《高等数学教学课件》2011 第三节 三重积分的计算法
第三节三重积分的概念与计算-PPT课件
重积分
第三节 三重积分的概念与计算
一、三重积分的概念
问题的提出: 设空间立体 V 的密度函数为 f ( x, y, z ), 求立体 V 的质量 M 为了求 V 的质量,仍采用:分割、近似代替、
求和、取极限四个步骤.
首先把 V 分成 n 个小块
V1 , V2 , . . . , Vn ,
Vi 的体积 记为 V i
例1 设有一物体Ω=[0,1;0,1;0,1](即长方体)它在点
p(x,y,z)处的密度为点p到原点距离的平方,求物体的质
量M.
2 2 2 1 D xy
2 2 2 M ( x y z ) dxdydz dxdy ( x y z ) d 解 0
3 1 1 y y1 2 2 2 ( x y) dxdy ( x y ) dx 0 0 3 3 3 D xy
过点 ( x ,y ) D 作直线 , o xy
a
z2 S 2
z1
S1
z z ( x ,y ) 1
从 z 穿入,从 z b 1 2穿出.
x
( x, y)
D
y
y y ( x ) 2
y y ( x ) 1
先将 x , y 看作定值,将 f ( x , y , z ) 只看作 z 的 函数,则
1 2 13 2 ( x ) dx x x 1 0 3 3 3 0
1 2
其中 D : 0 x 1 , 0 y 1 xy
当积分区域是长方体的时候,三重积分的积分限最
容易安排
g ( x , y , z ) dV dx ( x , y , z ) dz dy g
高等数学《三重积分》课件
3
注: 1.可积性: f 连续 可积
2.物理意义
如果f(x,y,z)表示某物体在点(x,y,z)处的体密度,Ω 是该物体所占的空间闭区域,f(x,y,z)在Ω上连续, 则
物体的质量 M f ( x, y, z)dv 3.几何意义
的体积 V dxdydz
4.性质 同二重积分 4
8.3.2、直角坐标系下的三重积分的计算法
f (z, x,
y)]dV
若为球面x 2 y 2 z 2 R2所围,则
x 2dV
y 2dV
z2dV
1 3
[ x 2
y2
z 2 ]dV
13
例 3 利用对称性简化计算
z ln( x2 y2 z2 1)
x2 y2 z2 1 dxdydz 其中积分区域 {(x, y, z) | x2 y2 z2 1}.
其中A(z)是Dz的面积
习题8.3.1
20
o
y
或D(z),即
x
{( x, y, z)( x, y) Dz ,c1 z c2}
f ( x, y, z)dv c2 dz f ( x, y, z)dxdy (3)
c1 Dz
15
f (x, y, z)dv c2 dz
z
f ( x, y, z)dxdy
c1
Dz
上式的适用范围:
其中在每vi表个示v第i上i个任小取闭一区点域(,i ,也i表, 示i)它,的作体乘积积。f ( i ,
i,
i)
vi
(i=1,2,…
n
,n)
,
并作和 f (i ,i , i )vi。
如果当各i 1小闭区域直径的最大值 趋于零时
这个和的极限总存在, 则称此极限为函数
高等数学-重积分PPT课件
重积分的性质
线性性质
若α、β为常数,则∫[αf+βg]=α∫f+β∫g。
积分区域的可加性
若D1、D2是两个不相交的区域,则∫[D1∪D2]f=∫[D1]f+∫[D2]f。
保序性
若在D上,f(x,y)≤g(x,y),则∫[D]f≤∫[D]g。
绝对可积性
若f在D上可积,则|f|在D上也可积,且|∫[D]f|≤∫[D]|f|。
课件内容与结构
课件内容
本课件主要介绍重积分的基本概念、性质、计算方法和应用实例,包括二重积分和三重积分的定义、性质、计算 方法和应用等。
课件结构
课件按照“概念引入-性质探讨-计算方法-应用实例”的逻辑顺序进行编排,层次分明,条理清晰,便于学生理解 和掌握。
02
重积分的定义与性质
重积分的定义
二重积分的定义
计算消费者剩余和生产者剩余
02 重积分可用于计算消费者剩余和生产者剩余,通过对
需求函数和供给函数进行积分得到。
计算社会福利
03
重积分可用于计算社会福利,通过对消费者剩余和生
产者剩余进行加总得到。
06
重积分的数值计算方法
矩形法则与梯形法则
矩形法则
将积分区间划分为若干个小矩形,每个小矩形的面积近似等于其底边长度与高的乘积,将所有小矩形 的面积相加得到积分的近似值。
计算转动惯量
重积分可用于计算物体绕某轴的 转动惯量,通过对物体质量分布 和到轴距离的平方进行积分得到。
计算引力
重积分可用于计算两个物体之间 的引力,通过对两物体间的质量 分布和距离进行积分得到。
在工程学中的应用
计算面积和体积
重积分可用于计算平面图形或立体图形的面积和体积,通过对图形 的边界函数进行积分得到。
三重积分的计算与应用
三重积分的计算与应用积分是高等数学中的一个重要概念,它在数学、物理、工程等领域都有广泛的应用。
三重积分是对三维空间中的函数进行积分运算的一种方法,它可以用于计算三维体积、质心位置、质量、物理场的通量等问题。
在本文中,我们将介绍三重积分的计算方法以及一些常见的应用。
一、三重积分的计算方法三重积分在直角坐标系中的计算方法可以分为直角坐标系下的直接计算和变量替换法两种。
1. 直接计算直接计算是指根据积分的定义,将积分区域划分为许多小的体积元,然后对每个小体积元进行积分的方法。
在直角坐标系中,三重积分的计算公式为:∬∬∬_V f(x,y,z) dxdydz其中f(x,y,z)为被积函数,V为积分区域,dxdydz表示三维空间中的体积元。
通过将积分区域V划分成小的立方体,求解每个小立方体的体积和函数值的乘积,再将所有小立方体的贡献相加,即可得到三重积分的结果。
2. 变量替换法当被积函数的积分区域V的形状比较复杂时,直接计算的方法可能比较繁琐。
这时可以利用变量替换法来简化计算。
变量替换法是通过引入新的变量替换积分变量,使得积分区域转化为更简单的形式。
常用的变量替换方法包括球坐标系变换、柱坐标系变换和曲线坐标系变换等。
二、三重积分的应用三重积分在物理学、工程学和计算机图形学等领域有着广泛的应用。
1. 计算体积三重积分可以用来计算三维空间中各种复杂形体的体积。
通过将被积函数设为1,即可计算出积分区域的体积。
2. 质心位置质心是一个物体的重心位置,对于具有连续分布质量的物体,其质心位置可以通过三重积分来计算。
通过将被积函数分别为x、y、z乘以质量密度,然后对三重积分进行计算,即可得到质心位置的坐标。
3. 质量如果一个物体的质量分布在三维空间中不均匀,可以通过三重积分来计算其质量。
将被积函数设为质量密度,然后对积分区域进行三重积分,即可得到质量的大小。
4. 物理场的通量物理场的通量表示单位时间通过单位面积的物理量。
三重积分 ppt课件
n k 1
f
(
k
,k
,
k
)vk
记作
f (x, y, z)dv
存在, 则称此极限为函数 f (x, y, z) 在 上的三重积分.
dv称为体积元素, 在直角坐标系下常写作 dxdydz.
性质: 三重积分的性质与二重积分相似.
ppt课件
3
目录 上页 下页 返回 结束
二、三重积分的计算
其中 由抛物面
x2 y2 4z 与平面 z h (h 0)所围成 .
z
h
解: 在柱面坐标系下
原式 =
2π 2
d
0
0
h
1
2
d
h
2 d z
xO y
4 dv d ddz
2
2π
0
h
1
2
(h
2
4
)
d
ppt课件
10
目录 上页 下页 返回 结束
围成 , f (x, y, z) C( ).
提示:
:
1
y
2
1 2
x
I
2
dx
2
1 2
x
d
y
2
f (x, y, z)dz
01
x
ppt课件
14
目录 上页 下页 返回 结束
2. 设
计算
提示: 利用对称性
原式 = d x d y x2 y2 1 0
奇函数
ppt课件
因此有
d d r
r d
f (x, y, z)dxdydz
三重积分计算--课件
化三重积分为三次积分
计算三次积分
z1 ( x, y) z z2 ( x, y) 用平行于z 轴的直线穿Ω
(2) 将三重积分化为三次积分:
dxdy
Dxy
z2 ( x , y ) z1 ( x , y )
f ( x, y, z )d z
(3) 计算三次积分.
例1 计算三重积分
平面x 2 y z 1 所围成的闭区域 .
三重积分的计算(一)
回顾:
在求密度分布不均匀几何体质量的过程中, 推导出了三重积分的定义:
d (T ) 0
lim
f ( , ,
k 1 k k
n
k
)Vk f ( x, y, z )dV
三重积分的计算
计算三重积分 I f ( x, y, z )dV 其中:Ω为关于z轴的
1
xy
d
z
z2 ( x, y)
d [
Dxy
z2 ( x , y )
z1 ( x , y )
f ( x, y, z )dz ]
平面薄片的面 密度
z1 ( x, y)
( x, y )
压缩后平面 薄片的质量
O
y
d
先一后二投影法
x
Dxy
投影法计算三重积分的计算步骤 (1) 用不等式表示积分区域 a xb 将Ω投影到xOy 面得Dxy Dxy : y1 ( x) y y2 ( x) :
1 x 2 y
0
xdz x d x
0
1
0
1 x 2 y
dz
1 (1 x ) 2
1 1 1 2 3 (1 x 2 y )d y ( x 2 x x )d x 4 0 48
三重积分-高等数学PPT
z
d
d
dz
o
f ( x, y, z)dxdydz
x
d
y
f ( cos , sin , z)dddz.
17
例1. 计算三重积分 z x 2 y 2 d x d yd z z
其中为由柱面 y 2 x-x2 及平面 z 0 ,
a
z a (a 0) , y 0 所围成半圆柱体.
x 2 y 2 4 z 与平面 z h (h 0) 所围成 .
h
解: 在柱面坐标系下
d xd yd z 1 x2 y2
2 2
d
0
h 0
1
2
d
h
2
d
z
o
x
y
4
2
2
h 0
1
2
(h
2
4
)d
4
[(1
4h) ln(1
4 h)
4 h]
d v d d1d9 z
例3 计算I zdxdydz,其中是球面
6
例1. 计算三重积分 xd xd yd z
z
1
其中为三个坐标面及平面 x 2 y z 1
所围成的闭区域 .
解: xdxdydz
1 2
y
x1
1
1 2
(1
x
)
1 x2 y
xdx dy dz
0
0
0
1
1 2
(1
x
)
xdx (1
x
2
y)d
y
1
1
(x
2x2
x3)d
x
1
0
0
40
三重积分的计算方法
学法教法研究任水平,对公司、对社会也将是一件善事。
一是建立明晰的伦理道德责任。
从目前来看,各种类似“天津港的爆炸案”的案例已经不在少数,每天可能都在上演着,尽管造成这种事故的原因各式各样,有的是自然因素,有的是人为因素,但只要我们细细分析,大多与我们工程师的道德观念崩塌有着或多或少的关系,更有甚者,工程师没有履行职责,尤其是伦理责任没有到位而造成了巨大的损失。
二是建立责任评价和追究机制。
目前,我国的工程师主要是在公司、企业、政府担任一定的职责,在承担责任时往往都是单位,尤其是在追究道德层面的责任,由于责任不清晰,无法认定。
或者根本就没有单独制定这样的评价机制。
对工程师的约束就很少以至于没有,所以,建立公开、公正、公平的工程责任评价和追究机制是非常必要的,从制度机制层面明确工程活动主体的责任,对于社会、对企业或者工程师个人都是大有裨益的。
三是加强伦理教育,提升工程师伦理责任意识。
我们无论大学还是社会,对于工程师的伦理道德教育都不能放松,没有一定的伦理道德教育作为基础,想要工程师们的伦理责任有大幅的提高也是不可能的。
目前,我们的高校在人才培养上,可能注重工程专业技术的培训多,而对于工程师伦理责任的培养却是非常的少,重视程度还不是很够。
所以我们大学应该采取多种措施,加大对工程师伦理道德的培养。
当然,在现实社会中,工程伦理又是实践性和应用性很强的学科,必须结合工程的实际问题,培养出具有生态伦理价值观、思维观和执行力的工程技术人才。
通过以上结合天津港爆炸事件分析,对工程师的伦理责任有了更深层次的认识。
社会的进步和发展离不开工程建设活动,生态文明建设更离不开有效的工程活动,我们的工程师要切实树立增强伦理责任的理念,在工程的设计、施工中既要体现对企业、对公司的经济效益负责,又要体现出对社会、对环境的责任。
参考文献:[1]李世新.谈谈工程伦理学[J].哲学研究,2013(02).[2]张铁山.论阻碍工程师伦理责任发挥的因素及其对策[J].漯河职业技术学院学报,2012(01).[3]何放勋.论工程师的伦理责任[J].湖南工程学院学报,2012(04).[4]胡岩.对工程师伦理责任的探讨[J].中北大学学报(社会科学版),2012(04).三重积分的计算方法张辉李应岐陈春梅(火箭军工程大学理学院陕西西安710025)【摘要】介绍了计算直角坐标下三重积分的六种方法,给出相应的求解思路,并辅以典型例题,旨在使学生对三重积分的计算有更深的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a cos
2 2 d
0
2
3 2a cos
4a 2 r 2 rdr
2
2 3
(4a
2
r
2)2
d
2
0
2 3
3
2 [8a 3 (4a 2 4a 2 cos 2 ) 2 ]d
4 3
2 (8a3 8a3 sin3 )d
0
2
32 3
a
3
(
2
2 sin3 d )
0
32 3
a
3
(
2
2 3
2 sind )
0
32 3
a
3
(
2
2 3
).
例10、将直角坐标形式的二次积分
2
4 x x2
4
4 x x2
I dx
f ( x, y)dy dx
0
2 x x2
2
0
f ( x, y)dy
化为极坐标形式的二次积分.
解
4 cos
I 2 d rf (r cos , r sin )rdr.
D3 : x 2 y 2 2a 2 , x 0, y 0
( a e x2 dx)2 a e x2 dx a e y2 dy e ( x2 y2 )dxdy
0
0
e ( x2 y2 )dxdy
e
0
(
x
2
y
2
)
D2
dxdy
e ( x2 y2 )dxdy
D1
D2
( )
a 0
e x2 lim
a
dx)2
4
(1
4
(1
e 2a2 )
e
4
2a2
)
e x2 dx
0
2
.
例9、计算x 2 y 2 z 2 4a 2与x 2 y 2 2ax所围
(含在x 2 y 2 2ax内)立体的体积.
解
V 2 4a 2 x 2 y 2 dxdy
D
0
2 cos
例11、计算椭圆x2 a2
y2 b2
1所围的面积.
解
广义
极坐标变换:xy
ar br
cos sin
;
0 2 ,0 r 1
J x
xr ar sin
a cos
abr; J abr
y yr br cos b sin
2
1
面积A dxdy J ddr abrddr ab0 d 0 rdr ab.
i
,
其中f
(
x,
y,
z
)称为被积函数,
y, z称为积分变量,称dv为体积微元,
体积微元在选择直角坐标时可表示为dxdydz.
直角坐标系下三重积分的计算方法:
"先一后二"计算方法:
假设积分区域为:
: ( x, y) Dxy .
z1 ( x, y) z z2 ( x, y);
则
f ( x, y, z)dv dxdy z2 ( x, y) f ( x, y, z)dz
D
D
D
第三节、三重积分的计算法
一、直角坐标下的三重积分计算
定义、设函数f ( x, y, z)是空间有界闭区域上的有界函数,
任给一个分割 v1 , v2 ,..., vn .其中vi 表示分割的第i块小
区域, 同时也表示该小区域的体积.任取(i ,i , i ) vi ,
i 1,2,..., n.
系 下 的 三 次(累 次)积 分, 其 中 积 分 区 域分 别 为:
(1).由y
x,
y
0, z
0和x
z
2
所围成.
(2).由z xy, x y 1和z 0所围成.
解(1).
x
f
( x,
y,
z)dxdydz
dxdy 2 0
f ( x, y, z)dz
Dxy
2 dx
x
dy
2
x
f
n
作和式: f ( i ,i , i )vi
f (1 ,1 , 1 )v1 i1 f (2 ,2 , 2 )v2 ... f (n ,n , n )vn
记d i 为v i的直径(v i中任意两点间的距离的最大值),
i 1,2,....,
n
f (i ,i ,
n.
max
1 i n
{d
i
}为
Dxy
z1 ( x , y )
"先二后一"计算方法:
假设积分区域为:
: c zd
( x, y) D(z);
则
d
f ( x, y, z)dv c dz f ( x, y, z)dxdy
D(z)
例1、计算三重积分 xdxdydz,其中为三个坐标面
及平面x 2 y z 1所围成的闭区域.
及z 1, z 2所围成的圆台体.
解
: 1 z 2,
"先二后一"计算方法:
( x, y) D(z) : x 2 y 2 z 2 ,
zdxdydz
2
dz zdxdy
1 D(z)
2
zdz
1
dxdy
D(z)
2z 3dz
1
15 4
.
例3、将三重积分 f ( x, y, z)dxdydz化为直角坐标
分割的
模.
令
i )vi的极限存在,则称f ( x, y, z
0 , 若和式 )在上可积,
i 1
称极限值为f
( x,
y,
z)在上的三重积分,
记为:
f
( x( x, y, z
z)dv
)dv为
lim
0
i 1
f (i ,i ,
被积表达式, x,
i
)v
e ( x2 y2 )dxdy 2 d 0
a e r2 rdr
0
D3
1 2
2 (1 e a2
0
)d
4
(1
e a2
)
D1
e ( x2 y2 )dxdy
2 d
0
0
2a e r2 rdr
1 2
2 (1 e 2a2
0
)d
4
(1 e 2a2 ).
4D2(1
lim
a
4
ea2 ) (1 e a2
例8、计算 e ( x2 y2 )dxdy,其中D : x 2 y 2 a 2 ,并求 e x2 dx. 0
D
解 e ( x2 y2 )dxdy
2
d
a e r2 rdr
0
0
D
2
(
0
12e
r2
)
a 0
d
1 2
(1
e
a2
)
2 0
d
(1 e a2 ).
令:D1 : x 2 y 2 a, x 0, y 0; D2 : 0 x a,0 y a
解 "先一后二"计算方法:
1 x2 y
xdxdydz dxdy0 xdz
D
1
1 x
1 x2 y
xdx 2 dy
0
0
0
dz
1
xdx
1 x
2 (1 x 2 y)dy
1
x(
y
xy
y2)
1 x 2
dx
0
0
0
0
1 4
1
(x
0
2x2
x 3 )dx
1 48
.
例2、计算三重积分 zdxdydz,其中是由曲面x 2 y 2 z 2
( x,
y, z)dz.
0
0
0
(2).由z xy, x y 1和z 0所围成
解(2).
xy
f ( x, y, z)dxdydz dxdy0 f ( x, y, z)dz