离散数学第二章3

合集下载

离散数学第二章关系

离散数学第二章关系

例9 .设A={1,2,3,4} ,B={2,4,6,8,10} 。 R={(1,2),(2,4),(3,6)}。
则 (R) = {1,2,3}A , (R) = {2,4,6}B 。
二.关系的一些关联性质 17
离散数学
定理1. 设R1,R2 A×B是两个关系。若 R1 R2 ,则
(1)保序性: (R1) (R2) ; (2)保序性: (R1) (R2) ;
注:笛卡尔(1596-1650 ),法国数学家, 1637年发表《方法论》之 一《几何学》,首次提出坐标及变量概念。这里是其概念的推广。
定义2. • 二个集合A,B的(二维或二重)叉积定义为 A×B ={(a, b): a A bB} ; •其元素——二元组(a, b)通常称为序偶或偶对(ordered
故 (R1)∩ (R2) = {1,2 }
21
离散数学
所以 (R1)∩ (R2) (R1 ∩ R2) 。
元素aA和集合A1A在关系R A×B下的关联集 (1)a的R-关联集(R-relative set of a):
R(a)={b : bBaRb }B ;
(2) A1的R-关联集(R-relative set of A1): R(A1)={b : bB (aA1)(aRb) }B 。
•当A=B时,即RA×A,则称R是A上的一个二元关 系。
例1 . 设A是西安交通大学全体同学组成的集合。 11
离散数学
R={(a,b) : aAbAa与b是同乡}A×A 于是,R是西安交通大学同学之间的同乡关系。
例2 . 设A是某一大家庭。
R1 = {(a,b) : aAbAa是b的父亲或母亲}A×A R2 = {(a,b) : aAbAa是b的哥哥或姐姐}A×A R3 = {(a,b) : aAbAa是b的丈夫或妻子}A×A 于是,

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;,相同为真,别同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的确信为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能浮现一次,求极小项时变元别够合取真,求极大项时变元别够析取假;5.求范式时,为保证编码别错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的办法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算办法:P规则,T规则①真值表法;②直截了当证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词惟独一具个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,别包括0;2.基:集合A中别同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一具分划基本上由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应浮现且仅浮现一次在子集中;覆盖:只要求每个元素都浮现,没有要求只浮现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基2种别同的关系;数为mn,A到B上能够定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个别同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满脚自反性,对称性和传递性,则R 称为等价关系;7.偏序关系:集合A上的关系R满脚自反性,反对称性和传递性,则称R 是A上的一具偏序关系;8.covA={|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在也许别唯一);极大元:集合A中没有比它更大的元素(若存在也许别唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称那个元素是B的上界(若存在,也许别唯一);下界:A中的某个元素比B中任意元素都小,称那个元素是B的下界(若存在,也许别唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种别同的关系,有m n种别同的函1.若|X|=m,|Y|=n,则从X到Y有mn 数;2.在一具有n个元素的集合上,能够有22n种别同的关系,有n n种别同的函数,有n!种别同的双射;3.若|X|=m,|Y|=n,且m,满脚f(a*b)=f(a)^f(b),则f为由到的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元别能是生成元;5.任何一具循环群必然是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7) 等幂律a^a=a 对偶 ava=a8) 汲取律a^(avb)=a 对偶 av(a^b)=a9) a≤b a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配别等式av(b^c)≤(avb)^(avc) 对偶a^(bvc)≥(a^b)v(a^c)13)模别等式a≤c av(b^c)≤(avb)^c3.分配格:满脚a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必然是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,假如a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一具补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一具有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平庸图:惟独一具孤立点构成的图;4.简单图:别含平行边和环的图;5.无向彻底图:n个节点任意两个节点之间都有边相连的简单无向图;有向彻底图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向彻底图有n(n-1)/2条边,有向彻底图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必然是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必然包含一条回路;12.可达:关于图中的两个节点v,j v,若存在连接i v到j v的路,则称iv与j v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v i的路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一具方向可达;弱连通:无向图的连通;(弱连通必然是单向连通)14.点割集:删去图中的某些点后所得的子图别连通了,假如删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:假如一具点构成点割集,即删去图中的一具点后所得子图是别连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为ij列;17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为i列;19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只拜访每个节点一次,通过的节点和边构成的子图;21.构造生成树的两种办法:深度优先;广度优先;深度优先:①选定起始点v;②挑选一具与v邻接且未被拜访过的节点1v;③从v动身按邻接方向接着拜访,当遇到一具节点所有邻接1点均已被拜访时,回到该节点的前一具点,再寻求未被拜访过的邻接点,直到所有节点都被拜访过一次;广度优先:①选定起始点v;②拜访与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一具节点v为起点;1④重复②③,直到所有节点都被拜访过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种办法:克鲁斯卡尔办法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔办法①将所有权值按从小到大罗列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,挑选时要满脚别能浮现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被拜访过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被拜访过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,假如最小边值2比v邻接的所有边值都小(除已连接的边值),直截了当连接,否则退回1。

离散数学第二章

离散数学第二章

P (t1 , t2 , , tn ) 是原子公式。
32
§2.1.3 谓词逻辑公式(公式 )
定义 谓词公式由下述各条规定组成: (1)原子公式是谓词公式。 (2)若A是谓词公式,则﹁ A也是谓词公式。 (3)若A和B是谓词公式,则A ∨ B,A ∧ B,A → B, 也是谓词公式。
22
2.存在量词
注意:1.在存在量词 的作用下,x不再起变量的作用, 存在量词也“约束”了x的变量作用。 注意:2.在存在量词作用下,命题中的特性谓词与命题 变元之间必须采用联结词合取,而不能用条件。 注意:3.命题的表示形式与个体域密切相关。 例:有些狗是聪明的。 若个体域为所有狗的集合,则该命题表示为:
这种“描述主语性质的谓语结构的抽象形式或描述主语所 涉及对象之间的关系的抽象形式”就是谓词。语句中的主 语称为个体。 在原子命题中引进谓词和个体的概念,这种以命题中的谓 词为基础的分析研究,称为谓词逻辑(或称谓词演算)。
7


§2.1.1 谓词与个体

在谓词逻辑中,将原子命题分解为谓词与个体两部分。
F (a1 , a2 , , an )
例如, T(a):a是教师。 D(3,2):3大于2。 C(武汉,北京,广州):武汉位于北 京和 广州之间。 注意顺序
9
§2.1.1 谓词与个体
在一个谓词中,个体是可以变化的,如 “是大学生” 中个体是可以变化的,可以是“张华是大学生” 也可
以是“何勇是大学生” ,等等。
31
§2.1.3 谓词逻辑公式(公式 )
定义( 项 ) (1)个体常量符是项;
(2)个体变量符是项;
(3)设f是n元函数符,
t1 , t2 , , tn 为项,则

离散数学第2章第3节

离散数学第2章第3节

(x)(y) A( x, y) (y)(x) A( x, y)
具有两个量词的谓词公式有如下一些蕴含关系:
(x)(y) A( x, y) (y)(x) A( x, y) (y)(x) A( x, y) (x)(y) A( x, y)
(y)(x) A( x, y) (x)(y) A( x, y)
用分析法证明 (x)A(x)∨(x)B(x)(x)(A(x)∨B(x)) 。 证明 若(x)(A(x)∨B(x))为假, 则必有个体a, 使 A(a)∨B(a)为假; 因此A(a), B(a)皆为假, 所以(x)A(x)和(x)B(x)为假, 即 (x)A(x)∨(x)B(x)为假。 故(x)A(x)∨(x)B(x)(x)(A(x)∨B(x))
xi(i=1,2,
…,n)是客体变元,
Aij是原子公式或其否定。
举例
(x)(u)(z)(( P( x) P(u)) ( P( x) Q( y, z)) (Q( x, y) P(u)) (Q( x, y) Q( y, z)))
(x)(z)(y){[P ( x a) ( z b)] [Q( y) (a b)]}
命题演算的等价式
P Q P Q
P Q (P Q)
P P F
(x) H ( x, y) (x) H ( x, y) F
2、量词与联结词¬之间的关系 ¬ (x)P(x) (x)¬ P(x) ¬ (x)P(x) (x)¬ P(x)

其中Qi(1≤i≤k)为或, A为不含有量词的谓词公式。

特别地,若谓词公式中无量词,则该公式也看作 是前束范式。 前束范式的特点:所有量词均非否定地出现在公 式最前面,且它的辖域一直延伸到公式之末。

离散数学简明教程

离散数学简明教程

离散数学简明教程
第一章:数论基础
数论是离散数学中的基础部分,主要研究的是整数及其性质。

这一部分内容将介绍整除、质数、合数、素数定理等基本概念,以及一些重要的数论问题,如中国剩余定理、费马大定理等。

第二章:集合论
集合论是离散数学的基础理论之一,主要研究的是集合及其性质。

这一部分内容将介绍集合的基本概念、集合的运算、幂集、二元关系等基本概念,以及一些重要的集合论定理,如鸽笼原理、康托尔定理等。

第三章:图论
图论是离散数学中最为重要的分支之一,主要研究的是图形的性质和结构。

这一部分内容将介绍图的基本概念、图的矩阵表示、欧拉路径和欧拉回路、哈密尔顿路径和哈密尔顿回路等基本概念,以及一些重要的图论定理,如克鲁斯卡尔定理、普利姆定理等。

第四章:逻辑学
逻辑学是离散数学的另一个基础理论,主要研究的是推理和证明。

这一部分内容将介绍命题逻辑、谓词逻辑、一阶逻辑等基本概念,以及一些重要的逻辑学定理,如哥德尔完备性定理、塔斯基不可定义定理等。

第五章:算法分析
算法分析是离散数学的一个重要应用领域,主要研究的是算法的时间和空间复杂度。

这一部分内容将介绍算法分析的基本概念、大O 符号、递归算法等基本概念,以及一些重要的算法分析定理,如阿克曼函数不可计算性定理等。

离散数学第二章(第3讲)

离散数学第二章(第3讲)

2、规则使用说明
(1)用US,ES在推导中去掉量词,用UG,EG使结论量化 (加上量词)。 (2)在使用ES,US时,要求谓词公式必须是前束范式
(3)推导中既用ES,又用US, 则必须先用ES ,后 用US方可取相同变元,反之不行。
xP(x) P(c) xQ(x) Q(c)
(4)推导中连续使用US规则可用相同变元 xP(x) P(c) xQ(x) Q(c)
(x)(M(x)D(x)),M(s) D(s)
(1) x(M(x)D(x))
P
(2) M(s) D(s)
US(1)
(3) M(s)
P
(4) D(s)
T(2)(3)I
(2)CP 规则证明
例 证明: x (P(x)Q(x)) x P(x) xQ(x)
(1) x P(x)
附加前提
(2) x (P(x)Q(x))
x(P(x)(Q(x)S(x))),x(P(x)T(x)),Q(c)T(c)P(c)S(c)
推理形式如下:
(1) P(c)
附加前提
(2) x(P(x)(Q(x)S(x)))
P
(3) P(c)(Q(c)S(c))
US (2)
(4) Q(c)S(c)
T(1)(3) I
(5) Q(c)T(c)
P
(6) Q(c)
T (6)(10) I
T(1) E
(3) xP(x)
T (2) I
(4) P(a)
ES (3)
(5) xQ(x)
T(2) I
(6) Q(a)
US (5)
(7) x( P(x) Q(x) )
P
(8) P(a) Q(a)
US(7)

离散数学 杨圣洪等著第二章习题三解答

离散数学 杨圣洪等著第二章习题三解答

第二章习题三一、证明如下推理式1、∃xF(x)→∀y((F(y)∨G(y))→R(y)),∃xF(x) ⇒∃xR(x)(1)∃xF(x) 前提条件(2)∃xF(x) →∀y((F(y) ∨G(y)) →R(y)) 前提条件(3)∀y((F(y) ∨G(y)) →R(y)) (1)(2)假言推理(4)F(c) (1)存在量词指定(5)F(c) ∨G(c) (4)及析取的定义(6)(F(c) ∨G(c)) →R(c) (3)全称量词指定(7)R(c) (5)(6)假言推理(8)∃xR(x) (7)存在推广2、∀x(F(x)→(G(a) ∧R(x))),∃xF(x) ⇒∃x(F(x) ∧R(x))(1)∃xF(x) 前提条件(2)F(c) (1)存在量词指定(3)∀x(F(x)→G(a) ∧R(x))) 前提条件(4)F(c)→G(a)∧R(c)) (3)全称指定,尤其x=c应成立(5)G(a)∧R(c) (2)(4)假言推理或分离原则(6)R(c) (5)与合取的定义(2)(6)与合取的定义(7)F(c)∧R(c)(8)∃x(F(x)∧R(x) (7)存在推广3、∀x(F(x)∨G(x)),¬∃xG(x) ⇒∃xF(x)(1)¬∃xG(x) 前提条件(2)∀x¬G(x) (1)的等值(3)¬G(x0) (2)全称指定,x0为任意变元(4)∀x(F(x) ∨G(x)) 前提条件(4)全称指定为x0(5)(F(x0) ∨G(x0))(6)¬G(x0) →F(x0) (5)等值变换(7)F(x0) (3)(6)分离原则或假言推理(8)∃xF(x) (7)存在推广4、∀x(F(x) ∨G(x)),∀x(¬R(x) ∨¬G(x)),∀xR(x) ⇒∃xF(x)(1)∀x(F(x) ∨G(x)) 前提条件(2)(F(x0) ∨G(x0)) (1)全称指定,x0为任意变元(3)∀x(¬R(x) ∨¬G(x)) 前提条件(4)(¬R(x0) ∨¬G(x0)) (3)全称指定,变元x指定为(2)中确定的变元x0,即是同一个x0(5)∀xR(x) 前提条件(6)R(x0) (5)全称指定,与(2)中的x0为同一个(4)的等值变换(7)R(x0) →¬G(x0)(8)¬G(x0) (6)(7)分离原则或假言推理(9)¬G(x0) → F(x0) (2)的等值变换(10)F(x0) (8)(9)分离原则或假言推理(11)∃xF(x) (10)存在推广。

离散数学-第二章-谓词逻辑-变元的约束

离散数学-第二章-谓词逻辑-变元的约束
例 I(x):表示x是整数,N(x):表示x是自然数, 假设个体域E是自然数集合,公式I(x)与N(x)在E上是 等价的。 而公式N(x)→I(x) 与N(x)∨I(x)就是与个体域无 关的等价的公式,即 N(x)→I(x)N(x)∨I(x)。
河南工业大学离散数学课程组
四、谓词公式的蕴含式定义
约束 变元
自由
(1)(x)(y)(P(x, y)∨Q(y, z))∧(x)R(x,y)
变元
指导 变元
(x)的 (y)的 指导 (x)的 辖域 辖域 变元 辖域
P(x, y)、Q(y, z)中的x, y为约束变元,z为自由变元, R(x,y)中的x为约束变元,但y为自由变元。
河南工业大学离散数学课程组
例(x)(A(x)∨B(x,y))∨C(x)∨ D(x,w) 换名: (y)(A(y)∨B(y,y))∨C(x)∨ D(x,w) 错
(w)(A(w)∨B(w,y))∨C(x)∨ D(x,w) 对 (z)(A(z)∨B(z,y))∨C(x)∨ D(x,w) 对
代入: (x)(A(x)∨B(x,y))∨C(y)∨ D(y,w) 错 (x)(A(x)∨B(x,y))∨C(w)∨ D(w,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(x,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(u,w) 对
(x)G(x) =
1, 0,
x D,G(x) = 1 x0 D,G(x0 ) = 0
(x)G(x) =
1, 0,
x0 D,G(x0 ) = 1 x D,G(x) = 0
河南工业大学离散数学课程组

对以下公式赋值后求真值。
(x)(P(x)→Q(f(x),a)) (x)(P(x)∧Q(x,a))

离散数学第二章

离散数学第二章

(5) 只有有限次地应用(1)-(4)构成的符号串
才是合式公式(也称谓词公式),简称公式。
(1) x( P( x) Q( y)) (2) x(G( x) xH ( x, y)) (3) x(y(R( x, y)) F ( x)) (4), x2 , xn )是任意 n 元谓词,
t1 , t2 ,, tn 是项,则称 R(t1 , t2 ,, tn ) 为原子公式。
4、合式公式的递归定义。
(1) 原子公式是合式公式;
(2) 若 A 是合式公式,则(A)也是合式公式;
(3)若 A, B 是合式公式,则( A B),( A B),
个体常项
用 a, b, c 表示
个体词 个体变项
用 x, y , z 表示
个体域(或称论域)——个体变项取值的范围。 2、 谓词——刻画个体词的性质或 个体词之间关系的词。
谓词常项
谓词 谓词变项
都用 F , G, H 表示
n元谓词(用 F ( x1 , x2 ,, xn ) 表示) 如 F ( x, y):x 比 y 高。
构成了公式的一个解释。
1、解释 I 由以下4部分组成: (3) D 上一些特定的函数; (4) D 上一些特定的谓词;
例1 A x( P( x) Q( x))
I : D {2,3}, P( x) : x 2, Q( x) : x 3
A x( P( x) Q( x))
性质F 1 D中至少有一个元素满足 xF ( x) : D中所有元素不满足性质 F 0
D {a1, a1,, an }
xF( x) F (a1 ) F (a2 ) F (an ) xF( x) F (a1 ) F (a2 ) F (an )

离散数学——精选推荐

离散数学——精选推荐

离散数学第一章命题逻辑定义1。

设P为一命题,P的否定是一个新的命题,记作¬P。

若P为T,¬P为F;若P为F,¬P为T。

联结词“¬”表示命题的否定。

否定联结词有时亦可记作“¯”。

(P3)定义2。

两个命题P和Q的合取是一个复合命题,记作P∧Q。

当且仅当P,Q同时为T时,P∧Q为T,在其他情况下,P∧Q的真值都是F。

(P4)定义3。

两个命题P和Q的析取是一个复合命题,记作P∨Q。

当且仅当P,Q同时为F时,P∨Q的真值为F,否则P∨Q的真值为T。

(P5)定义4。

给定两个命题P和Q,其条件命题是一个复合命题,记作P→Q,读作“如果P,那么Q”或者“若P则Q”。

当且仅当P的真值为T,Q的真值为F时,P→Q的真值为F,否则P→Q的真值为T。

我们称P为前件,Q为后件。

(P6)定义5。

给定两个命题P和Q,其复合命题P⇆Q的真值为F。

(P7)定义6。

命题演算的合式公式(wff),规定为:(1)单个命题变元本身是一个合式公式。

(2)如果A是合式公式,那么¬A是合式公式。

(3)如果A和B是合式公式,那么(A∧B),(A∨B),(A→B)和(A⇆B)都是合式公式。

(4)当且仅当能够有限次地应用(1),(2),(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。

(P9)定义7。

在命题公式中,对于分量指派真值得各种可能组合,就确定了这个命题公式的各种真值情况,把它汇列成表,就是命题公式的真值表。

(P12)定义8。

给定两个命题公式A和B,设P1,P2,…,P n为所有出现于A和B中的原子变元,若给P1,P2,…,P n任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。

记作A⇔B。

(P15)定义9。

如果X是合式公式的A的一部分,且X本身也是一个合式公式,则称X为公式A 的字公式。

(P16)定理1。

设X是合式公式A的字公式,若X⇔Y,如果将A中的X用Y来置换,所得到公式B 与公式A等价,即A⇔B。

离散数学 第二章 谓词演算及其形式系统

离散数学 第二章 谓词演算及其形式系统

第二章谓词演算及其形式系统2.1 个体、谓词和量词内容提要谓词演算中把一切讨论对象都称为个体,它们可以是客观世界中的具体客体,也可以是抽象的客体,诸如数字、符号等。

确定的个体常用a,b,c等到小写字母或字母串表示。

a,b,c等称为常元(constants)。

不确定的个体常用字母x,y,z,u,v,w等来表示。

它们被称为变元(variables)。

谓词演算中把讨论对象——个体的全体称为个体域(domain of individuals)),常用字母D表示,并约定任何D都至少含有一个成员。

当讨论对象遍及一切客体时,个体域特称为全总域(universe),用字母U表示。

例如,当初中学生说“所有数的平方非负”时,实数集是个体域;而达尔文在写《物种起源》时,则以全体生物为个体域;也许哲学家更偏爱全总域。

讨论常常会涉及多种类型个体,这时使用全总域也是比较方便的。

当给定个体域时,常元表示该域中的一个确定的成员,而变元则可以取该域中的任何一个成员为其值。

表示D上个体间运算的运算符与常元、变元组成所谓个体项(terms)。

例如,x+y,x2等。

我们把语句中表示个体性质和关系的语言成分(通常是谓语)称为谓词(predicate)。

谓词携有可以放置个体的空位,当空位上填入个体后便产生一个关于这些个体的语句,它断言个体具有谓词所表示的性质和关系。

通常把谓词所携空位的数目称为谓词的元数。

谓词演算中的量词(quantifiers)指数量词“所有”和“有”,分别用符号∀(All的第一个字母A的倒写) 和∃(Exist的第一个字母E的反写)来表示。

为了用量词∀和∃分别表示个体域中所有个体和有些个体满足一元谓词P,需引入一个变元,同时用作量词的指导变元(放在量词后)和谓词P的命名式变元:∀xP(x) 读作“所有(任意,每一个)x满足P(x)”。

表示个体域中所有的个体满足谓词P(x)。

∃x P(x) 读作“有(存在,至少有一个)x满足P(x)”。

离散数学 第二章 谓词逻辑-2-3节

离散数学 第二章 谓词逻辑-2-3节

河南工业大学离散数学课程组
个体域 (论域)
个体域的给定形式有两种: (1)具体给定。
如:{a,b,c}
(2)全总个体域/任意域。 所有个体域的总和,即世间一切万物的主体。
河南工业大学离散数学课程组 3、量词:在命题中表示客体数量的词,称之为量词。
:全称量词 :存在量词
Anyone
Exit
河南工业大学离散数学课程组

(2)每一个大学生都会说英语; 无特性谓词: Q(x):x会说英语。(x)Q(x) x∈{大学生}
Q(x):x会说英语。U(x):x是大学生。 (x) (U(x) → Q(x))
(3)有一些自然数是素数。 无特性谓词:T(x):x是素数。(x) T(x) x∈{自然数}
一、谓词演算的原子公式
定义2-3.1 :称n元谓词P(x1,x2,...,xn)为原子谓词公式, 简称原子公式。即不出现命题联结词和量词。 例如 P、Q(x)、A(x,f(x),a)都是谓词演算的原子公式。
二、谓词演算的合式公式(WFF)(Well Formed formulas) 定义2-3.2:谓词合式公式递归定义如下: (1)原子谓词公式是合式公式。
河南工业大学离散数学课程组
将命题函数→命题的两种方法
1)将变元取定具体的值,如P(a),P(b)。 2)将谓词量化。如(x)P(x), (x)P(x)。
河南工业大学离散数学课程组
命题函数举例
例.设S(x)表示“x学习很好”, W(x)表示“x工作很 好”, A(x)表示“ x身体好” S(x) 表示“x学习不是很好”, S(x) ∧W(x) 表示“x学习和工作都很好”。 A(x)→(S(x)∧W(x)) 表示“如果x身体不好,则x的学习与工作都不 会好”。 S(x), W(x)是简单命题函数, 而S(x), S(x)W(x), A(x)→(S(x)∧W(x))是 复合命题函数。

自考离散数学第2章

自考离散数学第2章

域E,若对 A和B的任一组变元进行赋值,所得命题的真值相同,则称 谓词公式A和B在E上是等价的,并记作 A B
定义2.3.2 给定任意谓词公式WffA,其个体域为E,对于A的所有赋值
WffA都为真,则称WffA在E上有效的(或永真的)
定义2.3.3 一个谓词公式WffA,如果在所有赋值下都为假,则称WffA
P
(2)H(s)→M(s)
(3)H(s) (4)M(s)
US(1)
P T(2)(3)I
2.5 谓词演算的推理理论
例:专业委员会成员都是教授,并且是计算机设计师,有些成员是资
深专家,所以有的成员是计算机设计师,且是资深专家。请用谓词推 理理论证明上述推理。
证:设个体域为全总个体域。 M(x):x 是专业委员会成员; H(x):x 是教授; G(x):x 是计算机设计师;
2.3 谓词演算的等价式与蕴含式
表2.3.1
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
2.4 前束范式
定义2.4.1 一个公式,如果量词均在全式的开头,它们的作用域,延伸
到整个公式的末尾,则该公式叫做前束范式。
定理2.4.1 任意一个谓词公式均和一个前束范式等价。
2.3 谓词演算的等价式与蕴含式
例:寻求下式的真值。
(x)(P Q( x)) R(a) ,其中P:2>1,Q(x):x≦3,R(x):x>5,a=5,
且论域{-2,3,6}
2.3 谓词演算的等价式与蕴含式
2.3 谓词演算的等价式与蕴含式
定义2.3.1 给定任何两个谓词公式 WffA和WffB,设它们有共同的个体

离散数学第五版第二章(耿素云、屈婉玲、张立昂编著)

离散数学第五版第二章(耿素云、屈婉玲、张立昂编著)

7
2.1一阶逻辑的基本概念
(2)谓词常项是指表示具体性质或关系的谓词称为谓词
常项,通常用F,G,H,……表示。
例如:x大于y。
(3)谓词变项是表示抽象G,H,……表示。
(4)n元谓词P(x1,x2,……,xn)表示含有n(n>0)
个命题变项:当n=1时,P(x1)表示x1具有性质 P;当n>1时,表示x1,x2……xn具有关系P。
9
2.1一阶逻辑的基本概念
3. 量词
(1)量词是表示个体常项或变项之间数量关系的词。
(2)全称量词是表示日常用语中“一切的”、“所有
的”、“每一个”、“任意的”、“凡是”、 “都”等词,可符号化为∀,并用∀x,∀y等表示 个体域中的所有个体,用∀xF(x),∀yG(y)表示
个体域中的所有个体都有性质F和都有性质G。
式公式。
20
2.2一阶逻辑合式公式及解释
二、与合式公式相关的概念 1. 指导变元、辖域、约束出现、自由出现(定义2.5)
在公式xA和xA中,称x为指导变元,A为相应量词的 辖域。在x和x的辖域中,x的所有出现均为约束出 现,A中不是约束出现的其它变项均称为自由出现。
21
2.2一阶逻辑合式公式及解释
17
2.2一阶逻辑合式公式及解释
2. 一阶语言的项(定义2.2)
(1)个体常项和个体变项是项 (2)若(x1,x2,……,xn)是任意的n元函数,t1,t2,……,
tn是任意的n个项,则(t1,t2,……,tn)是项。 (3)所有的项都是有限次使用(1),(2)得到的。
例如:a,b,x,y,f(x,y)=x+y,g(x,y)=x-y,h(x,y)=x*y, f(a,g(x,y))=a+(x-y) g(h(x,y),f(a,b))=x*y-(a+b)

离散数学自考第二章

离散数学自考第二章

定义 1.辖域(作用域):紧接在量词后面括号内的谓词公式。 辖域( 辖域 作用域)
例: ∀xP(x) , ∃x(P(x) ∧Q(x)) 。 若量词后括号内为原子谓词公式,则括号可以省去。
2.指导变元(作用变元):紧接在量词后面括号内的X。 指导变元(作用变元) 指导变元 3.约束变元:在量词的辖域内,且与量词下标相同的变元。 约束变元: 约束变元 4.自由变元:当且仅当不受量词的约束。 自由变元: 自由变元
例:张华是学生,李明是学生。则可把它表示成: H:表示“是学生”,j:表示“张华”,m:表示“李明”,则可用下 列符号表示上述二个命题:H(j),H(m)。
1. 命题函数
客体在谓词表达式中可以是任意的名词。 例:C—“总是要死的。” j:张三;t:老虎;e:桌子。 则C(j), C(t), C(e)均表达了命题。 在上面的例子中,C:表示“总是要死的”;x:表示变元(客 体变元),则C(x)表示“x总是要死的”,则称C(x)为命题 函数。 定义》 《定义》由一个谓词字母和一个非空的客体变元的集合所组成 的表达式,称为命题函数。
2.区别是命题还是命题函数的方法 (a)若谓词公式中出现自由变元,则该公式为命题函数; (b)若谓词公式中的变元均为约束出现,则该公式为命题。
例: ∀xP(x,y,z)是二元谓词, ∃y∀xP(x,y,z)是一元谓词, 而谓词公式中如果没有自由变元出现,则该公式是一个命题。
3.代入规则:对公式中的自由变元的更改叫做代入。 代入规则: 代入规则 (a)对公式中出现该自由变元的每一处进行代入, (b)用以代入的变元与原公式中所有变元的名称不 能相同。
∃x (A(x) ∨B(x)) ⇔ ∃xA(x) ∨ ∃xB(x) ∀x(A(x)∧B(x)) ⇔ ∀xA(x)∧ ∀xB(x) (∃x (A(x) → B(x)) ⇔ ∀xA(x) → ∃xB(x) ∀xA(x) ∨ ∀xB(x) ⇒ ∀x(A(x) ∨ B(x)) x(A(x) ∧ B(x)) ⇒ ∃ x(A(x) ∧ B(x)) ∃xA(x) → ∀xB(x) ⇒ ∀x(A(x) → B(x))

离散数学第二章命题逻辑等值演算

离散数学第二章命题逻辑等值演算

再如 ┑p ∨ q 既是p →q的析取范式又是它的的合取范式
如果公式的范式不唯一则对于将公式按等值进行分类的利用价值就不高
p q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q)
00
1
1
01
0
0
10
0
0
11
1
1
(0,0)与(1,1)为公式的成真赋值。 (0,1)与(1,0)为公式的成假赋值
命题公式的分类(根据公式在赋值下的真值情况进行分类) 1)若命题公式在它的各种赋值下取值均为真,则称命题公式是重言
式或永真式。 2)若命题公式在它的各种赋值下取值均为假,则称命题公式是矛盾
2
如:┐Q∧(P→Q) → ┐P
4
分析1:若要得出:当设 A为真,B为
假的情况不会出现,
5
那么A →B 为永真式。
6
可证明:设前件为真
7
分析2: 还可以从设 B为假,推出A
为真的情况不会出现(A为假),
9
证明: 设后件为假
8
那么A →B 为永真式。
1 0
((P→Q)∧( Q→R)) →(P→R)
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以构成 无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
是含三个简单析取式的合取范式.
2、性质:
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0

离散数学 第2章 命题逻辑等值演算

离散数学 第2章 命题逻辑等值演算

A00
A0A. A1A
ABAB AB(AB)(BA) ABBA ABAB (AB)(AB) A
等价否定等值式
注意:要牢记各个等值式,这是继续学习的基础
以上 16 组等值式包含了 24 个重要等值式。 由于 A,B,C 可以 代表任意的命题公式,因而以上各等值式都是用元语言符号 书写的,称这样的等值式为等值式模式,每个等值式模式都 给出了无穷多个同类型的具体的等值式。 例如,在蕴涵等值式(2.12)中, 取 A=p,B=q 时,得等值式: p→q ┐p∨q 当取 A=p∨q∨r,B=p∧q 时,得等值式: (p∨q∨r)→(p∧q) ┐(p∨q∨r)∨(p∧q) 这些具体的等值式都被称为原来的等值式 模式的代入实例。
mi 与 Mi 的关系由书上定理 2.4 给出,即 mi Mi, Mi mi
2. 主析取范式与主合取范式 定义 2.5 (1)主析取范式——由极小项构成的析取范式 (2) 主合取范式——由极大项构成的合取范式 例如,n=3, 命题变项为 p, q, r 时, (p q r) (p q r) m1m3 ——主析取范式 (p q r) (p q r) M7M1——主合取范式 3. 命题公式 A 的主析取范式与主合取范式 (1) 与 A 等值的主析取范式称为 A 的主析取范式;与 A 等值的主合 取范式称为 A 的主合取范式. (2) 主析取范式的存在惟一定理 定理 2.5 任何命题公式都存在着与之等值的主析取范式和主合取 范式,并且是惟一的
由最后一步可知, (1)为矛盾式.
(2)(pq)(qp) (pq)(qp) (pq)(pq) 1 由最后一步可知, (2)为重言式. 问:最后一步为什么等值于 1? 说明: (2)的演算步骤可长可短,以上演算最省. (蕴涵等值式) (交换律)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推理正确,q是有效结论
16
归结证明法
归结规则 A B AC \BC 理由 (pq)pr)(qr)
(pq)pr))(qr) (pq)pr)qr (pq)q)pr)r) (pq)pr)
欲证明 前提:A1, A2, … , Ak 结论:B 将B加入前提, 若推出矛盾, 则得证推理正确. 理由: A1A2…AkB (A1A2…Ak)B (A1A2…AkB) (A1A2…AkB)0 (A1A2…AkB)
14
实例
9
实例
例3 构造推理的证明: 若明天是星期一或星期三, 我就有 课. 若有课, 今天必需备课. 我今天下午没备课. 所以, 明天 不是星期一和星期三.
解 设 p:明天是星期一, q:明天是星期三,
r:我有课, s:我备课 前提: (pq)r, rs, s
结论: pq
10
实例(续)
前提: (pq)r, rs, s 结论: pq 证明 ① r s 前提引入 ② s 前提引入 ③ r ①②拒取式 ④ (pq)r 前提引入 ⑤ (pq) ③④拒取式 ⑥ pq ⑤置换 结论有效, 即明天不是星期一和星期三
18
实例
例6 用归结证明法构造下面推理的证明: 前提: pq)r, rs, s 结论: pq 解 pq)r pq)r pq)r pr)qr) rs rs pq)pq 把推理的前提改写成 前提:pr,qr,rs,s, pq (结论均为0, 不必写出)
2.4 推理
• 2.4.1 推理的形式结构
–推理的前提与结论,正确推理
• 2.4.2 推理的证明
–推理规则 –直接证明法, 附加前提证明法, 归谬法(反证法)
• 2.4.3 归结证明法 • 2.4.4 对证明方法的补充说明
1
有效推理
定义2.20 若对于每组赋值, A1A2… Ak 为假, 或者 当A1A2…Ak为真时, B也为真, 则称由前提A1,A2,…, Ak 推B的推理有效或推理正确, 并称B是有效的结论 定理2.8 由前提A1, A2, …, Ak 推出B 的推理正确当且仅当
11
附加前提证明法
欲证明 前提: A1, A2, …, Ak 结论: CB 理由: 等价地证明 前提: A1, A2, …, Ak, C 结论: B
(A1A2…Ak)(CB)
( A1A2…Ak)(CB)
( A1A2…AkC)B (A1A2…AkC)B
6
推理规则
(1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 假言推理规则 AB A \B (5) 附加规则 A \AB (6) 化简规则 AB \A (7) 拒取式规则 AB B \A (8) 假言三段论规则 AB BC \AC
7
推理规则(续)
(9) 析取三段论规则 AB B \A (10)构造性二难推理规则 AB CD AC \BD (11) 破坏性二难推理规则 AB CD BD \AC (12) 合取引入规则 A B \AB
12
实例
例4 构造下面推理的证明: 前提: pq, qr, rs 结论: ps 证明 ① p 附加前提引入 ② pq 前提引入 ③q ①②析取三段论 ④ qr 前提引入 ⑤r ③④析取三段论 ⑥ r s 前提引入 ⑦s ⑤⑥假言推理 推理正确,ps是有效结论
13
归谬法(反证法)
A1A2…AkB
为重言式.
2
推理的形式结构
形式(1) A1A2…AkB 形式(2) 前提: A1, A2, … , Ak 结论: B 推理正确记作 A1A2…AkB
判断推理是否正确的方法: • 真值表法 • 等值演算法 • 主析取范式法 • 构造证明法
3
实例
例1 判断下面推理是否正确: (1) 若今天是1号, 则明天是5号. 今天是1号. 所以, 明天是5号. 解 设 p: 今天是1号, q: 明天是5号 推理的形式结构为 (pq)pq 证明 用等值演算法 (pq)pq ((pq)p)q ((pq)p)q pqq 1 得证推理正确
19
实例(续)
前提:pr,qr,rs,s , pq 证明 ① pr 前提引入 ② pq 前提引入 ③ qr ①②归结 ④ qr 前提引入 ⑤r ③④归结 ⑥ r s 前提引入 ⑦s ⑤⑥归结 ⑧ s 前提引入 ⑨0 ⑦⑧合取
20
对证明方法的补充说明
直接证明法 当A为真时B为真, 则AB为真 前提假证明法 若A为矛盾式, 则AB为真. 结论真证明法 若B为永真式, 则 AB为真 (不管A如何) 间接证明 (A1A2Ak)B (A1A2Ak)B (A1B)(A2B) (AkB) (A1B)( A2B) (AkB)
4
实例(续)
(2) 若今天是1号, 则明天是5号. 明天是5号. 所以, 今天是1号. 解 设p: 今天是1号, q: 明天是5号. 推理的形式结构为 (pq)qp 证明 用主析取范式法 (pq)qp (pq)qp ((pq)q)p qp (pq)(pq) (pq)(pq) m0m2m3 01是成假赋值, 所以推理不正确.
8
直接证明法
例2 构造下面推理的证明: 前提: pq, qr, ps, s 结论: rpq) 证明 ① ps 前提引入 ② s 前提引入 ③ p ①②拒取式 ④ pq 前提引入 ⑤q ③④析取三段论 ⑥ qr 前提引入 ⑦r ⑤⑥假言推理 ⑧ rpq) ⑦④合取 推理正确,rpq)是有效结论
5
推理定律——重言蕴涵式
A (AB) 附加律 (AB) A 化简律 (AB)A B 假言推理 (AB)B A 拒取式 (AB)B A 析取三段论 (AB)(BC) (AC) 假言三段论 (AB)(BC) (AC) 等价三段论 (AB)(CD)(AC) (BD) 构造性二难 (AB)(AB) B 构造性二难(特殊形式) (AB)(CD)( BD) (AC) 破坏性二难
例5 构造下面推理的证明
前提: (pq)r, rs, s, p 结论: q
证明 用归缪法
①q ② r s 结论否定引入 前提引入
③ s
④ r
前提引入
②③拒取式
15
实例(续)
⑤ (pq)r ⑥ (pq) ⑦ pq ⑧ p ⑨p ⑩ pp 前提引入 ④⑤析取三段论 ⑥置换 ①⑦析取三段论 前提引入 ⑧⑨合取
17
归结证明法的基本步骤
1. 将每一个前提化成等值的合取范式, 设所有合取范式的 全部简单析取式为A1, A2,…, At 2. 将结论的否定化成等值的合取范式B1B2…Bs, 其中 每个Bj是简单析取式 3. 以A1,A2,…,At和B1,B2,,Bs为前提, 使用归结规则推出0 除前提引入规则外, 只使用归结规则
21
相关文档
最新文档