直流调速系统的MATLAB仿真(参考程序)汇总.
基于MATLAB的直流调压调速控制系统的仿真
三、MATLAB仿真环境搭建
MATLAB提供了Simulink仿真工具,可以方便地进行控制系统的建模和仿真。在搭建直流调压调速控制系统的仿真环境时,首先需要对电机的特性进行建模,包括电机的电动力学方程、电机的转矩-转速特性曲线等。然后,设计控制器的结构和参数,通过Simulink建立相应的控制模型,最后进行仿真验证。MATLAB还提供了丰富的工具箱和函数库,如控制系统工具箱、电机控制工具箱等,能够方便地进行控制系统设计和分析。
2. 控制系统模型
在直流调压调速控制系统中,控制器起着至关重要的作用。常见的控制器包括PID控制器和模糊控制器。这些控制器可以根据电动机的工作状态和需求信号进行控制,实现对电动机速度和输出电压的精准控制。在进行仿真时,需要将控制器的数学模型结合到整个系统中,以实现对电动机的系统级控制。
在MATLAB中进行直流调压调速控制系统的仿真时,可以利用Simulink工具箱进行建模和仿真。Simulink是MATLAB的一个附加工具箱,提供了丰富的模块和功能,可以方便地对控制系统进行仿真和分析。以下是基于MATLAB的直流调压调速控制系统的仿真步骤:
五、实验结果与分析
通过MATLAB的仿真实验,我们可以得到直流调压调速控制系统的性能指标,如电机的转速曲线、电机的输出功率曲线等。根据仿真结果,我们可以对控制系统进行性能分析和优化,调整控制器的参数,改进控制策略,提高系统的稳定性和响应性能。通过仿真实验可以验证控制系统的设计是否满足实际要求,指导工程实践中的系统调试和优化。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是一种常见的电力系统的调节器,在电力系统和机械驱动系统中广泛应用。
本文将介绍一种基于MATLAB的直流调压调速控制系统的仿真方法。
直流调压调速控制系统由电源、可调速直流电动机、电动机控制器及传感器组成。
调压调速控制系统的目标是实现恒定的速度和恒定的输出电压。
我们需要建立直流电动机的数学模型。
直流电动机的数学模型可以使用电机的等值电路模型来表示。
在这个模型中,各个元件由其等值电阻、电感和电压源表示。
通过建立电动机的等效电路模型,可以通过MATLAB对电动机的工作进行仿真。
然后,我们需要建立电动机控制器的数学模型。
电动机控制器的数学模型通常可以采用传统的PID控制器来表示。
PID控制器包括比例项、积分项和微分项。
通过设置适当的PID参数值,可以调节电动机的输出电压和速度。
接下来,我们需要建立电动机的传感器模型。
传感器用于检测电动机的实际输出电压和速度,并将其与设定值进行比较。
根据比较结果,控制器将调整输出电压和速度。
在MATLAB环境中进行仿真。
在仿真中,我们可以设置电动机的初始条件和设定值,并将其传递给控制器。
通过仿真可以观察和分析电动机的输出电压和速度的变化情况,以及控制器的响应时间和稳定性。
通过以上步骤,我们可以使用MATLAB对直流调压调速控制系统进行仿真研究。
在仿真中,可以通过调整控制器参数和传感器模型,以及改变设定值和初始条件,来观察系统的响应和性能。
仿真结果可以帮助我们设计和优化直流调压调速控制系统,提高系统的稳定性和性能。
基于MATLAB的直流调压调速控制系统的仿真方法可以帮助我们研究和优化电力系统和机械驱动系统的性能,提高系统的稳定性和可靠性。
这种仿真方法在电气工程和自动化领域有着广泛的应用前景。
直流电机调速matlab仿真报告
直流电机调速matlab仿真报告以直流电机调速Matlab仿真报告为标题引言:直流电机是一种常见的电动机,广泛应用于工业、交通、家电等领域。
在实际应用中,电机的调速控制是一项关键技术,可以使电机在不同工况下实现恒定转速或变速运行。
本文将利用Matlab软件进行直流电机调速的仿真实验,旨在通过仿真结果分析不同调速控制策略的优劣,并提供一种基于Matlab的直流电机调速方法。
一、直流电机调速原理直流电机的调速原理基于电压与转速之间的关系。
电机的转速与输入电压成正比,即在给定电压下,电机转速可以通过调整电压大小来实现调速。
常用的直流电机调速方法有电压调速、电流调速和PWM调速等。
二、Matlab仿真实验设置本次仿真实验将以直流电机调速为目标,基于Matlab软件进行实验设置。
首先,需要建立电机的数学模型,包括电机的转速、电流和电压等参数。
其次,选择合适的调速控制策略,如PID控制、模糊控制或神经网络控制等。
最后,通过调节电压输入,观察电机的转速响应和稳定性。
三、PID控制调速实验1. 实验目的本实验旨在通过PID控制器对直流电机进行调速控制,并分析不同PID参数对控制效果的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计PID控制器,包括比例系数Kp、积分系数Ki和微分系数Kd;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节PID参数,观察电机的转速响应和稳定性。
3. 实验结果与分析根据实验设置,我们分别对比了不同PID参数值下的电机转速响应曲线。
结果显示,在合适的PID参数设置下,电机能够实现快速响应和稳定控制。
但是,过大或过小的PID参数值都会导致转速超调或调速不稳定的问题。
四、模糊控制调速实验1. 实验目的本实验旨在通过模糊控制器对直流电机进行调速控制,并分析不同模糊规则和输入输出的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计模糊控制器,包括模糊规则、输入变量和输出变量;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节模糊规则和输入输出变量,观察电机的转速响应和稳定性。
直流调速系统的MATLAB仿真(参考程序)
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
MU d+I dGTU cE +--UCR图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
直流PWM调速系统MATLAB仿真
《单片机原理及接口技术》课程设计报告课题名称直流PWM调速系统的MATLAB仿真学院自动控制与机械工程学院专业机械设计制造及自动化班级姓名(学号)时间2016-1-9摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;H桥驱动电路;LED显示器;51单片机ABSTRACTDC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control.Keywords: DC motor speed control;H bridge driver circuit;LED display目录第1章引言1.1 概况现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真1. 引言1.1 研究背景直流调压调速系统作为电力电子领域中的重要研究方向,其控制技术的研究一直备受关注。
随着工业自动化的发展和能源需求的增加,直流调压调速系统在工业控制和电力传输中发挥着重要作用。
传统的直流调压调速系统在控制精度、响应速度和稳定性方面存在一定的不足,因此需要不断改进和优化。
在这样的背景下,基于MATLAB的直流调压调速控制系统的仿真研究变得尤为重要。
利用MATLAB这一强大的工具,研究人员可以对系统进行建模、设计控制器、分析系统稳定性并进行仿真验证,从而实现对系统性能的优化和提升。
本文旨在通过对直流调压调速控制系统的建模、PID控制器设计与仿真、系统稳定性分析、参数优化与性能评价以及系统仿真结果分析等方面进行研究,进一步探讨如何通过MATLAB工具来实现直流调压调速系统的优化和控制。
希望通过本文的研究,能够为直流调压调速系统的控制技术研究提供一定的参考和借鉴,促进该领域的发展与进步。
1.2 研究目的直流调压调速控制系统是电气工程中常见的控制系统,在工业生产和实验研究中有着广泛的应用。
研究的目的在于通过MATLAB进行仿真,探究系统的建模、PID控制器设计、系统稳定性分析、参数优化以及性能评价等方面的问题。
通过深入研究直流调压调速控制系统的各种特性及其影响因素,可以更好地理解控制系统的工作原理和性能特点,为实际工程应用提供指导。
通过仿真实验,可以降低实验成本、提高实验效率,并能够在设计过程中进行多次调试和优化,从而得到更加理想的控制效果。
研究直流调压调速控制系统的仿真具有重要的现实意义和理论价值。
通过本研究的深入探讨,不仅可以加深对控制系统理论的理解,还可以为工程实践提供有益的借鉴和指导。
1.3 研究意义直流调压调速控制系统作为工业控制领域中的重要组成部分,其研究具有重要的理论价值和实际应用意义。
首先,在工业生产中,直流调压调速控制系统广泛应用于电动机、风电变流器、UPS电源等设备中,能够实现对电压和速度的精确控制,提高设备的运行效率和稳定性。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真【摘要】本文基于MATLAB对直流调压调速控制系统进行了仿真研究。
在引言中,介绍了研究背景、研究意义和研究目的。
接着,在正文部分分别进行了系统建模、控制器设计、仿真分析、性能评价和参数优化。
在结论中验证了实验结果,分析了系统稳定性,并展望了工程应用。
通过本文的研究,我们可以更好地理解直流调压调速系统的控制原理和优化方法,为系统稳定性和性能提升提供了重要参考。
【关键词】MATLAB, 直流调压调速控制系统, 仿真, 系统建模, 控制器设计, 性能评价, 参数优化, 实验结果验证, 系统稳定性分析, 工程应用展望, 研究背景, 研究意义, 研究目的.1. 引言1.1 研究背景直流调压调速系统在工业生产中有着广泛的应用,对生产过程的稳定性和效率起着至关重要的作用。
随着科技的发展和工业化进程的不断推进,人们对直流调压调速系统的需求也越来越高。
直流调压调速系统的设计和优化是一个复杂而又关键的问题,需要深入的研究和分析。
目前,虽然已经有了一些关于直流调压调速系统的研究成果,但是在系统建模、控制器设计、仿真分析等方面还存在一些问题和挑战。
本研究旨在通过MATLAB软件对直流调压调速系统进行仿真分析,探讨系统的性能和稳定性,并对系统参数进行优化,以提高系统的控制效果和工作性能。
通过对直流调压调速系统的研究和分析,可以更好地了解系统的工作原理和特性,为系统的设计和优化提供重要参考。
也可以为工程应用提供更好的控制方案和解决方案,推动直流调压调速系统在工业领域的应用和发展。
1.2 研究意义直流调压调速系统是工业控制领域中常见的一种控制系统,其在电力系统、驱动系统等领域具有广泛的应用。
直流调压调速系统可以对直流电机进行精确的调压调速控制,从而实现对电机运行状态的灵活控制。
研究直流调压调速系统的仿真模型和控制方法,对于提高电机运行的效率和性能,降低能源消耗,提高系统稳定性具有重要意义。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是工业自动化领域中常见的一种控制系统,它可以实现对直流电机的电压和速度进行精确的控制。
本文基于MATLAB软件对直流调压调速控制系统进行了仿真,主要包括建立电路模型、设计控制器、进行系统仿真等步骤。
通过仿真分析,可以验证控制系统的性能和稳定性,为实际工程应用提供参考。
一、直流电机数学模型直流电机是直流调压调速控制系统的执行元件,其数学模型可以基于电路和机械原理进行建模。
直流电机的数学模型主要包括电动势方程和机械方程,可以用下面的公式表示:1)电动势方程:\[E_a = K_e \omega\]\(E_a\)是电机的电动势,\(K_e\)是电机的电机常数,\(\omega\)是电机的角速度。
综合考虑电动势方程和机械方程,可以得到直流电机的传递函数:\[G(s) = \frac{k}{(s+a)(s+b)}\]\(k\)是传递函数的增益,\(a\)和\(b\)是传递函数的两个极点。
二、控制器设计在直流调压调速控制系统中,通常采用PID控制器来实现对电压和速度的精确控制。
PID控制器的传递函数可以表示为:\[C(s) = K_p + K_i \frac{1}{s} + K_d s\]\(K_p\)、\(K_i\)和\(K_d\)分别是比例环节、积分环节和微分环节的增益。
为了实现对电压和速度的精确控制,可以设计两个PID控制器,分别用于电压环和速度环。
电压环的PID控制器可以根据电机的电动势方程进行设计,速度环的PID控制器可以根据电机的机械方程进行设计。
三、系统仿真基于MATLAB软件,可以建立直流调压调速控制系统的仿真模型,对系统进行模拟和分析。
需要建立直流电机的数学模型,包括电动势方程和机械方程,并将其转化为传递函数形式。
然后,设计电压环和速度环的PID控制器,确定各个环节的增益参数。
将电机模型和控制器模型进行组合,得到整个系统的开环传递函数。
直流调速系统的MATLAB仿真
直流调速系统的MATLAB仿真直流调速系统是一种常见的电动机调速系统,其通过控制电枢电流或者换向电压,实现对电机转速的控制。
MATLAB是一款功能强大的工程软件,可以进行系统的建模仿真和控制算法的开发,因此可以用来进行直流调速系统的MATLAB仿真。
首先,我们需要对直流调速系统进行建模。
直流调速系统的主要组成部分包括电机、电流控制器和运动控制器。
电机是系统的执行器,电流控制器用来控制电机的电流,根据控制电机速度的需求调节电机的电压和电流。
运动控制器用来计算输出控制电压,控制电机的转速。
在MATLAB中,可以使用Simulink工具箱进行系统的建模。
Simulink提供了丰富的电气元件库和控制元件库,方便用户进行系统的搭建。
首先,我们需要在Simulink中搭建直流电机模型,可以使用电感、电阻和后验电动势等元件来描述电机的特性。
然后,可以添加电流控制器和运动控制器,分别用来控制电机的电流和速度。
在仿真过程中,我们可以通过输入电压的变化来模拟用户对电机速度的调节。
可以使用阶跃输入信号来模拟用户的控制输入。
然后,通过对系统进行仿真,观察输出转速的变化,并根据需要对控制算法进行调节。
可以使用MATLAB的绘图工具对输出转速进行可视化,也可以记录仿真过程中的各种参数,方便后续的分析和处理。
当然,在进行直流调速系统的MATLAB仿真时,还可以加入一些其他的因素,如电机负载变化、电机参数变化等。
这些因素会对系统的动态性能和稳态精度产生影响,因此需要在仿真过程中对其进行考虑。
总之,直流调速系统的MATLAB仿真可以帮助我们进行系统的设计和优化。
通过对系统的建模和仿真,以及对仿真结果的分析,可以帮助我们更好地理解和掌握直流调速系统的原理和特性,并且为系统的实际应用提供指导和支持。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是一种常见的工业控制系统,广泛用于电力系统、电机驱动系统等领域。
MATLAB是一种功能强大的数学软件,可以用于建立系统的数学模型,进行仿真和控制算法的设计。
在直流调压调速控制系统中,主要包括两个部分:调压环节和调速环节。
调压环节用于控制直流电压的大小,而调速环节则用于控制直流电机的转速。
需要建立直流调压调速系统的数学模型。
以调压环节为例,可以根据直流调压系统的电路特性,建立其数学模型。
假设直流调压调速系统的输入电压为Vin,输出电压为Vout,输入电流为Iin,输出电流为Iout,则可以得到以下数学模型:Vout = K1 * Vin - K2 * IoutK1和K2分别为系统的增益参数。
接下来,需要设计调压环节的控制算法。
常见的控制算法包括比例控制、积分控制和PID控制。
假设调压环节的控制信号为U,设定电压为Vref,则可以得到以下控制算法:U = Kp * (Vref - Vout) + Ki * ∫(Vref - Vout)dt + Kd * d(Vref - Vout)/dtKp、Ki和Kd分别为比例、积分和微分参数。
然后,可以使用MATLAB进行系统仿真。
需要在MATLAB中定义系统的参数和控制算法。
然后,可以使用SIMULINK工具箱来建立系统的模型,连接各个模块,并设置输入电压和负载。
可以运行模型,观察系统的输出结果,评估系统的性能。
在仿真过程中,可以根据不同的需求和控制策略,调整系统的参数和控制算法,进行参数优化和性能改进。
基于MATLAB的直流调压调速控制系统的仿真可以帮助工程师和研究人员进行系统设计和性能评估,提高系统的稳定性和可靠性。
通过仿真还可以节省成本和时间,快速验证和优化控制算法。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真一、直流调压调速控制系统的基本原理直流调压调速控制系统通常由电源模块、调速器、电流反馈回路、转速反馈回路以及电机等组成。
其基本工作原理是通过电源模块提供不同的电压和电流输入,调速器根据控制信号对电源模块进行控制,实现对电机的调速和调压。
电流反馈回路和转速反馈回路则可以实时监测电机的电流和转速,并将监测到的信号反馈给调速器,以实现闭环控制。
在实际应用中,一般会根据具体的需求,设计不同的调速、调压算法和控制策略,以实现系统的高性能和稳定性。
1. 模型建立我们需要建立直流调压调速控制系统的MATLAB仿真模型。
在Simulink中,我们可以按照实际系统的组成,分别建立电源模块、调速器、电流反馈回路、转速反馈回路和电机等部分的仿真模型。
在建立模型的过程中,我们需要考虑各个部分之间的耦合关系、传递函数以及控制算法和策略等因素,以建立一个真实可靠的仿真模型。
2. 参数设置在建立模型之后,我们需要对各个部分的参数进行设置。
这些参数包括电源模块的输出电压和电流、调速器的控制信号、电流反馈回路和转速反馈回路的传感器参数、电机的参数等。
在设置参数的过程中,我们需要根据实际系统的要求,进行合理的选择和调整,以保证仿真的准确性和有效性。
3. 仿真验证完成模型建立和参数设置之后,我们可以进行仿真验证。
在仿真过程中,我们可以输入不同的电压和电流信号,观察系统的输出电流和转速,并通过对比实际数据,验证仿真模型的准确性和有效性。
我们还可以对系统的性能和稳定性进行评估和优化,以提高系统的控制精度和响应速度。
4. 控制策略优化在仿真验证的基础上,我们还可以对系统的控制策略进行优化。
通过改变调速算法、调压策略和闭环控制方法等参数,在仿真环境中对系统的性能和稳定性进行评估和对比,以达到系统优化的目的。
结论通过MATLAB的Simulink工具,我们可以方便地建立直流调压调速控制系统的仿真模型,并对系统的性能和稳定性进行评估和优化。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真一、直流调压调速控制系统的原理直流调压调速控制系统主要由电压控制回路和速度控制回路组成。
电压控制回路用于控制电动机的电压,从而实现电动机的调压;速度控制回路用于调整电动机的转速,实现电动机的调速。
电压控制回路和速度控制回路之间是相互联系的,二者协同工作才能使电动机达到预定的工作状态。
在本文的仿真中,我们将重点关注电压控制回路和速度控制回路的设计和性能。
二、仿真模型的建立在MATLAB中,我们可以通过Simulink工具建立直流调压调速控制系统的仿真模型。
我们需要建立电动机的数学模型,包括转矩方程、速度方程和电压方程;我们需要设计电压控制回路和速度控制回路的控制算法和参数。
将电动机模型和控制回路结合在一起,形成直流调压调速控制系统的仿真模型。
三、电压控制回路的仿真分析电压控制回路的主要任务是根据速度控制回路的信号要求,生成电压信号并送往电动机,控制电动机的转矩。
在仿真中,我们可以通过改变输入信号的幅值和频率,观察电压控制回路的响应特性,比如超调量、调节时间等。
我们也可以通过引入一些干扰信号,例如负载扰动,来观察电压控制回路的抗扰性能。
通过仿真分析,我们可以得出电压控制回路设计的满意度和稳定性。
五、整体系统的仿真分析经过对电压控制回路和速度控制回路的单独仿真分析后,我们可以将两者结合在一起,形成整体的直流调压调速控制系统的仿真模型。
通过整体系统的仿真分析,我们可以评估控制系统的性能和稳定性。
我们可以观察系统在不同工作状态下的响应特性,比如启动、调压和调速的过程中的响应速度、控制精度和稳定性。
我们也可以引入一些复杂的工况和干扰信号,例如负载变化和电网故障,来观察整体系统的鲁棒性和抗干扰能力。
通过仿真分析,我们可以评估整体系统的设计合理性和可靠性。
六、结论通过MATLAB的仿真分析,我们可以对直流调压调速控制系统的性能和稳定性进行全面评估。
我们可以深入了解电压控制回路和速度控制回路的设计和性能,找出设计的不足和改进的方向。
直流调速系统的matlab仿真
一,转速反馈控制直流调速系统的matlab仿真1,基本原理:根据自动控制原理,将系统的被调节量作为反馈量引入系统,与给定量进行比较,用比较后的偏差值对系统进行控制,可以有效地抑制甚至消除扰动的影响,而维持被调节量很少变化或不变,这就是反馈控制的基本作用。
在负反馈基础上的“检查误差,用以纠正误差”这一原理组成的系统,其输出量反馈的传递途径构成一个闭环回路,因此被称作闭环控制系统。
在直流系统中,被调节量是转速,所构成的是转速反馈控制的直流调速系统。
2,下图是转速负反馈闭环调速系统动态结构框图各个环节的参数如下:直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电机电动势常数C e=0.192V·min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数Ks=44,滞后时间常数Ts=0.00167。
电枢回路总电阻R=1Ω,电枢回路电磁时间常数Tl=0.00167s,电力拖动系统机电时间常数Tm=0.075s。
转速反馈系数α=0.01 V·min/r。
对应的额定电压U n*=10V。
在matlab的simulink里面的仿真框图如下其中PI调节器的值暂定为Kp=0.56,1/τ=11.43。
3,仿真模型的建立:进入matlab,单击命令窗口工具栏的simulink图标,打开simulink模块浏览器窗口,如下图所示:打开模型编辑器窗口,双击所需子模块库的图标,则可以打开它,用鼠标左键选中所需的子模块,拖入模型编辑窗口。
要改变模块的参数双击模块图案即可(各模块的参数图案)。
加法器模块对话框Gain模块对话框把各个模块连接起来并按照上面给定的电机参数修改各个模块相应的参数,可以得到如下的比例积分的无静差直流调速系统的仿真框图:4,仿真后的结果及其分析:其中输出scope1中可以看出超调和上升时间等。
改变PI调节器的参数,并在仿真的曲线中得到最大的超调级调整时间,相互间进行比较,如下表所示:参照以上表格中的数据分析可知,改变PI调节器的参数,可以得到快速响应的超调量不一样,调节时间不一样的响应曲线。
直流调速系统的Matlab仿真(课程设计汇本作业)
运动控制系统课程设计班级自动化0802王有录学号0806050231摘要直流调速系统具有调速围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。
本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。
然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。
在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。
对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。
采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。
关键词直流电机直流调速系统速度调节器电流调节器双闭环系统仿真Abstract DC motor has been widely used in the area of electric drive because of its neatly adjustment, simple method and DC motor has been widely used in the area of electric drive because of its neatly adjustment, simple method and smooth control in a wide range, besides its control performance is excellent. Beginning with the theory of DC motor, this dissertation builts up the mathematic model of DC speed control system with double closed loops, detailedly discusses the static and dynamicstate performance of the system. Afterward, according to automation theroy this papar calculates the parameters of the system. Then, this dissertation simulates and analyzes the system by means of Simulink. The results of simulation are consistent with theory calculation. Some experience was acquired through simulation. Based on the theory and simulation, this dissertation designs a DC speed control system with double closed loops, discusses the realization of main circuit, feedback circuit, control circuit and trigger circuit. The results of experiment show that the static and dynamic state performance of this system are good, which indicate that the design can meet the puter-aided analysis and design are carried out for speed-controlling system of the d-c motorby by using TOOL BOX and SIMULINK.Keywords DC motor,DC governing system,speed governor,current governor,double loop control system,simulink目录摘要Abstract一、双闭环直流调速系统的工作原理1、双闭环直流调速系统的介绍2、双闭环直流调速系统的组成3、双闭环直流调速系统的稳态结构图和静特性4、双闭环直流调速系统的数学模型二、系统设计方法及步骤1、系统设计的一般原则2、电流环设计(1)确定时间常数(2) 选择电流调节器结构(3) 选择电流调节器参数(4) 校验近似条件3、转速环设计(1) 确定时间常数(2) 选择转速调节器结构(3) 选择转速调节器参数(4) 校验近似条件三、Matlab和Simulink简介四、Simulink环境中的系统模型、仿真结果及分析1、开环直流调速系统的仿真2、单闭环有静差转速负反馈调速系统的建模与仿真3、单闭环无静差转速负反馈调速系统的建模与仿真4、单闭环电流截止转速负反馈调速系统的建模与仿真5、单闭环电压负反馈调速系统的建模与仿真6、单闭环电压负反馈和带电流正反馈调速系统的建模与仿真7、单闭环转速负反馈调速系统定量仿真8、双闭环直流调速系统定量仿真9、三闭环直流调速系统仿真五、V-M双闭环直流不可逆调速系统的电气原理总图六、总结参考文献一、双闭环直流调速系统的工作原理1、双闭环直流调速系统的介绍双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真
直流调压调速控制系统是一种常见的电力控制系统,广泛应用于电力系统中。
本文将
基于MATLAB,对直流调压调速控制系统进行仿真分析。
我们需要建立直流调压调速控制系统的数学模型。
直流调压调速控制系统包括电动机、整流器、电枢调节器和励磁调节器。
电动机可以用一个转动的负载表示,通过实时调节电
动机的电枢电压和励磁电流,来实现对电动机转速和负载电压的控制。
然后,我们需要对直流调压调速控制系统进行仿真分析。
通过设置输入信号,即电源
电压和负载需求,以及控制器的参数,我们可以模拟出不同工况下的系统响应。
通过分析
系统的响应特性,我们可以评估系统的稳定性和性能。
我们可以利用MATLAB提供的工具进行数据分析和结果可视化。
通过绘制曲线图和计算系统的稳态误差、过渡过程时间等指标,我们可以直观地了解系统的性能和控制效果。
基于MATLAB的直流调压调速控制系统的仿真可以帮助我们了解系统的工作原理和性能特点,为系统的设计和优化提供参考。
仿真分析还可以帮助我们评估不同控制策略的效果,并进行参数调整和优化,以实现更好的控制性能。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速系统是一种常见的电气控制系统,广泛应用于工业领域中。
在直流调压调速系统中,直流电机作为执行器,通过对电机的电压进行调节,可以实现对电机的速度、扭矩等参数的控制。
本文基于MATLAB平台对直流调压调速系统进行了仿真分析,包括建立系统模型、设计控制系统、进行性能分析等方面。
一、直流调压调速系统模型的建立直流调压调速系统可以简化为如下模型:e(t)--->u(t)--->Gv(s)---->X(s)----->e(t)是输入信号,表示期望电机速度;u(t)是输出信号,表示电机输出的转矩;Gv(s)是电机的传递函数,表示电机的速度与输入电压的关系;X(s)是控制系统的输出信号,表示根据输入信号e(t)和反馈信号u(t)计算得出的输出。
电机的传递函数Gv(s)可以通过实验测定或者理论计算得到,其具体形式为:Gv(s) = K / (Js+b)K是电机的增益;J是电机的惯性矩;b是电机的摩擦系数。
二、直流调压调速系统的控制器设计对于直流调压调速系统,可以采用比例-积分-微分(PID)控制器来控制电机的速度。
PID控制器的输出计算式为:u(t) = Kp * e(t) + Ki * ∫e(t) * dt + Kd * de(t)/dtKp、Ki、Kd分别是比例、积分、微分控制器的参数,e(t)是输入信号与输出信号之差,de(t)/dt是e(t)的导数。
在MATLAB中,可以使用pid函数设计PID控制器,并使用feedback函数将控制器与直流调压调速系统进行连接。
具体步骤如下:1. 建立直流调压调速系统的模型;2. 调用pid函数,设计PID控制器,并设置控制器的参数;3. 调用feedback函数,将控制器与直流调压调速系统进行连接;4. 设计输入信号e(t);5. 运行模拟程序,观察系统的输出信号u(t)。
三、直流调压调速系统的性能分析在直流调压调速系统的仿真中,可以通过观察系统的输出信号u(t)来评估系统的性能。
MATLAB直流调速系统仿真
MATLAB仿真技术大作业直流调速系统仿真1、电机开环特性计算PWM脉冲占空比:D=V O/Vd=420/600=70%画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=1708A 负载时的稳态电枢电流:I a=143.2A 空载时转速:n=4200rpm 负载时的转速:n=3896rpm2、转速闭环控制设置比例-积分环节,k P=0.01,k I=0.01,k D=0画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=2425A 负载时的稳态电枢电流:I a=141.6A 3、改善电机起动特性用斜坡函数加限幅(ramp--saturation)代替转速指令:斜坡斜率设为8400,限幅设为4200。
画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=619.7A4、简化降压斩波器降压斩波器只使用一只IGBT和一只二极管时,再次进行仿真。
画出电机电枢电流的波形与第3问的波形进行比较:与第3问的波形进行比较:t=0.3s时,I a(3)=379.3A I a(4)=379.3At=0.8s时,I a(3)=-8.92A I a(4)=-0.02107At=1.5s时,I a(3)= 143.4A I a(4)=143.8A通过对比,可知三段波形的数值几乎无差别或差别非常小可忽略不计;但波形显示在t=0.5s 左右时第四问波形的纹波值比第三问波形的纹波值小。
因为器件替换后,各部分的功能并未发生变化,电路的正常工作状态并未受到影响,因此用不同的降压斩波器波形几乎无差别。
纹波的区别可能是因为二极管与带反并联二极管的IGBT、不带反并联二极管的IGBT与带反并联二极管的IGBT结构上的区别所导致。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真一、引言直流调压调速控制系统是工业领域中常见的电力控制系统,其主要功能是对直流电动机进行调速和调压。
通过对电机的调速和调压,可以实现对生产过程中机械设备的精确控制,提高生产效率和质量。
对直流调压调速控制系统的研究和仿真具有重要的意义。
二、直流调压调速控制系统的基本原理和数学模型1. 直流电动机直流电动机是直流调压调速控制系统的关键部件,其工作原理是利用电磁感应原理实现电能与动能之间的转换。
直流电动机由定子、转子、电刷和电枢等部件组成,根据控制电流的大小和方向可以实现对电机的调速和调压。
直流调压调速控制系统可以使用数学模型描述其动态特性,其数学模型可以表示为以下方程:电动机转矩方程:\[T = K_{t} * Ia\]电动机电压方程:\[Va = Ri + L\frac{di}{dt} + Eb\]T表示电动机转矩,\(K_{t}\)为电动机转矩常数,Ia为电动机电流,Va为电动机电压,R为电动机电阻,L为电动机电感,\(di/dt\)为电动机电流的变化率,Eb为电动机的反电动势。
控制系统中的调速环节可以描述为:\[Eb = K_{e} * \Omega_m\]\(K_{e}\)为电动机转速常数,\(\Omega_m\)表示电动机的转速。
\(K_{c}\)为调压系数,Vr为调节电压。
以上方程描述了直流调压调速控制系统的基本动态特性,可以通过模拟仿真研究系统在不同工况下的调速和调压表现。
1. 模型参数设定首先需要确定直流电动机的参数,包括转矩常数\(K_{t}\)、转速常数\(K_{e}\)、电阻R、电感L等参数,以及控制系统的参数,包括调压系数\(K_{c}\)等参数。
2. 模型搭建利用MATLAB的Simulink工具箱进行模型搭建。
首先建立直流电动机的数学模型,包括转矩方程和电压方程。
然后建立控制系统的数学模型,包括调速环节和调压环节。
最后将直流电动机模型和控制系统模型进行组合,构建直流调压调速控制系统的整体仿真模型。
MATLAB与交直流调速系统仿真
连接到其它附加电路中,而鼠笼式电机无此输出端子;
• m:电机信号输出端子,一般接电机测试信号分配器观测电
机内部信号,或引出反馈信号。
MATLAB应用技术
转子类型列表框,分别可以将电机设置为绕线式 (Wound)和鼠笼式(Squirrel-cage)两种类型
参考坐标列表框,可以选择 转子坐标系(Rotor)、静 止坐标系(Stationary)、同 步旋转坐标系(Synchronous)
500
400
300
200
100
0
0
1
2
3
4
5
6
7
8
9 10
图 电磁转矩波形
从仿真结果可以分析:转速能够在较短的时间内达到稳定,但起动 电流冲击很大,同时电磁转矩的冲击也很大。
MATLAB应用技术
例2.直流电动机分级起动 由于直流电动机直接起动电流过大,为了限制起动电流,通常在电源和电动机之
间加上起动变阻箱。 起动变阻箱由三个电阻组成,在每个电阻两端并联一个理想开关,通过设置开关
不同的导通时间,来切除电阻。起动瞬间,三个开关全部断开,此时电阻全部接 入。一定时间后,第一个开关导通,相应地第一个电阻被切除。依此类推,达到 限制电流和保证电磁转矩的目的。
MATLAB应用技术
MATLAB应用技术
1.使用模块 (1)断路器(Breaker) 断路器取自SimPowerSystems工具箱中的Elements库里的Breaker模块
MATLAB应用技术
2.仿真参数设置
MATLAB应用技术
3.仿真结果
1400
1200
1000
800
600
400
200
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
MU d+I dL GTU cE +--UCR图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅T e 60600.132 1.262π2πK K ==⨯≈ T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
4)进行仿真并观察、分析结果(图3)。
(可以用语句plot(tout,yout)进行示波器的曲线处理。
)图3 开环直流调速系统的仿真结果二、转速闭环直流调速系统的仿真带转速负反馈的有静差直流调速系统的电气原理如图4所示,系统由转速给定环节*n U 、转速调节器ASR (放大器p K )、移相触发器GT 、晶闸管整流器UCR和直流电动机M 和测速发电机TG 等组成。
MU d+I dL GT U cE +--UCR TGASR+ -∆U n U n*n U图4 转速闭环直流调速系统电气原理图图5 转速闭环直流调速系统的仿真模型转速负反馈有静差直流调速系统的仿真模型如图5所示,模型在图2开环调速系统的基础上,增加了转速给定*n U ,转速反馈n-feed 、放大器Gain 和反映放大器输出限幅的饱和特性模块Saturation ,饱和限幅模块的输出是移相触发器的控制电压c U ,转速反馈直接取自电动机的转速输出,没有另加测速发电机,取转速反馈系数*nmn NU K n =。
仿真算例2 在算例1的基础上观察转速负反馈系统在不同放大器放大倍数时对转速变化的影响。
仿真步骤:1)绘制系统的仿真模型(图5)。
2)设置模块参数(表2)。
3)设置仿真参数:仿真算法odel5s,仿真时间1.5s,直流电动机空载起动,起动0.5s后加额定负载L 171.4N mT=⋅。
4)进行仿真并观察、分析结果(图6):(用语句plot(tout1,yout1,tout2,yout2,tout3,yout3)进行示波器的曲线处理。
)表2 转速闭环直流调速系统主要模型参数图6 转速闭环直流调速系统的仿真结果三、转速电流双闭环直流调速系统的仿真转速电流双闭环直流调速系统的电气原理如图7所示,由于晶闸管整流器不能通过反向电流,因此不能产生反向制动转矩而使电动机快速制动。
图7 转速电流双闭环直流调速系统的电气原理图双闭环直流调速系统的仿真可以依据系统的动态结构图(图8a)进行,也可以用SIMULINK的Power System模块来组建。
两种仿真的不同在于主电路,前者晶闸管和电动机用传递函数来表示,后者晶闸管和电动机使用Power System 模块,而控制部分则是相同的。
下面对这两种方法分别进行介绍。
1. 基于动态结构图的双闭环直流调速系统仿真双闭环直流调速系统的实际动态结构图如图8b所示,它与图8a的不同之处在于增加了滤波环节,包括电流滤波、转速滤波和两个给定信号的滤波环节。
这是因为电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需加低通滤波。
这样的滤波环节的传递函数可用一阶惯性环节来表示,其滤波时间常数oi T 可按需要选定,以滤平电流检测信号为准。
然而,在抑制交流分量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称作给定滤波环节。
其意义是,让给定信号和反馈信号经过相同的延时,使二者在时间上得到恰当的配合,从而带来设计上的方便。
同样,由测速发电机得到的转速反馈电压信号含有换向纹波,因此也需要滤波,滤波时间常数用on T 表示。
根据和电流环一样的道理,在转速给定通道上也加入时间常数为on T 的给定滤波环节。
G ASRs s 1K T s +U d K nI d U *n U n+ +- -U cEn 1/1l R T s +m R T s e1K I dL+ - K iU *i + - G ACRU ia)b)图8 转速电流双闭环直流调速系统的动态结构图依据系统动态结构图的仿真模型如图9所示,仿真模型与系统动态结构图的各个环节基本上是对应的。
需要指出的是,双闭环系统的转速和电流两个调节器都是有饱和特性和带输出限幅的PI 调节器,为了充分反映在饱和和限幅非线性影响下调速系统的工作情况,需要构建考虑饱和和输出限幅的PI 调节器,过程如下:线性PI 调节器的传递函数为i pi p p1()k sW s k k s s+=+=ττ 式中,p k 为比例系数,i k 为积分系数,时间常数p i /k k =τ。
上述PI 调节器的传递函数可以直接调用SIMULINK 中的传递函数或零极点模块,而考虑饱和和输出限幅的PI 调节器模型如图10所示。
模型中比例和积分环节分为两个通道,其中积分模块Integrate 的限幅表示调节器的饱和限幅值,而调节器的输出限幅值由饱和模块Saturation 设定。
图9 转速电流双闭环直流调速系统仿真模型图10 带饱和和输出限幅的PI 调节器仿真算例3 以算例1的晶闸管-直流电动机系统为基础,设计一个转速电流双闭环控制的调速系统,设计指标为:转速超调量n %10%σ≤,电流超调量i %10%σ≤,过载倍数 1.5λ=,取电流反馈滤波时间常数oi 0.002s T =,转速反馈滤波时间常数on 0.01s T =,取转速调节器和电流调节器的饱和值为12V ,输出限幅值为10V 。
额定转速时转速给定电压*nm10V U =。
通过仿真观察系统的转速、电流响应,以及参数变化(主要是调节器参数)对系统响应的影响。
仿真步骤:1)构建系统的仿真模型(图9)。
2)设置模块参数(调节器参数计算和设定) ① 机电时间常数:m 0.161s T =电磁时间常数:0.076s l T =三相晶闸管整流电路平均失控时间:s 0.0017s T =② 电流调节器ACR 参数的计算*电流反馈系数:*im i N 100.05(V/A)1.5136U K I λ==≈⨯电流环时间常数之和i s oi 0.00170.0020.0037(s)T T T ∑=+=+= ACR 的传递函数为i ACR pi iipi i 11(s)s W K K K s sττ+=+=,其中 时间常数i 0.076s l T ==τ 比例系数i pi Σi S i0.0760.52.57220.0037400.05Rk T K K ⨯==≈⨯⨯⨯τ积分系数piii i2.5733.80.076k k ==≈τ ③ 转速调节器ASR 参数的计算*转速反馈系数:*nm n N 100.00667(V min/r)1500U K n ==≈⋅电流环等效时间常数i 220.00370.0074(s)T ∑=⨯=转速环时间常数之和n i on 220.00370.010.0174(s)T T T ∑∑=+=⨯+=。
ASR 的传递函数为n ASR pn pipn n 11(s)s W k k k s s+τ=+=τ,其中 时间常数n n 50.01740.087(s)hT ∑τ==⨯= 比例系数i e m pn n n (1)60.050.1320.16110.992250.006670.50.0174h K K T K hK RT ∑+⨯⨯⨯==≈⨯⨯⨯⨯积分系数pn in n10.99126.30.087k k ==≈τ (选择中频段宽度5h =)模型各环节参数如图9所示,其中调节器参数见表3,调节器积分环节限幅值为12V±,调节器输出限幅值为10V±。
表3 转速电流双闭环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s,仿真时间2.0s,电动机空载起动,起动0.8s后突加额定负载(dL N 136AI I==)。
4)进行仿真并观察、分析结果(图11):a)b )图11 基于动态结构图的双闭环直流调速系统仿真结果2. 基于Power System 模块的双闭环直流调速系统仿真采用SIMULINK 的Power System 模块组成的转速电流双闭环直流调速系统的仿真模型如图12所示,模型由晶闸管-直流电动机组成的主电路和转速、电流调节器组成的控制电路两部分构成。