数学模型_第3版_姜启源_高等教育出版社_课后答案

合集下载

数学模型第三版课后答案

数学模型第三版课后答案

《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学模型第三版课后习题答案.doc

数学模型第三版课后习题答案.doc

《数学模型》作业解答第七章( 2008 年 12 月 4 日)1.对于节蛛网模型讨论下列问题:( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取决于 y k ,给出稳定平衡的条件,并与节的结果进行比较.( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格析稳定平衡的条件是否还会放宽 .解:( 1)由题设条件可得需求函数、供应函数分别为:yk 1f xk 1x k)(2x k 1h( y k )在 P 0 (x 0 , y 0 )点附近用直线来近似曲线 f , h ,得到y k 1y 0 (xk 1x k x 0 ),2xk 1x 0( y ky 0 ) ,由( 2)得x k 2 x 0( y k 1y 0 )( 1)代入( 3)得xk 2x 0(xk 1xkx 0 )22x k 2 x k 1 x k 2x 0 2x 0对应齐次方程的特征方程为22() 2 8特征根为1, 24y k 和 y k 1 确定 . 试分(1)( 2)(3)当8 时,则有特征根在单位圆外,设8 ,则1,2( ) 2( ) 2 84224 1,212即平衡稳定的条件为2与 P 207的结果一致 .( 2)此时需求函数、供应函数在P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为:y k 1y 0( x k 1 x kx 0 ),( 4)2xk 1x 0( y ky k 1y 0 ) ,( 5)2由( 5)得, (xx 0) β(yyyk 1y 0)( 6 )2 k 3k 2将( 4)代入( 6),得2( x k 3 x 0 )(xk 2xk 1x 0 )(x k 1xkx 0 )224 x k 3x k 2 2 x k 1x k4 x 04x 0对应齐次方程的特征方程为43 220 (7)代数方程( 7 )无正实根,且αβ ,,24不是( 7)的根 . 设( 7)的三个非零根分别为 1, 2, 3,则12341 22 331212 34对( 7)作变换:, 则123q 0,p其中 p1(22 2), q1(833 2 2)412412361q( q ) 2 ( p ) 3q( q )2( p33) 32232 23用卡丹公式:2w 3q( q ) 2 ( p )3 w 2 3q( q ) 2 ( p ) 322322 3 3w23q( q ) 2 ( p )3w 3q( q ) 2 ( p ) 3223223其中 w1i 3 ,2求出 1,2,3 ,从而得到1 ,2 ,3 ,于是得到所有特征根 1的条件 .2.已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g(yky k 1) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g (yky k 1 ) .2设曲线 f 和 g 相交于点 P 0 (x 0 , y 0 ) ,在点 P 0 附近可以用直线来近似表示曲线f 和g :y k y 0 ( x k x 0 ) ,----------------------( 1)x k1x 0( y ky k 1 y 0 ) , 0--------------------( 2)2从上述两式中消去y k 可得2x k 2xk 1x k 2(1)x 0 , k 1,2, , -----------(3)上述( 3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:2 2容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2( ) 28----------- ( 5)44从而 22,2 在单位圆外.下面设8 ,由 (5) 式可以算出1, 22要使特征根均在单位圆内,即1, 21 ,必须2 .故 P 0 点稳定平衡条件为2 .3. 已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y k 1f (xk1x k) 和 x k 1g ( y k ) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y k1f ( x k 1x k) 和 x k 1 g( y k ) .2设曲线 f 和 g 相交于点( x 0 , y 0 ),在点 0 附近可以用直线来近似表示曲线f 和g :P Py k 1y 0(xk 12 x kx 0 ) ,0 --------------------( 1)x k1x 0 ( y ky 0 ) ,--- ----------------( 2) 由( 2)得 x k2 x 0( y k1y 0 )--------------------( 3)( 1)代入( 3),可得 x k2x 0( x k1x kx 0 )22x k2x k 1x k 2x 0 2 x 0 , k 1,2, , --------------(4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑( 4)对应的齐次差分方程的特征方程:22容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2 ( ) 2 8----------- ( 5)4 4从而22, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1 ,必须 2 .故 P0点稳定平衡条件为 2 .《数学模型》作业解答第八章( 2008 年 12 月 9 日)1.证明节层次分析模型中定义的n 阶一致阵 A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明:(1)由一致阵的定义知: A 满足a ij a jk a ik , i, j , k 1,2, , n于是对于任意两列i, j ,有a ika jka ij ,k 1,2, ,n . 即i列与j 列对应分量成比例.从而对 A 作初等行变换可得:b11 b12 b1n初等行变换0 0 0A B0 0 0这里 B 0.秩B1 ,从而秩 A 1再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P,使 PA B ,于是c 11 c12c1nPAP 1 BP 1 0 0 0 C0 0 0易知 C的特征根为c11,0, ,0 (只有一个非零特征根).又A ~C ,A 与 C 有相同的特征根,从而 A 的非零特征根为 c 11 ,又 对于任意矩阵有12 nTr Aa11a22ann1 11n . 故 A 的唯一非零特征根为 n .a 1k, a2kT1,2, , n(2)对于 A 的任一列向量, , a nk , k有na 1 jajkna 1kna 1 kj 1 j 1na 2 jajk na2 kna 2 kTn a 1k , a 2kTA a 1k , a 2k , , a nkj 1 j 1, , a nknnna nka njajkankj 1j 1A 的任一列向量 a 1k , a 2k , , a nk T 都是对应于 n 的特征向量 .7. 右下图是 5 位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出 5 位选手的名次 .解:这个 5 阶竞赛图是一个5 阶有向 Hamilton 图 . 其一个有2向 Hamilton 圈为 314523. 所以此竞赛图是双向连通的 .4 5 1 2 32 4 53 11353 1243 14 52等都是完全路径 .此竞赛图的邻接矩阵为0 1 0 1 00 0 1 1 05A1 0 0 040 0 1 0 11 1 1 0 0令 e 1,1,1,1,1 T,各级得分向量为S1Ae 2,2,1,2,3 T,S2AS S 3AS 27,6,4,7,9 T ,S 4AS14,3,2,4,5 T ,313,11,7,13,17 T由此得名次为5, 1( 4), 2,3(选手1和4名次相同).注:给 5 位网球选手排名次也可由计算 A 的最大特征根和对应特征向量S 得到:1.8393,S0.2137,0.1794,0.1162,0.2137,0.2769 T数学模型作业( 12 月 16 日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层越海方案的最优经济效益准则层省收岸间当地建筑时入商业商业就业方案层建桥梁修隧道设渡轮2.简述层次分析法的基本步骤 . 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪 3 个层次?具体内容分别是什么?答:层次分析法的基本步骤为:( 1).建立层次结构模型;( 2).构造成对比较阵;( 3).计算权向量并做一致性检验;( 4).计算组合权向量并做组合一致性检验.对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3 个层次 .目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位 3 等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪 3 个层次?试给出一致性指标的定义以及n 阶正负反阵 A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这 3 个层次;一致性指标的定义为:CIn .n阶正互反阵A 是一致阵的充要条件为:A 的最大特征根n 1=n .第九章( 2008 年 12 月 18 日)1.在 9.1节传送带效率模型中 , 设工人数 n 固定不变 . 若想提高传送带效率D, 一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子, 其它条件不变, 于是每个工人在任何时刻可以同时触到两只钩子, 只要其中一只是空的, 他就可以挂上产品, 这种办法用的钩子数量与第一种办法一样. 试推导这种情况下传送带效率的公式, 从数量关系上说明这种办法比第一种办法好.解: 两种情况的钩子数均为2m .第一种办法是 2m 个位置,单钩放置2m 个钩子;第二种办法是 m 个位置,成对放置 2m 个钩子.① 由 9.1节的传送带效率公式,第一种办法的效率公式为2m 1nD11n2m当n较小, n1时,有2mD2m 1 11 n n 1 1 n 1n2m 8m 24mD 1 E,nE4m② 下面推导第二种办法的传送带效率公式:对于 m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的 m 个钩对.任一只钩对被一名工人接触到的概率是1 ;m 1任一只钩对不被一名工人接触到的概率是1;1, q 1 1m记 p.由工人生产的独立性及事件的互不相容性.得,任一钩对为空m m的概率为 q n,其空钩的数为2m ;任一钩对上只挂上1件产品的概率为npq n 1,其空钩数为 m .所以一个周期内通过的2m 个钩子中,空钩的平均数为2m q n m npq n 1 m 2q n npq n 1于是带走产品的平均数是2m m 2q n npq n 1 ,未带走产品的平均数是n 2m m 2q n npq n 1 )此时传送带效率公式为m 2q n npq n 1 nn 1n 1D ' 2m m 2 2 1 1 1n n m m m ③ 近似效率公式:nn n n 1 1 n n 1 n 2 1 由于 11 1m 2 m2 6 m3m1 n 1n 1 n 1 n 2 11 1m m 2 m2D ' 1 n 1 n 2 6m2当 n 1时,并令 E' 1 D' ,则E'n26m 2④ 两种办法的比较:由上知: En , E' n 26m24mE'/ E 2n ,当 m n 时,2n 1 ,E' E .3m 3m所以第二种办法比第一种办法好.《数学模型》作业解答第九章( 2008 年 12 月 23 日)一报童每天从邮局订购一种报纸,沿街叫卖. 已知每100 份报纸报童全部卖出可获利7 元. 如果当天卖不掉,第二天削价可以全部卖出,但报童每100 份报纸要赔 4 元 . 报童每天售出的报纸数 r 是一随机变量,其概率分布如下表:售出报纸数 r (百份)0 1 2 3 4 5 概率 P(r ) 0. 05试问报童每天订购多少份报纸最佳( 订购量必须是100 的倍数 ) ?解:设每天订购 n 百份纸,则收益函数为f ( r ) 7r ( 4)(n r ) r n 7n r nn收益的期望值为G(n) = (11r 4n) P( r ) + 7n P(r )r 0 r n 1现分别求出n = 0,1,2,3,4,5 时的收益期望值.G(0)=0 ; G(1)= 4 × +7× +7×( +++) =;G(2)= ( 8 0.05 3 0.1 14 0.25 ) 14 (0.35 0.15 0.1) 11.8; G(3)=( 12 0.05 1 0.1 10 0.25 21 0.35 ) 21 (0.15 0.1) 14.4G(4)=( G(5)=16 0.05 5 0.1 6 0.25 17 0.35 28 0.15 ) 28 0.1 13.15 20 0.05 9 0.1 2 0.25 13 0.35 24 0.15 35 0.1 10.25当报童每天订300 份时,收益的期望值最大.数模复习资料第一章1.原型与模型原型就是实际对象. 模型就是原型的替代物. 所谓模型 ,按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象. 如航空模型、城市交通模型等.直观模型如玩具、照片等形象模型如某一试验装置物理模型模型思维模型如某一操作抽象模型符号模型如地图、电路图数学模型2.数学模型对某一实际问题应用数学语言和方法, 通过抽象、简化、假设等对这一实际问题近似刻划所得的数学d 2 x结构 , 称为此实际问题的一个数学模型 . 例如力学中着名的牛顿第二定律使用公式F m dt 2 来描述受力物体的运动规律就是一个成功的数学模型. 或又如描述人口N t 随时间 t 自由增长过程的微分dN t方程rN t .dt3.数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程. 更具体地说 , 数学建模是指对于现实世界的某一特定系统或特定问题, 为了一个特定的目的, 运用数学的语言和方法, 通过抽象和简化 , 建立一个近似描述这个系统或问题的数学结构 ( 数学模型 ), 运用适当的数学工具以及计算机技术来解模型 , 最后将其结果接受实际的检验 , 并反复修改和完善 .数学建模过程流程图为:实际抽象、简化、假设数学地、数值地归结问题确定变量、参数求解模型数学模型估计参数否检验模型是( 用实例或有关知评价、推广并交付使用符合否?产生经济、社会效益识 )4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类, 常见的有:人口模型交通模型环境模型(污染模型)a. 按模型的应用领域分类数学模型生态模型城镇规划模型水资源模型再生资源利用模型b.按建模的数学方法分类初等数学模型几何模型微分方程模型数学模型图论模型组合数学模型概率模型规划论模型描述模型分析模型预报模型c. 按建模目的来分类数学模型优化模型决策模型控制模型d. 层次分析法的基本步骤: 1. 建立层次结构模型2. 构造成对比较阵 3. 计算权向量并作一致性检验 4. 计算组合权向量并作组合一致性检验阶正互反正 A 是一致阵的充要条件为 A 的最大特征值为nf. 正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变. 试构造模型并求解 .解:设椅子四脚连线呈长方形ABCD. AB与 CD的对称轴为x轴,用中心点的转角表示椅子的位置 . 将相邻两脚 A、B与地面距离之和记为 f ( ) ;C、D与地面距离之和记为g ( ) .并旋转 1800 . 于是,设f (0) 0, g(0) 0, 就得到 g 0, f 0.数学模型:设 f 、 g 是0,2 上的非负连续函数. 若0,2 , 有f g 0 , 且 g 0 0, f 0 0, g 0, f 0 , 则0 0,2 , 使f 0g 0 0 .模型求解: 令h( ) f ( ) g( ). 就有h(0) 0,h( ) f ( ) g( ) 0 g( ) 0 .再由 f , g 的连续性 , 得到h 是一个连续函数 . 从而 h 是 0, 上的连续函数. 由连续函数的介值定理:0 0, , 使h 00 .即00,, 使f0g00 .又因为0,2, 有f g0 .故 f0g00 .9.(1)某甲早8: 00 从山下旅店出发,沿一条路径上山,下午5: 00 到达山顶并留宿.次日早 8:00 沿同一路径下山,下午5:00 回到旅店 . 某乙说,甲必在两天中的同一时刻经过路径中的同一地点. 为什么?(2) 37 支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束 . 问共需进行多少场比赛,共需进行多少轮比赛 . 如果是n支球队比赛呢?解:( 1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程x(t) 可用曲线()表示,第二天的行程x(t) 可用曲线()表示,()()是连续曲线必有交点p0 (t0 , d 0 ),两天都在 t0时刻经过 d0地点.xd方法二:设想有两个人,()一人上山,一人下山,同一天同p0时出发,沿同一路径, 必定相遇 .d0()t早 8t0晚5 方法三:我们以山下旅店为始点记路程, 设从山下旅店到山顶的路程函数为 f (t ) (即t时刻走的路程为 f (t) ) ,同样设从山顶到山下旅店的路函数为g (t) ,并设山下旅店到山顶的距离为 a ( a >0).由题意知: f (8) 0, f (17) a , g (8) a , g(17) 0 .令 h(t) f (t) g(t) ,则有 h(8)f (8) g (8)a 0 , h(17) f (17) g (17 ) a0 ,由于 f (t ) , g (t ) 都是时间 t 的连续函数,因此h(t )也是时间 t 的连续函数,由连续函数的介值定理,t0[8,17] , 使 h(t0 ) 0 ,即 f (t0 )g(t0 ) .( 2)36 场比赛,因为除冠军队外,每队都负一场; 6 轮比赛,因为 2 队赛 1 轮, 4 队赛 2轮,32队赛 5轮. n 队需赛n 1 场,若2k 1 n 2k ,则需赛k 轮.2.已知某商品在k 时段的数量和价格分别为x k和 y k,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为yk 1 f (xk 1xk ) 和 x k1g ( y k ) .试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为y k 1 f ( x k 1xk ) 和 x k 1 g( yk ) .2设曲线 f 和g相交于点 P0 (x0 , y0 ) ,在点 P0 附近可以用直线来近似表示曲线 f 和g:y k 1y0 ( x k 1 x k x0 ) , 0 -------------------- ( 1)2x k 1 x0 ( y k y0 ) , 0 --- ---------------- ( 2)由( 2)得x k 2 x0 ( y k 1 y0 ) -------------------- ( 3)( 1)代入( 3),可得x k 2 x0 (xk 1 x k x0 )22x k 2 xk 1 x k 2x0 2 x0 , k 1,2, , -------------- (4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求 P0点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:2 2 0容易算出其特征根为( ) 2 8( 5)1,2 4 ---------------当8 时,显然有2 ( ) 2 8----------- ( 6)4 4从而 2 2, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1,必须 2 .故 P 0 点稳定平衡条件为 2 .3.设某渔场鱼量 x(t ) ( 时刻 t 渔场中鱼的数量 ) 的自然增长规律为:dx(t) rx(1 x )其中 r 为固有增长率 , N` 为环境容许的最大鱼量dth . N . 而单位时间捕捞量为常数( 1).求渔场鱼量的平衡点 , 并讨论其稳定性 ;( 2).试确定捕捞强度 E m , 使渔场单位时间内具有最大持续产量Q m , 并求此时渔场鱼量水平 x *0 .解:( 1) . x(t) 变化规律的数学模型为dx(t )xhdtrx(1)N记f ( x) rx(1 x ) h , 令 rx (1 x) h 0 ,即r x 2rx h 0 ---- ( 1 )N NN4rh4hN1 4h N r 2r (r, ( 1)的解为:x1, 2rNN)2N① 当0 时,( 1)无实根,此时无平衡点;②当0 时,( 1)有两个相等的实根,平衡点为f '(x) r (1x )rx r 2rx , f '( x 0 ) 0N N Nx ) rN 但 xx 0及 x x 0 均有 f ( x) rx(1N 4N x 0.2不能断定其稳定性 .0 ,即 dx 0 x 0不稳定;dt ③ 当 0 时,得到两个平衡点:4h 4h N N 1N N 1rN rN x 1, x 222易知 x 1N x 2Nf ' (x 1 ) 0 , f ' ( x 2 ), 22平衡点 x 1 不稳定 ,平衡点 x 2 稳定 .(2).最大持续产量的数学模型为:max hs.t. f (x) 0即 max hrx (1 x ) , 易得 x 0*N 此时 hrN,但 x 0*N这个平衡点不稳定 .N242要获得最大持续产量,应使渔场鱼量x N , 且尽量接近 N , 但不能等于 N.2 2 2 5.某工厂生产甲、乙两种产品 , 生产每件产品需要原材料、 能源消耗、劳动力及所获利润如下表所示:品种原材料能源消耗(百元)劳动力(人)利润(千元)甲214 4乙362 5 现有库存原材料1400 千克;能源消耗总额不超过2400 百元;全厂劳动力满员为2000 人. 试安排生产任务( 生产甲、乙产品各多少件), 使利润最大 , 并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S. 则此问题的数学模型为max S 4x 5ys.t .2x 3 y 1400x 6 y 24004x 2 y 2000x 0, y 0, x, y Z模型的求解:用图解法 . 可行域为:由直线l 1 : 2 x 3 y 1400l2: : x 6 y 2400l 3 : 4 x 2 y 2000及 x 0 , y 0组成的凸五边形区域 .直线 l : 4x 5y C 在此凸五边形区域内平行移动. 易知:当l过l1与l3的交点时, S 取最大值 . 由2 x 3y 1400400, y 200 4 x 2 y解得: x2000Smax 4 400 5 200 2600 (千元).故安排生产甲产品400 件、乙产品 200 件, 可使利润最大 , 其最大利润为2600 千元 .6.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(立方米 / 箱)(百斤 / 箱)(百元 / 箱)甲 5 2 20乙 4 5 10 已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解 .可行域为:由直线l 1 : 5x 1 4x 2 24l 2 : 2x 1 5x 2 13 及 x 10, x 20 组成直线 l : 20x 1 10x 2c 在此凸四边形区域内平行移动 .x 2l 1易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值l 2x 15x 14x 224x 1 4解得由5x 213x 212x 1lzmax20 4 10 1 90 .7. 深水中的波速 v 与波长 、水深 d 、水的密度和重力加速度g 有关,试用量纲分析方法给出波速 v 的表达式 .解 :设 v ,,d , , g的关系为 f (v, , d , , g ) =0. 其量纲表达式为[ v ]=LM 0T -1 ,0 0, [ d0 0]=L -3, [g0 -2,其中 L ,M ,T 是基本量纲.[]=LM T ]=LMT , [ MT ]=LM T ---------4分量纲矩阵为11 13 1(L )A=0 0 01 0 (M )1 0 02 (T )( v) ( )(d)( ) ( g)齐次线性方程组 Ay=0 ,即y 1y 2 y 3 3y 4y 5y 4- y 1- 2y 5的基本解为 y 1 = (1,1,0,0,1), y 2 = (0, 1,1,0,0)2211由量纲 P i 定理 得v2g 211d2∴ v g1,1( 2),2dv g ( d) ,其中是未定函数 .第二章 (2) (2008年 10 月 9日15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是,用量纲分析方法确定风车获得的功率 P 与 v 、S 、的关系 .解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, )0 , 其量纲表达式为 :[P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[]= ML 3 , 这里 L, M ,T 是基本量纲 .量纲矩阵为:A=齐次线性方程组为:21 2 3 ( L )1 0 0 1 (M )3 10 0(T)(P) (v) (s) (2 y 1 y 2 2y3 3y4 0y 1y 4 03y 1y 2它的基本解为 y ( 1,3 ,1,1)由量纲 P i 定理得P 1v 3 s 11 ,Pv 3s 1 1, 其中 是无量纲常数 .16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解 :设 v ,,, g的关系为 f ( v ,,,g ) =0. 其量 纲表达式为 [ v ]=LM 0T -1 ,-3-2-1 -1-1 -2-2 -2-1-10 -2[ ]=L MT , []=MLT ( LT L ) L =MLL T T=L MT , [ g ]=LM T , 其中 L , M ,T 是基本量纲 .量纲矩阵为13 1 1 (L)11 0 (M) A=1 012(T)(v) ()()(g )齐次线性方程组 Ay=0 ,即y 1 - 3y 2 - y 3 y 4 0 y 2y 3 0 - y 1 - y 3 - 2y 4的基本解为 y=(-3 ,-1 ,1 ,1)由量纲 P i 定理 得v31g .v3g,其中 是无量纲常数.16 * .雨滴的速度 v 与空气密度、粘滞系数 、特征尺寸 和重力加速度g 有关,其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解:设 v ,, , , g 的关系为 f (v, , , , g) 0 . 其量纲表达式为 [ v 0 -1 , ]=L -30, -2( -1 -1 )-1 -2 -2 -2 -1-1 , 0 0 , 0 -2]=LM T [ MT [ ]=MLT LT L L =MLL T T=L MT [ ]=LM T[ g ]=LM T 其中 L , M , T 是基本量纲 .量纲矩阵为11 31 1 (L)A=0 11 0 ( M )10 012 (T )(v) ( ) ( ) ( ) ( g)齐次线性方程组 Ay=0 即y 1y 2 3y 3y 4 y 5 0y 3 y 4 0y 1y 4 2 y 5的基本解为y 1 (1,1 ,0,0, 1)22y 2(0,3, 1,1, 1 )2 2得到两个相互独立的无量纲量1v1/ 2g 1 / 223 / 21g 1 / 2即vg 1 ,3 / 2g 1 / 21 1(1,2)0, 得( 21)2. 由 1g (3 / 2g 1 / 2 1 ) ,其中 是未定函数 .20. 考察阻尼摆的周期, 即在单摆运动中考虑阻力, 并设阻力与摆的速度成正比 . 给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.解:设阻尼摆周期 t ,摆长l ,质量m , 重力加速度g ,阻力系数k 的关系为f (t, l , m, g, k)其量纲表达式为:[ t]L 0 M0T ,[ l ]LM0T0 , [m]L 0MT 0,[ g]LM0T2 ,[k ][ f ][ v]1MLT2( LT1)1L 0MT 1, 其中 L ,M ,T 是基本量纲 .量纲矩阵为0 1 0 1 0 ( L )0 0 1 0 1 (M )A=0 021 (T )1(t ) (l ) ( m) (g) (k )齐次线性方程组y 2 y 4 0y 3y 5 0y 12 y 4y 5的基本解为Y 1 (1, 1 ,0, 1,0)22Y 2 (0,1, 1,1,1)22得到两个相互独立的无量纲量tl1/ 2g 1/ 21l 1/ 2m 1 g 1 / 2 k2∴ tl 1 ,1( 2 ) ,2kl 1 / 2gmg 1/ 2∴ tl ( kl 1/ 2 ) ,其中 是未定函数 .g mg 1 / 2考虑物理模拟的比例模型,设g 和 k 不变,记模型和原型摆的周期、摆长、质量分别为1 /2 t , t ' ; l , l ' ; m , m '.又 tl ( kl1 /2 )g m g当无量纲量ml 时, 就有 tl gl . mlt gll第三章 1( 2008 年 10 月 14 日)1. 在节存贮模型的总费用中增加购买货物本身的费用, 重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解: 设购买单位重量货物的费用为k , 其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:c 1 c 2 rTC(T )krT2 dC c 1 c 2rdT T 22令 dC0 ,解得T *2c1dTc 2 r由 QrT ,得 Q2c 1 r rTc 2与不考虑购货费的结果比较,T、Q的最优结果没有变.2 0 对于允许缺货模型,每天平均费用为:1 c 2Q 2c 3 (rT Q) 2kQC(T,Q)c 12r2rTC c 1 c 2Q 2 c 3 r c 3Q 2 kQ T T 2 2rT 22 2rT 2T 2C c 2Q c 3Q kQ c 3TrT rTCT令, 得到驻点:CQT2c 1 c 2 c 3 k 2rc 2c 3c 2 c 3Q2c 1 r c 3 c 3 k 2 r 2 krc 2 c 2 c 3 c 2 (c 2 c 3 ) c 2c 3与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数 r ,k r .在每个生产周期T内, 开始的一段时间0 t T 0 一边生产一边销售, 后来的一段时间 (T 0t T ) 只销售不生产, 画出贮存量 g(t ) 的图形 . 设每次生产准备费为 c 1 ,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k r 和 k r 的情况.解:由题意可得贮存量g(t ) 的图形如下:gg(t)k rrO n T0 T t (k r )T0 T贮存费为Tc2 lim g( i ) t i c2 0 g(t)dt c22i 1t 0又(k r )T0 r (T T0 )T0 rT , 贮存费变为c2 r (k r )T T k 2k于是不允许缺货的情况下,生产销售的总费用(单位时间内)为C(T ) c1 c2 r ( k r )T 2 c1 r ( k r )T T 2kT T c2 2kdC c1 c2 r (k r ) . dT T 2 2k令dC0 , 得 T2c1k dT c2 r (k r )易得函数 C (T )在 T 处取得最小值,即最优周期为:2c1 k Tr )c2 r ( k当k r时,T 2c1 . 相当于不考虑生产的情况 .c2r当 k r 时,T . 此时产量与销量相抵消,无法形成贮存量.第四章( 2008 年 10 月 28 日)1. 某厂生产甲、乙两种产品, 一件甲产品用A原料1 千克 , B原料5 千克;一件乙产品用A原料2千克, B原料4 千克. 现有A原料 20 千克, B 原料70千克.甲、乙产品每件售价分别为20 元和 30元. 问如何安排生产使收入最大?解:设安排生产甲产品x 件 , 乙产品 y 件,相应的利润为S则此问题的数学模型为:max S=20x+30yx 2y 20. 5x 4 y 70x, y 0, x, y Z这是一个整线性规划问题,现用图解法进行求解可行域为:由直线 l1:x+2y=20, l2:5x+4y=70l2y以及 x=0,y=0 组成的凸四边形区域 .直线 l :20x+30y=c在可行域内l平行移动 .易知:当 l 过l1与l2的交点时,l1x S 取最大值 .x 2y 20解得x 10由4 y 70 y 55x此时 S m ax=2010 30 5 =350(元)2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(百斤 / 箱)(百元 / 箱)(立方米 / 箱)甲 5 2 20乙 4 5 10已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解.可行域为:由直线l1 : 5x14x224l 2 : 2x15x213及x10, x20 组成直线l : 20x110x2 c 在此凸四边形区域内平行移动 .x2l1l易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值5x 1 4x 2 24 x 1 4由5x 213解得12x 1x 2zmax20 4 10 1 90.3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉 . 已知每台甲型、 乙型微波炉的销售利润 分别为 3 和 2 个单位 . 而生产一台甲型、乙型微波炉所耗原料分别为 2 和 3 个单位 , 所需工时分别为 4 和 2个单位 . 若允许使用原料为100 个单位 , 工时为 120 个单位 , 且甲型、乙型微波炉产量分别不低于6 台和 12台. 试建立一个数学模型 , 确定生产甲型、乙型微波炉的台数 , 使获利润最大.并求出最大利润 .解:设安排生产甲型微波炉 x 件 , 乙型微波炉 y 件 , 相应的利润为 S. 则此问题的数学模型为:max S=3x +2y2x 3 y 100.4x 2y 120x 6, y 12, x, y Z这是一个整线性规划问题 用图解法进行求解可行域为:由直线 l 1 : 2x+3y=100, l 2 :4x+2y = 120及 x=6,y=12 组成的凸四边形区域 .直线 l : 3x+2y=c 在此凸四边形区域内平行移动. 易知:当 l 过 l 1 与 l 2 的交点时 , S取最大值 .2x 3 y 100由2 y 解得4x 120x 20.y 20S m ax = 3 20 2 20 = 100.第五章 2( 2008 年 11 月 14 日)6. 模仿节建立的二室模型来建立一室模型 (只有中心室) ,在快速静脉注射、 恒速静脉滴注(持续时间为)和口服或肌肉注射 3 种给药方式下求解血药浓度,并画出血药浓度曲线的中心室图形 .解: 设给药速率为 f 0 t ,中心室药量为 x t , 血药浓度为 C t , 容积为 V ,排除速率为常数 k, 则 x / t kx tf 0 t , x t VC t .(1) 快速静脉注射 : 设给药量为 D 0 , 则 f 0 t 0, C 0D 0,解得 C tDe k t .VV(2) 恒速静脉滴注 ( 持续时间为): 设滴注速率为 k 0,则 f 0 tk 0 ,C 00, 解得k 0 1 e kt , 0 t C tVkk 0 1 e kt e k t , t Vk(3) 口服或肌肉注射 :f 0 tk 01 D 0 e k 01t 见5.4节(13)式 ,解得k 01De ktek 01t, kk01C tV k 01 k3 种情况下的血药浓度曲线如kD te kt ,kk01V下:(1)(2)(3)Ot4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为a4. b初始兵力 x0与 y0相同.(1)问乙方取胜时的剩余兵力是多少, 乙方取胜的时间如何确定 .(2)若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型, 讨论如何判断双方的胜负 .解 : 用x t , y t表示甲、乙交战双方时刻t 的士兵人数 , 则正规战争模型可近似表示为:dxaydtdybx, 1dtx 0 x0 , y 0 y0现求 (1) 的解 : (1)0 a的系数矩阵为 Aba 2ab 0. abE A 1,2b1 , 2对应的特征向量分别为2 ,21 1x t 2abt 2abt .1 的通解为C1 1 eC2 1 ey t再由初始条件,得x t x0 y0 e abt x0 y0 e ab t 22 2又由 1 可得dybx . dx ay其解为ay 2bx 2k,而k ay02bx02 3(1)当x t1 0时, y t1 k ay02 bx02y0b 3a a 1 y0 .a 23即乙方取胜时的剩余兵力数为y0 .2x0 abt1x0 abt1 0.又令由()得0,2 y0 e y0 ex t122注意到 x0 y0 2 abt1x0 2 y0. e 2 abt1 3, t1ln 3,得 ex0 .2 y0 4b (2)若甲方在战斗开始后有后备部队以不变的速率r 增援.则dxay rdtdy4bxdtx(0) x0 , y 0 y0由 4 得dx ay r,即 bxdx aydy rdy . 相轨线为 ay 2 2ry bx2 k , dy bx2r 2k ay02 2ry 0 bx.20或 a y r bx2 k. 此相轨线比书图11 中的轨线上移了a ar r 2 r 2b 2a . 乙方取胜的条件为k 0, 亦即 y0 a a x0 a 2.第六章( 2008 年 11 月 20 日)1. 在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数 h.(1) 分别就h rN / 4 ,h rN / 4 ,h rN / 4 这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为x t ,则由题设条件知:x t 变化规律的数学模型为dx(t ) xhrx (1 )dt N记 F ( x) rx (1 x ) hN(1).讨论渔场鱼量的平衡点及其稳定性:由 F x 0 ,得rx(1 x) h 0 .N即r x 2 rx h 0 1Nr 2 4rh r (r 4h ) ,N NN 1 4h N(1) 的解为:x1, 2 rN2①当 h rN / 4 ,0,(1) 无实根,此时无平衡点;②当 h rN / 4 ,0 , (1) 有两个相等的实根,平衡点为x0 N. 2x ) rx 2rx, F ' ( x0 )F ' ( x) r (1 r 0 不能断定其稳定性 .N N N但 x x0 及 x x0 均有 F (x)x rNdx0 .x0不稳定;rx (1 ) ,即dtN 4③当 h rN / 4 ,0 时,得到两个平衡点:N 1 4hN 14hN NrNx1 rN ,x22 2易知: x1 N ,x2 N , F ' ( x1 ) 0 , F ' ( x2 ) 02 2平衡点 x1不稳定,平衡点x2稳定.(2)最大持续产量的数学模型为max hs.t. F (x)0即 max h rx (1 x) ,Nh rN / 4h rN / 4h rN / 4rx 1 x / Nx1 N / 2 x2 x。

数学模型(姜启源第三版第二章)

数学模型(姜启源第三版第二章)

数学模型(姜启源第三版第⼆章)1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在宿舍,432⼈住在,学⽣梦要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩树部分较⼤者。

(2)节中的Q值⽅法。

(3)⽅法:将A,B,C各宿舍的⼈数⽤正整数相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法两次分配的结果列表⽐较。

(4)你能提出其它⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.⽤微积分的⽅法导出节的公式(2)。

3.在节中考虑8⼈艇分重量级组(桨⼿体重不超过86kg)和轻量级组(桨⼿体重不超过73kg,建⽴模型说明重量级组的成绩⽐轻量级组⼤约好5%。

4.⽤节实物交换模型中介绍的⽆差别曲线的概率,讨论以下雇员和雇主之间的协议关系:(1)以雇员⼀天的⼯作时间t和⼯资ω分别为横坐标和纵坐标,画出雇员⽆差别曲线族的⽰意图。

解释曲线为什么是你画的那种形状。

(2)如果雇主付计时⼯资,对不同的⼯资率(单位时间的⼯资)画出计时⼯资线族。

根据雇员的⽆差别曲线族和雇主的计时⼯资线族,讨论双⽅将在怎样的⼀条曲线上达成协议。

(3)雇员和雇主已经达成了⼀个协议(⼯作时间1t和⼯资1ω).如果雇主想使雇员的⼯作时间增加到2t,他有两种⽅法:⼀是提⾼计时⼯资率,在协议线的另⼀点(2t,2ω)达成新的协议;⼆是实⾏超t t-付给更⾼的超时时⼯资制,即对⼯时1t仍付原计时⼯资,对⼯时21⼯资。

试⽤作图⽅法分析哪种办法对雇主更有利,指出这个结果的条件.5.在节核武器竞赛模型中,证明由(6)式表⽰的⼄安全线=的性质。

()y f x6.在节核武器竞赛模型中,讨论以下因素引起的平衡点的变化:(1)甲⽅提⾼导弹导航系统的性能。

初等模型_《数学模型》(第三版)电子课件姜启源、谢金星、叶__俊编制共69页文档

初等模型_《数学模型》(第三版)电子课件姜启源、谢金星、叶__俊编制共69页文档
初等模型_《数学模型》(第三版)电子课 件姜启源、谢金星、叶__俊编制
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
ห้องสมุดไป่ตู้
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
允许 T ' 缺货
模型
Q'
2c1
c 2

c 3
rc2 c3
2c1r c3 c2 c2 c3
不允 许缺 货模 型
T 2c1 rc2
Q rT 2c1r c2
记 c2 c3
c3
T T , Q Q
不 允
1 T ' T , Q' Q c3
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
10 0
0.06 0.08 0.1 0.12 0.14 g 0.16
生猪价格每天的降低量g增加1%,出售时间提前3%。
强健性分析
研究 r, g不是常数时对模型结果的影响
模型应用
c2 T,Q
r T ,Q
c1=5000, c2=1,r=100
• 回答问题
T=10(天), Q=1000(件), C=1000(元)
• 经济批量订货公式(EOQ公式)
用于订货、供应、存贮情形
每天需求量 r,每次订货费 c1,每天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
人口增长到一定数量后,增长率下降的原因: 人口增长到一定数量后,增长率下降的原因: 资源、 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数 是 的减函数
r(x) = r − sx (r, s > 0)
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定 的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏) 问题(智力游戏)
随从们密约, 随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货. 人多, 就杀人越货. 但是乘船渡河的方案由商人决定. 但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 商人们怎样才能安全过河
模型是为了一定目的, 模型是为了一定目的,对客观事物的一部分 是为了一定目的 进行简缩、抽象、提炼出来的原型 原型的替代物 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征 模型集中反映了原型中人们需要的那一部分特征 集中反映了原型
你碰到过的数学模型——“航行问题” “航行问题” 你碰到过的数学模型
数学建模的具体应用
• 分析与设计 • 预报与决策 • 规划与管理

控制与优化
数学建模
如虎添翼
模示例
1.3.1 椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 四条腿一样长,椅脚与地面点接触, 连线呈正方形; 连线呈正方形 • 地面高度连续变化,可视为数学上的连续 地面高度连续变化, 曲面; 曲面 • 地面相对平坦,使椅子在任意位置至少三 地面相对平坦, 只脚同时着地。 只脚同时着地。

数学建模-三级火箭发射卫星

数学建模-三级火箭发射卫星

大学生数学建模承诺书我们仔细阅读了数学建模的规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

所属班级(请填写完整的全名):09级数学与应用数学班队员(打印并签名) :1. 王茜2. 丁*燕3. 毕瑞4. 李*洋5. 王*彬小组负责人(打印并签名):李*洋日期: 2012 年 5 月 1 日赛区评阅编号(由赛区组委会评阅前进行编号):题目:三级火箭发射人造卫星分析摘要:火箭是一个非常复杂的系统,本文主要从卫星的速度因素着手,忽略一些次要因素将问题简化,再利用所学物理学知识建立数学模型,得出火箭飞行速度与其初始质量和飞行过程中的质量关系,进而分析得出结论。

关键词:卫星发射 牛顿定律 三级火箭 动能守恒 万有引力定律一、问题重述建立一个模型说明要用三级火箭发射人造卫星的道理。

(1)设卫星绕地球做匀速圆周运动,证明其速度为r g R v /=,R 为地球半径,r 为卫星与地心距离,g 为地球地面重力加速度。

要把卫星送上离地面600km 的轨道,火箭末速度v 应为多少?(2)设火箭飞行中速度为)(t v ,质量为)(t m ,初速度为零,初始质量为 0m ,火箭喷出的气体相对于火箭的速度为u ,忽略重力和阻力对火箭的影响。

用动量守恒原理证明)(ln)(0t m m u t v =。

由此你认为要提高火箭的末速度应采取什么措施? (3)火箭质量包括3部分:有效载荷(卫星)p m ;燃料f m ;结构(外壳、燃料舱等)s m ,其中s m 在s f m m +中的比例计作λ,一般λ不小于10%。

数学模型课后答案姜启源

数学模型课后答案姜启源

数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。

安全渡河条件下的状态集合为允许状态集合,记作s。

以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。

允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。

模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。

把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。

如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。

二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。

数学模型姜启源答案

数学模型姜启源答案

数学模型姜启源答案【篇一:姜启源课后习题】xt>第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。

(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。

问人、狗、鸡、米怎样过河?1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。

问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的logistic模型为dn11dt?25n?25?106n2,如果不考虑该市的流动人口的影响以及非正常死亡。

设该市1990年人口总数为8000000人,试求该市在未来的人口总数。

当t??时发生什么情况。

1.7 假设人口增长服从这样规律:时刻t的人口为x(t),最大允许人口为xm,t到t??t时间内人口数量与xm?x(t)成正比。

试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。

1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。

水库的水可以通过河床的渗透和水面的蒸发流失。

如果要你建立一个数学模型来预测任何时刻水塔的水位,你需要哪些信息?第2章初等模型2.1 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。

①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。

①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。

①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。

①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。

①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。

①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。

①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。

①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。

a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。

a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。

a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。

回归模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

回归模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制
500 0
-500
e ~ x1
-1000 0 5 10 15 20
500
0
-500
e ~组合
1 2 3 4 5 6
-1000
R2,F有改进,所有回归系数置信 区间都不含零点,模型完全可用
消除了不正常现象 异常数据(33号)应去掉
去掉异常数据后的结果
200
参数 参数估计值 置信区间 a0 11200 [11139 11261] a1 498 [494 503] a2 7041 [6962 7120] a3 -1737 [-1818 -1656] a4 -356 [-431 –281] a5 -3056 [-3171 –2942] a6 1997 [1894 2100] R2= 0.9998 F=36701 p=0.0000
参数
0 1 2 3 4
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
ˆ ˆ ˆ ˆ 2 ˆ 0 1x1 2 x2 3 x2 y
ˆ y 8.2933 (百万支)
区间 [7.8230,8.7636]
ˆ x x x2 x x ˆ y 0 1 1 ˆ2 2 ˆ3 2 ˆ4 1 2
输入 y~n维数据向量
2 x= [1 x1 x2 x2 ] ~n4数 据矩阵, 第1列为全1向量
输出
b~的估计值
bint~b的置信区间
r ~残差向量y-xb
rint~r的置信区间
alpha(置信水平,0.05) 参数
0 1 2 3
参数估计值 置信区间 17.3244 [5.7282 28.9206] 1.3070 [0.6829 1.9311 ] -3.6956 [-7.4989 0.1077 ] 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0000

数学模型(第三版)课后答案

数学模型(第三版)课后答案

T*
2c1 k
c2r ( k - r )
(3 分)
① 当 k r 时,得 k r k, 则T *
2c1k
2c1
c2 rk
c2 r
( 1 分)
② 当 k r 时,得 k r 0,则T *
2c1k c2r (k r )
(1 分)
八 、某公司有三个工厂生产某种商品并运往四个调拨站。工厂 1,2,3 每月分别生 产 12、 17、11 批商品,而每一个调拨站每月均需接受 10 批商品。各厂至各调拨站 的运输距离 (公里) 如下表所示。 已知每批商品的运费为 100 元加上每公里 0.50 元。 问应如何调运使总运费最少?
由( * )式可得 f l 2v2 4 l 2 v2
0, 为未定函数 1, 2 , 3 , 其中 4
(* ) 1 , 2, 3 , 为未定函数 。3 分)
六、 建立不允许缺货的存储模型:设生产能力无限,一次性的订货费为
c1 元,每天
每吨货物的储存费为 c2 元,每天货物的需要量为 r ,确定最佳订货周期 T* 和每次订
7
3+3+2+2+2
12
A7
4 13 16 10 19 7
2+2+2+2+2
10
(4 分)
从以上的表格可以看出各参赛队的每两场比赛之间的休息场次是比较均匀的。 (2 分)
三、 假设人口的增长服从这样的规律 : t 时刻的人口为 x(t) , t 时刻的单位时间的增量
与 xm x(t ) 成正比 ( 其中的 xm 为最大人口容量 ), 试建立模型求解并作出解的图形 .
3
xij 10, j 1,2,3,4

数学模型作业(1-2周)(姜启源第三版)

数学模型作业(1-2周)(姜启源第三版)

对长方形椅子在地面上可放稳的证明问题背景问题来自于书本1.3案例一,椅子由正方形一般化为矩形。

建模准备1. 椅子旋转方式:椅子四脚构成矩形ABCD ,以垂直于平面ABCD ,且经过对角线AC ,BD 交点O 的直线为旋转轴;且旋转仅在平面ABCD 上进行;2. (),()f g θθ意义同前;模型假设与1.3案例一相同。

模型建立与求解()f θ与()g θ均为连续函数。

且由于任何时刻均有三脚着地,即()f θ与()g θ至少有一个为零,故()()0f g θθ•=恒成立。

不失一般性,假设在初始时刻AC 着地,即(0)0f =。

因此,对角线BD 只要沿旋转轴旋转AOB ∠即可保证BD 着地,不失一般性,可假设此时旋转角为2πα+,(0)2πα<<(如图1),此时()02g πα+=,()02f πα+≥。

因此证明归结为证明以下数学命题:已知(),()f g θθ为连续函数,对任意(0,)θπ∈,有()()0f g θθ•=;且(0)0f =,(0)0g ≥,()02g πα+=,()02f πα+≥,(0,)2πα∈,0θ∃,s.t.00()()0f g θθ==.证明:构造函数()()()F f g θθθ=-,易知()F θ连续而(0)(0)(0)0F f g =-≤且()()()0222F f g πππααα+=+-+≥ 由连续函数介值性定理,0(0,)2πθα∃∈+,0..()0s t F θ= 且00000()()0()()()0f g F f g θθθθθ•=⎧⎨=-=⎩00()()0f g θθ⇒==进一步研究还有一种简便证明如下:按照上述旋转规则,椅子四脚在一个圆周上运动(如图二),假设椅子的D 脚一直不着地,则ABC 三脚运动至D 脚位置也会不着地,这与假设三矛盾,因此在圆周上必有一位置使得椅子四脚同时着地。

(图一,图二均在背面)人猫鸡米渡河问题研究问题重述人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外,只能载猫、鸡、米三者之一,人不在场时猫要吃鸡、鸡要吃米。

规划模型 《数学模型》(第三版)电子课件姜启源谢金星叶 俊编制.

规划模型 《数学模型》(第三版)电子课件姜启源谢金星叶  俊编制.

每天 50桶牛奶 时间480小时
获利24元/公斤 获利16元/公斤 至多加工100公斤A1
决策变量 目标函数
约束条件
x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1
获利 16×4 x2
每天获利 Max z 72 x1 64 x2
原料供应
x1 x2 50
线性 规划
劳动时间
12 x1 8x2 480
每天: 50桶牛奶 时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大
• 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
1桶 牛奶 或
12小时 8小时
3公斤A1 4公斤A2
NO. ITERATIONS= 2
2.000000 0.000000
时间增加1单位, 利润增长2 加工能力增长不影响利润
• 35元可买到1桶牛奶,要买吗? 35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
DO RANGE(SENSITIVITY) ANALYSIS? Yes 最优解不变时目标函
模型
加工能力 非负约束
3x1 100
x1, x2 0
(LP)
模型分析与假设
比 xi对目标函数的
例 “贡献”与xi取值
性 成 xi对正约比束条件的
“贡献”与xi取值
可 加
成 xi对正目比标函数的 “贡献”与xj取值
性 无 xi对关约束条件的“贡献”与xj来自值连续性无关xi取值连续
线性规划模型
DO RANGE (SENSITIVITY) ANALYSIS? No

姜启源数学模型课后答案(3版)

姜启源数学模型课后答案(3版)

《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te V kD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()TS 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次n r 的上界”(如=5时上界为1)是n ⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是,i j 两队, 队参加的下一场比赛是,两队(≠i i k k j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,以外的2k r 支球队参赛,于是,注意到32+≥r n r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出达到该上界的赛程.如对于n =8, =9可以得到: n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数 相隔场次总数1A× 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 193A 5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 9 6 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 18 7 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 177A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 178A25 16 2 19 7 22 12 × 4,4,3,2,2,2 17w w w .k h d a w .c o m 课后答案网1A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数 相隔场次总数1A× 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A 6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 234,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 193,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 144,4,3,3,3,3 23 7A16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A21 17 25 13 29 9 33 × 53,3,3,3,3,3,3, 21 9A 1 32 10 23 19 14 28 5 × 3,4,3,4,3,4,3 24 可以看到, =8时每两场比赛相隔场次数只有2,3,4, =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场次数只有n n n 22-n ,12-n ,2n ,n 数时只有为奇23-n ,21-n . 量赛程优劣其他指标如(4)衡的平均相隔场次 记第i 队第j 个ij c ,2,2,1,,,2,1-==n j n i ,间隔场次数为则平均相隔场次为∑∑=n i 1-=n r 21 =-j n n 1)2(ij c r 是赛程整体意义下的指标,它越大越好.可以计算=8,=9的n n r ,并讨论它是否达到上界. 相隔场次的最大偏差 定义||,r c Max f ij j i -=∑---=2)2(|n r n c Max g =1|j ijw w w .k h d a w .c o m 课后答案网f 为整个赛程相隔场次的最大偏差, 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算=8,=9的,g ,并讨论它是否达到上界.g n n f 参考文献工程数学学报第20卷第5期20032. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,取尽量简单的形式,h 如αα=)(g ;0)(=βh (),030≤β0)(h h =β)30(0>β.(1)可将作为必要条件,以030≤βα最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到 ⎪⎭⎫ ⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处.又通过计算或分析可知030=βα也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔(如0.5m), l x 从0(或处)到030≤βd D -按离散,对于计算l )20~0(00θα的平均值,得时其值最大. 020=θ(3)可设地板线是x 的二次曲线,寻求,b 使2bx ax +a α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线. 3.节水洗衣机(1996年全国大学生数学建模竞赛B 题) 该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和. w w w .k h da w .c o m 课后答案网假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数.~初始污水量,第轮加水量,~第k 轮脱水量c 0x ~k u k k x ),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x u c x n n n =+==--111,,, c x 2c x +21u x 10, 得到)()(210c u c u u c x x n n n ++= . 在最终污物量与初始污物量之比小于给定的清洁度条件下,求各轮加水量,使总用水量最小,即0/x x n k u ),,1(n k =∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n 等价于)()(21c u c u u Min n u k +++++ α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第轮加水量n ~2u u k =(常数),第1轮加水量.c u u +=1令,问题简化为cx u =nx Min u n , ε<⎪⎭⎫ ⎝⎛+n x t s 11.. 其解为,即,而0→x 0→u ∞→n n .这与实际上是不合理的.应该加上对u 的限制:.则得n ,其中 21v u v ≤≤max min n n ≤≤max min n n ≤≤,1+)/1ln(2min ⎥⎦⎤⎢⎣⎡+=c v n αn 这样,为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,1997w w w .k h d a w .c o m 课后答案网4.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxI d .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的. 按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,20015. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题)设为第i 架飞机与第j 架飞机的碰撞角(即ij a )8arcsin(ij ij r a =其中为这两架飞机连线的长度),ij r ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量. 本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:w w w .k h d a w .c o m 课后答案网∑=61i i Min θ s.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i 为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL :1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J)));8] );9] @FOR(LINK(I,J)|I#NE#J: 10] (@SIN(alpha*3.14159265/180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endataEND计算结果如下:w w w .k h d a w .c o m 课后答案网ij a j=1 2 3 4 5 6i=1 0.000 0 5.3912 32.231 05.091 8 20.963 4 2.234 5 2 5.391 2 0.000 0 4.8046.613 5 5.807 9 3.815 9 3 32.231 0 4.804 0 0.0004.364 7 22.833 7 2.125 5 45.091 86.613 5 4.36470.000 0 4.4.537 2.989 8 5 20.963 4 5.807 922.8337 4.537 70.000 0 2.309 8 6 2.234 5 3.815 9 2.125 5 2.989 82.309 80.000 0 ij β也可类似地利用LINGO 求得,计算结果如下: ij β j=1 2 3 4 5 6 i=1 0.000 0 109.263 6 -128.250 0 24.1798173.065 1 14.474 9 2 109.263 6 0.000 0-88.871 1 -42.2436-92.304 8 9.000 03 -128.250 0 -88.871 1 0.000 012.4763-58.786 2 0.310 84 24.179 8 -42.243 6 12.476 30.000 0 5.969 2-3.525.65 173.065 1 -92.304 8 -58.78625.969 20.000 0 1.914 4614.474 9 9.000 00.310 8-3.5256 1.914 4 0.000 0w w w .k h d a w .c o m 课后答案网于是,该飞机管理的数学规划模型可如下输入LINGO 求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2….. …2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddata END[注] alpha,beta 中数据略去,见上面表格. 求解结果如下: OPTIMUM FOUND AT STEP 197 SOLUTION OBJECTIVE V ALUE= 3.630 V ARIABLE V ALUE REDUCED COST CITA(1) 0.2974033E-06 -1.000 000 CITA(2) -0.1424833E-05 -0.715 033 4 w w w .k h d a w .c o m 课后答案网CITA(3) 2.557 866 1.000 000 CITA(4) -0.3856641E-04 0.0000000E+00CITA(5) 0.2098838E-05 -1.000 000CITA(6) 1.071 594 0.0000000E+00………. (以下略)由此可知最优解为: (其它调整角度为0). ︒︒≈≈07.1,56.263θθ 评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,19966. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整. 目标函数之降落伞的费用,可以根据表1数据拟合伞面费用与伞的半径r 的关系。

相关文档
最新文档