《勾股定理》教学反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》教学反思
一、本课题教学的背景
我有幸获得开课任务,上课内容是《勾股定理》第一课时。经历了一次试上,一次正式上课和两次反思,这次案例教学活动使我的教学观念受到了极大的冲击。以前我自认为有本科学历,又有一定的教学能力,担任初中数学教学应当没有任何问题。《勾股定理》这堂课至少上过五遍,基本上都是按照书上的方法引导学生去想,并且证明给学生看。这是第一次尝试寻找一种能让学生自己“发现”并自己证明勾股定理的方法。经过反思,我深切地体会到教学理念的重要性,必须以教学理念的提升指导和改进教学方法,规范课堂教学。
二、“勾股定理”教学设计说明
在数学教学过程中,学生的知识不应只是通过教师单纯地讲解与学生的简单模仿获得,而是通过数学活动,让学生渴望新知识,经历知识的形成过程,体验应用知识的快乐,从而使学生变被动接受为主动探究,增强学好数学的愿望和信心。为此,本节课主要设计了三个活动。
活动一:唤起学生对新知识的渴望。
学生为了解决现实生活中的一个朴实、可亲、有趣的问题,不断碰到困难,并不断在发现中解决,思维探究活跃,好奇心和探索欲望被激起。
活动二:学生在探索中体验快乐。
探索“勾股定理”是本节课的重点和难点。在整个探索过程中教师只是一个引导者、启发者,引导学生动手、观察、思考、实验、探索与交流;学生在整个活动中切身体验到发现“勾股定理”的快乐。从而培养了学生的探索精神和合作交流能力。
活动三:学生在问题设计中巩固勾股定理。
本节课是勾股定理的第一课,知识的应用比较简单,学生设计问题有一定的可行性。引导学生在掌握勾股定理的基础上自己设计问题,完善问题,并从老师的高度进行变题,学生的主体性得到了充分的体现。
整个教学设计遵循“重视预设、期待生成”的原则。
三、教学过程与反思
1.第一次试上,由我独立备课,从开始备课到上课结束,始终有两个疑问没有得到很好解决。
一是如何引出勾股定理。教学过程是让学生在正方形网格上画一个两条直角边a、b分别是3厘米和4厘米的直角三角形,量一下斜边长c是多少?紧接着让学生观察直角三角形的三条边在大小上有什么关系。事实上,由于缺乏足够的材料,而且量得的结果可能不一定是整数,因此很难得出正确的结论。另外,也有学生在探究时,根据两边和大于第三边得出a+b>c这个结论,认为这也是直角三角形三条边之间的关系,这便偏离了教师预先设定的学习目标。二是勾股定理的证明。解决的方案:采用教材提供的方法,即教参上所说的数形结合的方法。通过恒等变形(a+b)■=4×■ab+c
■,在教师的引导下作出联想,将四个全等的直角三角形拼在边长为(a+b)的正方形当中,中间又是一个正方形,而它的面积正好是c■,从而得出a■+b■=c■。其中的难点在于,让学生自己很自然地想到用拼图证明,对于大多数学生来讲,做到这一点几乎是不可能的。教师只能带领学生进行变形、联想、拼图等一系列的教学活动。教师的讲授时间明显多于学生的探究时间,尽管教师一直在讲,但是其中的来龙去脉还是很难交代清楚。
第一次反思:
(1)教师的讲授时间多于学生的探究时间原因在于:凭学生已有的知识尚无能力探究这个问题,学生“一路走来”只能回答“是”“对”,思维屡屡受阻,心智活动暴露在无所依托的危机之中。(2)备课时,教师就发现了难点所在,但直到具体实施时仍束手无策,心有余而力不足,无法引导学生进行有意义的自主探究,这与教师自身的经验不足有很大关系。
(3)教师不仅要抓住教学中的难点,更要找到化解难点的办法。为学生向既定的探究目标迈进铺设适当的知识阶梯,当凭自己的能力无法做到时,应向专家请教,及时有效地解决教学中存在的问题,使自己在教法上能有所改进。
2.第二次上课通过集体备课,大家集思广益,针对前面两个难点重点设计,基本上解决了原有的问题。
设计方案是:将整个教学过程分成八节,每一节都清晰地展现在学生面前。
(1)创设问题情境,设疑铺垫。情景展示:小强家正在装修新房,周日,小强家买了一批边长为2.1米的正方形木板,想搬进宽1.5米,高2米的大门,小强横着放,竖着放都没能将木板搬进屋内,你能帮他解决这个问题吗?
(2)以1955年发行的毕达哥拉斯纪念邮票为背景,观察图形,你发现了什么?并说说你的理由。
图一图二
(3)以小方格背景,任意画一个顶点在格点上的直角三角形,并分别以这个直角三角形的各边为一边向外作正方形,刚才你发现的结论还成立吗?其中斜放的正方形面积如何求,由学生探讨。(介绍割与补的方法)(图一)
(4)如图二,任意直角三角形abc为边向外作正方形,上面的猜想仍成立吗?用四个全等的直角三角形拼图验证。
(5)介绍一些有关勾股定理的史料(赵爽的弦图、世界数学家大会会标、华罗庚建议用“勾股定理”的图作为与外星人联系的信号等),让学生感受到勾股定理的历史之悠久,激起学生的民族自豪感。
(6)应用新知,解决问题。
①解决刚才“门”的问题,前后呼应;
②直角三角形两边为3和4,则第三边长是?摇?摇。
例:一块长约120步,宽约50步的长方形草地,被不自觉的学生沿对角线踏出了一条斜路,类似的现象时有发生,请问同学们回
答:①走“斜路”的客观原因是什么?为什么?②“斜路”比正路近多少?这么几步近路,值得用我们的声誉作为代价换取吗?(7)设计问题,揭示本质。请学生概括用上述勾股定理解决问题的实质:已知两边求第三边长,并请学生设计能用勾股定理解决的简单问题。
(8)感情收获,巩固拓展。
①本节课你有哪些收获?
②本节课你最感兴趣的是什么地方?
③你还想进一步研究什么问题?
说明:(1)通过具体的生活情景,激起了学生对本节课的学习兴趣,使他们急于想知道直角三角形的三边到底存在着怎样的数量关系,激发了他们的好奇心和求知欲。
(2)学会了在小方格的背景下,用割补法求出邮票中斜放的正方形r的面积,同时为勾股定理的引出做好了充分的准备,为学生进行有意义的探究做好了铺垫。
(3)证明方法可以说已经摆在这里,但由于前面的教学中计算强调过多,而忽略了计算原理,致使撤去小方格背景时,学生在证明时出现障碍,想不到补4个直角三角形,或割成四个直角三角形和一个正方形计算斜放的正方形面积。为了解决这个问题,本节课在定理证明时有意用拼图的方法再次验证勾股定理。
(4)由于是勾股定理的第一课,应用较简单,学生设计具有一定的可行。引导学生在掌握定理的基础上自己设计问题,完善问题,