《高频电子线路》振荡器频率稳定度
高频电子线路最新版课后习题解答第五章 正弦波振荡器习题解答
思考题与习题5.1 振荡器是一个能自动将直流电源提供的能量能量转换成交流能量的转换电路,所以说振荡器是一个能量转换器。
5.2 振荡器在起振初期工作在小信号甲类线性状态,因此晶体管可用小信号微变等效电路进行简化,达到等幅振荡时,放大器进入丙类工作状态。
5.3 一个正反馈振荡器必须满足三个条件:起振条件、平衡条件、稳定条件(3)正弦波振荡器的振幅起振条件是;T=A k f >1相位起振条件是2f T A k n ϕϕϕπ=+=;正弦波振荡器的振幅平衡条件是:T=A k f =1,相位平衡条件是:2f T A k n ϕϕϕπ=+=;正弦波振荡器的振幅平衡状态的稳定条件是:0i iAiV V T V =∂<∂,相位平衡状态的稳定条件是:0oscT ωωϕω=∂<∂。
5.4 LC 三点式振荡器电路组成原则是与发射极相连接的两个电抗元件必须性质相同,而不与发射极相连接的电抗元件与前者必须性质相反,且LC 回路满足0ce be cb x x x ++=的条件。
5.5 从能量的角度出发,分析振荡器能够产生振荡的实质。
解:LC 振荡回路振荡在进行电能、磁能相互转换的过程中的能量损耗,由正反馈网络提供补偿,将直流电源提供的直流能量转换为交流输出。
5.6 为何在振荡器中,应保证振荡平衡时放大电路有部分时间工作在截止状态,而不是饱和状态?这对振荡电路有何好处? 解:之所以将振荡平衡时放大电路有部分时间工作在截止状态,而不是饱和状态是因为在截止状态集电极电流小,功率损耗低。
这样可以保证振荡管安全工作。
5.7 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么?解:不正确。
因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。
但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。
若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。
5.8 分析图5.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。
《高频电子线路》晶体振荡器与压控振荡器实验
《高频电子线路》晶体振荡器与压控振荡器实验一、实验目的1、掌握晶体振荡器与压控振荡器的基本工作原理。
2、比较LC振荡器和晶体振荡器的频率稳定度。
二、实验内容1、熟悉振荡器模块各元件及其作用。
2、分析与比较LC振荡器与晶体振荡器的频率稳定度。
3、改变变容二极管的偏置电压,观察振荡器输出频率的变化。
三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理1、晶体振荡器:将开关S2拨为“00”,S1拨为“10”,由N1、C3、C10、C11、晶体CRY1与C4构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
2、LC压控振荡器(VCO):将S2拨为“10”或“01”,S1拨为“01”,则变容二极管D1、D2并联在电感L1两端。
当调节电位器W2时,D1、D2两端的反向偏压随之改变,从而改变了D1和D2的结电容C j,也就改变了振荡电路的等效电感,使振荡频率发生变化。
3、晶体压控振荡器:开关S2拨为“10”或“01”,S1拨为“10”,就构成了晶体压控振荡器。
图6-1 正弦波振荡器(4.5MHz)五、实验步骤1、(选做)温度对两种振荡器谐振频率的影响。
1)将电路设置为LC振荡器(S1设为“01”),在室温下记下振荡频率。
(频率计接于P1处。
)2)将加热的电烙铁靠近振荡管N1,每隔1分钟记下频率的变化值。
3)开关S1交替设为“01”(LC振荡器)和“10”(晶体振荡器),并将数据记于表6-1。
表6-1 振荡器数据对比记载表2、两种压控振荡器的频率变化范围比较1)将电路设置为LC压控振荡器(S1设为“01”),频率计接于P1,直流电压表接于TP7。
2)将W2调节从低阻值、中阻值、高阻值位置(即从左→中间→右顺时针旋转),分别将变容二极管的反向偏置电压、输出频率记于下表中。
将电路设置为晶体压控振荡器(S1拨为“10”),重复步骤2),将测试结果填于下表。
3)六、实验报告要求1、比较所测数据结果,结合新学理论进行分析。
高频电子线路实验指导书
实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
4)、比较LC 与晶体振荡器的频率稳定度。
二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。
三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。
2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。
L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。
(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
《高频电子线路》实验指导书
《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。
选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。
本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。
本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。
此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。
本实验系统力求电路原理清楚,重点突出,实验内容丰富。
其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。
同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。
由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。
编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。
2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。
为保险起见,建议拔下电源线后再安装实验模块。
3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。
确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。
经仔细检查后方可通电实验。
4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。
5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
6、各模块中的贴片可调电容是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。
高频电子线路第四版第7章正弦波振荡器
Av
Av 0 1
1
jQL
0
0
arc
tanQ
0
0
图 7.5.4 并联谐振回路的 相频特性
7.6.1 互感耦合振荡器 7.6.2 电感反馈式三端振荡器
(哈特莱振荡器)
7.6.3 电容反馈式三端振荡器 (考毕兹振荡器)
7.6.4 LC三端式振荡器相位平衡条件 的判断准则
放大器与振荡器本质上都是将直流电能转化为交 流电能,不同之处在于:放大器需要外加控制信号而 振荡器不需要。因此,如果将放大器的输出正反回输 入端,以提供控制能量转换的信号,就可能形成振荡 器。
被保留,成为等幅振荡输出信号。(从无到有)
然而,一般初始信号很微弱,很容易被干扰信号淹没,不 能形成一定幅度的输出信号。因此,起振阶段要求
起振条件 A(0 ) F (0 ) 1 (由弱到强)
A (0 ) F (0 ) 2nπ
当输出信号幅值增加到一定程度时,就要限制它继续增加。 稳幅的作用就是,当输出信号幅值增加到一定程度时,
如果由LC谐振回路通过互感耦合将输出信号送
回输入回路,所形成的是互感耦合振荡器。
由互感耦合同名端定义可判知,反馈网络形成 正反馈,满足相位平衡条件。如果再满足起振条件, 就符合基本原理。射基(集)同名
三极管,LC谐振回路
变压器
如果正反馈网络由LC谐振回路中的电感分压电路将输出信号
送回输入回路,所形成的是电感反馈式三端振荡器。
而对于基频和3次泛音频率来 说,回路呈感性,振荡器不满足相 位平衡条件,不能产生振荡。而对 于7次及其以上的泛音频率,回路 呈容性,但其电容量过大,负载阻 抗过小,以致电压增益下降太多, 不能起振。
图 7.8.5 泛音晶体振荡器 交流等效电路
《高频电子线路》实验指导书
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE
是
否
原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷
高频电子线路知识点
1-4接收设备的结构通常采用超外差形式 2超外差结构的接收设备在接收过程中,将射频输入信号与本地振荡器产生的信号混频或差拍,由混频器后的中频滤波器选出射频信号与本振信号频率两者的和频或差频。
3在现代高性能宽带超外差接收机中,通常采用向上变频方式,并至少需要两次频率变换。
4在超外差接收机中,中频频率是固定的,当信号频率改变时,只要相应地改变本地振荡信号频率即可。
5高频电路的基本内容(高频前端)包括:5个 (1)高频振荡器(信号源、载波信号或本地振荡信号) (2)放大器(高频小信号放大器及高频功率放大器) (3)混频或变频(高频信号变换或处理) (4)调制与解调(高频信号变换或处理) (5)自动相位控制(APC)电路(也称锁相环PLL) 6调制特性:3个 (1)便于发射 (2)频分复用 (3)改善信噪比(SNR) 7表面贴装(SMD)电阻比引线电阻的高频特性要好。
SMD 表面贴装器件 8品质因数Q 定义为高频电感器的感抗与其串联损耗电阻之比。
Q 值越高,表明该电感器的储能作用越强,损耗越小。
9晶体谐振器与一般振荡回路比较,有几个明显的特点:4个 (1)晶体的谐振频率fq 和f0(下标)非常稳定。
这是因为Lq 、Cq 、C0(下标)由晶体尺寸决定,由于晶体的物理特性,它们受外界因素(如温度、震动等)影响小。
(2)晶体谐振器有非常高的品质因数。
一般很容易得到数值上万的Q 值,而普通的线圈和回路Q 值只能到一二百。
(3)晶体谐振器的接入系数非常小,一般为10^-3数量级,甚至更小。
(4)晶体在工作频率附近阻抗变化率大,有很高的并联谐振阻抗。
所有这些特点决定了晶体谐振器的频率稳定度比一般振荡回路要高。
10阻抗变换的目标是实现阻抗匹配,阻抗匹配时负载可以得到最大传输功率,滤波器达到最佳性能,接收机的灵敏度得以改善,发射机的效率得以提高。
11S 串R 并,电阻R ,电抗X )11(X )1(R 222222Q X X X R Q R R X R S S S S p S SS S p +=+=+=+=12电阻R 两端噪声电压的均方值kTBR dt e T E T n T N 41022lim ==⎰∞→ 17随着n 的增加,总带宽将减小,矩形系数有所改善。
高频实验报告
(6)调节调制信号的大小,观察m=100%和m>100%两种调幅波在过零点处的波形情况,比较他们的区别。
3.普通调幅波解调
(1)将示波器CH2接幅度调制模块中调幅波输出端J23(TF.OUT)。根据实验步骤调节红色旋钮VR5将输出信号设置为峰峰值为Vp-p=150mv左右的调幅信号,并调整调制信号大小使调幅度m<30%。
实验报告
课程名称:高频电子线路实验
实验项目:正弦波振荡器、振幅调制与解波
实验仪器:
系别:光电信息与通信工程
专业:通信工程
班级/学号:
学生姓名:
实验日期
成绩
实验一正弦波振荡器
一、实验目的:
1、掌握三端式振荡电路的基本原理,起震条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
CAP可变为C7、C14、C23、C19其中一个。为了满足起振条件的要求F的值不能太大也不能太小,通常取为1/3-1/8。其中Cj为变容二极管2CC1B,根据所加的静态电压对去静态电容,CT3为5-20PF的半可变电容。该高频等效电路未考虑负载电阻。西勒电路是在克拉波电路的基础上在电感两端并联了一个小电容,且满足CAP远大于(CT1+CT17),故其回路等效电容C≈CT1+CT17+Cj。故振荡频率f0=1/2л 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。
用MC1496集成电路构成的条幅电路如下图所示,图中VR8用调节引出脚1、4之间平衡,R39与R46与电位器VR8组成平衡调节电路,改变VR8可以调节输出载波信号的大小,以使乘法器实现抑制载波的振幅调制或有载的振幅调制,脚1和脚4分别接电阻R43和R49可以较好的抑制载波漏信号和改变温度性能,器件采用双电源供电方式
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(⾼频电⼦线路实验报告)三点式正弦波振荡器⼀、实验⽬的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态⼯作点、反馈系数⼤⼩、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
⼆、实验内容1、熟悉振荡器模块各元件及其作⽤。
2、进⾏LC 振荡器波段⼯作研究。
3、研究LC 振荡器中静态⼯作点、反馈系数以及负载对振荡器的影响。
4、测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪⽰波器 1台4、万⽤表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可⽤来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围)振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输⼊端,因C 5容量很⼩,再加上射随器的输⼊阻抗很⾼,可以减⼩负载对振荡器的影响。
射随器输出信号经N3调谐放⼤,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作⽤。
2、研究振荡器静态⼯作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万⽤表红表笔接TP2,⿊表笔接地测量V e ),并⽤⽰波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态⼯作点的关系,测量值记于表2中。
高频电子线路 振荡器的频率和振幅稳定度汇总
减小晶体管极间电容在总电容中的比例。减小管子 输入、输出阻抗及其变化量对回路的影响。
回路总电容量不可过大,否则L过小,不利稳频 EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
4.3.2 振幅稳定度
指在规定条件下,输出信号幅度的相对变化量。 振幅稳定度表示为
U Uo
Uo 为输出电压的标称值, ∆U 为实际输出电压与标称值之差。
主要由于器件老化。 短期频率稳定度 一天之内振荡频率的相对变化量 主要由于温度、电源电压等外界因素变化 瞬时频率稳定度 秒或毫秒内振荡频率的相对变化量 EXIT
由电路内部噪声或突发性干扰引起。
高频电子线路
4.3 振荡器的频率和振幅稳定度
4.3.1 频率稳定度
一、频率稳定度的概念
中波广播电台发射机的频率稳定度为 电视发射机的频率稳定度为
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
三、提高频率稳定度的主要措施
1. 减小外界因素变化的影响 2. 提高谐振回路的标准性 选用高质量的参数稳定的回路电感器和电容器。 选用具有不同温度系数的电感和电容构成谐振回路 改进按照工艺,缩短引线、加强引线机械强度。 增加回路总电容量,减小晶体管与谐振回路间的耦合。
f f f 0
频率稳定度表示为
f f0
f指实际频率,f0 指标称频率 测量时,∆f要取多次 测量结果的最大值。
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
4.3.1 频率稳定度
一、频率稳定度的概念
按照所规定时间的不同,频率稳定度分为 长期频率稳定度 一天以上乃至几个月内振荡频率相对变化量
3
10 5 10 7
高频电子线路实验报告
高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。
2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。
二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图 2-1 所示(模块②上)。
图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。
它对输入的高频小信号进行放大,并具有一定的选频作用。
基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。
可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。
四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。
2.按图 2-2 所示图连接好实验电路。
3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。
4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。
5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。
频率为 10.5MHz 左右的高频信号。
将信号输入到 2 号板的 J4 口。
先用示波器在 TH1 处观察信号峰-峰值约为 50mV。
(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。
高频电子线路最新版课后习题解答第二章 选频网络与阻抗变换习题解答
第二章 选频网络与阻抗变换网络思考题与习题2.1选频网络的通频带指归一化频率特性由1下降到 0.707 时的两边界频率之间的宽度。
理想选频网络矩形系数1.0k = 1 。
2.2 所谓谐振是指LC串联回路或并联回路的固有频率0f 等于 信号源的工作频率f 。
当工作频率f <0f 时,并联回路呈 感 性;当工作频率f >0f 并联回路呈 容 性;当工作频率f =0f 时,并联谐振回路的阻抗呈 纯阻 性且最 大 。
2.3 若0f 为串联回路的固有频率。
当信号源的工作频率f<0f 时,串联回路呈 容 性;当工作频率f >0f 串联回路呈 感 性;当工作频率f =0f 时,串联谐振回路的阻抗呈 纯阻 性且最 小 。
2.4 串、并联谐振回路的Q值定义为2π谐振时回路总储能谐振时回路一周内的耗能。
Q值越大,意味着回路损耗小 ,谐振曲线越 陡 ,通频带宽越 窄 。
当考虑LC谐振回路的内阻和负载后,回路品质因数 下降 。
2.5 设r 为LC 并联谐振回路中电感L 的损耗电阻,则该谐振回路谐振电阻为reo L R C =,品质因数为ro o L Q ω= ,谐振频率为o ω谐振时流过电感或电容支路的电流为信号源电流的o Q 倍。
2.6 设r 为LC串联谐振回路中电感L的损耗电阻,则回路的品质因数为ro o L Q ω=,谐振频率为o ω=o Q 倍。
2.7 已知LC 串联谐振回路的C =100pF ,0f =1.5MHz ,谐振时的电阻5r =Ω,试求:L 和0Q 。
解:由0f =得22025330253301.5100L f C ==⨯112.6H μ=66002 1.510112.6105LQ r ωπ-⨯⨯⨯⨯==212≈2.8 在图2.T.1所示电路中,信号源频率f 0=1MHz ,信号源电压振幅s V =0.1mV ,回路空载Q值为100,r 是回路损耗电阻。
将1、2两端短路,电容C 调至100pF 时回路谐振。
高频电子线路-模拟测试题库
高频电子线路试题一、填空题1.放大器的噪声系数N F是指输入端的信噪比与输出端的信噪比两者的比值,用分贝表示即为 10lg(P si/P Ni)/(P so/P No)。
2.电容三点式振荡器的发射极至集电极之间的阻抗Z ce性质应为容性,发射极至基极之间的阻抗Z be性质应为容性,基极至集电极之间的阻抗Z cb性质应为感性。
3.根据干扰产生的原因,混频器的干扰主要有组合频率干扰、副波道干扰、交调干扰和互调干扰四种。
4.无论是调频信号还是调相信号,它们的ω(t)和φ(t)都同时受到调变,其区别仅在于按调制信号规律线性变化的物理量不同,这个物理量在调相信号中是∆ϕ(t),在调频信号中是∆ω(t)。
5.锁相环路由鉴相器、环路滤波器和压控振荡器组成,它的主要作用是用于实现两个电信号相位同步,即可实现无频率误差的频率跟踪。
二、选择题1.当两个频率不同的单频信号送入非线性器件,产生的组合频率最少的器件是(C) A.极管 B.三极管 C.场效应管2.单频调制时,调相波的最大相偏Δφm正比于( A )A.UΩ B.uΩ(t) C.Ω3.利用高频功率放大器的集电极调制特性完成功放和振幅调制,功率放大器的工作状态应选( C ) A.欠压 B.临界 C.过压4.正弦振荡器中选频网络的作用是(A) A.产生单一频率的正弦波 B.提高输出信号的振幅 C.保证电路起振5.石英晶体谐振于fs时,相当于LC回路的( A) A.串联谐振现象 B.并联谐振现象 C.自激现象 D.失谐现象6.利用非线性器件相乘作用来实现频率变换时,其有用项为( B )A、一次方项B、二次方项C、高次方项D、全部项7.判断下图是哪一类振荡器(C)A.电感三点式 B.电容三点式C.改进的电容三点式 D.变压器耦合式8.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩcosΩt,则普通调幅波的表达式为(C)A.u AM(t)=U C cos(ωC t+m a sinΩt) B.u AM(t)=U C cos(ωC t+m a cosΩt)C.u AM(t)=U C(1+m a cosΩt)cosωC t D.u AM(t)=kUΩU C cosωC tcosΩt9.某超外差接收机的中频f I=465kHz,输入信号载频fc=810kHz,则镜像干扰频率为(C)A.465kHz B.2085kHz C.1740kHz 10.混频器与变频器的区别(B)A.混频器包括了本振电路 B.变频器包括了本振电路C.两个都包括了本振电路 D.两个均不包括本振电路11.直接调频与间接调频相比,以下说法正确的是(C)A.直接调频频偏较大,中心频率稳定 B.间接调频频偏较大,中心频率不稳定C.直接调频频偏较大,中心频率不稳定 D.间接调频频偏较大,中心频率稳定12.一同步检波器,输入信号为u S =U S cos(ωC+Ω)t,恢复载波u r =U r cos(ωC t+φ),输出信号将产生(C)A.振幅失真 B.频率失真 C.相位失真13.鉴频特性曲线的调整内容不包括(B)A.零点调整 B.频偏调整C.线性范围调整 D.对称性调整14.某超外差接收机接收930kHz的信号时,可收到690kHz和810kHz信号,但不能单独收到其中一个台的信号,此干扰为(D)A.干扰哨声 B.互调干扰C.镜像干扰 D.交调干扰15.调频信号u AM(t)=U C cos(ωC t+m f sinΩt)经过倍频器后,以下说法正确的是(C)A.该调频波的中心频率、最大频偏及Ω均得到扩展,但m f不变B.该调频波的中心频率、m f及Ω均得到扩展,但最大频偏不变C.该调频波的中心频率、最大频偏及m f均得到扩展,但Ω不变D.该调频波最大频偏、Ω及m f均得到扩展,但中心频率不变三、简答题1.小信号谐振放大器与谐振功率放大器的主要区别是什么?答:1)小信号谐振放大器的作用是选频和放大,它必须工作在甲类工作状态;而谐振功率放大器为了提高效率,一般工作在丙类状态。
高频电子线路实验指导书
高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。
2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。
信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。
高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。
按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。
旋转高频频率调节旋钮可以改变输出高频信号的频率。
另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。
音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。
按频率档位选择可在两个档位间切换,并且相应的指示灯亮。
调节音频信号频率调节旋钮可以改变信号的频率。
分别改变三种波形的幅度调节旋钮可以调节输出的幅度。
本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。
调频波的音频信号为正弦波,载波为信号源内的高频信号。
改变“FM频偏”旋钮调节输出的调频信号的调制指数。
按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。
调节“AM调幅度”可以改变调幅波的幅度。
面板下方为5个射频线插座。
“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。
高频电子线路试题与答案
一、填空题1. 丙类功放按晶体管集电极电流脉冲形状可分为__欠压、__临界__、__过压__ 三种工作状态,它一般工作在___临界____ 状态。
2. 振荡器的主要性能指标_频率稳定度_、_振幅稳定度_。
3. 放大器内部噪声的主要来源是__电阻__和__晶体管__。
4. 某发射机输出级在负载RL=1000Ω上的输出信号Us(t)=4(1+0.5cosΩt)COSWctV。
试问Ma=__0.5__,Ucm=__4V__,输出总功率Pav=__0.009W_ 。
5. 实现频率调制就是使载波频率与调制信号呈线性规律变化,实现这个功能的方法很多,通常可分为__直接调频__和__间接调频___两大类。
6. 相位鉴频器是先将调频信号变换成__调相-调频__信号,然后用___相位检波器___进行解调得到原调制信号。
二、选择题1. 频率在1.5—30MHz范围的短波主要依靠(C )方式传播。
A 沿地面传播B 沿空间直线传播C 依靠电离层传播2. 在实际振荡器中,有时会出现不连续的振荡波形,这说明振荡器产生了周期性的起振和停振现象,这种现象称为(B )。
A 频率占据B 间歇振荡C 寄生振荡4. 集成模拟相乘器是(B )集成器件。
A 线性B 非线性C 功率5. 自动增益控制电路是(A )。
A AGCB AFC C APC三、分析题(共4题,共45分)1. 通信系统中为什么要采用调制技术。
(8分)答:调制就是用待传输的基带信号去改变高频载波信号某一参数的过程。
采用调制技术可使低频基带信号装载到高频载波信号上,从而缩短天线尺寸,易于天线辐射,实现远距离传输;其次,采用调制可以进行频分多路通信,实现信道的复用,提高信道利用率。
2.晶体振荡电路如图1所示,若f1为L1C1的谐振频率,f2为L2C2的谐振频率,试分析电路能否产生自激振荡。
若能振荡,指出振荡频率与f!、f2之间的关系。
(12分)+V CC答:由图可见电路可构成并联型晶体振荡器。
高频电子线路第4章-正弦波振荡器
,
满
足
相
位 U
平
ce
衡
条件
,
I
I
UUi f
23
3、起振条件 (A0F 1)
分析起振条件时可以利用高 频小信号放大器的分析法。
C1
g
' 0
(1)
C1 Coe , C2
p12 g0 p1
电压增益
CC1' 2CC2'ie C2'
,
A0
Uc Ui
y fe g
g goe gL g0' p2 gie
C1、C2、L构成振荡回路
反馈信号取自C2两端
c b
C1
e
C2
电容三点 L 式振荡器
直流通路
交流等效电路
22
2、相位平衡条件
用矢量法分析其交流通路是否 满足相位平衡条件,即分析电路 是否为正反馈。
U f
I •
1
jC2
I •
1 j
C2
U+ce
U+ i
-
-
U- f
+
可 可
见U f、U 能振荡
同
i
相
3○ 5⊕ 4○
1⊕ 2○ (f)经判断满足相位平衡条件,故 可能振荡,为共射调基型互感耦 合振荡器。
34
例2 考毕兹电路见图,已知C1 100pF,C2 300pF,
L 50uH,求(: 1)振荡频率f0, (2)为维持振荡,
放大器所需的最小放大倍数Amin
解:(1) f0
2
1 L C1C2
bc e
结论:射同集(基)反
(3) 对于振荡频率,应满足:
《高频电子线路》试卷
安徽农业大学2008―2009学年第一学期《高频电子线路》试卷(A卷)一填空题(每空1分,共20分)1. 某无线通信系统的工作频率为100MHz,它属于波段,波长λ=米,主要传播方式是。
2. 高频功放选用谐振回路作负载,既保证,又具的作用。
3. 噪声系数N F用于衡量放大器内部噪声大小。
N F越大,则内部噪声越(大或小)。
对级联系统而言,其噪声系数主要取决于(第一级,中间级,末级)。
4.底部切削失真主要是由于造成的。
5.在并联型晶体振荡器中,晶体等效为;在串联型晶体振荡器中,晶体等效为。
6.振幅解调方法可分为和两大类。
7.在二极管峰值包络检波器中,存在两种失真:因引起的失真称为失真,因引起的失真称为失真。
8.直流馈电线路包括馈电线路和馈电线路。
9.电阻热噪声的均方电压谱密度是,均方电流谱密度是。
二判断题(每题2分,共10分)1. 根据高频功放的负载特性,由于R L减小,当高频功放从临界状态向欠压区变化时,输出功率和集电极效率均减小。
()2. 非线性电路的分析方法一般可采用叠加定理。
()3. 高频功放的基极偏置电压U BB应保证晶体管工作在截止区。
4. 丙类谐振功率放大器的集电极电流导通角θ=90°。
()5. 单频单边带调幅波的谱线的个数是1条。
()三简答题(每题5分,共20分)1.高频功放选用谐振回路作负载的原因。
2. 简述混频器中的组合副波道干扰现象。
3. 简述振荡器中的频率占据现象。
4. 振荡器的频率稳定度用什么来衡量?什么是长期、短期和瞬稳定度?四计算题(每题10分,共30分)1. 已知LC并联谐振回路,谐振频率f0=15MH Z, 回路电感L=3μH, 线圈空载品质因数Q0=100。
回路=10KΩ。
试求:并联电阻R1(1)回路电容C(2)回路谐振电阻R(3)回路的有载品质因数QL2. 某振荡电路如图一所示,已知C1=0.005μF, C2=0.01μF ,L=5mH1)画出交流等效电路;2)写出振荡器名称;3)求振荡频率。
高频电子线路试卷填空题及答案
高频电子线路填空题1.通信系统由输入变换器、发送设备、信道、接收设备以及输出变换器组成。
2.在通信系统中,共用的基本单元电路除高频小信号放大器、高频功率放大器和正弦波振荡器以外,还有调制和解调、混频和反馈控制电路等。
3.RC相移振荡器中放大器应采用反相放大器;至少要三节基本RC相移网络。
4.LC串联谐振回路中,当工作频率小于谐振频率时,回路呈容性,LC并联谐振回路中,当工作频率小于谐振频率时,回路呈感性。
5.LC谐振回路有串联谐振和并联谐振两种谐振方式。
6.LC串联谐振回路品质因数(Q值)下降,频带变宽,选择性变差。
7.谐振功率放大器中,LC谐振回路既起到阻抗匹配又起到选频滤波作用。
8.要产生较高频率信号应采用、 LC 振荡器,要产生较低频率信号应采用RC 振荡器,要产生频率稳定度高的信号应采用石英晶体振荡器。
9.三端式振荡电路是LC正弦波振荡器的主要形式,可分为电容三端式和电感三端式两种基本类型。
10.发射机的中间级高频功率放大器,应工作于过压状态。
因为过压状态输出电压平稳且弱过压时,效率最高。
11.高频功率放大器的三种工作状态,分别为过压、临界、欠压。
12.发射机的末级高频功率放大器,应工作于临界状态,因为临界状态输出功率最大。
13.为了有效地实现基极调幅,调制器必须工作在欠压状态,14.集电极调幅应使放大器工作在过压状态,调幅系数必须 > 1。
15.为了有效地实现基极调幅,调制器必须工作在欠压状态,为了有效地实现集电极调幅,调制器必须工作在过压状态。
16.某高频功率放大器原来工作在临界状态,测得Ucm=22v,Ico=100mA, RP=100Ω,Ec=24v,当放大器的负载阻抗RP变小时,则放大器的工作状态过渡到欠压状态,回路两端电压Ucm将减小,若负载阻抗增加时,则工作状态由临界过渡到过压状态,回路两端电压Ucm将增大。
17.丙类高频功率放大器的最佳工作状态是临界工作状态,这种工作状态的特点是输出功率最大、效率较高和集电极电流为尖顶余弦脉冲波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以Cce 对振荡频率的影响很小。
主讲 杨霓清 孙建德
3.3.4
高频电子线路
同理,Cbe 对振荡频率的影响也极小。因此,克拉泼电路 的频率稳定度比电容三点式电路要好。
在实际电路中,通常根据所需的振荡频率决定L、C3 的值,然后取C1 、C2 远大于C3 即可。但是C3 不能取得 太小,否则将影响振荡器的起振。
(2)电路不易起振。
主讲 杨霓清 孙建德
高频电子线路
分析: (1)晶体管结电容对振荡 频率的影响:
由图可以看到, Cce与
谐振回路的接入系数:
n C1 C(2串C2C串3C3)
C1C2 C3
C2 C1 C2
=
n C2 (C1 C2 )
n 为基本电容三点式电路的接入接入系数。
于是得到LC振荡器频率稳定度的一般表达式为
osc
0
0
2Qe2
tan(g&m
k )Qe
2Qe
0 cos2 (g&m
k )
( g&m
k )
上式反映了影响振荡器频率稳定性的主要因素。
主讲 杨霓清 孙建德
3.3.2
高频电子线路
(2)回路Q 的变化对频率的影响
已知:
主讲 杨霓清 孙建德
3.3.1
高频电子线路
通常根据指定的时间间隔不同,频率稳定度可分为: 长期稳定度:时间间隔为1天~12个月; 短期稳定度:时间间隔为1天以内,用小 时、分、秒计算; 瞬间稳定度:指在秒或毫秒以内。 通常所讲的频稳度一般指短期频稳度。若将规定时
间划分为n个等间隔,各间隔内实测的振荡频率分别为
下降的斜率就越大,振荡器的频率稳定度也就越高。这 是提高振荡器频率稳定度的一项重要措施。
图3.3.1(b)品质因数 Qe 的变化 主讲 杨霓清 孙建德
3.3.2
高频电子线路
(3)(g&m k ) 的变化对频率的影响
(g&m k )主要决定于晶体管
的状态,受晶体管电流 ic 、ib
高频电子线路
3.3 振荡器频率稳定度
3.3.1 频率稳定的表示方法
频率准确度又称频率精度:它表示振荡频率fosc偏离标 称频率 fo的程度。有:
绝对频率准确度(绝对频率偏差) f fosc fo
相对频率准确度(相对频率偏差) f fo fosc fo fo
频率稳定度:在一定时间间隔内,频率准确度 变化的程度,实际上是频率“不稳定度”。
频特性斜率就越大,即相位越稳定。振荡频率也越稳定。
主讲 杨霓清 孙建德
3.3.3
高频电子线路
3.3.4 改进型电容反馈振荡器
一、克拉泼(Clapp)电路
电路条件是: C3 C1, C3 C2
图3.3.2 克拉泼振荡电路 (a)实用电路(b)高频等效电路
主讲 杨霓清 孙建德
3.3.4
高频电子线路
主讲 杨霓清 孙建德
3.3.4
高频电子线路
由图可以看到,晶体
管c、b两端与回路A、
B两端之间的接入系数
f1 、 f2、f3 、f4、…、fn ,则当振荡频率规定为f0 (标称
频率)时,短期频率稳定度的定义为:
主讲 杨霓清 孙建德
高频电子线路
f0 lim
1
n
[(f0 )i
2
f0 ]
f0
n n
i1
f0
f0
式中 :
(f0 )i fi f0 为第i个时间间隔内实测的绝对误差。
变化的影响;
另外,若 (g&m k )
的绝对值越小,频率稳定 度就越高。
图3.3.1(c) g&m 的变化
主讲 杨霓清 孙建德
高频电子线路
3.3.3 提高频率稳定度的措施
1、减小外界因素变化的影响
加恒温槽,稳压电源。 加减振装置,减少负载的变化(加缓冲)。
2、提高电路抗外界因素变化影响的能力。
T Z k g&m z
而 由于
z
(
)
arctan
2Qe
o o
z 2Qe
o
0
所以相频特性的斜率与回路的Q 值成正比。
主讲 杨霓清 孙建德
高频电子线路
结论:选频回路的 Q 值越高,z () 随 增加而
f0
lim
n
1 n
n i 1
(
fi
f0 )
为绝对频差的平均值,称为
绝对频率准确度。
显然,f 0 越小,频率准确度就越高。
主讲 杨霓清 孙建德
3.3.1
高频电子线路
对频稳度的要求视用途不同而异。 例如:中波广播电台发射机 105 数量级;
电视发射机 107 数量级; 普通信号发生器 104 ~ 105 数量级; 高精度信号发生器107 ~ 109 数量级; 做频率标准用 1011 数量级以上。
若不考虑晶体管输入、输出电容的影响。C1、C2、C3 三个电容串联后的等效电容
C
C1CC3 C3
C3
C1 C2
振荡角频率:osc
1 LC
1 LC3
电路的振荡频率近似只与C3 、L有关。而几乎与
C1、C2 无关。
电路特点:(1)晶体管结电容对振荡频率的影响小;
tan
(g&m
k )
即
osc
0
0
2Qe
tan(g&m
k )
主讲 杨霓清 孙建德
3.3.2
高频电子线路
因而有
osc
osc 0
0
osc
Qe
Qe
osc (g&m k
)
(g&m
k )
考虑到 Qe 值较高,即 osc o 1
•A、提高回路的标准性。
•B、选取合理的电路形式。
回路标准性:因外界因素变化,回路元件保持回路 固有频率不变的能力。
也就是说,振荡回路的标准性是指回路电感和电容 的标准性。
主讲 杨霓清 孙建德
3.3.3
高频电子线路
3、减少晶体管的影响 晶体管的极间电容将影响频率稳定度,在设计电路 时应尽可能减少晶体管和回路之间的耦合。 4、提高回路的品质因数 根据 LC回路的特性知,回路的 Q 值越大,回路的相
主讲 杨霓清 孙建德
3.3.1
高频电子线路
3.3.2 振荡器的稳频原理 已知相位平衡条件 g&m z k 0
设回路Q值较高,振荡回路在 osc 附近的相角 z 可以表示为
tan z
2Qe (osc o
o )
因此相位平衡条件可以表示为
2Qe (osc o
o )