2016中考数学应用题专题训练

合集下载

2016中考数学应用题汇编及答案

2016中考数学应用题汇编及答案

中考应用题大题题型汇总1.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量 x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?2.湿地风景区特色旅游项目:水上游艇.旅游人员消费后风景区可盈利10元/人,每天消费人员为500人.为增加盈利,准备提高票价,调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少 20人.(1)现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?(2)若单纯从经济角度看,票价涨价多少元,能使该项目获利最多?3.临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元.调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价降价后,该店每天可售出只粽子,利润为元。

(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,且卖出的粽子更多?4.某校九年级准备购买一批笔奖励优秀学生,在购买时发现,每只笔可以打九折,用360元钱购买的笔,打折后购买的数量比打折前多10本.(1)求打折前每支笔的售价是多少元?(2)由于学生的需求不同,学校决定购买笔和笔袋共80件,笔袋每个原售价为10元,两种物品都打八折,若购买总金额不低于400元,且不高于405元,问有哪几种购买方案?(3)在(2)的条件下,求购买总金额的最小值.5.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策。

2016年全国中考数学真题分类 相似形及应用(习题解析)

2016年全国中考数学真题分类 相似形及应用(习题解析)

2016年全国中考数学真题分类相似形及应用一、选择题1.(2016安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.2.(2016甘肃定西,7,3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2, 故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.3. (2016浙江杭州,2,3分) 如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC=,则DE EF=( )FE D CB A cb a nmA. 13B.12C. 23D.1 【答案】B4.(2016新疆生产建设兵团,7,5分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=BC , ∴=,△ADE ∽△ABC ,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.5.(2016河北,15,2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图答案:C解析:只要三个角相等,或者一角相等,两边成比例即可。

2016年全国中考数学真题分类 一元二次方程及应用(习题解析)

2016年全国中考数学真题分类 一元二次方程及应用(习题解析)

2016年全国中考数学真题分类一元二次方程及其应用一、选择题8.(2016浙江衢州,8,3分)已知关于的一元二次方程x2-2x-k=0有两个不相等的实数根,则实数k的取值范围是()A.k≥1 B.k>1 C.k≥-1 D.k>-1【答案】D9.(2016山东烟台,9,3分)若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【答案】D8.(2016山东青岛,8,3分)输入一组数据,按下列程序进行计算,输出结果如表: x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9【答案】C9. (2016兰州,9,4分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长,设原正方形的空地的边长为x m,则可列方程为()C. (x-1) (x-2) =18D. x 2+3x+16=0 【答案】C1.(2016江西,5,3分)设βα,是一元二次方程0122=-+x x 的两个根,则αβ的值是( ). A. 2 B. 1 C. -2 D. -1【答案】 D.5. (2016兰州,5,4分)一元二次方程x 2+2x+1=0的根的情况是( ) A. 有一个实数根 B. 有两个相等的实数根 C. 有两个不想等的实数根 D. 没有实数根 【答案】B7.(2016四川自贡,7,4分)已知关于x 的一元二次方程x 2+2x ﹣(m ﹣2)=0有实数根,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤1【答案】C .5.(2016,浙江金华,5,3分)一元二次方程2320x x --=的两根为12x x ,,则下列结论正确的是( )A. 1212x x =-=,B. 121,2x x ==-C. 123x x +=D. 122x x = 【答案】C2.(2016浙江丽水,6,3分)下列一元二次方程没有实数根的是( ) A .x 2+2x+1=0 B .x 2+x+2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0【答案】B .3.(2016福州,12,3分)下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是( )A .a >0B .a =0C .c >0D .c =0 【答案】DA.无实数根B.有一正根一负根C.有两个正根D.有两个负根答案:C.5.(2016山东枣庄,5,3分)已知关于x 的方程230x x a ++=有一个根为-2,则另一个根为( ) A .5 B .-1 C .2 D .-5 【答案】B6.(2016山东枣庄,8,3分)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是 ( ) 【答案】B9.(2016年湖北荆门,9,3分)已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( ) A .7 B .10 C .11 D .10或11 [答案]D7. (2016四川乐山,9,3分)若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是( )()A 15- ()B 16- ()C 15 ()D 16答案:A8.8.(2016台州, 8,4分)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .1(1)452x x -= B .1(1)452x x += C .(1)45x x -= D .(1)45x x += 【答案】A 9. 10. 11.12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 二、填空题1.(2016聊城,14,3分)如果关于x 的一元二次方程0132=--x kx 有两个不相等的实根,那么k的取值范围是【答案】049≠-k k 且(2016山东菏泽,12,3分)已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= . 【答案】 62.(2016山东德州,15,4分)方程2230x x x --=12的两个根为x ,x ,则22=12x +x答案:134. 12.(2016湖北黄石,12,3分)关于x 的一元二次方程01222=+-+m x x 的两实数根之积为负,则实数m 的取值范围是_______________. 【答案】21>m 14.(2016江苏淮安,14,3分)若关于x 的x 2+6x+k=0一元二次方程有两个相等的实数根,则k = . 【答案】93..(2016四川宜宾,14,3分)已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=______. [答案]1314.(2016湖南长沙,14,3分)若关于x 的一元二次方程x 2﹣4x ﹣m=0有两个不相等的实数根,则实数m 的取值范围是 .答案:m >﹣4.4.(2016四川广安,14,3分)某市为治理污水,需要铺设一段全长600m 的污水排放管道,铺设120m ,为加快施工速度,后来每天比原计划增加20m ,结果共有11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可列方程 ▲ . 【答案】120x +600-120x +20=11(或120x +480x +20=11).13.(2016江苏连云港,13,3分)已知关于x 的方程x 2+x+2a ﹣1=0的一个根是0,则a= .答案:.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.38. 39. 三、解答题1.(2016兰州,21(2),5分)2y 2+4y=y+2【答案】原方程可化为2,2+3y-2=0,解得y 1=2;y 2=-22.(2016,山东淄博,19,5分)解方程:x 2+4x ﹣1=0.解:∵x 2+4x ﹣1=0 ∴x 2+4x=1 ∴x 2+4x+4=1+4 ∴(x+2)2=5 ∴x=﹣2±∴x 1=﹣2+,x 2=﹣2﹣.17.(2016·山西,17,7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分) 0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)1.(2016年甘肃白银、张掖,21,8分)已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 解:(1)将x =1代入原方程,得 12+1·m +m -2=0. 解得m =12.(2)△=m 2-4(m -2)=m 2-4m +8=(m -2)2+4. 无论m 取何实数,(m -2)2+4>0,即△>0, 所以原方程有两个不相等的实数根.21.(2016湖北孝感,21,9分)已知关于x 的一元二次方程0122=-+-m x x 有两个实数根1x ,2x . (1)求m 的取值范围;(4分)(2)当2122216x x x x =+时,求m 的值.(5分)解:(1)∵原方程有两个实数根,∴△=)1(4)2(2---m ≥0……………………………2分444+-m ≥0 ∴m ≤2……………………………4分(2)∵221=+x x ,121-=m x x……………………………5分又2122216x x x x =+∴212122162)(x x x x x x =-+,08)(21221=-+x x x x ……………………6分 ∴0)1(822=--m ,0884=+-m……………………………7分∴23=m . ∵223<=m ,∴符合条件的m 的值为23.……………………………9分2.(2016四川成都,15(2),6分)已知关于x 的方程3x 2+2x ﹣m=0没有实数解,求实数m 的取值范围.(2)∵3x 2+2x ﹣m=0没有实数解, ∴b 2﹣4ac=4﹣4×3(﹣m )<0, 解得:m <,故实数m 的取值范围是:m <.20.(2016四川南充,20,8分)已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m+1, 而2x 1x 2+x 1+x 2≥20,所以2(2m+1)+6≥20,解得m ≥3, 而m ≤4,所以m 的范围为3≤m ≤4.(2016四川巴中,27,7分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%.19、3.(2016山东济宁,19,8分)某地2014年为做好“精度扶贫”工作,投入1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年该地投入异地安置资金的年平均增产率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每天每户补助5元.按租房400天计算,试求今年该地至少有多少户享受到优先搬租房奖励?解:(1)设年平均增产率为x,则有1280(1+x)2=1280+1600,解得,x1=50%,x2=-2.5(不合题意,舍去)所以从2014年到2016年年平均增产率为50%.(2)设有y户享受到优先搬租房奖励,则有400[1000×8+5(x-1000)]≥5000000,解得,x≥1900. 所以今年该地至少有1900户享受到优先搬租房奖励.4.5.6.7.8.9.10.11.12.13.14.15.16.2016年全国中考数学精品文档18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.11。

2016年中考数学应用题专题复习(可编辑修改word版)

2016年中考数学应用题专题复习(可编辑修改word版)

小专题五:应用题专题复习一、方程与方程组型1.(2015•平谷区二模)列方程或方程组解应用题:为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45 座客车?2.(2015•岳池县模拟)一辆汽车从A 地驶往B 地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A 地到B 地一共行驶了2.2h,普通公路和高速公路各是多少km?3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10 万件和12.1 万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6 万件,那么该公司现有的21 名快递投递业务员能否完成今年6 月份的快递投递任务?如果不能,请问至少需要增加几名业务员?4.(2015•淮安)水果店张阿姨以每斤2 元的价格购进某种水果若干斤,然后以每斤4 元的价格出售,每天可售出100 斤,通过调查发现,这种水果每斤的售价每降低0.1 元,每天可多售出20 斤,为保证每天至少售出260 斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x 元,则每天的销售量是斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300 元,张阿姨需将每斤的售价降低多少元?5.(2016•安徽模拟)2014 年西非埃博拉病毒疫情是自2014 年2 月开始爆发于西非的大规模病毒疫情,截至2014 年12 月02 日,世界卫生组织关于埃博拉疫情报告称,几内亚、利比里亚、塞拉利昂、马里、美国以及已结束疫情的尼日利亚、塞内加尔与西班牙累计出现埃博拉确诊、疑似和可能感染病例17290 例,其中6128 人死亡.感染人数已经超过一万,死亡人数上升趋势正在减缓,在病毒传播中,每轮平均1 人会感染x 个人,若1 个人患病,则经过两轮感染就共有81 人患病.(1)求x 的值;(2)若病毒得不到有效控制,三轮感染后,患病的人数会不会超过700 人?6.(2016•凉山州模拟)某县2013 年公共事业投入经费40000 万元,其中教育经费占15%,2015 年教育经费实际投入7260 万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016 年教育经费会达到8000 万元吗?二、不等式与不等式组型7.(2010 春•三元区校级期中)某学校为学生安排宿舍,现有住房若干间,若每间5 人,则还有14 人安排不下,若每间7 人,则有一间不足7 人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?8.(2015•甘孜州)一水果经销商购进了A,B 两种水果各10 箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:箱,B 种水果两店各5 箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10 箱(按整箱配送),且保证乙店盈利不小于100 元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?9.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320 件,其中饮用水比蔬菜多80 件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8 辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40 件和蔬菜10 件,每辆乙种货车最多可装饮用水和蔬菜各20 件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400 元,乙种货车每辆需付运费360 元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?三、函数综合型10.(2015•衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 分钟到达游乐园,问私家车的速度必须达到多少千米/小时?11.(2016•安徽模拟)为加大对残疾人补助力度,改善残疾人的生活水平,2015 年安徽省提高了对残疾人的补助标准,一级、二级救助标准由每人每年726 元增加到每人每年800 元;三级残疾人救助标准由每人每年360 元增加到每人每年400 元.某县有大量一级、二级和三级残疾人.2014 年共投入补助经费1446 万元.2015 年提高补助标准后投入补助经费1600 万元.(1)2015 年该县的一级、二级和三级残疾的人数没有任何变化,则2015 年该县的一级、二级残疾人共多少万人?三级残疾人共多少万人;(2)2015 年该县决定对一级、二级残疾人进行养老保险的补助,一级残疾人每人每年养老保险补助480 元,二级残疾人每人每年300 元.已知二级残疾人的数量不低于一级残疾人的4 倍,则该县最多需要投入残疾人养老保险的补助多少万元?12.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40 万元,第二次花费60 万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500 元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500 元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8 吨大蒜,每吨大蒜获利1000 元;若单独加工成蒜片,每天可加工12 吨大蒜,每吨大蒜获利600 元.由于出口需要,所有采购的大蒜必需在30 天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?13.(2016•安徽模拟)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx 上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b 的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?14.(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40 元.超市规定每盒售价不得少于45 元.根据以往销售经验发现;当售价定为每盒45 元时,每天可以卖出700 盒,每盒售价每提高1 元,每天要少卖出20 盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58 元.如果超市想要每天获得不低于6000 元的利润,那么超市每天至少销售粽子多少盒?15.某公司生产的某种时令商品每件成本为20 元,•经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如表所示:时间t/天 1 3 6 10 36 …日销售量m/件94 90 84 76 24 …1 未来40 天内,前20 天每天的价格y1(元/件)与时间t(天)的函数关系式为y1= t+254(1≤t≤20 且t 为整数),后20 天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-1t+40(21≤t≤40 且t 为整数).下面我们就来研究销售这种商品的有关问题:2(1)认真分析表中的数据,用所学过的一次函数,二次函数,反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的函数关系式;(2)请预测未来40 天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20 天中,该公司决定每销售一件商品就捐赠a 元利润(a<4)给希望工程.公司通过销售记录发现,前20 天中,•每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a 的取值范围.四、几何类应用题16、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90∘,AC=80 米,BC=60 米。

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类分式方程及其应用一、选择题1.(2016安徽,5,4分)方程=3的解是()A.﹣ B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.2.(2016甘肃定西,8,3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得: =,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.3.(2016广东深圳,9,3分)施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。

设原计划每天施工x米,则根据题意所列方程正确的是()A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 【答案】A4.(2016广西贺州,8,3分)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4 【答案】C5.(2016河北,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+答案:B解析:根据题意,3X 的倒数比8X 的倒数大5,故选B 项。

2016届中考数学练习卷2016.04.24

2016届中考数学练习卷2016.04.24

2016届中考数学练习卷2016.04.24一、选择题1.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体A. 13,11B. 25,30 C.20,25 D.25,202.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形3.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣24.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.505.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2;⑥OA•OB=;其中正确的有()A.3个B.2个C.4个D.5个二、填空题6.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm ,则此圆锥的底面圆的面积为 cm 27.分解因式:2224x xy y +--=8.如图,AB 为半⊙O 的直径,C 为半圆弧的三等分点,过B ,C 两点的半⊙O 的切线交于点P ,若AB 的长是2a ,则PA 的长是 .9.关于x 的分式方程2121=--x m 的解为正数,则m 的取值范围是10.如图,△ABC 中,∠ACB=90°,∠BAC=20°,点O 是AB 的中点,将OB 绕点O 顺时针旋转α角时(0°<α<180°),得到OP ,当△ACP 为等腰三角形时,α的值为 .三、解答题11.(1)计算:()2011 3.143π-⎛⎫-+- ⎪⎝⎭(2)化简求值:)(a 2-a a 4-a 2a 22-÷,其中a=﹣212.某批发商以40元/千克的成本价购入了某产品700千克,据市场预测,该产品的销售价y (元/千克)与保存时间x (天)的函数关系为y=50+2x ,但保存这批产品平均每天将损耗15千克,且最多保存15天.另外,批发商每天保存该批产品的费用为50元.(1)若批发商在保存该产品5天时一次性卖出,则可获利 元. (2)如果批发商希望通过这批产品卖出获利10000元,则批发商应在保存该产品多少天时一次性卖出?13.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC和△DEB相似,求直线FB的解析式.14.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.15.如图①,抛物线c bx ax y ++=2与x 轴正半轴交于点A ,B 两点,与y 轴交于点C ,直线2+-=x y 经过A ,C 两点,且AB =2.(1)求抛物线的解析式;(2)若直线DE 平行于x 轴,并从点C 开始以每秒1个单位长度的速度沿y 轴负半轴方向平移,且分别交y 轴、线段BC 于点E ,D 两点,同时动点P 从点B 出发,向BO 方向以每秒2个单位长的速度运动(如图2),连接DP ,设点P 的运动时间为t 秒t (<2),若以P ,B ,D 为顶点的三角形与△ABC 相似,求t 的值;(3)在(2)的条件下,若△EDP 是等腰三角形,求t 的值.(图1)(图2)。

专题15应用题(第05期)2016年中考数学试题(附解析)

专题15应用题(第05期)2016年中考数学试题(附解析)

专题15 应用题(第05期)-2016年中考数学试题一、 选择题1.(2016浙江台州第8题)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .45)1(21=-x x B . 45)1(21=+x x C . 45)1(=-x x D . 45)1(=+x x 【答案】A .考点:由实际问题抽象出一元二次方程.2.(2016广西来宾第10题)一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .5414825100x y x y +=⎧⎨+=⎩B .4514825100x y x y +=⎧⎨+=⎩C .5414852100x y x y +=⎧⎨+=⎩D .4514852100x y x y +=⎧⎨+=⎩【答案】A . 【解析】试题分析:由题意可得,5414825100x y x y +=⎧⎨+=⎩,故选A .考点:由实际问题抽象出二元一次方程组;探究型.3.(2016青海第18题)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.4804804160x x-=+ B.4804804160x x-=+ C.4804804160x x-=- D.4804804160x x-=-【答案】B.【解析】试题分析:设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据题意,可得:4804804160x x-=+,故选B.考点:由实际问题抽象出分式方程.4.(2016内蒙古呼伦贝尔市、兴安盟第5题)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【答案】B.考点:由实际问题抽象出一元二次方程.5.(2016辽宁葫芦岛第10题)甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A .1个B .2个C .3个D .4个 【答案】D .考点:一次函数的应用.6.(2016辽宁葫芦岛第8题)A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运40千克,A 型机器人搬运1200千克所用时间与B 型机器人搬运800千克所用时间相等.设B 型机器人每小时搬运化工原料x 千克,根据题意可列方程为( )A.120080040x x =+B.120080040x x =-C.120080040x x =-D.120080040x x =+【答案】A . 【解析】试题分析:设B 型机器人每小时搬运化工原料x 千克,则A 型机器人每小时搬运化工原料(x+40)千克,由A 型机器人搬运1200千克所用时间与B 型机器人搬运800千克所用时间相等,可得方程120040x +=800x.故选A .考点:由实际问题抽象出分式方程.7.(2016内蒙古通辽第5题)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( ) A .6.3(1+2x )=8 B .6.3(1+x )=8C .26.3(1)8x += D .26.3 6.3(1) 6.3(1)8x x ++++= 【答案】C . 【解析】试题分析:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意,得:26.3(1)8x +=,故选C .考点:由实际问题抽象出一元二次方程;增长率问题.8.(2016福建南平第9题)闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为()A.60﹣x=20%(120+x)B.60+x=20%×120C.180﹣x=20%(60+x)D.60﹣x=20%×120【答案】A.考点:由实际问题抽象出一元一次方程.9.(2016重庆A卷第11题)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【答案】A.【解析】试题分析:作BF⊥AE于F,如图所示,则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:222+=,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE x x(2.4)13中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选A.考点:解直角三角形的应用-仰角俯角问题.10.(2016内蒙古巴彦淖尔第8题)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是()A.B.1)m C.1)m D.【答案】C.考点:解直角三角形的应用-仰角俯角问题.11.(2016四川南充第6题)某次列车平均提速20km/h,用相同的时间,列车提速行驶400km,提速后比提速前多行驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.40040010020x x+=+B.40040010020x x-=-C.40040010020x x+=-D.40040010020x x-=+【答案】B.【解析】试题分析:设提速前列车的平均速度为xkm /h ,根据题意可得:40040010020x x -=-.故选B . 考点:由实际问题抽象出分式方程.12.(2016内蒙古巴彦淖尔第10题)小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法: ①公交车的速度为400米/分钟; ②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟; ④小刚上课迟到了1分钟. 其中正确的个数是( )A .4个B .3个C .2个D .1个 【答案】B .∵小刚从下车至到达学校所用时间为5+10﹣12=3分钟,而小刚下车时发现还有4分钟上课,∴小刚下车较上课提前1分钟,故④错误;故选B.考点:一次函数的应用;数形结合.二、填空题1.(2016浙江台州第16题)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t= .【答案】1.6.考点:二次函数的应用.2.(2016江苏盐城第16题)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.【答案】40.试题分析:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,依题意得:35554985x yx y+=⎧⎨+=⎩①②,由①+②,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为:40.考点:二元一次方程组的应用.3.(2016重庆A卷第17题)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.【答案】175.考点:一次函数的应用.4.(2016内蒙古巴彦淖尔第15题)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为_____________m.【答案】2.【解析】试题分析:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍即:人行通道的宽度是2m.故答案为:2.考点:一元二次方程的应用;几何图形问题.三、解答题1.(2016贵州遵义第21题)某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)1.5;(2)成人是安全的.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=OEOC,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.考点:解直角三角形的应用.2.(2016贵州遵义第25题)上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.【答案】(1)a的值为0.15元/MB,b的值为0.05元/MB;(2)m的值为0.08元/分钟.试题解析:(1)依题意得:100(500100)0.07(600500)48100(500100)0.07(10242500)120a b a b +-⨯+-=⎧⎨+-⨯+⨯-=⎩,解得:0.150.05a b =⎧⎨=⎩,∴a 的值为0.15元/MB ,b 的值为0.05元/MB . (2)设甲的套餐中定制x (x >1000)分钟的每月通话时间,则丙的套餐中定制(x +300)分钟的每月通话时间,丙定制了1GB 的月流量,需花费100×0.15+(500﹣100)×0.07+(1024﹣500)×0.05=69.2(元),依题意得:485000.15(1000500)0.12(1000)19969.25000.15(1000500)0.12(3001000)244x m x m +⨯+-⨯+-=⎧⎨+⨯+-⨯++-=⎩,解得:m =0.08. 答:m 的值为0.08元/分钟.考点:二元一次方程组的应用.3.(2016四川甘孜州第18题)如图,在一次测量活动中,小丽站在离树底部E 处5m 的B 处仰望树顶C ,仰角为30°,已知小丽的眼睛离地面的距离AB 为1.65m ,那么这棵树大约有多高?(结果精确到0.1m 1.73)【答案】4.5.考点:解直角三角形的应用-仰角俯角问题.4.(2016四川甘孜州第26题)某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?【答案】(1)28(13﹣x);250(13﹣x);(2)租A型车8辆、B型车5辆时,总的租车费用最低,最低为4450元.(2)设租车的总费用为W元,则有:W=400x+250(13﹣x)=150x+3250.由已知得:45x+28(13﹣x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆、B型车5辆时,总的租车费用最低,最低为4450元.考点:一次函数的应用;方案型;最值问题.5.(2016贵州铜仁第23题)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【答案】(1)y=﹣10x+300(12≤x≤30);(2)16;(3)当售价定为20元时,王大伯获得利润最大,最大利润是1000元.试题解析:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y =180﹣10(x ﹣12)=﹣10x +300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W =(x ﹣10)y =2104003000x x -+-,令W =840,则2104003000x x -+-=840,解得:1x =16,2x =24.答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W =﹣10x 2+400x ﹣3000=210(20)1000x --+,∵a =﹣10<0,∴当x =20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.6.(2016浙江台州第20题)保护视力要求人写字时眼睛和笔端的距离应超过30cm ,图1是一位同学的坐姿,把他的眼睛B ,肘关节C 和笔端A 的位置关系抽象成图2的△ABC ,已知BC =30cm ,AC =22cm ,∠ACB =53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 53°≈1.3)【答案】不符合.【解析】试题分析:根据锐角三角函数关系得出BD ,DC 的长,进而结合勾股定理得出答案.试题解析:他的这种坐姿不符合保护视力的要求,理由:如图2所示:过点B 作BD ⊥AC于点D ,∵BC =30cm ,∠ACB =53°,∴sin 53°=30BD BD BC =≈0.8,解得:B D =24,cos 53°=DC BC ≈0.6,解得:D C =18,∴AD =22﹣18=4(cm ),∴AB ∴他的这种坐姿不符合保护视力的要求.考点:解直角三角形的应用.7.(2016湖南株洲第22题)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?【答案】(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)75.试题解析:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,依题意得:18580%20%91x y x y +=⎧⎨+=⎩,解之得:9095x y =⎧⎨=⎩. 答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a 分,根据题意可得:20+80%a≥80,解得:a≥75.答:他的测试成绩应该至少为75分.考点:一元一次不等式的应用;二元一次方程组的应用.8.(2016广西来宾第24题)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】(1)100;(2)1190元.(2)设每个机器人的标价是a元.则依题意得:(100+200)a﹣11000﹣24000≥(11000+24000)×20%,解得a≥1190.答:每个机器人的标价至少是1190元.考点:分式方程的应用;一元一次不等式的应用.9.(2016福建莆田第20题)小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【答案】会.考点:解直角三角形的应用.10.(2016福建莆田第22题)甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【答案】(1)80km/h;(2)75.【解析】试题分析:(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.试题解析:(1)由图象可得,甲车的速度为:(280-120)÷2=80km/h,即甲车的速度是80km/h;(2)相遇时间为:2808060+=2h,由题意可得:602388028060a⨯⨯+=,解得,a=75,经检验,a=78是原分式方程的解,即a的值是75.考点:分式方程的应用;函数的图象;方程与不等式.11.(2016广西河池第24题)某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?【答案】(1)购买A型桌椅100套,B型桌椅150套;(2)66.(2)设能购买A型课桌椅a套,依题意得:230a+200(100﹣a)≤22000,解得a≤2003.∵a是正整数,∴a最大=66.答:最多能购买A型课桌椅66套.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.12.(2016贵州贵阳第20题)(10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【答案】(1)一个足球的单价103元,一个篮球的单价56元;(2)9.(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤7947,∵m为整数,∴m最大取9答:学校最多可以买9个足球.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.13.(2016贵州贵阳第21题)(8分)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【答案】238.9m.【解析】试题分析:首先过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,进而表示出AM ,DF 的长,再利用AE =sin 29AM ,求出答案. 试题解析:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,由题意可得:EM ⊥AC ,DF =MC ,∠AEM =29°,在Rt △DFB 中,sin 80°=DF BD ,则DF =BD •sin 80°,AM =AC ﹣CM =1790﹣1700sin 80°,在Rt △AME 中,sin 29°=AMAE ,故AE =sin 29AM =17901700sin80sin 29-⋅≈238.9(m ).答:斜坡AE 的长度约为238.9m .考点:解直角三角形的应用-坡度坡角问题.14.(2016福建泉州第24题)某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y (千克/天)与售价x (元/千克)的关系,如图所示. (1)试求出y 与x 之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?【答案】(1)函数关系式为y=﹣2x+112;(2)①每千克售价为38元时,每天可以获得最大的销售利润;②一次进货最多只能是1300千克.【解析】试题分析:(1)根据图中的信息可看出,图形经过(37,38),(39,34),(40,32),根据待定系数法可求函数关系式;(2)①根据函数的最值问题即可求解;②根据“特产”的保存时间和运输路线的影响,“特产”的销售时间最多是25天.要想使售价不低于30元/千克,就必须在最多25天内卖完,当售价为30元/千克时,销售量已经由(1)求出,因此可以根据最多进货的量÷30元/千克时的销售量≤25天,由此来列不等式,求出最多的进货量.试题解析:(1)设y与x之间的一个函数关系式为y=kx+b,则38373439k bk b=+⎧⎨=+⎩,故一次进货最多只能是1300千克.考点:二次函数的应用.15.(2016青海第24题)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈38,cos22°1516≈,tan22°25≈)【答案】(1) 教学楼的高20m;(2)A、E之间的距离约为48m.【解析】试题分析:(1)首先构造直角三角形△AEM,利用tan22°=AMME,求出即可;(2)在Rt△AME中,由cos22°=MEAE,求出AE即可.试题解析:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AM ME,则22255x x -=+,解得:x=20. 即教学楼的高20m .考点:解直角三角形的应用.16.(2016内蒙古呼伦贝尔市、兴安盟第25题)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式. (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【答案】(1)血液中药物浓度上升阶段的函数关系式为y=2x (0≤x ≤4),下降阶段的函数关系式为y=32x(4≤x ≤10);(2)血液中药物浓度不低于4微克/毫升的持续时间6小时.试题解析:(1)当0≤x ≤4时,设直线解析式为:y=kx , 将(4,8)代入得:8=4k , 解得:k=2,故直线解析式为:y=2x ,当4≤x ≤10时,设直反比例函数解析式为:y=a x,将(4,8)代入得:8=4a,解得:a=32,故反比例函数解析式为:y=32x;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=32x(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=32x,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.考点:反比例函数的应用;一次函数的应用.17.(2016辽宁葫芦岛第24题)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.试题解析:(1)设y=kx+b,把(22,36)与(24,32)代入得:2236 2432k bk b+=⎧⎨+=⎩,解得:280kb=-⎧⎨=⎩,则y=﹣2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x﹣20)y=150,则(x﹣20)(﹣2x+80)=150,整理得:x2﹣60x+875=0,(x﹣25)(x﹣35)=0,解得:x1=25,x2=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣2(28﹣30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.考点:二次函数的应用;一元二次方程的应用.18.(2016辽宁葫芦岛第22题)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)1.414 1.732)【答案】A、B两个凉亭之间的距离约为283米.试题解析:过点A 作AD ⊥BC ,交BC 延长线于点D , ∵∠B=30°, ∴∠BAD=60°, 又∵∠BAC=15°, ∴∠CAD=45°,在RT △ACD 中,∵AC=200米,∴AD=ACcos ∠CAD=200×2,∴AB=sin AD B2283(米), 答:A 、B 两个凉亭之间的距离约为283米.考点:解直角三角形的应用.19.(2016辽宁葫芦岛第21题)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元. (1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?【答案】(1)甲、乙两种门票每张各30元、24元;(2)最多可购买26张甲种票.试题解析:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,2.解得y≤263答:最多可购买26张甲种票.考点:一元一次不等式的应用;一元一次方程的应用.20.(2016内蒙古通辽第20题)在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的A、B两个工厂间修一条笔直的公路,在工厂A北偏东60°方向、工厂北偏西45°方向有一点P,以P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否1.4 1.7)【答案】修筑公路时,这个村庄有一些居民需要搬迁.考点:解直角三角形的应用-方向角问题.21.(2016内蒙古通辽第24题)在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.【答案】(1)甲工程队每天能完成的面积是100m2,乙工程队每天能完成的面积是50m2;(2)y=24﹣2x;(3)安排甲队工作10天,安排乙队工作4天,施工费用最少,为4.6万元.【解析】。

2016年中考应用题精编

2016年中考应用题精编

2016年中考数学应用题精选1.(2016.襄阳。

7分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的31,这时乙队加入,两队还需同时施工15天,才能完成该项工程。

(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解析:(1)由题意知,甲队单独施工完成该项工程所需时间为3130÷=90(天). (2)设乙队单独施工需要x 天完成该项工程,则.115901530=++x去分母,得x +30=2x .解之,得x =30.经检验x =30是原方程的解.答:乙队单独施工需要30天完成.2.(2016.襄阳。

10分)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y (万件)关于售价x (元/件)的函数解析式为:⎩⎨⎧⋅≤≤+-<≤+-=)7060(80),604(1402x x x x y (1)若企业销售该产品获得自睥利润为W (万元),请直接写出年利润W (万元)关于售价 (元/件)的函数解析式;(2)当该产品的售价x (元/件)为多少时,企业销售该产品获得的年利润最大?最大年利 润是多少?(3)若企业销售该产品的年利澜不少于750万元,试确定该产品的售价x (元/件)的取值 范围.解析:(1)⎩⎨⎧≤≤-+-<≤-+-=).7060()2400110),6040(4200200222x x x x x x W (2)由(1)知,当540≤x <60时,W =-2(x -50)2+800.∵-2<0,,∴当x =50时。

W 有最大值800.当60≤x ≤70时,W =-(x -55)2+625.∵-1<0, ∴当60≤x ≤70时,W 随x 的增大而减小。

∴当x =60时,W 有最大值600.,600800>∴当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元.(3)当40≤x <60时,令W =750,得-2(x -50)2+800=750,解之,得.55,4521==x x 由函数W =-2(x -50)2+800的性质可知,当45≤x ≤55时,W ≥750.当60≤x ≤70时,W 最大值为600<750.所以,要使企业销售该产品的年利润不少于750万元,该产品的销售价x (元/件)的取值范围为45≤x ≤55.3.(2016年黄石).科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?4.(2016.荆门)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A 城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?5.(2016.荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).6.(2016.随州)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售y/p w(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.7. (2016.咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件. 为了促俏,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件. 已知该款童装每件成本价40元. 设该款童装每件售价x元,每星期的销售量为y 件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60-x)=-30x+2100. ……………………………………..2分(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2100)=-30x2+3300x-84000 ………………………..4分= -30(x-55)2+6750.∵a= -30<0∴x=55时,W最大值=6750(元).即每件售价定为55元时,每星期的销售利润最大,最大利润是6750元. ……………………………………………………….6分(3)由题意,得-30(x-55)2+6750=6480解这个方程,得x1=52,x2=58. …………………………..7分∵抛物线W= -30(x-55)2+6750的开口向下∴当52≤x≤58时,每星期销售利润不低于6480元.…………………………………8分∴在y= -30+2100中,k= -30<0,y随x的增大而减小.…………………………………………….9分∴当x=58时,y最小值= -30×58+2100=360.即每星期至少要销售该款童装360件. …………….10分8.(2016.孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.9.(2016.十堰)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?10.(2016.宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.。

2016年中考数学(小题)专项训练01(含解析)

2016年中考数学(小题)专项训练01(含解析)

2016 年中考数学(小题)专项训练01一、选择题(共10 小题,每题 3 分,共 30 分)1.【 2016?云南模拟】 2015 的相反数是()A.1B.1. 2015 D .﹣ 2015 2015C2015【答案】 D.【解析】因为 2015 的相反数是:﹣2015,故选 D.2.【 2015?安徽】移动互联网已经全面进入人们的日常生活.截止 2015 年 3 月,全国 4G 用户总数达到 1.62亿,其中1. 62 亿用科学记数法表示为()4B.1.6A.1. 62×1062 ×10C.1. 62 × 108D. 0. 162 × 109【答案】 C.【解析】3.【 201 5?辽阳】下列各图不是正方体表面展开图的是()A.B.C.D.【答案】 C.【解析】A.是正方体的展开图,B.是正方体的展开图,C.折叠有两个正方形重合,不是正方体的展开图,D.是正方体的展开图,故选 C.4.【 2015?大连】下列长度的三条线段能组成三角形的是(A)1,2, 3(B)3,4,5( C) 3,1, 1( D)3, 4, 7【答案】 B【解析】解:根据三角形的三边关系,知A、 1+2=3,不能组成三角形,故本选项错误;B、 3+4> 5,能够组成三角形;故本选项正确;C、 1+1< 3,不能组成三角形;故本选项错误;D、 3+4=7,不能组成三角形,故本选项错误.故选 B.5.【 2015?日照】下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()【答案】 D.【解析】6.【 2015?成都】如图,在△ ABC 中, DE ∥ BC ,AD=6, DB=3, AE=4,则 EC 的长为( )A .1B .2C .3D .4【答案】 B 【解析】解:∵ DE ∥BC ,∴,即,解得: EC=2, 故选: B .7.【 2015?北京】 一个不透明的盒子中 装有 3 个红球、 2 个黄球和 1 个绿球, 这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.1B.1 C.1 D.2 6323【答案】 B .【解析】因为一共 6 个球,其中2 个黄球,根据概率的定 义所以概率为1,故选 B.38.【 2015?河南】小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为 85 分、 80 分、 90 分,若依次按照 2: 3:5 的比例确定成绩,则小王的成绩是( )A . 255 分B .84 分 C.84.5 分 D .86 分【答案】 D 【解析】9.【 2015?重庆】一元二次方程x2﹣ 2x=0 的根是(A. x1=0, x2=﹣ 2 B.x1=1,x2=2C. x1=1, x2=﹣ 2 D.x1=0,x2=2)【答案】 D【解析】2解: x ﹣ 2x=0,x( x﹣ 2)=0,x=0, x﹣ 2=0,x1=0, x2=2,10.【 2015?内蒙古赤峰】抛物线y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y= c在同x一平面直角坐标系内的图象大致为()【答案】 B.【解析】填空题(共10 小题,每题 3 分,共11. 【 2015?济南】分解因式:xy+x=【答案】 x( y+1)【解析】提取公因式x,进而分解因式即可:故答案为: x( y+1).30 分).xy+x=x ( y+1).12. 【 2015?重庆校级期中】分式方程的解为.【答案】 x=﹣ 3.【解析】解得: x=﹣3,经检验 x=﹣ 3 是分式方程的解.故答案为: x=﹣ 3.13.【 2015 ?贵州安顺】已知关于 x 的不等式(1﹣ a)x> 2 的解集为x<2,则a的取值范围是.1 a【答案】 a> 1【解析】因为不等式的两边同时除以1﹣ a,不等号的方向发生了改变,所以1﹣ a< 0,再根据不等式的基本性质便可求出不等式的解集:由题意可得1﹣ a<0,移项得,﹣ a<﹣ 1,化系数为 1 得, a>1。

中考数学专题复习应用题行程问题

中考数学专题复习应用题行程问题

中考数学专题复习应用题
行程问题
Prepared on 21 November 2021
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍。

中考数学应用题专项练习

中考数学应用题专项练习

中考数学应用题专项练习1. 某生态农业有限公司帮助和指导当地车厘子种植基地种植和销售车厘子,已知该车厘子的成本是12元/千克,规定销售价格不高于成本的2倍。

经市场调查发现,该车厘子的销售量y(千克)与销售价格x(元/千克)之间的函数关系如图所示:(1) 求y与x的函数关系式;(2) 当销售价格为多少时,销售车厘子所获的利润W最大?并求出此时的最大利润。

2. 某网店销售一种消毒用紫外线灯很畅销,该网店店主结合店铺数据发现日销量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售纯利润W(元)的四组对应值如表:已知该商品进价是100元/件,该网店每日的固定成本折算下来为2000元。

注:日销售纯利润=日销售量×(售价-进价)-每日固定成本。

(1) 求y与x的函数关系式;(2) 当售价x(元/件)定为多少时,日销售纯利润W(元)最大?求出最大纯利润。

3. 某乡镇的主要经济作物为茶叶,该地政府为了推进乡村振兴战略,解决当地茶农卖茶困难的问题,决定在新茶上市30天内,帮助茶农集中销售.根据销售记录发现:第1天销售量为42斤,后面每天比前一天增加2斤;前10天的价格为500元/斤,后20天价格每天比前一天降低10元,设第x天(x为整数)的售价为y(元/斤),日销售额为w(元)。

(1) 求y与x的函数关系式;(2) 当第几天时日销售额w最大?求最大的日销售额。

4. 作为全球三大黄肉型猕猴桃种植地之一,成都市蒲江县是世界上少有、成都唯一的红、黄、绿三色齐聚的猕猴桃产地.某水果经销商到猕猴桃种植基地采购一种红心猕猴桃,经销商一次性采购红心猕猴桃的采购单价y(元/千克)与采购量x(千克)之间的函数关系如图所示。

(1) 求y与x的函数关系式;(2) 若红心猕猴桃的种植成本为6元/千克,某经销商一次性采购红心猕猴桃的采购量不超过200千克,求当采购量是多少时,猕猴桃种植基地获利最大?求最大利润。

5. 端午节前,某商店用8000元购进一批粽子礼盒,很快售完,于是商店又用20000元购进了第二批粽子礼盒,所购数量是第一批购进量的两倍,但每个礼盒的进价贵了20元。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

2016届中考复习数学真题汇编8:分式方程和应用(含答案)

2016届中考复习数学真题汇编8:分式方程和应用(含答案)

一、选择题1. (2015四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( ).A .36369201.5x x +-=B .3636201.5x x -=C .36936201.5x x -=+D .36369201.5x x ++=【答案】A .【解析】相等关系:原计划种植亩数-实际种植亩数=20. 由题意可得方程36369201.5x x +-=.注意 此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2. (2015四川省自贡市,3,4分)方程211x x -+=0的解是 ······························ ( ) A .1或-1B .-1C .0D .1【答案】D3. (2015天津市,8,3分)分式方程xx 332=-的解是( ) A.x=0 B.x=3 C.x=5 D.x=9【答案】D4. (2015年山东省济宁市)解分式方程22311x x x++=--时,去分母后变形正确的为( ) A. 2+(x +2)=3(x -1) B. 2-x +2=3(x -1)C. 2-(x +2)=3D. 2-(x +2)=3(x -1) 【答案】D5. (2015贵州遵义,7,3分)若x =3是分式方程2102a x x --=-的根,则a 的值是 ( ) A .5 B .-5 C .3 D .-3【答案】A【解析】解:根据方程根的意义,将x =3代入分式方程得:2103a --=,即转换成关于a 的一元一次方程,解得a =5,故选A .6.(2015湖南常德,7,3分)分式方程23122x x x+=--的解为( ) A. 1 B. 2 C. 13 D. 0 【答案】A1. (2015四川省巴中市,14,3分)分式方程322x x =+的解x = . 【答案】 4.2. (2015山东省德州市,14,4分)方程x x -1-2x =1的解为x = . 【答案】23. (2015湖南省长沙市,16,3分)分式方程572x x =-的解为________. 【答案】5x =-【解析】4. (2015四川省凉山州市,16,4分)分式方程233x x =-的解是 .【答案】9x =【解析】解:方程两边乘(3)x x -,得239x x =-;移项,合并得9x =,故答案为9x =.5. (2015山东省威海市16,3分)分式方程2313-1--=-xx x 的解为 . 【答案】x =4.【解析】方程两边同乘以(x -3),得1-x = -1-2(x -3).解得x =4.经检验,x =4是原方程的解.6.(2015浙江省温州市,14,5分)方程231x x =+的根是________. 【答案】x=27. (2015江苏淮安,9,3分)方程031=-x 的解是 。

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学应用题专题训练中考数学应用题专题训练类型一:二元一次方程组方程应用题的解题步骤可用六个字概括,即审(审题),设(设未知数),列(列方程),解(解方程),检(检验),答。

例1.(2012湖南长沙,23,9分)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?练习:1.(2012江西南昌,24,6分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨各是多少元?类型二:一元二次方程例2 (2012甘肃白银,25,10分)某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%.在销售中出现了滞销,于是先后两次降价,售价降为25元.求这种玩具的进价;(2)求平均每次降价的百分率.(精确到0.1%)练习1. (2012四川乐山,21,10分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;20%(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.2.(2012山东济宁,18,6分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?类型三:方程与一次函数3. (2012山东莱芜,22,10分)为表彰在“缔造完美教师”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.练习:1..(2012湖北恩施,22,8分)(满分8分)小丁每天从某市报社以每份0.5元买进报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计,小丁每天至少要卖多少份报纸才能保证每月收入不低于2000元?2.(2012攀枝花).煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运往用煤单位所产生的费用进行核算并纳入企业生产计划。

某煤矿现有1000吨煤炭要全部运往A,B两厂,通过了解获得A,B 两厂的有关信息如下表(表中运费栏“元/kmt⋅”表示:每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往B厂的煤炭量x(t)之间的函数关系式,并写出自变量x的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费。

(可用含a的代数式表示)3. (2011陕西省8分)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲座仓库调运1辆农用车到A县和B县运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县费用为30元和50元.设从乙仓库调往A县农用车x辆,(1)求总运费y关于x的函数关系.(2)要求总运费不超过900元,共有几种调运方案?选出总运费最低的调运方案,最低运费是多少元?类型四:方程与二次函数例4、(2011新疆乌鲁木齐12分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元)。

(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?类型五:方程与不等式(方案设计问题)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?练习:1、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?2、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.3.、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?类型六:应用题与函数图像例6. 小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米. 小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁.图中折线O-A-B-C和线段OD 分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为▲分钟,小聪返回学校的速度为▲千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?A B D t(分钟) 小小练习:1. (2012上海,22,12分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图5所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)2(2010浙江衢州).小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B 的坐标,并求出线段CD 所在直线的函数解析式.3.(2011江苏泰州,25,10分)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与分家之间的距离为S1 m ,小明爸爸与家之间的距离为S2 m,,图中折线OABD,线段EF分别是表示S1、S2与t之间函数关系的图像.求S2与t之间的函数关系式:小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?。

相关文档
最新文档