实验2层次分析法

合集下载

层次分析法二

层次分析法二

( Aw) i λ =∑ nw i i
层次分析
3. MATLAB算法 %对于形如 A = (mij/hij)的正互反阵,求特 征值和特征向量。 >>B=[m11,…m1n;m21,…,m2n;…;mn1,…,mnn]; >>A=B./B’ >>[X,D]=eig(A)
1 m RI n = ∑ CI nk m k =1
则 CI > RI 时, 判断矩阵明显不具有一致 性。 取 α < 1 , 则当 CI < α RI 时, A 在水准 α下有满意的一致性.
层次分析
四. AHP的计算 1. 最大特征根与特征向量的计算—幂法 给定 A > 0, 对任x>0 则
Ak x lim xT Ak x = cv , v是A的主特征向量 k →∞
一致性判断矩阵各列均是判断矩阵的特 征向量。 若特征向量为 w = (w1,…,wn)’, 则有 aij = aik/ ajk = wi / wj。 表示wi 与 wj之间的比值, 是这两者重要 性之间的一个判断. w 就是各对象之间的一个排序. 即:各列均表示被判断元素之间的排序。
定理 3 证明:
wj wi
+ (aij
wj wi
) ] ≥ 2, 若λ1 = n,则 [∗] = 2
−1
a ij = wi w j 致
层次分析
4. 判断矩阵的一致性指标 对于矩阵 A, ∑λi = trA= ∑aii
i i
A 正互反,有
∑λ
i
i
=n
A 一致正互反,有
λ1 = n, λi = 0, i = 2, , n
∃λ1 > 0, w > 0 , Aw = λ1w ,

层次分析法 实验报告

层次分析法 实验报告

层次分析法实验报告层次分析法实验报告一、引言层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多目标决策的定量分析方法,广泛应用于各个领域。

本实验旨在通过实际案例,验证层次分析法在决策问题中的有效性,并探究其应用的局限性。

二、实验目的1. 了解层次分析法的基本原理和步骤;2. 运用层次分析法解决实际决策问题;3. 分析层次分析法的优势和不足。

三、实验设计本实验选取一个实际的决策问题,以选购一台新的电脑为例,通过层次分析法进行决策。

四、实验步骤1. 确定目标层:将决策问题分解为不同的层次,首先确定最终的目标层,即选购一台新的电脑。

2. 构建层次结构:在目标层的基础上,构建层次结构,包括准则层、子准则层和方案层。

准则层包括性能、价格和品牌等因素,子准则层包括CPU性能、内存容量和硬盘容量等因素,方案层包括不同品牌和型号的电脑。

3. 两两比较:对于每一层的因素,进行两两比较,根据其重要性进行打分。

例如,对于准则层的性能和价格,根据其对目标的重要程度进行比较评分。

4. 构建判断矩阵:根据两两比较的结果,构建判断矩阵。

例如,对于子准则层的CPU性能和内存容量,根据两两比较的结果构建判断矩阵。

5. 计算权重:通过计算判断矩阵的特征向量,得到各因素的权重。

根据权重可以评估各因素对目标的重要程度。

6. 一致性检验:通过计算一致性指标,判断判断矩阵的一致性。

若一致性指标超过一定阈值,则需要重新进行比较和调整。

7. 综合评价:根据各因素的权重,综合评价各方案的优劣,选取最佳方案。

五、实验结果与分析通过层次分析法,我们得到了不同因素的权重和最佳方案。

根据实验数据,我们可以发现性能对于选购电脑的重要性最高,其次是价格,品牌的重要性最低。

在子准则层中,CPU性能的权重最高,内存容量次之,硬盘容量的权重最低。

最终,我们选取了一款具有较高性能、适中价格、知名品牌的电脑作为最佳方案。

六、实验总结层次分析法是一种有效的多目标决策方法,通过将问题分解为不同层次,对各因素进行比较和权重计算,可以帮助决策者做出合理的决策。

层次分析法——精选推荐

层次分析法——精选推荐

一、层次分析模型和一般步骤1、定义:层次分析法是一种定性与定量分析相结合的多因素决策分析方法。

这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。

2、层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类,建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。

二、建立层次结构模型将问题包含的因素分层:最高层——解决问题的目的;中间层——实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等;最低层——用于解决问题的各种措施、方案等。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

例1购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型练习:画出下列问题的层次模型评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。

主要考虑以下几个因素: (1)教师队伍(包括平均学历和年龄结构)(2)教学设施(3)教学工作(包括课堂教学,课外活动,统考成绩和教学管理) (4)文体活动三、构造成对比较矩阵比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。

设共有 n 个元素参与比较,则称n n ij a A ⨯=)( 为成对比较矩阵。

成对比较矩阵中aij的取值可参考 Satty 的提议,aij按下述标度进行赋值。

在 1— 9及其倒数中间取值。

对例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历 x3 ,年龄x4,群众关系x5。

层次分析法的详细步骤

层次分析法的详细步骤
(1) 2) 综合排序
为了进行合理的综合排序,我们把各因素的重要性与物体的重量进行 类比。设有n件物体:A1, A2, …, An ,它们的重量分别为:w1, w2, …, wn 。若将它们两两相互比较重量,其比值(相对重量)可构成一个n×n成对
比较矩阵
(2)
经过仔细观察,我们发现成对比较矩阵的各行之和恰好与重量向量 W = (w1, w2, …, wn)T成正比,即
(3)
根据类比性,我们猜想因素的重要性向量与成对比较矩阵(1)之间也有 同样的关系存在。由此,我们可以得到因素的重要性向量为
(4)
为了使用方便,我们可以适当地选择比例因子,使得各因素重要性的数 值之和为1 (这个过程称为归一化,归一化后因素重要性的数值称为权 重,重要性向量称为权重向量) ,这样就得到一个权重向量
因素综合比较的结果。具体操作过程如下:
1) 进行两两相对比较,并把比较的结果定量化。
首先我们把各个因素标记为 B1:调动职工劳动生产积极性;B2:提 高职工文化水平;B3:改善职工物质文化生活状况。根据心理学的研 究,在进行定性的成对比较时,人们头脑中通常有5种明显的等级:相 同、稍强、强、明显强、绝对强。因此我们可以按照下表用1~9尺度来 定量化。
层次分析方法
倪致祥主讲
层次分析法是一种多准则思维的方法,它将定性分析和定量分析相 结合,把人们的思维过程层次化和数量化,在目标结构复杂且缺乏必要 的数据情况下尤为实用。自70年代美国运筹学家Saaty T.L.提出以来,此 方法在实际应用中发展很快。
过去的物理是建立在纯化的实验和理想化的模型的基础上,去分析 和探索物质世界最基本的规律。现代物理则开始呈现出一种研究复杂性 现象的趋势,除了把物理知识应用到其它更复杂的科学领域,建立象量 子化学、生物物理、量子生物学等交叉学科之外,在物理领域的本身也 一反过去研究理想模型的惯例,开始向非理想、不规则的复杂现象进 军。非晶态、无序、混沌、多体等问题正在吸引许多物理学家的注意。 对这些复杂问题,传统的纯定量分析方法越来越变得软弱无力,需要借 助于定性分析的方法来整体考虑。因此,层次分析方法也许会给我们提 供帮助。

层次分析法2

层次分析法2

自 豪 感 C8
美 化 C11
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡 江河、海峡 方案的抉择
投 入 资 金 C1
过河的代价 A 经济代价 B1 社会代价 B2 环境代价 B3
操 作 维 护 C2
冲 击 渡 船 业 C3
冲 击 生 活 方 式 C4
交 通 拥 挤 C5
居 民 搬 迁 C6
层次分析法的优点
• 系统性——将对象视作系统,按照分解、比较、判断、 综合的思维方式进行决策——系统分析(与机理分析、 测试分析并列); • 实用性——定性与定量相结合,能处理传统的优化方 法不能解决的问题; • 简洁性——计算简便,结果明确,便于决策者 直接了解和掌握。
层次分析法的局限
• 囿旧——只能从原方案中选优,不能产生新方案; • 粗略——定性化为定量,结果粗糙;
组合 权向量
第2层对第1层的权向量
w
(2)
第1层O
第2层C1,…Cn 第3层P1, …Pm
( w1 , , w n )
(2) (2)
T
第3层对第2层各元素的权向量
wk
(3) (3) (3) T
( w k 1 , , w km ) , k 1, 2 , , n
(3)
构造矩阵 W
[ w1 , , w n ]
工作选择

发 展
声 誉
关 系
位 置
供选择的岗位
例3 横渡 江河、海峡 方案的抉择
节 省 时 间 C1
过河的效益 A
经济效益 B1 当 地 商 业 C4 建 筑 就 业 C5 社会效益 B2 安 全 可 靠 C6 交 往 沟 通 C7 环境效益 B3 舒 适 C9 进 出 方 便 C1

层次分析法的具体步骤

层次分析法的具体步骤

层次分析法的具体步骤(1)建立层次结构模型如上所述,家纺纺织产业实施循环经济评价指标体系可被分为四层,最上层为最高层(目标层),即纺织企业循环经济各个方面的综合水平;第二层为准则层,即相互独立、分别隶属于总系统层的子系统;第三层为指数层,是对准则层的进一步细分和阐述;最底层为指标层,该层隶属于准则层,是对纺织企、Ek循环经济各个方面具体的评价指标。

在层次分析法巾多采用三层分析,即目标层、准则层和指标层。

(2)构造比较判断矩阵根据层次结构模型,通过对某层次中各元素的相对重要性做出比较判断,即对于上一层次某一推则而言,在其下一层次中所有与之相关的元素中依次两两比较,从而得出逐层进行判断评分,进而构成两两判断矩阵,如表6—2所示。

如A1,A2,…,久,在考虑相对上一层准则H:前提下构造判断矩阵H‘—A。

具体的做法是:先将矩阵左侧的指标A1依次与矩阵上边一排所列的指标Al—A。

相对于目标Hf做两两比较,比较结果按AHP法设计的范围标度(表6—3)对它的重要性给予量化,并相应填入矩阵第一行;接着依次用左列指标A2,A3,…,A4重复进行上述比较,以完成矩阵的第二行至第n行。

对于每个准则层以及每个准则下的指标群,进行同样过程,这样也就形成了多级比较判断矩阵。

AHP采用这种标度方法,不仅能克服一些指标和指标子系统无标度情况下无法测量、统计等困难,而且这种标度法有特定的科学依据,这主要表现为:第一。

实验心理学有关研究表明,人们对不同程度刺激的感觉区别,最佳的区别个数为7土2,若取其最大的极限,恰好是9个。

也就是说,人们对某个事物的属性同时进行比较,要使其前后的判断基本保持一致,最多只能对9个不向事物向时进行比较判断。

按照人们惯用的相邻标度差为1的离散标度值确定法,对1—9种事物进行比较判别时,其比例标度恰好为[1,9]间的整数。

第二,人们在估计事物问区别时,习惯采用五种判断表述:相等、较强、强、4硼、绝对强。

若需要更高精度,还可在这五种相邻判断之间做出比较,这样共有9个等级。

层次分析法的

层次分析法的

层次分析法的
层次分析法(AHP)是一种科学方法,它利用人的主观思维来做一些复杂的决策问题。


将一个复杂的主题分解成若干子问题,每个子问题都会有一个回答,最后通过计算机程序计算出最优的解决方案。

它的基本步骤是分析、估算、比较、定分。

首先,在分析阶段,研究人员要分析出影响决策的重要因素,并将它们有序地列出来。


次分析法有两个重要层次:目标层次和属性层次。

研究者会列出所有可能的目标和属性,
并且试图建立各个层次之间的关系。

接着,在估算阶段,研究者需要使用解释性分析方法来估算每个属性层次上层与下层之间
的重要程度。

比如,研究者可以询问不同的专家对属性层次的重要程度,或使用实验数据
来确定。

然后,在比较阶段,研究者需要比较两个不同属性的重要程度。

具体的方法是通过专家给
出的“比较矩阵”来计算,这个矩阵会表明两个属性层次的相对重要性。

最后,在定分阶段,研究者需要对每个属性给出一个最终分数,这个分数反映出所有调查
者对每个属性重要程度的结论。

然后研究者就可以获得最优的解决方案,也就是最重要的
属性及其相应的分数。

层次分析法可以严格控制复杂的决策问题,它利用专家的经验和主观判断和定量分析来权衡决策属性之间的关系,最大限度地减少决策不确定性。

它在决策分析领域使用十分广泛,十分有效果。

层次分析法步骤2篇

层次分析法步骤2篇

层次分析法步骤2篇层次分析法步骤层次分析法(AHP)是用来确定复杂决策结构下最佳决策方案的重要工具之一,对于需要评估不同因素的决策情境非常有用。

AHP 是由美国数学科学家托马斯·L·塞蒂(Thomas L. Saaty)在20世纪70年代初期发明的。

AHP 包含一系列步骤,并建立了一个多级层次结构。

层次分析法大概可以分为以下几个步骤:1.确定目标首先,我们需要明确评估体系的目标,以及需要评估的决策为何。

下一步是将目标具体地划分为一些易于理解和可度量的细分目标。

2.建立层次结构接下来,我们需要建立一个层次结构,以确定每个细分目标之间的相对重要性。

要建立一个有用的层次结构,需要从总目标开始,逐个确定每个元素的重要性和层次。

每个层次结构都必须有一个总目标,一些次要目标,以及指导每个目标的因素。

3.制定判断矩阵然后建立判断矩阵,以确定目标之间的相对重要性。

判断矩阵是一个方阵,其中包含每个目标之间的权重关系。

选择一对目标并进行两两比较,以确定其之间的相对重要性程度。

4.计算加权表通过加权矩阵计算每个目标的权重,从而形成一个加权表。

这个步骤列出了每个目标的重要性得分,以及它们对于整体目标的权重。

5.进行一致性检查在模型建立过程中,要保证做到一致性,才能确保结果可靠。

所以需要对所有的判断矩阵进行一致性检查,检查矩阵中的数据是否一致。

如果矩阵值不一致,需要进行调整和重新评估。

6.评估决策最后,将加权表用于评估决策,以确定哪个选择最符合总体目标。

根据加权表中的权重计算每个决策的得分,并对得分进行排序,最终选出最佳的决策方案。

总之,层次分析法是一种可靠的决策分析工具,它通过将大目标和子目标简化为易于比较的部分,提供了一种定量决策分析框架。

虽然该方法需要一定的理解和技能,但是它可以用于各种决策问题,并提供一个可复制的方法来评估决策方案。

接下来,我们将更深入地了解每个步骤,以便更好地使用 AHP。

层次分析法

层次分析法

bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3

研财

究政

周支

期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。

现代汉语语法研究 第二节 层次分析法

现代汉语语法研究 第二节 层次分析法

层次分析法的局限
1
1.它只能揭示句法结构的构造层次和直接组成成分之间的显性的语法 关系即语法结构关系,不能揭示句法结构内部所隐含的语义结构关系。
语义结构关系的不同而造成的歧义句式不能用层次分析法加以分化。
我在屋顶上发现了他
鸡不吃了/反对的是他
他在屋顶上;我在屋顶上,我和他都在屋顶上
1 辅层音次的分发析音法
1 辅层音次的分发析音法
四、每个层面上切分所得的直接组成成分,它们之间组合所依
据的规则在该语言中必须具有普遍性。
1
a.张三 喝啤酒
b.张三喝 啤酒
a意味着述宾结构可以作谓语 具有普遍性
b意味主谓结构可带宾语 不具有普遍性
a.他 属于白种人 (√)属于是黏宾动词 b.他属于 白种人 (×)
1 辅层音次的分发析音法
1 辅层音次的分发析音法
①主语
②述语
③宾语
④补足语
1
⑤形容性 (的) (介词)
附加语
领位 副位
⑥ 副词性
同⑤
附加语
同⑤
同⑥
②①横主线线下上::主主语语、、述述语语、、宾宾语语、、补补足足语语
/|| ((左主边语主、语宾、语右的边形谓容语性);附加语);
\| 之述后语是的述副语词连性带附的加宾语语成分;
规则一层一层地进行组合的,这种特征称之为句法构造的层次性。
①他刚来
他刚 来
他刚来
修饰
主谓

他刚 来

刚来
刚来
1 辅层音次的分发音析法
第一,句法构造的层次性对句法结构来说是隐性的,不是显性,
从句法结构表面是看不出的
1
A.发现了敌敌人人的哨兵回营房了 A.这篇文章不很好 B.发现过敌敌人人的哨兵回营房了 B.这篇文章很不好

层次分析法基本原理、实施步骤、应用实例

层次分析法基本原理、实施步骤、应用实例
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
• 这一过程是从最高层次到最低层次依次进行的。
Z
定义一致性指标: CI n
n 1
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
为衡量CI 的大小,引入随机一致性指标 RI。方法为
随机构造500个成对比较矩阵 A1, A2 , , A500
则可得一致性指标 CI1,CI2 , ,CI500
RI

CI1
定理:n 阶一致阵的唯一非零特征根为n
定理:n 阶正互反阵A的最大特征根 n, 当且仅当 =n
时A为一致阵
由于λ 连续的依赖于aij ,则λ 比n 大的越多,A 的不 一致性越严重。用最大特征值对应的特征向量作为 被比较因素对上层某因素影响程度的权向量,其不 一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量 A 的不一致程度。
但允许范围是 多大?如何界 定?
Aw w
3. 层次单排序及其一致性检验
对应于判断矩阵最大特征根λmax的特征向量,经 归一化(使向量中各元素之和等于1)后记为W。

层次分析法 实验报告

层次分析法 实验报告

实验报告题目层次分析法在大学生毕业择业选择的应用学生姓名于超学号***********学院大气物理学院专业大气科学(大气物理方向)指导教师吕红老师二O一四年五月五日一、问题提出:面临毕业,高校大学生常常徘徊在人生的岔路口,不知如何选择,是就业、考公务员从政还是考研,假如你就是一位即将毕业的大四学生,你如何考虑这些方案?根据哪些依据进行选择?一般的依据有社会地位、工作环境、经济情况、发展前途、住房条件等因素。

能否用层次分析法建模将科研单位,企业,政府,读研等各种可能的方案排序?二、模型假设:准则层:A1 社会地位A2 工作环境A3 经济状况A4 发展前途A5 住房社保方案层:B1 企业B2 科研单位B3 政府公务员(事业单位)B4 读研三、模型建立:一般分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层。

建立层次结构模型。

四、构造成对比较矩阵:由MATLAB 内置函数可求得矩阵特征向量、特征值([V,D]=eig()其中V 为特征向量矩阵、D 为特征值矩阵)准则层的各因素对目标层的影响两两比较结果得准则层成对比较矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=13151********5315721315113314171311A >> AA =1.0000 0.3333 0.1429 0.2500 0.33333.0000 1.0000 0.2000 0.3333 0.50007.0000 5.0000 1.0000 3.0000 5.00004.0000 3.0000 0.3333 1.0000 3.00003.0000 2.0000 0.2000 0.3333 1.0000>> [V,D]=eig(A)V =0.0832 -0.0295 + 0.0912i -0.0295 - 0.0912i -0.0481 - 0.0479i -0.0481 + 0.0479i 0.1583 0.1547 + 0.0886i 0.1547 - 0.0886i 0.0329 + 0.1472i 0.0329 - 0.1472i 0.8694 -0.8450 -0.8450 0.8606 0.8606 0.4106 -0.2044 - 0.3870i -0.2044 + 0.3870i -0.3566 + 0.2499i -0.3566 - 0.2499i 0.2089 0.1736 - 0.1528i 0.1736 + 0.1528i 0.0544 - 0.1987i 0.0544 + 0.1987iD =5.1986 0 0 0 0 0 0.0276 + 0.9983i 0 0 0 0 0 0.0276 - 0.9983i 0 0 0 0 0 -0.1269 + 0.1817i 0 0 0 0 0 -0.1269 - 0.1817i >>该成对比矩阵最大特征值1986.5=λ该成对比矩阵最大特征值对应的特征向量为('=ω0.0832,0.1583,0.8694,0.4106,0.2089)归一化成权向量为(=ω0.0481,0.0915,0.5024,0.2373,0.1207)一致性指标 0497.01551986.50=--=CI 12.1=RI 1.00443.012.10497.00<===RI CI CR A 通过一致性检验 方案层的各方案在准则层的影响下两两比较结果得方案层成对比较矩阵:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12171312131373153315111B >> 1B1B =1.0000 0.2000 0.3333 3.00005.0000 1.0000 3.0000 7.00003.0000 0.3333 1.0000 2.00000.3333 0.1429 0.5000 1.0000>> [V,D]=eig(1B )V =-0.2028 -0.1969 + 0.3890i -0.1969 - 0.3890i 0.0217 -0.9045 0.2239 - 0.4465i 0.2239 + 0.4465i -0.9800 -0.3565 0.7136 0.7136 0.1944 -0.1169 -0.1416 - 0.1766i -0.1416 + 0.1766i 0.0367D =4.2080 0 0 0 0 -0.1199 + 0.9319i 0 0 0 0 -0.1199 - 0.9319i 0 0 0 0 0.0319 该成对比矩阵最大特征值2080.41=λ该成对比矩阵最大特征值对应的特征向量为('1=ω0.2028,0.9045,0.3565,0.1169)归一化成权向量为(1=ω0.1283,0.5722,0.2255,0.0740)一致性指标 0693.01442080.41=--=CI 9.0=RI 1.00770.09.00693.01<===RI CI CR 1B 通过一致性检验⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=14121714133123115173512B>> B2B2 =1.0000 5.0000 3.0000 7.00000.2000 1.0000 0.3333 2.00000.3333 3.0000 1.0000 4.00000.1429 0.5000 0.2500 1.0000>> [V,D]=eig(B2)V =0.8969 0.9028 0.9028 -0.9129 0.1684 -0.1384 - 0.0299i -0.1384 + 0.0299i -0.2046 0.3961 -0.0655 + 0.3919i -0.0655 - 0.3919i 0.3221 0.1018 -0.0026 - 0.0839i -0.0026 + 0.0839i 0.1450D =4.0583 0 0 0 0 -0.0043 + 0.4859i 0 0 0 0 -0.0043 - 0.4859i 0 0 0 0 -0.0497 该成对比矩阵最大特征值0583.42=λ该成对比矩阵最大特征值对应的特征向量为('2=ω0.8969,0.1684,0.3961,0.1018)归一化成权向量为(2=ω0.5738,0.1077,0.2534,0.0651)一致性指标 0194.01440583.42=--=CI 9.0=RI 1.00216.09.00194.02<===RI CI CR 2B 通过一致性检验⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=14161914121516213195313B >> B3B3 =1.0000 3.0000 5.0000 9.00000.3333 1.0000 2.0000 6.00000.2000 0.5000 1.0000 4.00000.1111 0.1667 0.2500 1.0000>> [V,D]=eig(B3)V =-0.9029 0.9533 0.9533 0.5527 -0.3692 -0.0151 + 0.2290i -0.0151 - 0.2290i -0.7341-0.2090 -0.1437 + 0.1071i -0.1437 - 0.1071i 0.3928 -0.0696 -0.0239 - 0.0763i -0.0239 + 0.0763i -0.0364D =4.0780 0 0 0 0 -0.0271 + 0.5620i 0 0 0 0 -0.0271 - 0.5620i 0 0 0 0 -0.0237 该成对比矩阵最大特征值0780.43=λ该成对比矩阵最大特征值对应的特征向量为('3=ω0.9029,0.3692,0.2090,0.0696)归一化成权向量为(3=ω0.5822,0.2381,0.1348,0.0449)一致性指标 0260.01440780.43=--=CI 9.0=RI 1.00289.09.00260.03<===RI CI CR 3B 通过一致性检验⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=16496113134131591315114B>> B4B4 =1.0000 0.2000 0.3333 0.11115.0000 1.0000 3.0000 0.25003.0000 0.3333 1.0000 0.16679.0000 4.0000 6.0000 1.0000>> [V,D]=eig(B4)V =0.0708 -0.0065 - 0.0690i -0.0065 + 0.0690i -0.0850 0.3347 -0.0172 + 0.3119i -0.0172 - 0.3119i -0.3646 0.1532 -0.1355 + 0.0067i -0.1355 - 0.0067i 0.2021 0.9271 0.9376 0.9376 0.9050D =4.1228 0 0 0 0 -0.0028 + 0.7110i 0 0 0 0 -0.0028 - 0.7110i 0 0 0 0 -0.1173 该成对比矩阵最大特征值1228.44=λ该成对比矩阵最大特征值对应的特征向量为('4=ω0.0708,0.3347,0.1532,0.9271)归一化成权向量为(4=ω0.0477,0.2253,0.1233,0.6240)一致性指标 0409.01441228.44=--=CI 9.0=RI 1.00455.09.00194.04<===RI CI CR 4B 通过一致性检验⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=14191714151319512732115B >> B5B5 =1.0000 0.5000 3.0000 7.00002.0000 1.0000 5.0000 9.00000.3333 0.2000 1.0000 4.00000.1429 0.1111 0.2500 1.0000>> [V,D]=eig(B5)V =0.4900 -0.6899 0.1751 + 0.3121i 0.1751 - 0.3121i 0.8459 0.7035 0.8955 0.8955 0.1987 0.1694 -0.2110 + 0.1313i -0.2110 - 0.1313i 0.0695 -0.0213 -0.0233 - 0.0882i -0.0233 + 0.0882iD =4.0730 0 0 0 0 -0.0302 0 0 0 0 -0.0214 + 0.5436i 0 0 0 0 -0.0214 - 0.5436i 该成对比矩阵最大特征值0730.45=λ该成对比矩阵最大特征值对应的特征向量为('5=ω0.4900,0.8459,0.1987,0.0695)归一化成权向量为(5=ω0.3055,0.5273,0.1239,0.0433)一致性指标 0243.01440730.45=--=CI 9.0=RI 1.00270.09.00194.05<===RI CI CR 5B 通过一致性检验 则1B 2B 3B 4B 5B 均通过一致性检验组合一致性指标:0308.00243.01207.00260.05024.00194.00915.00693.00481.0=⨯+⨯+⨯+⨯=k CI 0343.09.00308.0===RI CI CR k 1.00786.00443.00343.00<=+=+=K CR CR CR则层次总排序通过一致性检验组合权向量为()1854.01460.02741.03994.0).,,,,(54321==T ωωωωωωω则ω=(0.3994 0.2471 0.1460 0.1854)可作为最后决策依据即各方案权重排序为B1>B2>B4>B3,故最后决策大学生毕业后应该选择企业。

第五章 系统评价 2 层次分析法

第五章 系统评价 2 层次分析法
38
不足
1)将定量指标主观化处理,仿照定性指标建立判断矩阵。 2)判断矩阵的建立本身会因人而异,针对某一个准则,只建立一个判 断矩阵,所以难以综合各位评价人员的意见,随意性强。 3)AHP的结果只是方案的优劣顺序,不能回答方案是否可行。 4)由心理学家试验可知,人们只能对7±2个事物同时进行比较,所以 选1-9标度。但对于因素众多、规模较大的复杂系统(如要素大于9), 采用AHP进行评价,容易出现问题。所以,用AHP法要求准则层指标( 大类指标)不超过9项。各大类指标下属的明细指标个数也不超过9项。
4
AHP基本原理
如果知道 n 个西瓜的重量为W1,W2, ,Wn ,这些西瓜两两比较(相除), 可以得到表示 n 个西瓜相对重量关系的比较矩阵(判断矩阵)。
W1
W1
A

W2
W1

Wn W1
W1 W2
W2 W2
Wn W2
W1
Wn
(a ) W2
Wn



ij n×n
第三节 层次分析法
日常生活中有许多的决策问题(即在面临多种方案时需要 依据一定的标准选择某一种方案):
例 假期旅游: 是去金刀峡,还是去峨眉山,或者是去张家界,一般 会依据景色、费用、食宿条件、旅途等因素选择去哪个地方。 例 择业: 面临毕业,可能有高校、科研单位、企业等单位可以去选 择,一般依据工作环境、工资待遇、发展前途、住房条件等因素择业。
在进行系统分析时,有些问题难以甚至根本不可 能建立数学模型进行定量分析;也可能由于时间 紧迫,对有些问题还来不及进行过细的定量分析 ,只需做出初步的选择和大致的判断就行了。这 时若应用AHP方法进行分析,就可以简便而迅速 地解决问题。

层次分析法

层次分析法

层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。

这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对难以完全定量的复杂系统做出决策的模型和方法。

层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。

最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。

市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。

【层次分析法2】

【层次分析法2】

CI RI
五、层次总排序
利用单排序结果,可综合计算最底层(方案层)相对最高层 (目标层)重要性顺序的组合权值。层次总排序从上到下进行。
假设已知
目标A
C层因素C1、C2、C3对A层目标的单排序 结果为c1、c2、c3 C1 P层因素P1、P2、P3对 C2 的单排序 C3 结果为
1 b11 、b2 、b31
j 1
二.和积法
(3)将向量 W [W ,W ,...,W ] 正规化 Wi 1 2 n 本例有:
T
Wi
W
j 1
n
, i 1,2,...,n
j
W
j 1nj 0.317 1.900 0.781 2.998 W1 0.317 0.106 2.998
j
W1
W






学员1

学员2

学员n
引子
• 例:某军工企业计划开发一种民用支柱产品,可选方
案有n种。主要从以下三个方面分析: • 经济效益:投资省、利润高、见效快、适销对路、潜 在市场广阔 • 社会效益:充分利用资源、振兴地区经济、促进科技 进步、扩大外贸出口、增加就业机会、有效环境保护 • 技术可行性:军工优势发挥、军民兼容能力
= (aij)n×n
Wn/W1 Wn/W2 … Wn/Wn
显然
aii=1, aij=1/aji, aij= aik/ajk(i,j,k=1,2, …n)
二、构造判断矩阵
W1/W1 W1/W2 … W1/Wn W2/W1 W2/W2 … W2/Wn
… … … … … … … … … … …
AW =
W1 W2

实验---层次分析法

实验---层次分析法

实验二利用层次分析法进行生活垃圾分类方案的比选一、实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次分析法建立数学模型的基本步骤;学会用Excel解决层次分析法中的数学问题。

二、实验设备与器材1. PC机一台;2. Office2003软件。

三、实验内容某市区日产生活垃圾165.5t,年产6.04万t(2008年),预计到2015年,垃圾产量会达到8.27万t。

目前,生活垃圾采用一次性填埋处理,填埋场使用到2020年封场。

因此,研究和选择更加合理的生活垃圾处理方案有着重要的意义。

通过为期一年的现场采样和理化分析的方法获得有关该市区生活垃圾特性的基础数据为:可腐有机物含量:31.38%,无机物含量:50.98%,含水率:32.69%,湿基低位热值:4260.41KJ/kg。

根据生活垃圾的特点,拟采用三个方案对生活垃圾进行处理。

即A:全部填埋;B:分选,可焚烧物焚烧,对不能焚烧的物质和焚烧残渣进行填埋。

C:分选,有机质堆肥,对不可堆肥物填埋。

表1为根据某市区生活垃圾的特点对生活垃圾三种处理方案的比较。

请利用层次分析法优选出最佳垃圾处理方案。

表1 根据某市区生活垃圾的特点对生活垃圾三种处理方案的比较因素填埋焚烧+填埋堆肥+填埋占用土地量/万m215.4 8.72 13.8 减量化程度0 87.5 65投资费用/万元4500 6560 5000处理成本/(元/t) 35 50 42.5当地经济承受能力易于承受较难承受介于前两者之间收益/万元160 142.9 227.5温室气体排放量(kg/t)0.58 0.30 0.29对水体的污染程度需严格采用防渗工程,否则污染严重灰渣中无有机污染,仅需在填埋时采取固化措施,污染轻微对于填埋区采用防渗工程,有机污染程度低于填埋人员培训要求较高高较高政策鼓励方向不鼓励鼓励鼓励四、实验步骤1. 建立层次结构首先对所面临的问题要掌握足够的信息,搞清楚问题的范围、因素、各因素之间的相互关系,及所要解决问题的目标,把问题条理化、层次化,构造出一个有层次的结构模型。

层次分析法的方法与原理

层次分析法的方法与原理

层次分析法的方法与原理层次分析法的方法和原理一、层次分析法简介层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。

所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

二、层次分析法的定义所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

层次分析法步骤2

层次分析法步骤2

层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。

【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游 区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

1.建立递阶层次结构应用AHP 解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递 阶层次结构。

AHP 要求的递阶层次结构一般由以下三个层次组成::指问题的预定目标; :指影响目标实现的准则; :指促使目标实现的措施; 首先明确决策的目标,将该目标作为 这个目标要求是唯一的,即目标层只有一个元素。

然后找出影响目标实现的准则,作为目标层下的 准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有 些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次 元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一 层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配) 不同组元素性质不同,一般隶属于不同的上一层元素。

在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一 层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是 明显的。

最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层) 。

明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层 次结构。

【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”为了实现这一目标,需要考虑的主________但问题绝不这么简单。

土地资源评价层次分析法应用软件步骤分析

土地资源评价层次分析法应用软件步骤分析

实验二层次分析法软件的应用
一、实验要求
根据实验一的层次模型及构造的成对比较矩阵,应用上述两个软件计算权重,验证计算结果。

二、实验步骤
方法一:应用软件
步骤1:打开软件,建立如下图所示的层次结构模型,确定并保存模型。

图2-1建立模型
步骤2:针对土地适宜性等级进行权重分析
图2-2土地适宜性权重分析步骤3:针对土壤条件进行权重分析
图2-3土壤条件权重分析步骤4:针对农田水利条件进行权重分析
图2-4农田水利条件权重分析步骤5:针对地貌水文条件进行权重分析
图2-5地貌水文条件权重分析
方法二
步骤1:打开该软件在“决策方法”下拉菜单中找“层次分析法”并选中。

图1-1
步骤2::选中以后,根据所分析的模型,命名并填写相应的层数。

图1-2
步骤3:填写矩阵维数
图1-3 步骤4:选定层次因素
图1-4
步骤5:建立好的矩阵并对应数进行赋值。

图1-5
步骤6:根据步骤提示,最后得出结果。

三、与实验一的结果做对比,体会两种方法的不同,并掌握该方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目六矩阵的特征值与特征向量实验2 层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次分析法建立数学模型的基本步骤;学会用Mathematica解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中新型的数学方法.运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层次结构一般分三层:第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层;第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则层;第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.图2-1决策目标准则1准则2准则n方案1方案2方案m…………注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2)整个层次结构中层次数不受限制.2.构造判断矩阵构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即.,,2,1,,)(n j i a A n n ij ==⨯ 称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素ij a 满足下列性质:)(,1),(1j i a j i a a ii ijji ==≠=当0>ij a 时,我们称判断矩阵A 为正互反矩阵.怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素y 的影响可直接定量表示时, i x 与j x 对y的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决.通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.表1 比较尺度a的取值ij97531/ijj i a x x 绝对强很强强较强相等3.计算层次单排序权重并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序. 具体做法是: 根据同一层n 个元素n x x x ,,,21 对上一层某元素y 的判断矩阵A ,求出它们对于元素y 的相对排序权重,记为n w w w ,,,21 ,写成向量形式T n w w w w ),,,(21 =, 称其为A 的层次单排序权重向量, 其中i w 表示第i 个元素对上一层中某元素y 所占的比重, 从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵A 的特征值与特征向 量来计算排序权重向量w .关于正互反矩阵A ,我们不加证明地给出下列结果. (1) 如果一个正互反矩阵n n ij a A ⨯=)(满足),,2,1,,(n k j i a a a ik jk ij ==⨯则称矩阵A 具有一致性, 称元素k j i x x x ,,的成对比较是一致的; 并且称A 为一致矩阵.(2) n 阶正互反矩阵A 的最大特征根n ≥max λ, 当n =λ时, A 是一致的. (3) n 阶正互反矩阵是一致矩阵的充分必要条件是最大特征值 n =max λ.计算排序权重向量的方法和步骤设T n w ),,,(21ωωω =是n 阶判断矩阵的排序权重向量, 当A 为一致矩阵时, 根据n阶判断矩阵构成的定义,有⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n A ωωωωωωωωωωωωωωωωωω212221212111 (2.1) 因而满足,nw Aw = 这里n 是矩阵A 的最大特征根, w 是相应的特征向量; 当A 为一般的 判断矩阵时w Aw max λ=, 其中max λ是A 的最大特征值(也称主特征根), w 是相应的特征向量(也称主特征向量). 经归一化(即11=∑=ni iω)后, 可近似作为排序权重向量, 这种方法称为特征根法.一致性检验在构造判断矩阵时, 我们并没有要求判断矩阵具有一致性, 这是由客观事物的复杂性 与人的认识的多样性所决定的. 特别是在规模大、因素多的情况下, 对于判断矩阵的每个元 素来说,不可能求出精确的j i ωω/, 但要求判断矩阵大体上应该是一致的. 一个经不起推敲的判断矩阵有可能导致决策的失误. 利用上述方法计算排序权重向量, 当判断矩阵过于偏离一致性时, 其可靠性也有问题. 因此,需要对判断矩阵的一致性进行检验, 检验可按如下步骤 进行: (1) 计算一致性指标CI1max --=n nCI λ(2.2)当,0=CI 即n =max λ时, 判断矩阵A 是一致的. 当CI 的值越大, 判断矩阵A 的不一致的程 度就越严重. (2) 查找相应的平均随机一致性指标RI 表2给出了n )11~1(阶正互反矩阵的平均随机一致性指标RI , 其中数据采用了 100~150个随机样本矩阵A 计算得到.(3) 计算一致性比例CRRICICR =(2.3) 当10.0<CR 时, 认为判断矩阵的一致性是可以接受的; 否则应对判断矩阵作适当修正.4. 计算层次总排序权重并做一致性检验 计算出某层元素对其上一层中某元素的排序权重向量后, 还需要得到各层元素, 特别 是最底层中各方案对于目标层的排序权重, 即层次总排序权重向量, 再进行方案选择. 层次总排序权重通过自上而下地将层次单排序的权重进行合成而得到. 考虑3个层次的决策问题: 第一层只有1个元素, 第二层有n 个元素, 第三层有m 个元素.设第二层对第一层的层次单排序的权重向量为Tn w ),,,()2()2(2)2(1)2(ωωω =第三层对第二层的层次单排序的权重向量为n k w w w w Tkn k k k ,,2,1,),,,()3()3(2)3(1)3( ==以)3(k w 为列向量构成矩阵:n m nm m mn n n w w w w w w w w w w w w W ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛==)3()3(2)3(1)3(2)3(22)3(12)3(1)3(21)3(11)3()3(2)3(1)3(,,,,,,,,,,,),,,( (2.4)则第三层对第一层的层次总排序权重向量为)2()3()3(w W w =(2.5)一般地, 若层次模型共有s层, 则第k层对第一层的总排序权重向量为s k w W w k k k ,,4,3,)1()()( ==-(2.6)其中)(k W 是以第k 层对第1-k 层的排序权向量为列向量组成的矩阵,)1(-k w 是第1-k 层对第一层的总排序权重向量. 按照上述递推公式, 可得到最下层(第s 层)对第一层的总排序权重 向量为)2()3()1()()(w W W W w s s s -=(2.7) 对层次总排序权重向量也要进行一致性检验. 具体方法是从最高层到最低层逐层进行 检验. 如果所考虑的层次分析模型共有s 层. 设第l (s l ≤≤3)层的一致性指标与随机一致性指标分别为)()(2)(1,,,l n l l CI CI CI (n 是第1-l 层元素的数目)与)()(2)(1,,,l nl l RI RI RI , 令)1()(1)(1)(],,[-=l l l l w CI CI CI(2.8) )1()(1)(1)(],,[-=l l l l w RI RI RI(2.9)则第l 层对第一层的总排序权向量的一致性比率为s l RICI CRCRl l l l ,,4,3,)()()1()( =+=- (2.10)其中)2(CR 为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率.当最下层对第一层的总排序权重向量的一致性比率1.0)(<s CR 时, 就认为整个层次结构的比较判断可通过一致性检验.应用举例问题 在选购电脑时, 人们希望花最少的钱买到最理想的电脑. 试通过层次分析法建立数学模型,并以此确定欲选购的电脑.1. 建立选购电脑的层次结构模型选择的目标性能价格质量外观售后服务品牌1品牌2品牌3目标层准则层方案层图2-2该层次结构模型共有三层:目标层(用符号z 表示最终的选择目标); 准则层(分别用符号521,,,y y y 表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准则); 方案层(分别用符号321,,x x x 表示品牌1, 品牌2, 品牌3三种选择方案).2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度, 从建模者的个人观点出发, 设准则层对目标层的成对比较判断矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=13123/13/113/12/19/113123/12/122/115/139351A(2.11) (2) 建立方案层对准则层的成对比较判断矩阵,113/1113/1331,123/12/115/13511252/1135/13/11,12/15/1213/1531,1252/1135/13/1154321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B B B B B3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入<<Miscellaneous\RealOnly.m(*调用只求实数运算的软件包*)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算, 可避免精确解太长、太复杂*) T=Eigensystem[A]//Chop(*输入//Chop, 把与零非常接近的数换成零*)则输出{{5.00974,Nonreal,Nonreal,0,0},{{0.88126,0.167913,0.304926,0.0960557,0.304926}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {-0.993398,0,0.0673976,0.0662265,0.0650555}, {-0.65676,0,0.57431,0.043784,-0.486742}}} (输出中的Nonreal 表示复数)从中得到A 的最大特征值,00974.5max =λ及其对应的特征向量T x )304926.0,0960557.0,304926.0,167913.0,88126.0(=输入Clear[x]; x=T[[2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量T w )173739.0,0547301.0,173739.0,0956728.0,502119.0()2(=计算一致性指标1max --=n nCI λ,其中,00974.5,5max ==λn 故.002435.0=CI 查表得到相应的随机一致性指标 12.1=RI 从而得到一致性比率002174.0)2(==RI CICR 因,1.0)2(<CR 通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一 化后的特征向量)2(w 作为排序权重向量. 下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量, 输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}}; B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}}; B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}}; T1=Eigensystem[B1]//Chop T2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop则输出 {{3.00369,Nonreal, Nonreal}, {{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal, 0.871137}}};{{3.00369,Nonreal, Nonreal}, {{0.928119,0.328758,0.174679}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal,0.871137}}}{{3.00369, Nonreal, Nonreal}, {{0.928119,0.174679,0.328758}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3,0,0},{{0.904534,0.301511,0.301511}, {-0.973329,0.162221,0.162221}, {-0.170182,-0.667851,0.724578}}从上面的输出可以分别得到)5,,2,1( =j B j 的最大特征值000.3,00369.3,00369.3,00369.3,00369.354321=====λλλλλ 以及上述特征值所对应的特征向量TT T TT x x x x x )301511.0,301511.0,904534.0()328758.0,174679.0,928119.0()871137.0,46286.0,163954.0()174679.0,328758.0,928119.0()871137.0,46286.0,163954.0(54321=====其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[x1,x2,x3,x4,x5]; x1=T1[[2,1]]; w1=x1/Apply[Plus,x1] x2=T2[[2,1]]; w2=x2/Apply[Plus,x2] x3=T3[[2,1]]; w3=x3/Apply[Plus,x3] x4=T4[[2,1]]; w4=x4/Apply[Plus,x4] x5=T5[[2,1]]; w5=x5/Apply[Plus,x5]则输出TT T TT w w w w w )200000.0,200000.0,600000.0()229651.0,12202.0,648329.0()581552.0,308996.0,109452.0()12202.0,229651.0,648329.0()581552.0,308996.0,109452.0(54321===== 计算一致性指标)5,,2,1(1=--=i n nCI i i λ,其中,3=n 输入lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]} CI=(lamda-3)/(3-1)//Chop则输出0,0018473.0,0018473.0,0018473.0,0018473.054321=====CI CI CI CI CI查表得到相应的随机一致性指标)5,,2,1(58.0 ==i RI i计算一致性比率5,,2,1, ==i RI CI CR iii ,输入CR=CI/0.58则输出.0,003185.0,003185.0,003185.0,003185.054321=====CR CR CR CR CR因),5,,2,1(,1.0 =<i CR i 通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许 的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4. 计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表3.表3以矩阵表示第三层对第二层的排序权重计算结果为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2.0229651.0581552.012202.0581552.02.012202.0308996.0229651.0308996.06.0648329.0109452.0648329.0109452.0)3(W )3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为)2()3()3(w W w =为了计算上式, 输入W3=Transpose[{w1,w2,w3,w4,w5}]; ww3=W3.ww2则从输出结果得到T w )452037.0,272235.0,275728.0()3(= 为了对总排序权向量进行一致性检验, 计算)2(521)3().,,.,.(w I C I C I C CI =输入CI.ww2则从输出结果得到00152635.0)3(=CI 再计算)2(51)3(],,[w RI RI RI =,输入RI=Table[0.58,{j,5}]; RI.ww2则从输出结果得到 58.0.)3(=I R 最后计算 )3()3()2()3(./...I R I C R C R C +=,可得00480575.0.)3(=R C因为,1.0.)3(<R C 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值, 品牌3的电脑是建模者对这三种品牌机的首选. 实验报告1.根据你的设想购置一台计算机, 需考虑什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.2.根据你的经历设想如何报考大学, 需要什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.3.假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业, 正面临择业的问题, 你对工作的选择着重考虑下面几个因素: (1)单位的声誉; (2)收入; (3)专业是否对口; (4)是否有机会深造或晋升; (5)工作地点; (6)休闲时间. 对上述各种因素你可以根据自己的具体情况排序,也可以增加或减少所考虑的因素. 现在有四个单位打算你, 但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择.(注:素材和资料部分来自网络,供参考。

相关文档
最新文档