + 1 = 0平行,则两直线间的距离为()。
A. √5B. √10C. √2D. 2√5答案:C6. 已知三角形ABC的三边长分别为a,b,c,且满足a^2 + b^2 = c^2,下列说法正确的是()。
A. 三角形ABC是锐角三角形B. 三角形ABC是直角三角形C. 三角形ABC是钝角三角形D. 无法确定三角形ABC的类型答案:B7. 已知等比数列{an}的首项a1 = 2,公比q = 3,该数列的第5项a5为()。
A. 486B. 243C. 81D. 54答案:B8. 函数y = sin(x) + cos(x)的值域为()。
A. [-1, 1]B. [-√2, √2]C. [0, √2]D. [1, √2]答案:B9. 已知向量a = (1, 2),向量b = (3, -1),则向量a与向量b的夹角θ满足()。
A. 0 < θ < π/2B. π/2 < θ < πC. 0 < θ < πD. θ = π答案:B10. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为e = √5,且a = 2,则b的值为()。
高职单独招生考试数学卷(答案解析) (1)
2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23B.32C.2D.33.已知角β终边上一点(4,3)P -,则cos β=()A.35-B.45C.34-D.544.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1- C.12D.12-5.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B.C.D.7.抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x mπ∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBBD 6-10题答案:ADDBD 11-15题答案:ABDCA 16-20题答案:BABCB 部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、答案.B 【解析】5(1)124k --==---.5、答案.D 【解析】1cos 211cos 2cos 2222x y x x -=+=+,最小正周期T =π,最小值为0.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、 ;8、1;9、1532-;10、x-y-1=0。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
2023年高职单独招生考试数学试卷(含答案) (1)
2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A ∈0, 则满足}1,0{=B A 的集合A , B 的组数是 ( )A .1组B .2组C .4组D .6组2.若|log |)(,10x x f a a =<<且函数, 则下列各式中成立的是( )A .)41()31()2(f f f >>B .)31()2()41(f f f >>C .)2()31()41(f f f >>D .)41()2()31(f f f >>3.在ABC ∆中, 如果1019cos ,23sin ==B A , 则角A 等于 ( )A .3πB .32π C .3π或32π D .656ππ或 4.已知数列)(lim ,131}{242n n n n n a a a a S a +++-=∞→ 那么满足的值为 ( )A .21B .32 C .1 D .-25.直线0601210122=+--++=y x y x mx y 与圆有交点, 但直线不过圆心, 则∈m ( ) A .)34,1()1,43(B .]34,1()1,43[C .]34,43[D .)34,43(6.如图, 在正三角形ABC ∆中, D 、E 、F 分别为各边的中点, G 、H 、I 、J 分别为AF , AD , BE , DE 的中点, 将ABC ∆沿DE ,EF , DF 折成三棱锥以后, GH 与IJ 所成角的度数为 ( ) A .90° B .60° C .45°D .0°7.已知以y x ,为自变量的目标函数)0(>+=k y kx ω的可行域如图阴影部分(含边界), 若使ω取最大值时的最优解有无穷 多个, 则k 的值为( ) A .1B .23C .2D .48. 已知集合A={-1,0,1},集合B={x|x <3,x ∈N},则A ∩B=( ) A. {-1,1,2} B. {-1,1,2,3} C. {0,1,2} D. {0,1}9. 已知数列:23456 34567,,,,,…按此规律第7项为( )A. 78B. 89C.78D.8910. 若x ∈R ,下列不等式一定成立的是( )A. 52x x<B. 52x x >C. 20x > D. 22(1)1xx x >11、已知f(12x -1)=2x +3,f(m)=8,则m 等于( )A 、14B 、-14C 、32D 、-32 12、函数y =lg x +lg(5-2x)的定义域是( )A 、)25,0[B 、⎥⎦⎤⎢⎣⎡250,C 、)251[,D 、⎥⎦⎤⎢⎣⎡251,13、函数y =log2x -2的定义域是( )A 、(3,+∞)B 、[3,+∞)C 、(4,+∞)D 、[4,+∞)14、函数12--=x x y 的图像是 ( ) A.开口向上,顶点坐标为)(45,21-的一条抛物线; B.开口向下,顶点坐标为)(45,21-的一条抛物线; C.开口向上,顶点坐标为)(45,21-的一条抛物线; D.开口向下,顶点坐标为)(45,21-的一条抛物线;15、函数()35x x x f +=的图象关于( )A 、y 轴对称B 、直线y =-x 对称C 、坐标原点对称D 、直线y =x 对称16、下列函数中,在区间(0,+∞)上为增函数的是( ) A 、y =x +1 B 、y =(x -1)2 C 、y =2-x D 、y =log0.5(x +1)17、已知函数x x f =)(,点),4(b P 在函数图像上,则=b ( ) A 、-4 B 、3 C 、-2 D 、2 18、不等式532≤-x 的解集是( )A 、()4,1-B 、()()∞+-∞-,,41 C 、[]4,1- D 、 ()()∞+--∞-,,14 19、不等式()()073>+x x -的解集是( )A 、 ()73,-B 、 ()7,3-C 、 ),3()7,(+∞--∞D 、 ),7()3,(+∞--∞ 20、不等式31<-x 的解集是( )A 、(-2,4)B 、(-1,3)C 、 ),4()2,(+∞--∞D 、 ),1()3,(+∞--∞ 一、填空题:(本题共2小题,每小题10分,共20分.)1、若实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x , 则y x +2的最小值是2、在等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d =_______.二、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 1.设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集 . 2.已知函数1)6sin(cos 4)(-+=πx x x f ,求求)(x f 的最小正周期;(2)求)(x f 在区间]4,6[ππ-上的最大值和最小值.3. 已知函数b b x a x x f 2)1()(22--++=,且)2()1(x f x f -=-,又知x x f ≥)(恒成立. 求:(1) )(x f y =的解析式;(2)若函数[]1)(log )(2--=x x f x g ,求函数g(x)的单调区间. 4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =,cosB =,求c 的值;(2)若=,求sin (B+)的值.参考答案: 一、选择题1-5:DCACB 6-10:BADBB 二、填空题 1.参考答案.4 【解析】试题分析:根据题意可知,实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x 对应的区域如下图,当目标函数z=2x+3y 在边界点(2,0)处取到最小值z=2×2+3×0=4. 故答案为:4考点:简单线性规划的运用。
2023年高职单独招生考试数学试卷(含答案) (2)
2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.首项系数为1的二次函数()y f x =在1x =处的切线与x 轴平行,则()A.()()20f f >B.()()20f f <C.()()22f f >-D.()()22f f <-2.已知定义在[]1,1-上的函数()y f x =的值域为[]0,2-,则函数(cos )f x 的值域为()A.[]1,1-B.[]1,3--C.[]0,2-D.无法确定3.设f 1(x )是函数f (x )的导数,y =f 1(x )的图象如图甲所示,则y =f (x )的图象最有可能是图()中的图象:4.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()A、140种B、120种C、35种D、34种5.若把英语单词“hello”的字母顺序写错了,则可能出现的错误的种数是()A.119B.59C.120D.606.E,F 是随圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠EPF 的最大值是()A.15°B.30°C.60°D.45°7.关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取,则三人中被录取的是()A.甲B.丙C.甲与丙D.甲与乙8、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}9、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件10、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、511、“1=x ”是“0122=+-x x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件12、“2)1(+=n n a n ”是“0)2(log 21<+x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件14、0=b 是直线b kx y +=过原点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15、方程4322(log =x 的解为()A.4=x B.2=x C.2=x D.21=x 16、设b a ,是实数,则“0>+b a ”是“0>ab ”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件17、已知x x x f 2)(2+=,则)2(f 与)21(f 的积为()A、5B、3C、10D、818、“ααcos sin =”是“02cos =α”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是()A、[]1,3-B、()1,3-C、(][)+∞-∞-,13, D、()()+∞-∞-,13, 20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A、c b a <<B、b c a <<C、ca b <<D、ac b <<二、填空题(共10小题,每小题3分;共计30分)1.设函数f (x)=x|x﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式恒成立,则实数a 的取值范围是_______.2.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_______.3、已知函数()f x =223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4、不等式2340x x --+>的解集为______.(用区间表示)5、不等式422<-xx的解集为______..(用区间表示)6、函数()35lg -=x y 的定义域是______.(用区间表示)7、函数y=)9(log 2-x 的定义域是______.(用集合表示)8、不等式062<--x x 的解集是______.(用集合表示)9、不等式0125>--x 的解集为______.(用集合表示)10、已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三、大题:(满分30分)1、如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.2、在平面直角坐标系xOy 中,己知点F 1(-√17,0),F 2(√17,0),点M 满足|MFt|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=12上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB的斜率与直线PQ的斜率之和参考答案:一、选择题:1-5题答案:CCBDB6-10题答案:BDBCD11-15题答案:ABACA16-20题答案:DCADC二、填空题:1、(﹣∞,2];2、[7−32,7+32];3、0;4、(-4,1);5、(-1,2);6、⎪⎭⎫⎢⎣⎡∞+,54;7、}9{>x x;8、{}32<<-xx;9、}32{><x x x 或;10、3。
河南高职单招数学卷答案 (1)
6.设
f(x)
=
log2(
1 x+a
+
1)是奇函数,若函数
g(x)图象与函数
f(x)图象关于
直线 y=x 对称,则 g(x)的值域为( )
A.(
−
∞,
−
1 2
)
∪
(
1 2
,
+
∞)
B.(
−
1 2
,
1 2
)
C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,2)
7.若 x1 满足 2x=5﹣x,x2 满足 x+log2x=5,则 x1+x2 等于( )
18、在等差数列{an}中,若 a2 4, a4 2, 则 a6 ( )
A、-1 B、0
C、1
D、6
19、设 Sn 是等差数列{an}的前 n 项和,若 a1 a3 a5 3 ,则 S5 ( )
A、5
B、7
C、9
D、11
20、下列函数中,最小正周期为 且图象关于原点对称的函数是( )
y cos(2x )
3.如图,一广告气球被一束入射角为 的平行光线照射,其投影是长半轴长为
5 米的椭圆,则制作这个广告气球至少需要的面料为________. 4.由 y 2 及 x y x 1 围成几何图形的面积是________.
5.从 A={a1,a2,a3,a4}到 B={b1,b2,b3,b4}的一一映射中,限定 a1 的象不能是 b1,
a 的取值范围是( )
A.[0,2] B.(2,+∞) C.(0,2] D.(﹣2,2)
3.设 a>0,a≠1,函数 f(x)=loga(x2﹣2x+3)有最小值,则不等式 loga(x
职校单招数学试题及答案
职校单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/3答案:B2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3)/2B. f^(-1)(x) = (x + 3)/2C. f^(-1)(x) = (x - 2)/3D. f^(-1)(x) = (x + 2)/3答案:A3. 已知集合A={1,2,3},集合B={2,3,4},则A∩B等于?A. {1,2}B. {2,3}C. {1,3}D. {4}答案:B4. 直线方程y = mx + b中,斜率m的值是?A. 0B. 1C. -1D. 不能确定答案:D5. 以下哪个图形是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:C6. 复数z = 3 + 4i的模长是?A. 5B. √7C. 7D. √(3^2 + 4^2)答案:D7. 等差数列{an}中,若a1 = 2,d = 3,则a5等于?A. 11B. 14C. 17D. 20答案:B8. 以下哪个选项是二项式定理的应用?A. (x + y)^2 = x^2 + 2xy + y^2B. x^2 - y^2 = (x + y)(x - y)C. sin^2(x) + cos^2(x) = 1D. e^x = 1 + x + x^2/2! + x^3/3! + ...答案:D9. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B10. 已知向量a = (1, 2),向量b = (2, 1),则a·b等于?A. 0B. 1C. 3D. 5答案:C二、填空题(每题4分,共20分)11. 函数f(x) = x^2 - 4x + 4的最小值是________。
高职单招考试数学卷 (4)
(1)求ξ的分布列及数学期望;
(2)在概率 P(ξ=i)(i=0,1,2,3)中,若 P(ξ=1)的值最大,求实数 a 的
取值范围.
4.已知函数
f
(x)
4 sin
x
cos
x
3
3 0
的最小正周期为 .
(1)求 f (x) 的解析式;
(2)求
f
(
x)
在区间
4
,
6
上的最大值和最小值及取得最值时
(Ⅱ)若 C=5,3sin2C=5sin2B•sin2A,且 BC 的中点为 D,求△ABD 的周长.
D.当 m 时,“ n ”是“ m n ”的充分不必要条件
y x2 ln | x |
5.函数
x 的图象大致为( )
sin( ) 1
cos(
)
6.已知
4 3 ,则 4 的值等于 ( )
1
A. 3
1
2 2
22
B. 3
C. 3
D. 3
f
( x)(1
2x)
1 x
,
x
0
7.设函数 a
, x 0 在 x 0 处连续,则 a (
)
A.1
B. e
C. e2
D. e2
8.函数 y xex 在区间(3,5)内是(
)
A.单调递增且凸
B.单调递增且凹
C.单调递减且凸
D. 单调递减且凹
9.已知
f
( x)dx
sin
x
C
则
'
(
x
)
=(
)
A. cos x
B. sin x
C. cos x
单招数学试题及答案详解
单招数学试题及答案详解一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是()。
A. m≥0B. m<0C. m>0D. m≤4答案:A解析:函数f(x)=x^2-4x+m的对称轴为x=2,因此当x≥2时,函数单调递增。
要使得函数在区间[2,+∞)上单调递增,m的取值范围应满足m≥0。
2. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5的值为()。
A. 25B. 26C. 30D. 35答案:C解析:由等差数列的性质可知,a4=a1+3d,即7=1+3d,解得公差d=2。
因此,S5=5a1+10d=5×1+10×2=30。
3. 若直线l的倾斜角为45°,则直线l的斜率k的值为()。
A. 1B. -1C. 0D. ∞答案:A解析:直线的倾斜角为45°,根据斜率与倾斜角的关系,斜率k=tan(45°)=1。
4. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为()。
A. 3x^2-6xB. 3x^2-6x+2C. 3x^2-6x+1D. x^3-3x^2+2答案:A解析:对函数f(x)=x^3-3x^2+2求导,得到f'(x)=3x^2-6x。
5. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,若双曲线C的离心率为√2,则a与b的关系为()。
A. a=bB. a=2bC. b=2aD. b=√2a答案:D解析:双曲线的离心率e=c/a,其中c^2=a^2+b^2。
由题意知e=√2,代入得c^2=2a^2,即a^2+b^2=2a^2,化简得b^2=a^2,所以b=√2a。
二、填空题(每题4分,共20分)6. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为()。
答案:(2, 3)解析:圆的标准方程为(x-a)^2+(y-b)^2=r^2,其中(a, b)为圆心坐标,r为半径。
单招数学试题及答案文库
单招数学试题及答案文库一、选择题(每题5分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(2) \)的值。
A. -1B. 1C. 3D. 5答案:A3. 若\( a \),\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,则\( a + b \)的值为:A. -2B. -3C. -4D. -5答案:D4. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B5. 已知三角形ABC中,角A为60度,边a的长度为10,求边b的长度,假设三角形ABC是等边三角形。
A. 5B. 10C. 15D. 20答案:B6. 一个数列的前三项为2,4,8,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列答案:B二、填空题(每题4分,共20分)1. 一个直角三角形的两条直角边分别为3和4,其斜边的长度为______。
答案:52. 函数\( g(x) = \log_{2}(x) \)的定义域是_____。
答案:\( (0, +\infty) \)3. 已知\( \sin(\theta) = \frac{3}{5} \),且\( \theta \)在第一象限,求\( \cos(\theta) \)的值。
答案:\( \frac{4}{5} \)4. 一个等差数列的首项为2,公差为3,第10项的值为______。
答案:295. 将\( 5 \)升水倒入半径为1米的圆柱形容器中,水面高度为______。
答案:\( \frac{10}{\pi} \)米三、解答题(每题25分,共50分)1. 解不等式\( |x - 3| < 2 \),并写出解集。
解:首先,我们解绝对值不等式\( |x - 3| < 2 \)。
高职单招考试数学卷 (1)
高职单招招生全国统一考试数学(满分150分,考试时间120分钟)一.选择题:(本题共12小题,每小题5分,共60分)1.下列四个函数:(1)()1f x x =-;(2)()1||f x x =-;(3)()1f x = (4)4()1f x =-,其中同一个函数的是() A.(1)(3) B.(1)(4) C.(2)(3)D.(2)(4)2.下列四个函数在其定义域内为减函数且为奇函数的是()A.()3xf x -=B.3()f x x =C.()f x x =-D.()sin f x x =3.若向量(3,1),(3,4)a b =-=,且(2)()20a b a kb ++=,则实数k =( )A.-1B.0C.13D.4164.过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P , )1y .2(x Q , )2y 两点, 若p x x 321=+, 则||PQ 等于( )A.4pB.5pC.6pD.8p5.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,, 则X 的方差为( ) A.pB.2(1)p p -C.(1)p p --D.(1)p p -6.下列级数中发散的是( )A.∑∞=021n nB.∑∞=+131n n nC.1)1(1+-∑∞=n nn nD.nn n1)1(1∑∞=-7.已知AA A A A A n A 表示的行列式,表示,且阶方阵,为**)(42==的伴随矩阵),则=n ( )A.2B.3C.4D.58.已知向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=110,000,121321a a a ,则( )A.1a 线性相关B.21,a a 线性相关C.21,a a 线性无关D.321,,a a a 线性相关9.学习小组有10名同学,其中6名男生,4名女生,从中随机选取4人参加社会实践活动,则这4人全为男生的概率是( )A.141B.143C.74D.7110.已知=+===)(,8.0)|(,4.0)(,3.0)(B A P A B P B P A P 则( ) A.0.7 B.0.46 C.0.38 D.0.24 11.全集设为U , P.S.T 均为U 的子集, 若 P (T U)=(T U)S 则( )A.S S T P =B.P =T =SC.T =UD.P S U=T12.设集合}0|{≥+=m x x M , }082|{2<--=x x x N , 若U =R , 且∅=N M U, 则实数m 的取值范围是( ) A .m <2 B.m ≥2B .C.m ≤2 D.m ≤2或m ≤-4二.填空题(共4小题,每小题5分;共计20分)1.“2>x ”是“211<x ”的_____条件.2.已知命题43:;33:>≥q p ,则q p ∧为_____(真/假),q p ∨为_____(真/假).3.若命题012,:2>+∈∀x R x p ,则该命题的否定p ⌝为_____. 4.已知函数x x f 32)(-=,则:=)0(f _____,=)32(f _____.=)(m f _____.=-)12(a f _____.三.大题:(满分70分)1.已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD —A 1B 1C 1D 1的棱CC 1的中点为E, 求平面AB 1E 与平面ABC 所成二面角的余弦值.3.设数列{an}的前n 项和为Sn ,且满足Sn=2-an ,n=1,2,3,…. (Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an ,求数列{bn}的通项公式; (Ⅲ)设cn=n(3-bn),求数列{cn}的前n 项和Tn.正视图侧视图俯视图4.如图,在三棱柱ABC -A1B1C1中,AA1C1C 是边长为4的正方形. 平面ABC ⊥平面AA1C1C ,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC ; (Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D ,使得AD ⊥A1B ,并求1BDBC 的值.5.设正项数列{an}的前n 项和为Sn ,已知Sn ,an+1,4成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=,设bn 的前n 项和为Tn ,求证:Tn.6.某工厂对A.B 两种型号的产品进行质量检测,从检测的数据中随机抽取6 次,记录数据如下:A :8.3,8.4,8.4,8.5,8.5,8.9B :7.5,8.2,8.5,8.5,8.8,9.5 ( 注:数值越大表示产品质量越好)(Ⅰ)若要从A.B 中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品合适?简单说明理由;(Ⅱ)若将频率视为概率,对产品A 今后的4次检测数据进行预测,记这4次数据中不低于8.5 分的次数为ξ,求ξ的分布列及期望E ξ.。
2023年高职单独招生考试数学试卷(答案) (1)
数学试卷
(满分 120 分,考试时间 120 分钟)
一、选择题:(本题共 20 小题,每小题 3 分,共 60 分)
(
OB
OC ) (OB OC 2OA) 0 , 则 ABC 的形状为
ABC
1、若 O 为
D. 内必存在直线与 m 平行, 不一定存在直线与 m 垂直。
2
S n 1 an
3 , 则其各项和 S(
3、已知数列 an 的前 n 项和 Sn 满足
Hale Waihona Puke A.13B. 2
5
C. 3
)
2
D. 3
4、当圆锥的侧面积与底面积的比值是 2 时, 圆锥的轴截面的顶角是(
A. 30
B. 45
C. 90
积的最小值是____.
3、过点 p(2,1) 且与直线 x 2 y 10 0 平行的直线方程是______
4、在 ABC 中,已知 B= 30 , C= 135 ,AB=4,则 AC=______
1
7
y sin x b
3
5、已知函数
的最大值是 9 ,则 b=______
A. A′C⊥平面 DBC′
B. 平面 AB′D′//平面 BDC′
C. BC′⊥AB′
D. 平面 AB′D′⊥平面 A′AC
13. 已知集合 A={-1,0,1},集合 B={-3,-1,1,3},则 A∩B=(
)
)
A. {-1,1}
B. {-1}
14. 不等式 x2-4x≤0 的解集为(
A. [0,4]
当 t>1 时,S′>0,当 0<t<1 时,S′<0,
今年单招数学试题及答案
今年单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 1+1=3B. 2+2=5C. 3+3=6D. 4+4=8答案:C2. 圆的面积公式是?A. πr²B. 2πrC. πrD. πr³答案:A3. 已知函数f(x)=2x+3,求f(1)的值。
A. 5B. 6C. 7D. 8答案:A4. 以下哪个数是无理数?A. 2B. √4C. πD. 1/2答案:C5. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 2答案:A6. 等差数列的前n项和公式是?A. S_n = n/2 * (a_1 + a_n)B. S_n = n * (a_1 + a_n) / 2C. S_n = n * a_1 + n * (n-1) * d / 2D. S_n = n * a_n + n * (n-1) * d / 2答案:B7. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B8. 一个直角三角形的两直角边长分别为3和4,斜边长为?A. 5B. 6C. 7D. 8答案:A9. 函数y=x^2在x=0处的导数是?A. 0B. 1C. 2D. 3答案:A10. 以下哪个选项是正确的?A. sin(π/2) = 1B. cos(π/2) = 0C. tan(π/2) = 1D. sin(π) = 0答案:D二、填空题(每题2分,共20分)11. 已知等比数列的首项为2,公比为3,其第五项为________。
答案:48612. 函数y=2x-3的反函数为________。
答案:y=(1/2)x+3/213. 一个圆的半径为5,其周长为________。
答案:10π14. 一个等差数列的首项为1,公差为2,其第十项为________。
答案:1915. 函数y=x^3-3x+2的极值点为________。
2023年湖南单独招生考试数学卷(含答案) (6)
湖南单独招生统一考试数学试卷(满分90分,考试时间90分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1.设为实数,若,则的取值范围是A.B.C.D.2.复数z=的共轭复数是A.2+i B.2-iC.-1+iD.-1-i 3.已知双曲线的两条渐近线方程是,则双曲线的离心率为()A.B.C.D.4.设,且,则A.B.C.D.5.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4。
定义映射f:(a 1,a 2,a 3,a 4)→(b 1,b 2,b 3,b 4),则f(4,3,2,1)等于()A、(1,2,3,4)B、(0,3,4,0)C、(-1,0,2,-2)D、(0,-3,4,-1)6.设x 、y 满足约束条件:⎪⎩⎪⎨⎧≥≤≤+01y xy y x 则y x z +=2的最大值为()A.1B.2C.3D.47.如图,I 是全集,M、P、S 是I 的3个子集,则阴影部分所表示的集合是()A.()SP M B.()SP MC.()S C I P M D.()SC P M I8.函数()|2|f x x =-的定义域为()A.1,3⎡⎫+∞⎪⎢⎣⎭B.()1,22,3⎡⎫+∞⎪⎢⎣⎭C.1,23⎡⎫⎪⎢⎣⎭D.(2,)+∞9.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d=()A.-2B.-12C.12D.210.设..(),(),log (log ),a b c ===050433434443则()A.c b a <<B.a b c<<C.c a b<<D.a c b<<11.sin1050°的值为()A、22B、32C、−12D、1212.双曲线x 2a 2−y 2b 2=1的实轴长为10,焦距为26,则双曲线的渐渐近线方程为()A、y =±135x B、y =±125x C、y =±512xD、y =±513x13.方程y =x 2−4x +4所对应曲线的图形是()174.若角α的终边经过点(4,-3),则cos2α的值为(A )A、725B、−1625C、−725D、162514、函数12--=x x y 的图像是()A .开口向上,顶点坐标为)(45,21-的一条抛物线;B .开口向下,顶点坐标为)(45,21-的一条抛物线;C .开口向上,顶点坐标为(45,21-的一条抛物线;D .开口向下,顶点坐标为)(45,21-的一条抛物线;15.动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是()A、(1,6)B、(1,5)C、(0,4)D、(0,3)16.“2019k 2−1=1”是“k=1”的()A、充分不必要条件B、必要不充分条件C、充分且必要条件D、既不充分也不必要条件17.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折.按照购票费用最少原则,建立实际游览人数x 与购票费用y (元)的函数关系,以下正确的是()A、y =80x ,0≤x <24,x ∈N 1344,24≤x ≤30,x ∈N 56x ,x >30,x ∈NB、y =80x ,0≤x <21,x ∈N1680,21≤x ≤30,x ∈N56x ,x >30,x ∈NC、y =80x ,0≤x <24,x ∈N1920,24≤x ≤30,x ∈N56x ,x >30,x ∈ND、y =80x ,0≤x <21,x ∈N 2400,21≤x ≤30,x ∈N 56x ,x >30,x ∈N18、设2a=5b=m,且1a +1b =3,则m 等于()A、310B.10C.20D.10019、已知f(12x-1)=2x+3,f(m)=8,则m 等于()A.14B、-14C、32D.-3220、函数y=lg x+lg(5-2x)的定义域是()A.)25,0[B.⎦⎤⎢⎣⎡250,C.)251[,D.⎥⎦⎤⎢⎣⎡251,二、填空题(共10小题,每小题3分;共计30分)1、已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.2、双曲线2212516y x -=的两条渐近线方程为_______________.3、设集合A={-1,1,-2},B={a+2,a2+4},A∩B={-2},则实数a=_____.4、已知集合}42<<=x x A {,B=}0)3)(1{<--x x x (,则B A =_____.(用区间表示)5、已知集合}32|{2≥-=x x x P ,}42|{<<=x x Q ,则=Q P _____.(用区间表示)6、设集合{}xx x M ==2,{}0lg ≤=x x N ,则=N M _____.(用区间表示)7、已知f(x5)=lg x,则f(2)=_____.8、3-2,213,5log 2三个数中最大的数是_____.9、16log 01.0lg 2+的值是_____.10、如图,在半径为1的◎0上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=.∠COD=70°,则c 与的长度之和为__(结果保留π)三、大题:(满分30分)1、在△ABC 中,已知4,5b c ==,A 为钝角,且4sin 5A =,求A、2、判断函数32(+-=x x f )在),(+∞-∞上是减函数.3、在等差数列}{n a 中,40,31131=+=a a a (1)求公差d 及通项公式(2)求它的前13项的和参考答案:一、选择题:1-5题答案:CDBCD6-10题答案:BCBBC11-15题答案:CBAAC16-20题答案:BBAAC1.设为实数,若,则的取值范围是A.B.C.D.【答案】C【解析】画出不等式组对应的可行域得,又满足,解得。
单招数学试卷 (1)
单招招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.在圆:22670x y x +--=内部的点是()A.(0) B.(7,0) C.(-2,0) D.(2,1)2.函数2()|1|f x x =+的定义域为()A.[-2,+∞)B.(-2,+∞)C.[-2,-1)∪(-1,+∞)D.(-2,-1)∪(-1,+∞)3.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件4.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.0AB BC CA ++= 5.z y x >>且2=++z y x ,则下列不等式中恒成立的是C(A )yzxy >(B )yz xz >(C )xz xy >(D )|||||y z y x >6.已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是A(A,1)∪(1)(B)(C )(0,1)(D )(1)7.函数1232)(3+-=x x x f 在区间[0,1]上是()(A )单调递增的函数.(B )单调递减的函数.(C )先减后增的函数(D )先增后减的函数.8.有80个数,其中一半是奇数,一半是偶数,从中任取两数,则所取的两数和为偶数的概率为()(A)7939.(B)801.(C)21.(D)8141.9.已知函数x x f )21()( ,其反函数为)(x g ,则2)(x g 是()A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增10.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④11.从单词“education ”中选取5个不同的字母排成一排,则含“at ”(“at ”相连且顺序不变)的概率为()A.181 B.3781 C.4321 D.756112.已知正二十面体的各面都是正三角形,那么它的顶点数为()A.30B.12C.32D.10二、填空题(共4小题,每小题5分;共计20分)1.函数)1,0(20182018≠>+=+a a a y x 的图象恒过定点.2.=⋅⋅9log 22log 25log 532.3.=⋅+2lg 5log 2lg 22.4.若对数式)5(log )2(a a --有意义,则实数a 的取值范围是.三、大题:(满分70分)1.求不定积分⎰+dxx x x x )ln 1ln (2.求定积分⎰+-4011dxx x 3.求微分方程x x y xy sin 2'=-的通解4.求二重积分⎰⎰==D xy x y D xdxdy 2,2和是由曲线其中所围成的区域。
单招数学试卷 (3)
单招招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.函数x x f x 32)(+=的零点所在的一个区间是( ) .A )1,2(-- .B )0,1(- .C )1,0( .D )2,1(2.已知圆锥底面半径为4,侧面面积为60,则母线长为( ) A.152 B.15 C.152D.153.函数y = sin2x 的图像如何平移得到函数sin(2)3y x 的图像( )A.向左平移6个单位B.向右平移6个单位C.向左平移3个单位D.向右平移3个单位4.设==X C AXB B A n X C B A 则成立且有可逆阶矩阵,均为,,,,,, ( )A.11--CB AB.11--CA BC.C B A 11--D.11--B CA 5.在1003)23(+x 展开式所得的x 的多项式中,系数为有理数的项有B(A )50项 (B )17项 (C )16项 (D )15项6.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“N M =”的D(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件7.命题p :a=1,命题q :2(1)0a .p 是q 的( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件8.在△ABC 中,向量表达式正确的是( )A.AB BC CAB.AB CA BCC.AB AC CBD.0AB BC CA9.已知等差数列==16884,31,}{S S S S S n a n n 那么且项和为的前( )A.81B.31C.91D.10310.定义在R 上的偶函数0)(log ,0)21(,),0[)(41<=+∞=x f f x f y 则满足且上递减在的x 的集合()A.),2()21,(+∞⋃-∞ B.)2,1()1,21(⋃C.),2()1,21(+∞⋃ D.),2()21,0(+∞⋃11.在如图所示的坐标平面的可行域内(阴影部分且包括周界), 若使目标函数z=ax+y(a>0)取最大值的最优解有无穷多个, 则a 的值等于( )A.31B.1C.6D.312.已知函数)41(,2),3(log ,2,43)(1162-⎪⎩⎪⎨⎧≥+-<-=-f x x x x x f 则的值等于( )A.2116B.25- C.4 D .-4二、填空题(共4小题,每小题5分;共计20分)1.函数)1()1()(2-+=x x x f 在1=x 处的导数等于_____. 2.曲线123+-=x x y 在点)0,1(处的切线方程为_____. 3.若x x x x f sin cos )(-=,则=)2('πf _____.4.若曲线4)(x x f =的一条切线l 与直线084=-+y x 垂直,则l 的方程为_____. 三、大题:(满分30分)1.设函数f (x )=lnx ,g (x )=ax+(a ,b ,c ∈R ).(1)当c=0时,若函数f (x )与g (x )的图象在x=1处有相同的切线,求a ,b 的值;(2)当b=3﹣a 时,若对任意x0∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x1,x2,使得g (x1)=g (x2)=f (x0),求c 的最小值;(3)当a=1时,设函数y=f (x )与y=g (x )的图象交于A (x1,y1),B (x2,y2)(x1<x2)两点.求证:x1x2﹣x2<b <x1x2﹣x1.2.在极坐标系中,直线ρcos (θ+)=1与曲线ρ=r (r >0)相切,求r 的值.3.如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D.若DE=4,求切点E 到直径AB 的距离EF.4.已知矩阵M=,求圆x2+y2=1在矩阵M 的变换下所得的曲线方程.5、解答下列问题:(1)写出数列2342468,,,,3333…的一个通项公式;(2)在等差数列{}n a 中,10263,16a a a ==,求{}n a 的前15项和15S ;(3)设n T 为等比数列{}n b 的前n 项和,且6576112,222b T b T =+=+,求{}n b 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省普通高校对口单招文化统考
数 学 试 卷
一、选择题(本大题共10小题,每小题4分,共40分):
1. 已知集合{}{}N M P N M ===,,5,3,14,3,2,1,0,则P 的子集共有 ( ) A .2
B .4
C .6
D .8
2.已知数组a =(1,-2),b =(2,1),则a -2b 等于 ( )
A.(-3,1)
B.(5,-4)
C.(3,-2)
D.(-3,-4)
3.复数1
1z i =
-的共轭复数为 ( ) A. 1122i + B.11
22
i - C.1i - D.1i +
4.函数1
()lg (1)1f x x x
=++-的定义域是 ( )
A .(,1)-∞-
B .(1,)-+∞
C .(1,1)(1,)-+∞
D .(,)-∞+∞ 5.设p :直线l 垂直于平面α内的无数条直线,q :l ⊥α,则p 是q 的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
6.若圆锥的侧面展开图是半径为2的半圆,则圆锥的高是 ( ) A. 3 B.
32 C. 1
2
D. 2 7.甲、乙两人从5门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共有( ) A. 24种 B. 36种 C. 48种 D. 60种
8.已知两个圆的方程分别为224x y +=和22260x y y ++-=,则它们的公共弦长等于 ( ) A. 3 B. 2 C. 23 D 3 9.不等式组
,表示的平面区域的面积为 ( )
A .48
B .24
C .16
D .12
10.若函数()()cos ,
11
0x x f x f x x π≤⎧⎪=⎨
-+>⎪⎩,则5
()3
f 的值为 ( ) A. 12 B. 32 C. 2 D. 5
2
二、填空题(本大题共5小题,每小题4分,共20分): 11.执行如图所示的流程图,若输入x 的值为3,则输出的k 值是
.
12. 设()f x 是周期为2的奇函数,当0≤x ≤1时,()()21f x x x =-, 则( 2.5)f -=
.
13.过抛物线y 2=8x 的焦点,且与直线4x -7y +2=0垂直的直线方程为
. 14.已知圆C 过点(5,1),(1,3)A B 两点,圆心在y 轴上,则圆C 的方程是 .
15.设实数x,y 满足(x -1)2+y 2=1,则
1
+x y
的最大值为 . 三、(本大题共5小题,共40分):
16.(本小题满分6分)
如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;
(2)BE ⊥C 1E .
17.(本小题满分6分)已知函数()4cos sin ()16
π
f x x x =+-
(1)求)(x f 的最小正周期;
(2)求)(x f 在区间,64ππ⎡⎤
-⎢⎥⎣⎦
上的最大值和最小值.
18.(本小题满分8分)已知椭圆的中心在坐标原点,右焦点为(1,0)F
,离心率e =。
(1)求椭圆的方程;
(2)设过点F 的直线l 交椭圆于,A B 两点,并且线段AB 的中点在直线0x y += 上, 求直线AB 的方程;
19.(本小题满分10分) 已知函数211()2()2
f x x x b a a =
--> (1)若()f x 在[)2+∞,上是单调函数,求a 的取值范围; (2)若()f x 在[]2,3-上的最大值为6,最小值为3-,求b a ,的值.
20.(本小题满分10分)设数列{}n a 与{}n b ,{}n a 是等差数列,12a =,且34533a a a ++=;
11b =,记{}n b 的前n 项和为n S ,且满足12
13
n n S S +=
+。
(1)求数列{}n a 的通项公式;
(2)若1
3n n n
a c
b +=
,求数列{}n c 的前n 项和n T 。
重性精神疾病患者管理流程。