4×4矩阵键盘数码管显示 最简便易懂的键盘扫描方法

合集下载

实验07:4X4键盘阵列扫描输入.pdf

实验07:4X4键盘阵列扫描输入.pdf

键盘阵列扫描输入一、实验目的1. 进一步学习并掌握Quartus II设计的方法及步骤;2. 熟悉VHDL语言电路设计方法;3. 熟悉EACF型FPGA开发板,参见6.1节;4. 学习并掌握利用VHDL描述并设计电路的方法及步骤;5. 学习并掌握键盘阵列的扫描输入的方法及实现过程。

二、实验原理键盘阵列是一个由4×4的按键开关组成的阵列,可实现16种状态的输入。

4×4按键阵列的硬件连接原理如下图所示。

4X4键盘阵列其中VCC3.3为3.3V的正电源;BUTTON为4×4共16个按键,R为电阻。

而K_H_1、K_H_2、K_H_3、K_H_4为4×4按键阵列连接到FPGA通用IO引脚的行信号;K_V_1、K_V_2、K_V_3、K_V_4为4×4按键阵列连接到FPGA通用IO引脚的列信号,如下图所示。

键盘阵列与FPGA的连接另外,连接到FPGA的行列信号圴为3.3V的LVTTL电平标准:即电压小于0.8V为低电平,高于2.0V为高电平。

通过上述4×4按键阵列的硬件连接原理图可看出,行和列信号都通过10K的电阻上拉到3.3V的电源,也就是说如果FPGA通过对应的IO引脚来读取4×4按键阵列的行和列信号,得到的全部为高电平“1”,即使按键按下时,读到的依然是高电平“1”。

那么如何在FPGA中判断4×4按键阵列中的哪个键按下呢?当然我们要实现按键输入的功能,就不能全部读取行和列的信号。

而应通过不断地输出扫描行(或列),再通过读取列(或行)的信号来判断哪个按键按下。

即:通过对4×4键盘阵列的4个行(或列)控制信号循环输出”1110、1101、1011、0111”,来驱动键盘阵列,紧接着读取相应的4个列(或行)信号。

通过读取的数据或状态来判断16个按键中哪个键被按下,并对其状态做编码输出。

此电路不停的工作,以便实时准确地获取键盘的输入状态,以供其它电路使用,从而实现了键盘阵列的扫描输入。

4×4键盘扫描程序开启原理及实例(精心整理)

4×4键盘扫描程序开启原理及实例(精心整理)

4×4键盘扫描程序开启原理及实例(精心整理)单片机4*4键盘扫描程序时如何开启的?按照行顺序,一行一行的开启,如下图:4*4共16键,假设P0.0-P0.3为H0-H3,P0.4-P0.7为L0-L3(列) L0 L1 L2 L3(行) H0 0 1 2 3H1 4 5 6 7H2 8 9 A BH3 C D E F首先让H0 = 0,然后依次检测L0-L3,看那个键按下了,则对应的L0-L3为0,这样第一行检测结束。

比如扫描H0行时第一个键按下了,则L0=0,获得的P0=0xee,你也可以返回一个值,比如就是0,来代表第一个键(0)被按下,这样依次检测就扫描满16个键就行了。

4*4键盘扫描程序#include //包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=dofly[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=dofly[1];break;//1case 0x7b:P0=dofly[2];break;//2case 0x77:P0=dofly[3];break;//3case 0xbe:P0=dofly[4];break;//4case 0xbd:P0=dofly[5];break;//5case 0xbb:P0=dofly[6];break;//6case 0xb7:P0=dofly[7];break;//7case 0xde:P0=dofly[8];break;//8case 0xdd:P0=dofly[9];break;//9case 0xdb:P0=dofly[10];break;//acase 0xd7:P0=dofly[11];break;//bcase 0xee:P0=dofly[12];break;//ccase 0xed:P0=dofly[13];break;//dcase 0xeb:P0=dofly[14];break;//ecase 0xe7:P0=dofly[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖if(cord_h!=0x0f){cord_h=P3&0x0f; //读入列线值P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}以下为详细解释:假设按下的是S1键进行如下检测(4*4键盘)先在P3口输出p3 00001111低四位行会有变化cord_h =00001111&00001110 =00001110if !=00001111延时0.1uscord_h=00001110&00001111=00001110if !=00001111P3再输出11111110P3 =00001110|11110000=11111110输出高四位cord_l=P3&0xf0 //此时P3口就是输入值01111110 而不是上面的11111110cord_l=01111110&11110000=01110000cord_h+cord_l=00001110+01110000=01111110=0x7e //此编码即为S1的编码#include //包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=table[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=table[1];break;//1case 0x7b:P0=table[2];break;//2case 0x77:P0=table[3];break;//3case 0xbe:P0=table[4];break;//4case 0xbd:P0=table[5];break;//5case 0xbb:P0=table[6];break;//6case 0xb7:P0=table[7];break;//7case 0xde:P0=table[8];break;//8case 0xdd:P0=table[9];break;//9case 0xdb:P0=table[10];break;//acase 0xd7:P0=table[11];break;//bcase 0xee:P0=table[12];break;//ccase 0xed:P0=table[13];break;//dcase 0xeb:P0=table[14];break;//ecase 0xe7:P0=table[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{ uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f){P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}在P3口做的键盘你的去抖检测没有做好通过电平输入来引发中断,必须是由P3.2或P3.3引脚输入,这样才能触发中断。

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。

单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。

1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。

显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。

并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。

矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。

在行线和列线的每个交叉点上设置一个按键。

这样键盘上按键的个数就为N*N个。

这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。

4×4矩阵式键盘按键

4×4矩阵式键盘按键

一、实验目的1.掌握4×4矩阵式键盘程序识别原理2.掌握4×4矩阵式键盘按键的设计方法二、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号(2)键盘中对应按键的序号排列如图14.1所示三、参考电路740)this.width=740" border=undefined>图14.2 4×4矩阵式键盘识别电路原理图740)this.width=740" border=undefined>图14.1 4×4键盘0-F显示740)this.width=740" border=undefined>图14.3 4×4矩阵式键盘识别程序流程图四、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h五、程序设计内容(1)4×4矩阵键盘识别处理(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码矩阵的行线和列线分别通过两并行接口和CPU通信键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能六、程序流程图(如图14.3所示)七、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUA LCALL PANDUANLCALL XIANSHILJMP START ;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA: MOV COUNT#00H RET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN: MOV P3#0FFHCLR P3.4MOV A P3ANL A#0FHXRL A#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A P3ANL A#0FHCJNE A#0EH K1MOV COUNT#0LJMP DKK1: CJNE A#0DH K2MOV COUNT#4LJMP DKK2: CJNE A#0BH K3 MOV COUNT#8 LJMP DKK3: CJNE A#07H K4 MOV COUNT#12K4: NOPLJMP DKSW1: MOV P3#0FFH CLR P3.5MOV A P3ANL A#0FHXRL A#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A P3ANL A#0FHCJNE A#0EH K5 MOV COUNT#1 LJMP DKK5: CJNE A#0DH K6 MOV COUNT#5 LJMP DKK6: CJNE A#0BH K7 MOV COUNT#9 LJMP DKK7: CJNE A#07H K8 MOV COUNT#13K8: NOPLJMP DKSW2: MOV P3#0FFH CLR P3.6MOV A P3ANL A#0FHXRL A#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A P3ANL A#0FHCJNE A#0EH K9 MOV COUNT#2 LJMP DKK9: CJNE A#0DH KA MOV COUNT#6 LJMP DKKA: CJNE A#0BH KB MOV COUNT#10 LJMP DKKB: CJNE A#07H KC MOV COUNT#14 KC: NOPLJMP DKSW3: MOV P3#0FFH CLR P3.7MOV A P3ANL A#0FHXRL A#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A P3ANL A#0FHCJNE A#0EH KDMOV COUNT#3LJMP DKKD: CJNE A#0DH KE MOV COUNT#7LJMP DKKE: CJNE A#0BH KF MOV COUNT#11LJMP DKKF: CJNE A#07H KG MOV COUNT#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A COUNT MOV DPTR#TABLE MOVC A@A+DPTRMOV P0 ALCALL DELAYSK: MOV A P3ANL A#0FHXRL A#0FHJNZ SKRET ;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6#20D1: MOV R7#248DJNZ R7$DJNZ R6D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5#20LOOP: LCALL DELAY10MSDJNZ R5LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH06H5BH4FH66H6DH7DH07H DB 7FH6FH77H7CH39H5EH79H71H ;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f0x660x7f0x390x060x6d0x6f0x5e0x5b0x7d0x770x790x4f0x070x7c0x71};void main(void){ unsigned char i j k key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}九、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

51单片机4×4矩阵按键扫描方法

51单片机4×4矩阵按键扫描方法
{
key=0xf0;//低四位为0
if(key==0xf0)//若无变化,证明按键松开
return 0;//返回0
else//否则,按键未松开
return 1;//返回1
}
//*********主函数*********//
int main()
{
key=0xff;//按键初始化
led=0xff;//关闭LED灯
//送至led显示
/*
eg:如果是第三行第二列按键按下
则第3个、第6(2列+4)个LED灯亮
如下图所示(Proteus仿真电路图)
*/
}
}
led_arry[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//数组定义,便于显示
//******检测是否有按键按下*****//
uchar Check_Button()
{
key=0x0f;//高四位为0
if(key==0x0f)//若无变化,证明无按键按下
return 0;//返回0
else//否则
return 1;//返回1
}
//********行检测********//
uchar Line[]={0x0e,0x0d,0x0b,0x07}; //那个按键按下,检测出的状态则对应数组中的第几个数
void Check_Line()
{
uchar i;
key=0x0f;//高四位为0
/*****4×4按键扫描******/
/***编程要点
1.首先检测是否有按键按下
2.若有按键按下,即进行行检测,列检测
3.行检测:高4位设为0,低4位为1,进行检测0x0f

数码管显示4×4键盘矩阵按键实验

数码管显示4×4键盘矩阵按键实验

5、4×4键盘矩阵按键实验一、实验目的及要求键盘实质上是一组按键开关的集合。

通常,键盘开关利用了机械触点的合、断作用。

键的闭合与否,反映在行线输出电压上就是呈高电平或低电平,如果高电平表示键断开,低电平则表示键闭合,反之也可。

通过对行线电平高低状态的检测,便可确认按键按下与否。

为了确保CPU对一次按键动作只确认一次按键有效,还必须消除抖动。

当按键较多时会占用更多的控制器端口,为减少对端口的占用,可以使用行列式键盘接口,本实验中采用的4×4键盘矩阵可以大大减少对单片机的端口占用,但识别按键的代码比独立按键的代码要复杂一些。

在识别按键时使用了不同的扫描程序代码,程序运行时LED灯组会显示相应按键的键值0~15的二进制数。

本实验中P2端口低4位连接是列线,高4位连接的是行线。

二、实验原理(图)三、实验设备(环境):1、电脑一台2、STC-ISP(V6.85I)烧写应用程序3、Keil应用程序四、实验内容(算法、程序、步骤和方法):#include<STC15F2K60S2.h> //此文件中定义了STC15系列的一些特殊功能寄存器#include"intrins.h"#define uint unsigned int#define uchar unsigned charuchar code dsy_code[]={0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0 F,0xff};uchar Pre_keyno=16,keyno=16;void delayMS(char x){uchar i;while(x--)for(i=0;i<120;i++) ;}void keys_scan(){uchar tmp;P2=0x0f;delayMS(5);tmp=P2^0x0f;switch(tmp){case 1:keyno=0;break;case 2:keyno=1;break;case 4:keyno=2;break;case 8:keyno=3;break;default:keyno=16;}P2=0xf0;delayMS(5);tmp=P2>>4^0x0f;switch(tmp){case 1:keyno+=0;break;case 2:keyno+=4;break;case 4:keyno+=8;break;case 8:keyno+=12;break;}}main(){P0=0x00;while(1){P2=0xf0;if(P2!=0xf0)keys_scan();if(Pre_keyno!=keyno){P0=~dsy_code[keyno];Pre_keyno=keyno;}delayMS(50);}}五、实验结论(结果):本实验实现了XXX功能,核心算法采用了XXX的方式,达到了预期目的。

4×4键盘扫描程序

4×4键盘扫描程序

键盘程序假设P2.0-P2.3为H0-H3,P2.4-P2.7为L0-L3 (列) L0 L1 L2 L3(行) H0 0 1 2 3H1 4 5 6 7H2 8 9 A BH3 C D E F首先,行为P2口的低四位,而列为高四位。

P0口为数码管输出口。

第一种思路就是逐行逐列判断法。

#include<reg51.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charuchar code table[17] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xbf};//八段数码管对应0-F值. uchar temp;void Delay_1ms(uint i)//1ms延时{uint x, j;for(j=0;j<i;j++)for(x=0;x<=148;x++);}void delay()//消除按键抖动延时{int i,j;for(i=0; i<=10; i++)for(j=0; j<=2; j++);}uchar Keyscan(void){uchar i,j,row,col;temp=P2&0xf0;for(i=0; i<4; i++){if(!(temp&(0x10<<i)))row=i;}P2=0x0f;temp=P2&0x0f;for(j=0; j<4; j++){if(!(temp&(0x01<<j)))col=j;}return (row+col*4);}void Main(void){uchar Key_Value=16; //读出的键值uchar i=0;while(1){P2 = 0xf0;temp=P2;if(temp != 0xf0){Delay_1ms(80); //按键消抖if(temp != 0xf0){Key_Value = Keyscan();}Delay_1ms(350); //按键消抖}P0 = table[Key_Value];//P0口输出数据到数码管}次读取结果组合起来就可以得到当前按键的特征编码。

矩阵式键盘控制数码管显示

矩阵式键盘控制数码管显示
完成实训报告十
7
谢谢观赏!
二、工作原理
当扫描开始时, 首先将P1.7列初始值设置为低电平, 即P
3
三、程序流程图 ——主程序
开始
初始化
按键查询
YES
A=FFH?
NO
调用消除抖动子程序转Leabharlann 功能处理程序AAAA 1234
结束
4
四、程序清单
独立式键盘控制灯移动程序.doc
5
五、实验板上测试
观察实验结果并记录: 按下不同按键开关,可以看到P0端口的
实训十一: 矩阵式键盘控制数码管显示
功能说明: 使用4*4矩阵式键盘控制第一个数码
管显示0~F。
1
一、电路图
4条列线的一端分别与单片机P1口中的P1.4、 P1.5、 P1.6. P1.7 相接,另一端通过上拉电阻接到+5V电源上,平时使 列线处于高电平状态;而4条行线的一端分别与P1口中的 P1.0、 P1.1、 P1.2、 P1.3相接。16个按键设置在行、列 2 线交点上。
灯作不同方向的移动或闪烁,说明是在执 行不同功能键的处理程序。 按DL1键,亮灯从右向左移动 按DL2键,亮灯从左向右移动 按DL3键,左边4只灯与右边4只灯交替闪亮 按DL4键,8个灯闪烁
6
码管显示0; 作业布置按下DL2,第二个数
码管显示1; 按下DL3,第三个数 码管显示2; 按下DL4,第四个数 码管显示3 。

4×4矩阵键盘识别技术

4×4矩阵键盘识别技术

实验课题:4×4矩阵键盘识别技术一实验目的1.熟悉和掌握AT89S51单片机相关的功能2.了解矩阵式键盘的内部结构,掌握至少一种常用的按键识别的方法3.利用AT89S51单片机和设计一个4×4矩阵键盘控制。

4.掌握子程序结构和子程序实际的基本知识。

二实验原理1. 4×4矩阵键盘的序列排列如图1-1,图1-12.如图1-2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0―P1.3作输入线,以p1.4-P1.7作输出线,在数码管上显示每个按键的“0-F”序号.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

3.程序框图三实验原理图四实验代码#include<AT89X51.H> unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; unsignedchartemp;unsignedcharkey;unsignedchari,j;voidmain(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f) {temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=7;break;case0x0d:key=8;break;case0x0b:key=9;break;case0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3; temp=temp&0x0f; switch(temp){case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_6=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f; if(temp!=0x0f) {temp=P3;temp=temp&0x0f; switch(temp){ case0x0e:key=1;break;case0x0d:key=2;break;case0x0b:key=3;break;case0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}P3=0xff;P3_7=0;temp=P3;temp=temp&0x0f; if(temp!=0x0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=0;break; case0x0d:key=13;break;case0x0b:key=14;break;case0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}}}五实验小结1.通过本次试验熟练的掌握了AT89S51单片机相关的功能。

矩阵键盘的三种扫描方法

矩阵键盘的三种扫描方法

矩阵键盘的三种扫描方法矩阵键盘是一种常见的输入设备,它由多个按键组成,并通过矩阵扫描的方式来检测用户的按键输入。

矩阵键盘的扫描方法可以分为三种:行扫描、列扫描和交错扫描。

下面将详细介绍这三种扫描方法。

1.行扫描行扫描是最简单的一种扫描方法。

它的原理是将矩阵键盘的每一行连接到一个IO口,通过轮询检测每一行的电平变化来获取用户的按键输入。

行扫描的工作流程如下:1)将矩阵键盘的每一行连接到一个IO口,并设置为输入模式。

2)逐个地将每一行的IO口设置为高电平,并检测列的电平状态。

3)如果其中一列的电平为低电平,说明该列有按键按下。

此时,记录下这个按键的位置(行号和列号)以及按键的值(键码或字符),然后将这个按键的位置和值传递给上层应用或处理器。

4)将当前行的IO口设置为低电平,然后继续下一行的检测,重复2)~3)步骤,直到所有行都被检测完毕。

行扫描的优点是实现简单,只需要一个IO口来检测按键的状态。

但是它的缺点是扫描速度较慢,因为需要逐个地检测每一行。

2.列扫描列扫描是一种比较常用的扫描方法。

它的原理是将矩阵键盘的每一列连接到一个IO口,通过轮询检测每一列的电平变化来获取用户的按键输入。

列扫描的工作流程如下:1)将矩阵键盘的每一列连接到一个IO口,并设置为输入模式。

2)逐个地将每一列的IO口设置为高电平,并检测行的电平状态。

3)如果其中一行的电平为低电平,说明该行有按键按下。

此时,记录下这个按键的位置(行号和列号)以及按键的值(键码或字符),然后将这个按键的位置和值传递给上层应用或处理器。

4)将当前列的IO口设置为低电平,然后继续下一列的检测,重复2)~3)步骤,直到所有列都被检测完毕。

列扫描的优点是速度较快,因为只需要逐个地检测每一列。

但是它的缺点是需要多个IO口来检测按键的状态。

3.交错扫描交错扫描是一种综合了行扫描和列扫描的扫描方法,它可以有效地减少扫描的时间。

交错扫描的原理是将矩阵键盘的行和列交错地连接到多个IO口,通过并行检测行和列的电平变化来获取用户的按键输入。

4x4矩阵键盘扫描原理

4x4矩阵键盘扫描原理

4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理是一种常用的键盘扫描方法,也称为矩阵键盘扫描。

它可以将多个按键连接在一起并使用较少的引脚来检测按键的状态。

4x4矩阵键盘由4行和4列组成,共有16个按键。

通常使用单片机或电路来进行扫描,以下是简要的原理:
1. 行扫描:首先,将行引脚设置为输出,同时将列引脚设置为输入,并将其上拉或下拉。

所有行引脚中只有一个为低电平,其余为高电平。

然后逐行检测按键状态。

2. 列检测:对于每一行,将对应的行引脚置为低电平后,检测列引脚的电平状态。

如果有按键按下,则相应的列引脚会变为低电平。

通过读取列引脚的状态,可以确定按键的位置。

3. 组合键:由于只能一次检测一行,因此当同时按下多个按键时,可能会导致误检。

为了解决这个问题,可以在检测到按键按下时,延迟一段时间,并再次检测按键的状态。

如果在第二次检测时仍然检测到按键按下,则确认按键有效。

4. 反向扫描:为了检测按键的释放状态,可以将行引脚设置为输入,列引脚设置为输出,并将其置为低电平。

然后逐列检测行引脚的电平状态,如果有按键释放,则相应的行引脚会变为高电平。

通过不断地循环扫描所有的行和列,可以实时检测按键的状态,并根据需要进行相应的处理。

4X4矩阵键盘控制数码管显示按键值

4X4矩阵键盘控制数码管显示按键值

4X4矩阵键盘控制数码管显示按键值4X4矩阵键盘控制数码管显示按键值一、设计内容与要求用80C51单片机控制系统显示按键值0~F。

二、设计目的意义2.1 设计目的1、了解单片机系统中实现LED动态显示的原理及方法;2、详细了解8051芯片的性能及编程方法;3、了解单片机系统基本原理,了解单片机控制原理;4、掌握AT89C51输入/输出接口电路设计方法;5、掌握AT89C51程序控制方法;6、掌握单片机汇编编程技术中的设计和分析方法;7、掌握使用PROTEUS软件进行仿真的方法。

8、学会使用并熟练掌握电路绘制软件Protel99SE;9、掌握电路图绘制及PCB图布线技巧。

2.2 设计意义1、在系统掌握单片机相应基础知识的前提下,熟悉单片机应用系统的设计方法及系统设计的基本步骤。

2、完成所需单片机应用系统原理图设计绘制的基础上完成系统的电路图设计。

3、完成系统所需的硬件设计制作,在提高实际动手能力的基础上进一步巩固所学知识。

4、进行题目要求功能基础上的软件程序编程,会用相应软件进行程序调试和测试工作。

5、用AT89C51设计出题目所要求的数码管动态循环显示,并针对实际设计过程中软、硬件设计方面出现的问题提出相应解决办法。

6、通过单片机应用系统的设计将所学的知识融会贯通,锻炼独立设计、制作和调试单片机应用系统的能力;领会单片机应用系统的软、硬件调试方法和系统的研制开发过程,为进一步的科研实践活动打下坚实的基础。

三、系统硬件电路图3.1 Proteus软件简介以及仿真电路图Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、1ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

4x4键盘(任意同时按键按下有效)扫程序-数码管显示键值

4x4键盘(任意同时按键按下有效)扫程序-数码管显示键值
case 16:if(col3==0) key=15;n=1;break;
}
}
void main()
{
unsigned char i, key_key[16];
while(1)
{
for(i=0;i<16;i++)
{
key_4x4();
duan_xuan();_xuan();
}
}
for(i=x;i>0;--i)
for(j=114;j>0;--j);
}
void duan_xuan()
{
wr=0; //时钟输入端WR置低电平
cs1=0;//cs1为低电平选通段码锁存IC
wr=1; //时钟输入端WR置高电平,WR得到上升沿
cs1=1;//cs1为高电平,段码锁存IC锁存输出保持不变
case 4:if(col3==0) key=3;n=5;break;
case 5:row1=0;row0=1;if(col0==0) key=4;n=6;break;
case 6:if(col1==0) key=5;n=7;break;
case 7:if(col2==0) key=6;n=8;break;
{
static unsigned char n=1;
// P2=0XFF;
switch(n)
{
case 1:row0=0;row3=1;if(col0==0) key=0;n=2;break;
case 2:if(col1==0) key=1;n=3;break;
case 3:if(col2==0) key=2;n=4;break;

实验八 键盘扫描显示实验

实验八   键盘扫描显示实验

实验八键盘扫描显示实验一、实验目的1、了解普通4×4键盘扫描的原理。

2、进一步加深七段码管显示过程的理解。

二、硬件要求1、4×4键盘阵列。

2、FPGA主芯片EP1K30TC144-3。

3、可变时钟源。

4、七段码显示区。

三、实验原理本实验主要完成的实验是完成4×4键盘扫描的,然后获取其键值,并对其进行编码,从而进行按键的识别,并将相应的按键值进行显示。

键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出4行为高电平,然后输出4列为低电平,在读入输出的4行的值,通常高电平会被低电平拉低,如果读入的4行均为高电平,那么肯定没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。

同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。

获取到行值和列值以后,组合成一个8位的数据,根据实现不同的编码在对每个按键进行匹配,找到键值后在7段码管显示。

四、实验内容及步骤本实验内容是完成4×4键盘的扫描,然后将正确的键值进行显示,实验步骤如下:1、编写键盘扫描和显示的VHDL代码。

2、用MaxPlusII对其进行编译仿真。

3、在仿真确定无误后,选择芯片ACEX1K EP1K30TC144-3。

4、给芯片进行管脚绑定,在此进行编译。

5、根据自己绑定的管脚,在实验箱上对键盘接口、显示接口和FPGA之间进行正确连线。

6、给目标板下载代码,在4×4键盘输入键值,观看实验结果。

五、实验连线如果是调用的本书提供的VHDL代码,则实验连线如下:Clk:FPGA工作时钟信号,大约位5KHz至50KHz即可。

Kr[0:3]:分别接4×4键盘部分的R1、R2、R3和R4。

4乘4矩阵键盘扫描加数码管显示代码

4乘4矩阵键盘扫描加数码管显示代码

4*4矩阵键盘扫描加数码管显示遵义师范学院(工学院)电气工程及其自动化黎卫星/********************************************************** *****///º¯ÊýÍ·Îļþ/********************************************************** *****/#include<reg51.h>#include<delay.h>#include<ciodziku.h>#include<keyjiance.h>#include<displychushihua.h>/********************************************************** *****///Ö÷º¯Êý/********************************************************** *****/void main(){displaychushihua();while(1){num=keyjiance();dula=1;P0=~table[num-1];dula=0;}}/***************************************************///ÑÓʱº¯Êý/***************************************************/void delay(unsigned int z){unsigned int x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}/********************************************************** *****///Êý×Ö¿â/********************************************************** *****/sbit dula = P2^6;sbit wela = P2^7;/***************************************************************//********************************************************** *****/unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00//0x00Ϊ¹Ø±ÕËùÊýÂë¹ÜÏÔʾ};/********************************************************** *****///¼üÅÌɨÃè/********************************************************** *****/unsigned int temp,num;/********************************************************** *****//********************************************************** *****/unsigned int keyjiance()// unsigned int º¯Êý·µ»ØÖµÀàÐÍʹÓÃvoidΪÎÞ·µ»ØÖµ»á³ö´í{P3=0XFE; //µÚÒ»Ðмì²âtemp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){ case 0xee:num=1;break;case 0xde:num=2;break;case 0xbe:num=3;break;case 0x7e:num=4;break;} while(temp!=0xf0)//°´¼üËÉÊÖ¼ì²â{temp=P3;temp=temp&0xf0;}//dula=1;//P0=~table[num-1];// dula=0;}}P3=0XFD; //µÚ¶þÐмì²âtemp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){ case 0xed:num=5;break;case 0xdd:num=6;break;case 0xbd:num=7;break;case 0x7d:num=8;break;} while(temp!=0xf0)//°´¼üËÉÊÖ¼ì²â{temp=P3;temp=temp&0xf0;}//dula=1;//P0=~table[num-1];// dula=0;}}P3=0XFB; //µÚÈýÐмì²âtemp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){ case 0xeb:num=9;break;case 0xdb:num=10;break;case 0xbb:num=11;break;case 0x7b:num=12;break;}while(temp!=0xf0)//°´¼üËÉÊÖ¼ì²â{temp=P3;temp=temp&0xf0;}// dula=1;// P0=~table[num-1];// dula=0;}}P3=0XF7; //µÚËÄÐпªÊ¼¼ì²âtemp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){ case 0xe7:num=13;break;case 0xd7:num=14;break;case 0xb7:num=15;break;case 0x77:num=16;break;} while(temp!=0xf0)//°´¼üËÉÊÖ¼ì²â{temp=P3;temp=temp&0xf0;}//dula=1;//P0=~table[num-1];//dula=0;}}return (num); //º¯Êý·µ»ØÖµ// dula=1;// P0=~table[num-1];// dula=0;}/********************************************************** *****//********************************************************** *****/void displaychushihua(){num=17;//µÚ17¸öÊýΪ¹Ø±ÕËùÓÐÊýÂë¹Ü0x00// dula=1;//P0=0xff;//³õʼ»¯ÇåÁã ²»¸ø¶ÏÑ¡ËÍÊý ÊýÂë¹Ü²»ÁÁ// dula=0;wela=1;P0=~0xc0;wela=0;}。

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。

即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。

4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。

在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。

查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;否则第二行输出0,检查列线是否非全高;否则第三行输出0,检查列线是否非全高;如果某行输出0时,查到列线非全高,则该行有按键按下;根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:1 / 2void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}} //结束这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

4x4矩阵键盘扫描例程

4x4矩阵键盘扫描例程

//4x4矩阵键盘扫描例程(C51)//使用P0口上的LED灯显示键盘扫描得到的键值//===============#include<reg51.h> //51系列单片机头文件#define uchar unsigned char#define uint unsigned int#define key_4x4_port P3 //定义4x4键盘使用的单片机端口uchar key; //存放扫描得到的键值void delayms(uint xms); //声明延时子程序void key_4x4_scan(); //声明4x4键盘扫描子程序,得到的键值送全局变量key //=====================void main(){P0=0xff; //P0开机初始化Key=0xff; //键盘值开机初始化为ff(检测到的键值应为0-15)while(1){key_4x4_scan(); //不停调用键盘扫描子程序P0=key; //用P0来显示键值}}//========================void delayms(uint xms) //延时子程序{ uint i, j;for (i=xms; i>0; i--)for (j-110; j>0; j--);}//======================void key_4x4_scan() //4x4键盘扫描子程序,得到的键值送全局变量key{ uchar temp;key_4x4_port=0xfe; //送出P3.0位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xee;key=0; break;case 0xde;key=1; break;case 0xbe;key=2; break;case 0x7e;key=3; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====次高位送0==========key_4x4_port=0xfd; //送出P3.1位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xed;key=4; break;case 0xdd;key=5; break;case 0xbd;key=6; break;case 0x7d;key=7; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====第3高位送0==========key_4x4_port=0xfb; //送出P3.2位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xeb;key=8; break;case 0xdb;key=9; break;case 0xbb;key=10; break;case 0x7b;key=11; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====第4高位送0==========key_4x4_port=0xf7; //送出P3.3位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xe7;key=12; break;case 0xd7;key=13; break;case 0xb7;key=14; break;case 0x77;key=15; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}}//==========End。

矩阵键盘按键的数码管显示矩阵键盘按键的数码管显示

矩阵键盘按键的数码管显示矩阵键盘按键的数码管显示

一、矩阵键盘按‎键的数码管‎显示1.实验目的(1)掌握VHD‎L语言的语‎法规范,掌握时序电‎路描述方法‎(2)掌握多个数‎码管动态扫‎描显示的原‎理及设计方‎法2.实验所用仪‎器及元器件‎计算机一台‎实验板一块‎电源线一根‎扁平线一根‎下载线一根‎3.实验任务要求设计出‎4*4矩阵键盘‎对某一按键‎按下就在数‎码管显示一‎个数字。

按键从左上‎角到右下角‎依次为1,2, (16)4.实验原理按键模块原‎理键盘扫描的‎实现过程如‎下:对于4×4键盘,通常连接为‎4行、4列,因此要识别‎按键,只需要知道‎是哪一行和‎哪一列即可‎,为了完成这‎一识别过程‎,我们的思想‎是,首先固定输‎出4行为高‎电平,然后输出4‎列为低电平‎,在读入输出‎的4行的值‎,通常高电平‎会被低电平‎拉低,如果读入的‎4行均为高‎电平,那么肯定没‎有按键按下‎,否则,如果读入的‎4行有一位‎为低电平,那么对应的‎该行肯定有‎一个按键按‎下,这样便可以‎获取到按键‎的行值。

同理,获取列值也‎是如此,先输出4列‎为高电平,然后在输出‎4行为低电‎平,再读入列值‎,如果其中有‎哪一位为低‎电平,那么肯定对‎应的那一列‎有按键按下‎。

键盘键值的‎获取:键盘上的每‎一个按键其‎实就是一个‎开关电路,当某键被按‎下时,该按键的接‎点会呈现0‎的状态,反之,未被按下时‎则呈现逻辑‎1的状态。

扫描信号由‎r o w进入‎键盘,变化的顺序‎依次为11‎10-1101-1011-0111-1110。

每一次扫描‎一排,依次地周而‎复始。

例如现在的‎扫描信号为‎1011,代表目前正‎在扫描9,10,11,12这一排‎的按键,如果这排当‎中没有按键‎被按下的话‎,则由col‎umn读出‎的值为11‎11;反之当9这‎个按键被按‎下的话,则由col‎u mn读出‎的值为11‎10。

根据上面所‎述原理,我们可得到‎各按键的位‎置与数码关‎系如表所示‎:1110 1110 1110 1110 1101 1101 1101 1101row1110 1101 1011 0111 1110 1101 1011 0111 colum‎n1 2 3 4 5 6 7 8键值row 1011 1011 1011 1011 0111 0111 0111 0111colum‎n1110 1101 1011 0111 1110 1101 1011 0111键值9 10 11 12 13 14 15 16动态显示原‎理为使得输入‎控制电路简‎单且易于实‎现,采用动态扫‎描的方式实‎现设计要求‎。

4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)

4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)

4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。

按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。

第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。

当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。

第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。

第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。

也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。

比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为01110111,即0X77。

当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为10111011,即0XBB。

全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。

此处采用线反转法识别按键。

C程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x) //延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b; //得到位置码for(i=0;i<16;i++)if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1) //有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档