相似三角形单元测试卷(含答案)

合集下载

(完整word版)相似三角形单元测试卷(含答案)

(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。

相似三角形单元测试卷带答案

相似三角形单元测试卷带答案

相似三角形单元测试卷一.选择题1.在△ABC中,BC=6,AC=8,AB=10,另一个与它相似的三角形的最短边长是3,则其最长边一定是()A.12 B.5 C. 16 D.202.下列说法正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等腰直角三角形都相似D.有一个角相等的两个等腰三角形都相似3.在相同时刻的物高与影长成正比.如果高为1.5m的竹竿的影长为2.5m,那么影长为30m 旗杆的高是A. 15mB. 16mC. 18mD. 20m4.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列四个结论:①BO=2OE;②13DOEADESS∆∆=;③12ADEBCESS∆∆=;④△ADC∽△AEB.其中正确..的结论有()A.3个B.2个C.1个D.0个5.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()APCBA、5条B、4条C、3条D、2条【答案】B6.如图,∠ABD=∠ACD,图中相似三角形的对数是()(A)2 (B)3 (C)4 (D)5【答案】C7.(11·西宁)如图6,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB +∠EDC=120°,BD=3,CE=2,则△ABC的边长为A.9 B.12 C.16 D.188.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB 等于()AB C D E FA. 4.5米B. 6米C. 7.2米D. 8米【答案】B9.在平面直角坐标系中,正方形ABCD 的位置如图6所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2012个正方形的面积为 ( )201135()2⨯ B .201195()4⨯ C .201235()2⨯ D .201295()4⨯【答案】B10. 如图所示,小正方形的边长为1,则下列图形中的三角形(阴影部分)与ABC ∆相似的是( )【答案】A二.填空题11.已知32=b a ,则=+b b a ___________。

相似的单元测试题及答案

相似的单元测试题及答案

相似的单元测试题及答案一、选择题(本题共10分,每题1分)1. 下列哪个选项是相似三角形的定义?A. 面积相等的三角形B. 形状相同的三角形C. 边长成比例的三角形D. 角度相同的三角形2. 相似三角形的对应角相等,对应边成比例,这个性质称为:A. 相似性质B. 等角性质C. 比例性质D. 角度比例性质3. 如果两个三角形的对应边长比为2:3,那么它们的面积比是:A. 2:3B. 4:9C. 6:9D. 8:274. 在相似三角形中,如果一个角是30°,那么它的对应角也是:A. 30°B. 60°C. 90°D. 120°5. 相似三角形的判定定理中,SAS相似准则指的是:A. 两边及其夹角相等B. 三边对应成比例C. 两角对应相等D. 一边对应成比例,其余两边及其夹角相等二、填空题(本题共10分,每空1分)6. 相似三角形的判定定理包括AA准则、SAS准则和______准则。

7. 如果三角形ABC与三角形DEF相似,那么AB:DE=______,∠A=______。

8. 相似三角形的面积比等于它们对应边长的______。

9. 根据相似三角形的性质,如果三角形ABC与三角形DEF相似,且AB=2DE,则三角形ABC的面积是三角形DEF面积的______倍。

10. 在相似三角形中,如果∠BAC=45°,那么∠EDF=______。

三、简答题(本题共20分,每题5分)11. 解释什么是相似三角形,并给出两个相似三角形的例子。

12. 描述如何使用AA准则判定两个三角形是否相似。

13. 说明为什么相似三角形的面积比等于它们对应边长的平方比。

14. 如果一个三角形的边长扩大到原来的两倍,它的面积会如何变化?15. 给出一个实际生活中使用相似三角形性质的例子。

四、计算题(本题共30分,每题10分)16. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC:EF的比值。

相似三角形测试题及答案(全)

相似三角形测试题及答案(全)
=________。 二、选择题(每小题4分,共16分)
1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)第四章相似三角形单元测试卷一、选择题: 1.下列各组数中,成比例的是A.-6,-8,3,4 B.-7,-5,14,5 C.3,5,9,12 D.2,3,6,12 2.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为A.23 B.33 C.43 D.63 3.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC= A. AFBECD1121 B. C. D. 2334 ADFBEGC 4.如图,△ABC中,DE ∥FG∥BC,且DE、FG将△ABC的面积三等分,若BC=12cm,则FG的长为A、8cm B、6cm C、46cm D、62cm 5.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于A. 2:5:25:25 D. 4:216.如图, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC相似的是()7.如图,在□ABCD 中,E、F分别是AD、CD 边上的点,连接BE、AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有A.2对B.3对C.4对D.5对AD45°B 1 PC8.如图,在直角三角形ABC中,放置边长分别3,4,x的三个正方形,则x 的值为() A. 5 B. 6 C. 7 D. 129. 如果三条线段的长a、b、c满足5?1bc==,那么(a,b,c)叫做“黄金线段组\.黄2ab金线段组中的三条线段().A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10. 如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为A. 5 3 ?1 3C.32?1 3D. 35 二、填空题: C11.已知a=4,b=9,c是a、b的比例中项,则c =.BOD12. 如图,△ABC中,已知AB=4,AC=3。

相似三角形单元测试题

相似三角形单元测试题

相似三角形单元检测题一填空:(3分×14=42分) (90分钟完卷)1.如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,那么AD=______.2。

如图2,AD∥EF∥BC,那么图的相似三角形共有_____对。

3。

如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,那么BM=______.4。

ΔABC的三边长为,,2,ΔA'B’C'的两边为1和,假设ΔABC∽ΔA'B'C',那么ΔA'B’C’的笫三边长为________.5.两个相似三角形的面积之比为1∶5,小三角形的周长为4,那么另一个三角形的周长为_____.6。

如图4,RtΔABC中,∠C=900,D为AB的中点,DE⊥AB,AB=20,AC=12,那么四边形ADEC的面积为__________.7.如图5,RtΔABC中,∠ACB=900,CD⊥AB,AC=8,BC=6,那么AD=____,CD=_______。

8.如图6,矩形ABCD中,AB=8,AD=6,EF垂直平分BD,那么EF=_________.9。

如图7,ΔABC中,∠A=∠DBC,BC=,S ΔBCD∶SΔABC=2∶3,-那么CD=______。

10.如图8,梯形ABCD中,AD∥BC,两腰BA和CD的延长线相交于P,PF⊥BC,AD=3.6,BC=6,EF=3,那么PF=_____.11。

如图9,ΔABC中,DE∥BC,AD∶DB=2∶3,那么SΔADE∶SΔ=___________.ABE12.如图10,正方形ABCD内接于等腰ΔPQR,∠P=900,那么PA∶AQ=__________.13。

如图11,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,-那么S四边形DFGE∶S四边形FBCG=_________.14.如图12,ΔABC中,中线BD和CE相交于O点,SΔADE=1,那么S四=________。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。

相似三角形单元测试,相似三角形试卷

相似三角形单元测试,相似三角形试卷

四公学校《相似三角形》试题一、选择题(3分每题) 答案1___2___3___4___5___6___7___8___9___10___ 1.(2008湖南常德市)如图3,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论: (1)DE=1,(2)AB 边上的高为3,(3)△CDE ∽△CAB ,(4)△CDE 的面积与△CAB 面积之比为1:4.其中正确的有 ( )A .1个B .2个C .3个D .4个2.(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是(3.(2008湖北黄石)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中A B C △相似的是( )B4.(2008 重庆)若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A 、2∶3B 、4∶9 C 、2∶3 D 、3∶2 5.(2008 湖南 长沙)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米 B 、6.4米 C 、9.6米 D 、10米 6.(2008湖南株洲)如图,在A B C ∆中,D 、E 分别是A B 、AC 边的中点,若6B C =,则D E 等于( )A .5 B .4 C .3 D .27、两个相似等腰直角三角形的面积比是4.,若较小的三角形斜边为2,则大三角形斜边是( ).(A) 8 (B) 4 (C) 2 (D) 1 8.如图所示,△ABC ∽△ACD 的条件是 ( ) ABCABCDAC=BADCDACBC=C CD 2=AD ·DB D AC 2=AD ·AB9多可画这样的直线的条数是 ( ) A 1条 B 2条 C 3条 D 4条 二、填空题(3分每题) 1.如果23=b a ,那么ba a +等于 ______________2、(2008福建省泉州市)两个相似三角形对应边的比为6,则它们周长的比为________。

浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.已知线段a,b,c,求作线段x,使bx=ac,下列作法中正确的是()A.B.C.D.2.如果x:y=2:3,那么下列各式中成立的是()A.B.2x=3y C.D.3.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是()A.a=3B.b=4.5C.c=4D.d=84.已知△ABC∽△DEF,AG和DH是它们的对应边上的高,若AG=4,DH=6,则△ABC与△DEF的面积比是()A.2:3B.4:9C.3:2D.9:45.如图,在△ABC中,P为AB上一点,在下列四个条件中,不能判定△APC和△ACB相似的条件是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP•AB D.AC•CP=AP•CB6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,则下列结论不正确的是()A.B.C.△ADE∽△ABC D.AD•AB=AE•AC7.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)8.将两张直角三角形纸片按如图所示的方式摆进⊙O内,点A,B,C,D都在圆上,点E在边AC上,已知∠BAC =∠AED=90°,AB=AE=6,DE=2,则⊙O的直径为()A.B.C.D.109.已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM为()A.3B.C.3 或D.以上都错10.如图,在边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,交AC于点G,连接CF交BD于点H,延长CE交AD于点M,连接FM,则下列结论:①点E到AB,BC的距离相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,则.正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.已知,则的值为.12.如图,l1∥l2∥l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为cm.13.在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,则BD=.14.有五本形状为长方体的书放置在方形书架中,如图所示,其中四本竖放,第五本斜放,点G正好在书架边框上.每本书的厚度为5cm,高度为20cm,书架宽为40cm,则FI的长.15.如图,已知平行四边形ABCD中,E,F分别是边AB,AD上的点,EF与对角线AC交于P,若,,则的值为.16.如图,一个由8个正方形组成“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均是1,则边AB的长为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,BD平分∠ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BC•BE.证明:△BCD∽△BDE.18.(6分)某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?19.(7分)已知线段a,b,c满足a:b:c=2:3:4,且a+b﹣c=3.(1)求线段a,b,c的长.(2)若线段m是线段a,b的比例中项,求线段m的长.20.(8分)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.(4)分别求出△OAB的周长和△OA2B2的面积.21.(8分)如图,正方形ABCD中,点E是边CD的中点,点F在AD边上,且=2,AE与CF相交于点G.(1)若AD=6,EG=3,连接DG,求证:△ADE∽△DGE;(2)求∠AGF的度数.22.(8分)如图,正方形ABCD中,E、F分别是AD、AB上的点,AP⊥BE于点P.(1)如图1,如果点F是AB的中点,求证:BP•BE=2PF•BC;(2)如图2,如果AE=AF,联结CP,求证:CP⊥FP.23.(9分)如图,在矩形ABCD中,AB=6,AD=8,点E是CD边上的一个动点(点E不与点C重合),延长DC 到点F,使EC=2CF,且AF与BE交于点G.(1)当EC=4时,求线段BG的长;(2)设CF=x,△GEF的面积为y,求y与x的关系式,并求出y的最大值;(3)连接DG,求线段DG的最小值.浙教版2022年九年级上册第4章《相似三角形》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:由题意,bx=ac,∴=,故选:D.2.【解答】解:∵x:y=2:3,∴设x=2k,y=3k,A、==﹣,故本选项不符合题意;B、∵x:y=2:3,∴3x=2y,故本选项不符合题意;C、∵x:y=2:3,∴=,故本选项,符合题意;D、不能约分,故本选项不符合题意.故选:C.3.【解答】解:∵两个五边形相似,∴====,∴a=3,b=4.5,c=4,d=6.故选:D.4.【解答】解:∵△ABC∽△DEF,AG和DH是它们的对应边上的高,∴=()2=()2=,故选:B.5.【解答】解:当∠ACP=∠B时,∵∠A=∠A,∴△ACP∽∠ABC;当∠APC=∠ACB时,∵∠A=∠A,∴△ACP∽∠ABC;当AC2=AP•AB时,即,∵A=∠A,∴△ACP∽∠ABC;当AB•CP=AP•CB时,即,∵A=∠A,∴不能判定△APC和△ACB相似,故选:D.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴,故选:D.7.【解答】解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为'(﹣5,2).故选:B.8.【解答】解:连接BD,CD,∵圆周角∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°,设CE=a,由勾股定理得:AD===2,CD===,BC===,∵∠DEA=∠BDC=90°,∠DBC=∠DAE(在同圆中,同弧所对的圆周角相等),∴△AED∽△BDC,∴=,∴=,解得:a=﹣或a=,∵a表示边的长度,不能为负,∴a=﹣舍去,∴BC==,即⊙O的直径是,故选:A.9.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=4,又∵∠PBF=90°,∴∠ABP=∠CBF=90°﹣∠CBP;若以点B,M,C为顶点的三角形与△ABP相似,则:①如图1中,,即=,解得BM=;②如图2中,,即=,解得BM=3.综上所述,满足条件的BM的值为3或.故选:C.10.【解答】解:如图,连接AE,设FM交AC于点I,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=∠ABC=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABD=∠CBD,∴点E到AB,BC的距离相等,故①正确;在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∠BAE=∠BCE,∵EF⊥CE,∴∠CEF=∠MEF=90°,∴∠BCE+∠BFE=180°,∵∠EF A+∠BFE=180°,∴∠BCE=∠EF A,∴∠BAE=∠EF A,∴AE=FE,∴CE=FE,∴∠FCE=∠CFE=45°,故②正确;∵AD∥BC,∴∠DME=∠BCE=∠BAE,∵∠MDE=∠ABE,∴△MDE∽△ABE,∴=,∴=,∵∠MEF=∠MDC,∴△MEF∽△MDC,∴∠DMC=∠FMC,故③正确;作FL⊥BD于点L,则∠BLF=90°,设BL=x,∴∠LFB=∠LBF=45°,∴FL=BL=x,∵BF2=BL2+FL2=2BL2,∴BF=x,∵AD=CD=BC=4,DM=2,∴CM==2,BD==4,∵△DEM∽△BEC,∴====,∴FE=CE=CM=,BE=BD=,∵EL===,∴x+=,解得x1=,x2=2(不符合题意,舍去),∴BF=×=≠,故④错误,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1,∴x=y,∴==0.故答案为:0.12.【解答】解:∵l1∥l2∥l3,∴,∴AB=6cm,BC=3cm,A1B1=4cm,∴,解得B1C1=2.故答案为:2.13.【解答】解:∵∠CAD=∠B,∠C=∠C,∴△DAC∽△ABC,∴=,∵AC=6,BC=9,∴=,∴DC=4,∴BD=BC﹣DC=9﹣4=5,故答案为:5.14.【解答】解:由题知,CI=BI﹣BC=40﹣20=20cm,EF=20cm,FG=5cm,∵∠EFC+∠CEF=90°,∠EFC+∠GFI=90°,∴∠CEF=∠GFI,∵∠ECF=∠FIG=90°,∴△GIF∽△FEC,∴=,即=,∴CE=4FI,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即(4FI)2+(20﹣FI)2=202,解得FI=或FI=0(舍去),故答案为:cm.15.【解答】解:过E作EH∥AD,交DC于点H,交AC于点G,如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴EH∥BC,∴==,∴设AG=a,GC=2a,∵DC∥AB,∴△CHG∽△AEG,∴==,∴=,∴EG=EH,∵=,∴=,,∴AF=AD=EH,∵AD∥EH,∴AF∥EG,∴△APF∽△GPE,∴===,∴AP=a,PG=,∴PC=a,∴=,故答案为:.16.【解答】解:如图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP==,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=.故答案为:.三.解答题(共7小题,满分52分)17.【解答】证明:∵BD平分∠ABC,∴∠DBE=∠CBD.∵BD2=BC•BE,∴,∴△BCD∽△BDE.18.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.19.【解答】解:(1)∵a:b:c=2:3:4,∴a=2k,b=3k,c=4k,∵a+b﹣c=3,∴2k+3k﹣4k=3,解得k=3,∴a=6,b=9,c=12;(2)∵m是a、b的比例中项,∴m2=ab,∴m2=6×9,∴x=3或x=﹣3(舍去),即线段m的长为3.20.【解答】解:(1)如图所示:△OA1B1即为所求;(2)如图所示:△OA2B2即为所求;(3)∵点D(a,b)∴变化(2)后点D的对应点D2的坐标为(﹣2a,﹣2b),故答案为:(﹣2a,﹣2b);(4)△OAB的周长=++=+,△OA2B2的面积=×5×(2+2)=10.21.【解答】(1)证明:∵四边形ABCD是正方形,AD=6,点E是边CD的中点,∴DE=3,∴AE==15,∵EG=3,∴=,,∴,∵∠AED=∠DEG,∴△ADE∽△DGE;(2)连接AC,过F作FH⊥AC,垂足为点H,设AD=3a,则AF=2a,DF=a,DE=a,∵四边形ABCD是正方形,∴∠CAD=45°,AC=3a,AE=,∴△AHF是等腰直角三角形,∴AH=FH=a,CH=2a,∴=2,=2,∴,∵∠CHF=∠ADE=90°,∴△CHF∽△ADE,∴∠HCF=∠DAE,∵∠AGF=∠GAC+∠ACG,∴∠AGF=∠GAC+∠DAE=∠CAD=45°.22.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴∠BAE=90°,∵AP⊥BE,∴∠BP A=90°,∴∠BP A=∠BAE,∵∠PBA=∠ABE,∴△BP A∽△BAE,∴=,∵点F是AB的中点,∴BA=2PF,∵BA=BC,∴=,∴BP•BE=2PF•BC.(2)∵△BP A∽△BAE,∴=,∴=,∴AE=AF,BA=BC,∴=,∵BC∥AD,∴∠CBP=∠BEA,∵∠BEA=∠F AP,∴∠CBP=∠F AP,∴△CBP∽△F AP,∴∠BPC=∠APF,∴∠FPC=∠BPF+∠BPC=∠BPF+∠APF=∠BP A=90°,∴CP⊥FP.23.【解答】解:(1)当EC=4时,则:CF=2,∴AB=FE=6,∵四边形ABCD为矩形,∴AB∥CD,∴∠F=∠BAG,∠ABG=∠FEG,∴△ABG≌△FEG(ASA),∴BG=EG=BE,在直角三角形BCE中,BC=8,CE=4,∴BE=4,∴BG=2;(2)如图,过点G作MN∥AD分别交AB,CD于点M,N,设CF=x,则:EF=3x,显然△ABG∽△FEG,∴=,设GN=h,则:MG=8﹣h,∴===,∴h=,∴S△GEF=y=×3x×=,∴y与x的关系式为:y=,∵x>0,2x≤6,∴0<x≤3,∵y==,∴y随x的增加而增加,∴当x=3时,y max=;(3)如图,在AB上取一点Q,使得BQ=2AQ,∵AB∥CD,∴△AQG∽△FCG,△BQG∽△DCG,∴==,==,∴点E在CD上运动总会有=,即点G在线段CQ上运动,∴当点E与点D重合时,CG最长,∵=,∴GC=,如图,作DM⊥CQ,GN⊥CD,当点G运动到点M时,此时DG即为最小值,∵DM•CG=CD•GN,∴DM•=×6×(×8),∴DM=,∴DG的最小值为.。

九年级数学相似三角形单元测试题及答案

九年级数学相似三角形单元测试题及答案

九年级数学 相似 单元测试(1)一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25,则甲,乙的实际距离是( )2.已知0432≠==c b a ,则cb a +的值为 ( )A.54 B.45 C.2 D.213.已知⊿的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿及⊿A ′B ′C ′相似,则⊿A ′B ′C ′的第三边长应该是 ( )A.2B.22C.26 D.33 4.在相同时刻,物高及影长成正比。

如果高为1.5米的标杆影长为2.5米,则影长为30米的旗杆的高为 ( )A 20米B 18米C 16米D 15米 5.如图,∠∠90°,要使⊿∽⊿,只要等于 ( )A.cb 2B.ab 2C.cabD.ca 26.一个钢筋三角架三 长分别为20,50,60,现要再做一个及其相似的钢筋三角架,而只有长为30和50的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( )A.一种B.两种C.三种D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( )A 原图形的外部B 原图形的内部C 原图形的边上D 任意位置8、如图,□中,∥,∶ = 2∶3, = 4,则的长( ) A . B .8 C .10 D .169、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线及地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长23米,窗户的下檐到教室地面的距离1米(点M 、N 、C 在同一直线上),则窗户的高为 ( )A .3米B .3米C .2米D .1.5米10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△的边上,△中边60m ,高30m ,则水池的边长应为( )A 10mB 20mC 30mD 40m 二.填空题(每小题3分,共30分) 11、已知43=yx ,则._____=-yy x12、.已知点C 是线段的黄金分割点,且>,则∶.13、.把一矩形纸片对折,如果对折后的矩形及原矩形相似,则原矩形纸片的长及宽之比为.14、如图,⊿中分别是上的点(),当或或时,⊿及⊿相似.15、在△中,∠B=25°,是边上的高,并且2 ·,则∠的度数为。

(完整版)《相似三角形》单元测试题(含答案)

(完整版)《相似三角形》单元测试题(含答案)

《相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1.下列各组图形有可能不相似的是( ).(A)各有一个角是50°的两个等腰三角形 (B )各有一个角是100°的两个等腰三角形 (C)各有一个角是50°的两个直角三角形 (D)两个等腰直角三角形2。

如图,D 是⊿ABC 的边AB 上一点,在条件(1)△ACD =∠B ,(2)AC 2=AD·AB,(3)AB 边上与点C 距离相等的点D 有两个,(4)∠B =△ACB 中,一定使⊿ABC ∽⊿ACD 的个数是( )(A )1 (B )2 (C )3 (D )43.如图,∠ABD =∠ACD ,图中相似三角形的对数是( ) (A)2 (B)3 (C )4 (D )54。

如图,在矩形ABCD 中,点E 是AD 上任意一点,则有( ) (A )△ABE 的周长+△CDE 的周长=△BCE 的周长 (B )△ABE 的面积+△CDE 的面积=△BCE 的面积 (C )△ABE ∽△DEC (D)△ABE ∽△EBC5。

如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为( )A.9:4B.2:3 C 。

3:2 D 。

81:16 6. 下列两个三角形不一定相似的是( )。

A. 两个等边三角形B. 两个全等三角形C. 两个直角三角形 D 。

两个等腰直角三角形 7. 若⊿ABC ∽⊿C B A '',∠A=40°,∠B=110°,则∠C '=( )A 。

40° B110° C70° D30°8.如图,在ΔABC 中,AB=30,BC=24,CA=27,AE=EF=FB ,EG ∥FD ∥BC,FM ∥EN ∥AC,则图中阴影部分的三个三角形的周长之和为( )A 、70B 、75C 、81D 、80二、细心填一填(每小题3分,共24分)9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______.10、在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际周长为。

相似三角形测试卷(含答案)

相似三角形测试卷(含答案)

相似三角形测试卷(满分120分)一.选择题(共10小题,每个5分)1.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()(第1题)(第2题)(第3题)(第4题)A .B.C.D.2.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC 上,AD=AG,DG=6,则点F到BC的距离为()A .1 B.2 C.12﹣6 D.6﹣63.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为()A .7.5 B.10 C.15 D.204.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A .1:16 B.1:18 C.1:20 D.1:245.如图,已知△ABC的面积是12,BC=6,点E、I分别在边AB、AC上,在BC边上依次做了n个全等的小正方形DEFG,GFMN,…,KHIJ,则每个小正方形的边长为()(第5题)(第6题)(第7题)A .B.C.D.6.如图,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,AD:DC=1:2,△ABC的面积是18,则△DEC的面积是()A .8 B.9 C.12 D.157.如图,AB是⊙O的直径且AB=,点C是OA的中点,过点C作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接DE,AE交DC的延长线于点F,则AF•AE的值为()A .B.12 C.D.8.如图,▱ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E、交AC于点F,则的值为()(第8题)(第9题)(第10题)A .B.C.D.9.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A .x B.2 C.n D.310.如图,在△ABC中,AB=AC=a,BC=b(a>b),在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,则DE等于()A .B.C.D.二.填空题(共10小题,每个5分)11.如图,在梯形ABCD中,∠A=90°,AB=7,AD=2,BC=3,如果直线AB上的点P使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似,那么这样的点P有_________个.(第11题)(第12题)(第13题)(第14题)12.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为_________.13.如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为_________.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为_________.15.将一副三角尺如图所示叠放在一起,则的值是_________.(第15题)(第16题)(第17题)16.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是_________.17.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________cm.18.如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为_________.(第18题)(第19题)(第20题)19.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为_________.20.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12,则正方形与其外接圆形成的阴影部分的面积为_________.三.解答题(共2小题,每个10分)21.如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.参考答案一.选择题(共10小题)1--5.CDCCD 6--10ABBDC二.填空题(共10小题)11.612.9 13.2 14.(2,4﹣2).15.16.5.17.518.y=x19.15.20.80π﹣160.三.解答题(共2小题)21.如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB 的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.解答:(1)证明:∵DC=AC,∠ACB的平分线CF交AD于F,∴F为AD的中点,∵点E是AB的中点,∴EF为△ABD的中位线,∴EF∥BC;(2)解:∵EF为△ABD的中位线,∴,EF∥BD,∴△AEF∽△ABD,∴S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDEF=1:3,∵四边形BDFE的面积为6,∴S△AEF=2,∴S△ABD=S△AEF+S四边形BDEF=2+6=8.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.解答:(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.。

《相似三角形》单元测试卷及答案

《相似三角形》单元测试卷及答案
《相似三角形》
第Ⅰ卷(选择题)
评卷人
得 分
一.选择题(共6小题)
1.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=( )
A. B. +1C.2
2.在平面直角坐标系中,正方形ABCD的位置如下图所示,点A的坐标为(1,0),点D的坐标为(0,3).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2012个正方形的面积为( )
≤x≤6),那么:
(1)点Q运动多少秒时,△OPQ的面积为5cm2;
(2)当x为何值时,以P、O、Q为顶点的三角形与△AOB相似?
15.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.
(1)求AD的长;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
19.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣2,2)、B(﹣1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC关于y轴的轴对称图形△A1B1C1;
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;
8.如图,AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,则EF:CD的值为.

浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)

浙教版数学九年级上册  第四章 相似三角形  综合测试卷(原卷+答案)

第四章综合测试卷 相似三角形班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1.己知 ab =25,则a +b b的值为( )A 25B 35C 75D 232.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是( )A.BC DF=12 B.∠A 的度数∠D 的度数=12C.△ABC的面积△def 的面积= 12 D. △ABC 的周长△def 的周长= 123.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比 13的位似图形△OCD,则点C 坐标为( )A. (-1,-1)B.(−43,−1)C.(−1,−43) D. (-2,-1)4. 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出 △ABP 与△ECP 相似的是( )A.∠APB=∠EPCB. ∠APE=90°C. 点 P 是BC 的中点D. BP: BC=2:35.如图,在△ABC 中,点D 在BC 边上,连结AD,点E 在AC 边上,过点E 作EF∥BC,交 AD 于点F,过点E 作EG∥AB,交BC 于点G,则下列式子一定正确的是( ) A.AE EC=EF CDB.EF CD=EG ABC.AFFD=BG GCD.CG BC=AF AD6. 如图,小明为了测量一凉亭的高度AB(顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE(DE=BC=0.5m ,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点 G 处,测得CG=15m ,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得 EG=3m ,小明身高EF=1.6m,则凉亭的高度AB 约为( )A. 8.5mB. 9mC. 9.5mD. 10m7. 在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A. ①处B. ②处C. ③处D. ④处8. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大 12AD 的长为半径在AD 两侧作弧,交于两点M ,N第二步,连结MN 分别交AB,AC 于点E,F;第三步,连结DE,DF.若BD=6,AF=4,CD=3,则BE 的长是( )A. 2B. 4C. 6D. 89. 如图,在△ABC 中,点 D 为BC 边上的一点,且AD=AB=2,AD⊥AB,过点 D 作DE⊥AD,DE 交AC 于点E,若DE=1,则△ABC 的面积为( )A. 2B. 4C.25D. 810. 在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分 AC,点 H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图所示,点 E 是平行四边形ABCD 的边BC 延长线上一点,连结AE ,交 CD 于点F ,连结BF.写出图中任意一对相似三角形: .12. 已知 a6=b5=c4,且a+b-2c=6,则a 的值为 .13. 如图,在平行四边形ABCD 中,AB=10,AD=6,点E 是AD 的中点,在AB 上取一点F,使△CBF∽△CDE,则 BF 的长是 .14. 如图,在一块斜边长为30cm 的直角三角形木板(Rt△ACB)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC=1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为 .15.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为16. 如图所示,在直角坐标系中有两点A(4,0),B(0,2).如果点C 在x 轴上,且点 C 与点O 及点A 不重合,当点 C 的坐标为 时,使得由点B ,O ,C 构成的三角形与△AOB 相似(至少找出两个符合条件的点).三、解答题(本大题有8小题,共66分)17.(6分)如图,在△ABC中,DE‖BC,EF‖AB,求证:△ADEO△EFC.18. (6分)如图,一块材料的形状是锐角三角形 ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?19.(6分)如图,点 P 是⊙O的直径AB 延长线上一点,且AB=4,点 M为A AB上一个动点(不与A,B重合),射线 PM与⊙O交于点 N(不与M重合).(1)当M在什么位置时,△MAB的面积最大? 并求出这个最大值;(2)求证:△PAN∽△PMB.20. (8 分)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.21. (8分)如图,在△ABC中,点 D,E分别在边AB,AC上,且∠ABE=∠ACD,BE,CD交于点G,连结DE.(1)求证:△AEDO△ABC;(2)如果BE平分∠ABC,求证:DE=CE.22.(10分)如图,在 △ABC 中,点D,E,F 分别在AB,BC,AC 边上, DE‖AC,EF‖AB.(1)求证: △BDEO △EFC.(2)设AF FC=12,①若. BC =12,,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.23.(10分)在矩形ABCD 中,AE⊥BD 于点E,点 P 是边AD 上一点.(1)若BP 平分∠ABD,交 AE 于点G,PF⊥BD 于点F,如图①,证明四边形 AGFP 是菱形;(2)如图②,若PE⊥EC,求证:AE·AB=DE·AP;(3)在(2)的条件下,若AB=1,BC=2,求AP 的长.24.(12分)如图,已知 △ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB,BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点C 时,P ,Q 两点都停止运动.设运动时间为t(s),解答下列问题:(1) 当 t =2时,判断 △BPQ 的形状,并说明理由;(2)设 △BPQ 的面积为 S (cm²),求S 与t 的函数表达式;(3)如图,作 QR//BA 交AC 于点R,连结PR,当t 为何值时,△APR∽△PRQ?第四章综合测试卷 相似三角形1. C2. D3. B4. C5. C6. A7. B8. D9. B 10. D 11. △ADF∽△ECF(答案不唯一)12. 12 13. 1.8 14. 100cm² 15.24516. (-1,0)或(1,0)或(-4,0)(答案不唯一)17. 证明:∵DE∥BC,∴△ADE∽△ABC,∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.18. 解:设这个正方形零件的边长为 xmm ,则△AEF 的边EF 上的高AK=(80-x) mm.∵四边形EF-HG是正方形,∴EF∥GH,即 EF∥BC.∴△AEF CABC.∴EF BC=AK AD,即 x 120=80−x 80⋅∴x =48.∴这个正方形零件的边长是48mm.19. (1)解:当点 M 在 AB 的中点处时,△MAB 的面积最大,此时( OM⟂AB,∵OM =12AB =12×4=2,∴S ABM =12AB ⋅OM =12×4×2=4. (2)证明:∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.20. 解: ∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD.∵BC=4,∴CD=4.∵AB∥ CD,∴ABECDE,∴AB CD=AE CE,∴84=AE CE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.21. 证明:(1)∵∠ABE=∠ACD,且∠A 是公共角, ∴ABEACD.∴AE AD=AB AC,即AEAB =ADAC ,又∵∠A 是公共角,∴△AED∽△ABC. (2)∵∠ABE=∠ACD,∠BGD=∠CGE,∴△BGD∽ CGE.:DG EG=BG CG,即DG BG=EG CG.又∵∠DGE=∠BGC,∴△DGE∽△BGC.∴∠GBC=∠GDE,∵BE 平分∠ABC,∴∠GBC=∠ABE,∵∠ABE=∠ACD,∴∠GDE=∠ACD.∴DE=CE.22. (1)证明:∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.(2)解:①∵EF//AB,∴BE EC=AF FC=12.∵BC = 12,∴BE12−BE =12,∴BE =4.②∵EF∥AB,∴△EFC∽△BAC,∴S△BC= (EC BC)2⋅∴BE EC=12,∴EC BC=23.又∵△EFC 的面积是20, ∴20SABC=(23)2,∴SABC=45,即△ABC 的面积是45.23. (1)证明:∵四边形 ABCD 是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵BP 平分∠ABD,∴∠ABG=∠PBD.∵∠AGP=∠BAG+∠ABG,∠APB =∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP 平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP 是平行四边形,∵PA=PF,∴四边形AGFP 是菱形.(2)证明:∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴DE·AP.(3)解:∵四边形 ABCD 是矩形,∴AD=BC=2,∠BAD=90°,∴BD=√AB²+AD² =5,∵AE ⊥BD,∴S ABD =12⋅BD ⋅AE = 12⋅AB ⋅AD,∴AE =255,∴DE =AD 2−AE 2=455,∵AE ⋅AB =DE ⋅AP,∴ AP =255×1455=12.24. 解:(1)△BPQ 是等边三角形.当t=2时,AP=21 =2( cm),BQ=2×2=4( cm),∴BP=AB-AP=6-2=4( cm),∴BQ=BP,又∵∠B = 60°,∴△BPQ 是等边三角形.(2)如图,过点 Q 作QE⊥AB,垂足为 E,由 QB=2tcm,∠B=60°,∠BEQ=90°,得 QE =3tcm,由AP= tcm,得 PB =(6−t )cm,∴S =12BP ⋅QE = 12×(6−t )×3t =−32t 2+33t.(3)∵QR‖BA,∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△QRC是等边三角形,∴QR=RC=QC=(6-2t)cm⋅:BE=12BQ=12×2t=t(cm),∴EP=AB−AP−BE=6−t−t=6−2t(cm),∵EP‖QR,EP=QR,∴四边形 EPRQ是平行四边形,∴PR=EQ3tcm.又∵∠PEQ=90°,∴∠APR∠PRQ=90°,∴△APR∽△PRQ,∴∠QPR=∠A=60∘,QRPR=6−2t3t=3,解得t=65.∴当t=65时,△APR∽△PRQ.。

人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案一、选择题(每小题5分,共25分)1.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( ) A .12DE BC =B .AD AEAB AC=C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2 2.在△ABC ∽△'''A B C 中,有下列条件:①.''''AB BC A B B C =;②. ''''BC ACB C A C =;③.'A A ∠=∠;④.'C C ∠=∠.如果从中任取两个条件组成一组,那么能判断△ABC ∽△'''A B C 共有( ) A.1组 B.2组 C.3组 D.4组 3.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( ) A .1 B .2C .3D .4(第1题) (第3题) (第4题 ) (第5题 ) 4.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )A .B .C .D .5.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B 的方向运动,设E 点的运动时间为t 秒(0≤t <4),连接DE ,当以B 、D 、E 为顶点的三角形与△ABC 相似时,t 的值为( )A .2B .2.5或3.5C .2或3.5D .2或2.5 二、填空题(每小题5分,共15分)6.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为12cm ,则这两个三角形的周长分别是________.7.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 .第8题图第7题图8. 如图,在已建立直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,ABO 90∠=,OA 与反比例函数()ky x 0x=<的图象交于点D ,且OD 2AD =,过点D 作x 轴的垂线交x 轴于点C . 若S 四边形ABCD 10=,则k 的值为 .三、解答题(共60分 第9、10题各10分,第11题12分,第12题13分,第13题15分) 9.如图,已知,AB 3AC BD 3AE ==,且BD ∥AC ,点B A E 、、在同一直线上. 求证:△ABD ∽△CAE ;10 .如图,在□ABCD 中,点E 在BC 边上,点F 在DC 的延长线上,且∠DAE =∠F . 若AB =5,AD =8,BE =2,求FC 的长.FEADCBB11.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,试判断∠1与∠2的大小关系,并说明理由12.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.13.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.单元测试卷与参考答案一、选择题1.D 2.C 3.B 4.D 5.C 二、填空题6.48cm 和60cm 7.5 8.-16 三、解答题 9.证明:∵ BD ∥AC,点B,A,E 在同一条直线上, ∴ ∠DBA=∠CAE,又∵,AB 3AC BD 3AE ==.3BDAE==.∴ABD CAE ∆∆∽.10.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F ,∴∠AEB =∠F .∴△ABE ∽△ECF . ∵△ABE ∽△ECF ,∴AB BE EC CF=. ∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6.∴526CF =.∴125CF =.11.解:∵∠AED +∠CEF=90°,∠DAE +∠ADE=90°,∴∠DAE=∠CEF ,∵∠ADE=∠ECF=90°, ∴△ADE ∽△ECF ,且相似比为2,∴AE=2EF ,AD=2DE ,又∵∠ADE=∠AEF ,∴△ADE ∽△AEF , ∴∠1=∠2.12.(1)证明:∵AD 平分∠CAE ,∴∠DAG=12∠CAG ,∵AB=AC ,∴∠B=∠ACB , ∵∠CAG=∠B +∠ACB ,∴∠B=12∠CAG ,∴∠B=∠CAG ,∴AD ∥BC ; (2)解:∵CG ⊥AD ,∴∠AFC=∠AFG=90°, 在△AFC 和△AFG 中,CAF GAF AF AFAFC AFG ∠=∠=∠=∠⎧⎪⎨⎪⎩, ∴△AFC ≌△AFG (ASA ),∴CF=GF ,∵AD ∥BC ,∴△AGF ∽△BGC ,∴GF :GC=AF :BC=1:2,∴BC=2AF=2×4=8. 13.(1)证明:∵将△BCE 绕点C 顺时针旋转到△DCF 的位置,∴△BCE ≌△DCF ,∴∠FDC=∠EBC ,∵BE 平分∠DBC ,∴∠DBE=∠EBC ,∴∠FDC=∠EBD ,∵∠DGE=∠DGE ,∴△BDG ∽△DEG .(2)解:∵△BCE ≌△DCF ,∴∠F=∠BEC ,∠EBC=∠FDC ,∵四边形ABCD 是正方形, ∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE 平分∠DBC ,∴∠DBE=∠EBC=22.5°=∠FDC , ∴∠BEC=67.5°=∠DEG ,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG ⊥DF ,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴DG BGEG DG,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则= .【分析】根据合比定理[如果a :b =c :d ,那么(a +b ):b =(c +d ):d (b 、d ≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理. 12.如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是 58 km .【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米. 故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB =6cm ,点C 是线段AB 的一个黄金分割点(AC >BC ),则AC 的长为 3(﹣1) cm (结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC >BC ,得:AC =AB =3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值. 14.已知:AM :MD =4:1,BD :DC =2:3,则AE :EC = 8:5 .【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.【分析】运用设k法,再进一步得到关于k的方程,解得k的值后,即可求得a、b、c 的值.【解答】解:设a=2k,b=3k,c=4k,又∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,5k=10,解得k=2.∴a=4,b=6,c=8.【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).【分析】(1)先画出方向标,再确定方位角、比例尺作图;(2)动手操作利用量角器测量即可;(3)先利用刻度尺测量出图上距离,再根据比例尺换算成实际距离.【解答】解:(1)路线图(6分)(P、A、C点各2分)注意:起点是必须在所给的图形中画,否则即使画图正确扣;(2分)(2)量得∠PAC≈105°,∠ACP≈45°;(9分)(只有1个正确得2分)(3)量路线图得AC≈3.5厘米,PC≈6.8厘米.∴AC≈3.5千米;PC≈6.8千米(13分)【点评】主要考查了方位角的作图能力.要会根据比例尺准确的作图,并根据图例测算出实际距离.18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.【分析】(1)根据等腰三角形两底角相等求出∠ACB=72°,再根据角平分线的定义求出∠BCE=36°,从而得到∠BCE=∠A,然后判定△ABC和△CBE相似,根据相似三角形对应边成比例列出比例式整理,并根据黄金分割点的定义即可得证;(2)根据等角对等边的性质可得AE=CE=BC,再根据黄金分割求解即可.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ACB=(180°﹣36°)=72°,∵CE平分∠ACB,∴∠BCE=∠ACB=×72°=36°,∴∠BCE=∠A=36°,∴AE=BC,又∵∠B=∠B,∴△ABC∽△CBE,∴=,∴BC2=AB•BE,即AE2=AB•BE,∴E为线段AB的黄金分割点;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=180°﹣72°﹣36°=72°,∴BC=CE,由(1)已证AE=CE,∴AE=CE=BC,∴BC=•AB=×4=2﹣2.【点评】本题考查了黄金分割点的定义,相似三角形的判定与性质,理解黄金分割点的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比是解题的关键.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.【分析】根据平行线分线段成比例定理得==,则可计算出BC=6,BF=BE,然后利用BE+BE=7.5求BE.【解答】解:∵l1∥l2∥l3,∴==,即==,∴BC=6,BF=BE,∴BE+BE=7.5,∴BE=5.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.人教版九年级下册《第27章相似》检测试卷含答案一、选择题(本题共12小题,每小题3分,共36分)1.观察下列每组图形,相似图形是( )2.如果两个相似三角形对应边中线之比是1∶4,那么它们的对应高之比是( ) A .1∶2 B .1∶4 C .1∶8 D .1∶163.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( )A .1∶2B .1∶4C .2∶1D .4∶14.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F .若ABBC=23,DE =4,则EF 的长是( ) A.83 B.203C .6D .10第4题图第5题图第6题图5.如图,在直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)6.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C.AP AB =AB AC D.AB BP =ACCB7.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4B .1∶3∶2C .1∶4∶2D .3∶6∶5第7题图第8题图8.如图,为测量河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一直线上.若测得BE =15m ,EC =9m ,CD =16m ,则河的宽度AB 等于( )A .35m B.653m C.803m D.503m9.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EFB.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD第9题图第10题图10.如图,若∠1=∠2=∠3,则图中的相似三角形有( ) A .1对 B .2对 C .3对 D .4对11.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第11题图第12题图12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分)13.在比例尺为1∶4000 000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为 km.14.若实数a 、b 、c 满足b +c a =a +c b =a +bc=k ,则k = .15.如图,身高为1.7m 的小明AB 站在河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD 在水中的倒影为C ′D ,A 、E 、C ′在一条线上.已知河BD 的宽度为12m ,BE =3m ,则树CD 的高为 .第15题图16.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点E 的坐标为(3,3),则点A 的坐标是 .第16题图第17题图第18题图17.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是 .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则1AM +1AN= . 三、解答题(本题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.20.(10分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.21.(12分)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,∠AEB=∠ADC.(1)求证:△ADE∽△DBC;(2)连接EC,若CD2=AD·BC,求证:∠DCE=∠ADB.22.(12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高.23.(12分)如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF .(1)判断AB 与⊙O 的位置关系,并说明理由;(2)若PF ∶PC =1∶2,AF =5,求CP 的长.24.(14分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx(x >0)的图象经过BC 上的点D ,与AB 交于点E ,连接DE ,若E 是AB 的中点.(1)求点D 的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求点F 的坐标.答案1.D 2.B 3.B 4.C 5.A 6.D 7.B 8.C 9.C 10.D 11.A12.A 解析:过D 作DM ∥BE 交AC 于点N ,交BC 于点M .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∴∠EAC =∠ACB .∵BE ⊥AC 于点F ,∴∠AFE =∠ABC =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF .∵AE =12AD =12BC ,∴AF CF =12,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF .∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DN 垂直平分CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,EF BF =AE BC =12,∴S △AEF =12S △ABF ,∴S △AEF =13S △ABE =112S矩形ABCD .又∵S四边形CDEF =S △ACD -S △AEF =12S 矩形ABCD-112S 矩形ABCD =512S 矩形ABCD =5S △AEF =52S △ABF ,故④正确.故选A. 13.120 14.-1或2 15.5.1m 16.(0,1) 17.25 18.119.解:(1)作出△A 1B 1C 1,如图所示;(5分)(2)作出△A 2B 2C 2,如图所示(本题是开放题,答案不唯一,只要作出的△A 2B 2C 2满足条件即可)(10分).20.解:∵在△ACD 和△ABC 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AD AC =ACAB .(5分)∵AD =8cm ,BD =4cm ,∴AB =12cm ,∴8AC =AC12,(8分)∴AC =46cm.(10分)21.证明:(1)∵AD ∥BC ,∴∠ADE =∠DBC ,∠ADC +∠BCD =180°.(2分)∵∠AEB =∠ADC ,∠AEB +∠AED =180°,∴∠AED =∠BCD ,(5分)∴△ADE ∽△DBC ;(6分)(2)由(1)可知△ADE ∽△DBC ,∴AD DB =DEBC ,∴DB ·DE =AD ·BC .(7分)∵CD 2=AD ·BC ,∴CD 2=DB ·DE ,∴CD DB =DECD .(8分)又∵∠CDE =∠BDC ,∴△CDE ∽△BDC ,∴∠DCE =∠DBC .(10分)又∵∠ADB =∠DBC ,∴∠DCE =∠ADB .(12分)22.解:设CD =x m.∵AE =AM ,AM ⊥EC ,∴∠E =45°,∴EC =CD =x m ,AC =(x -1.75)m.(2分)∵CD ⊥EC ,BN ⊥EC ,BN ∥CD ,∴△ABN ∽△ACD ,(7分)∴BN CD =AB AC ,即1.75x= 1.25x -1.75,解得x =6.125.(11分) 答:路灯CD 的高为6.125m.(12分)23.解:(1)AB 是⊙O 的切线.(1分)理由如下:∵∠ACB =90°,∴∠CAE +∠CEA =90°.(3分)又∵∠CEA =∠CDF ,∠CAE =∠ADF ,∴∠ADF +∠CDF =90°,∴∠ADC =90°,∴CD ⊥AD ,∴AB 是⊙O 的切线;(6分)(2)∵∠CPF =∠APC ,连接DE 、CF ,如图.∵CD 是直径,∴∠DEC =90°.∵∠ACB =90°,∴∠DEC +∠ACE =180°,∴DE ∥AC ,∴∠DEA =∠CAE ,又∵∠PCF =∠DEA ,∴∠PCF =∠P AC .∴△PCF ∽△P AC ,∴PC P A =PF PC ,∴PC 2=PF ·P A .(9分)设PF =a ,∵PF ∶PC=1∶2,则PC =2a ,P A =a +5,∴4a 2=a (a +5),∴a =53或a =0(舍去),∴PC =2a =103.(12分)24.解:(1)∵四边形OABC 为矩形,∴AB ⊥x 轴.∵E 为AB 的中点,点B 的坐标为(2,3),∴点E 的坐标为⎝⎛⎭⎫2,32.∵点E 在反比例函数y =kx 的图象上,∴k =3,∴反比例函数的解析式为y =3x .(4分)∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将y =3代入y =3x 可得x =1,∴点D 的坐标为(1,3);(6分)(2)由(1)可得BC =2,CD =1,∴BD =BC -CD =1.∵E 为AB 的中点,∴BE =32.(8分)若△FBC ∽△DEB ,则CB BE =CF BD ,即232=CF 1,∴CF =43,∴OF =CO -CF =3-43=53,∴点F的坐标为⎝⎛⎭⎫0,53;(11分)若△FBC ∽△EDB ,则BC DB =CF BE ,即21=CF32,∴CF =3,此时点F 和点O 重合.(13分)综上所述,点F 的坐标为⎝⎛⎭⎫0,53或(0,0).(14分)。

九年级数学相似三角形单元测试题及答案

九年级数学相似三角形单元测试题及答案

九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A .1250km ﻩ B.125k m C.ﻩ12.5k m D.1.25km 2.已知0432≠==c b a ,则cb a +的值为ﻩ ﻩﻩ( )A.54 ﻩﻩﻩB.45 ﻩ C .2D.213.已知⊿A BC 的三边长分别为2,6,2,⊿A ′B ′C′的两边长分别是1和3,如果⊿AB C与⊿A′B′C′相似,那么⊿A ′B ′C ′的第三边长应该是ﻩﻩﻩ( )A.2 ﻩB.22 ﻩﻩC.26 ﻩﻩ D.334.在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为ﻩﻩ ﻩ ﻩﻩﻩ ﻩﻩ( )A 20米ﻩB 18米ﻩ ﻩC 16米ﻩﻩﻩ D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB =c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ﻩﻩ ﻩﻩ ﻩ ﻩ( )A.c b 2 ﻩ B.a b 2 ﻩ C.cab ﻩﻩﻩ D.c a 26.一个钢筋三角架三 长分别为20c m,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ﻩﻩﻩﻩﻩﻩ ( ) A.一种 ﻩ B.两种 C.三种 ﻩﻩD.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部ﻩ C 原图形的边上 D 任意位置8、如图,□AB CD中,EF ∥A B,DE ∶EA = 2∶3,EF = 4,则CD 的长( ) A .\F (16,3) ﻩ B .8 C.10 D.169.已知a 、b 、c为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A.2 B.-1 C .2或-1 D.110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC =60m,高AD=30m ,则水池的边长应为( ) A 10m ﻩﻩ B 20m ﻩﻩ C 30m ﻩﻩ D 40m二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-y y x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。

人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案

人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案

人教版九年级下册《第27章相似三角形》单元测试卷(1)一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.56.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.47.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:18.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是.15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.人教版九年级下册《第27章相似三角形》单元测试卷(1)参考答案与试题解析一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.【考点】相似图形.【分析】根据相似图形的定义,结合图形,以选项一一分析,排除错误答案.【解答】解:A、形状不同,大小不同,不符合相似定义,故错误;B、形状相同,但大小不同,符合相似定义,故正确;C、形状不同,不符合相似定义,故错误;D、形状不同,不符合相似定义,故错误.故选:B.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD【考点】相似三角形的判定.【分析】根据等边三角形的性质和相似三角形的判定定理即可得到结论.【解答】解:∵△ABC与△BDE都是等边三角形,∴∠A=∠BDF=60°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴与△BFD相似的三角形是△BDA,故选:C.4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【考点】相似三角形的性质.【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.6.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.4【考点】相似三角形的判定与性质;全等三角形的判定;等腰三角形的性质.【分析】由相似三角形的判定和性质,以及等腰三角形的性质依次判断可求解.【解答】解:顶角为30°的等腰三角形与底角为30°的等腰三角形不相似,故①错误;有一个角等于120°的两个等腰三角形相似,故②正确;当相似比为1时,相似三角形是全等三角形,故③错误;相似三角形的面积比等于对应角平分线的长度比的平方,故④错误;故选:A.7.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,:S△BF A=9:16.∴S△DFE故选:B.8.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;一次函数的性质;一次函数图象上点的坐标特征.【分析】根据直线y=﹣x+3可求出与x轴、y轴交点A和点B的坐标,即求出OA、OB的长,再根据相似三角形可得对应边的比为1:2,设未知数,表示出长方形ODCE 的面积,即求出k的值.【解答】解:∵直线y=﹣x+3与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,3),即:OA=2,OB=3;:S△CDA=4:1,又△BEC∽△CDA,∵S△BEC∴==,设EC=a=OD,CD=b=OE,则AD=a,BE=2b,有,OA=2=a+a,解得,a=,OB=3=3b,解得,b=1,∴k=ab=,故选:A.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个【考点】相似三角形的判定与性质;圆周角定理;切线的判定与性质.【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.【解答】解:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m【考点】相似三角形的应用;中心投影.【分析】由于人和地面是垂直的,即和路灯平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:由题意得出:EP∥BD,∴△AEP∽△ADB,∴=,∵EP=1.5,BD=9,∴=解得:AP=5(m)∵AP=BQ,PQ=20m.∴AB=AP+BQ+PQ=5+5+20=30(m).故选:D.二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为9.【考点】相似三角形的判定与性质.【分析】通过证明△ACD∽△ABC,可得,即可求解.【解答】解:∵∠A=∠A,∠B=∠ACD,∴△ACD∽△ABC,∴,又∵AC=6,AD=4,∴,∴AB=9,故答案为:9.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是(0,1).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】由∠1=∠2,∠AOC是公共角,可证得△AOB∽△COA,然后利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠CAO=∠ABO,∠AOC=∠BOA,∴△AOB∽△COA,∴,∵A(2,0),B(0,4),即OA=2,OB=4,∴,解得:OC=1,∴点C的坐标为:(0,1).故答案为:(0,1).15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为10.【考点】相似三角形的判定与性质.【分析】根据已知条件可知△ABC∽△AED,再通过两三角形的相似比可求出AB的长.【解答】解:在△ABC和△AED中,∵∠ABC=∠AED,∠BAC=∠EAD,∴△AED∽△ABC,∴=,又∵DE=4,AE=5,BC=8,∴AB=10.故答案为:10.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,:S△EFC=()2,∴S△AFD=9,而S△AFD=4.∴S△EFC故答案为:4.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为(﹣5,﹣1).【考点】位似变换;坐标与图形性质.【分析】分别延长B1B、O1O、A1A,它们相交于点P,然后写出P点坐标即可.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)【考点】相似三角形的判定与性质;二次函数的最值;全等三角形的判定与性质;正方形的性质.【分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME =135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME ≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,利用三角形面积公式得到S△AME=•x的最大值,便可对④进行判断.•(2﹣x),则根据二次函数的性质可得S△AME【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,有最大值,当x=1时,S△ECF故④错误.故答案为:①②③.三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.【考点】相似三角形的性质.【分析】根据相似三角形的周长比等于相似比可得到答案.【解答】解:∵△ABC∽△DEF,∴==,∴==,∴AC=cm,EF=cm.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.【考点】作图﹣位似变换.【分析】(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)根据相似三角形的性质即可解答.【解答】解:(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)由图形得AB==,A′B′==2,∴△ABC与△A′B′C′的周长比为1:2,面积比为1:4.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?【考点】中心投影.【分析】通过相似三角形的性质可得=,==,可得=,即可求解.【解答】解:∵,当王华在CG处时,Rt△DCG∽Rt△DBA,即=,当王华在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得:y=3,经检验y=3是原方程的根.∵=,即=,解得x=6米.即路灯A的高度AB=6米.22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【考点】切线的性质;等腰三角形的判定与性质;勾股定理.【分析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B =90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.【考点】相似三角形的判定;一元一次方程的应用.【分析】设经过t秒后,△PBQ与△ABC相似,根据路程公式可得AP=2t,BQ=4t,BP =10﹣2t,然后利用相似三角形的性质对应边的比相等列出方程求解即可.【解答】解:设经过t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.【考点】相似三角形的判定与性质;勾股定理;垂径定理;圆周角定理;切线的判定与性质.【分析】(1)连接OC,△PBC∽△PCA,得出∠PCB=∠PAC,由圆周角定理得出∠ACB =90°,证出∠PCB+∠OCB=90°,即OC⊥PC,即可得出结论;(2)连接OD,由相似三角形的性质得出==2,设BC=x,则AC=2x,在Rt△ABC中,由勾股定理得出方程,得出BC=6,证出DE∥BC,得出△DOF∽△ACB,得出==,得出OF=OD=,即AF=,再由平行线得出==,即可得出结果.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•PA,即=,∵∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠PAC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•PA,∴PA===40,∴AB=PA﹣PB=30,∵△PBC∽△PCA,∴==2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6,即BC=6,∵点D是的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴==,∴OF=OD=,即AF=,∵EF∥BC,∴==,∴EF=BC=.。

第4章 相似三角形 单元检测(解析卷)

第4章 相似三角形 单元检测(解析卷)

相似三角形单元检测一、单选题1.选项图形与如图所示图形相似的是( )A.B.C.D.【答案】D【分析】根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.【详解】因为相似图形的形状相同,A、B、C三个选项中的图形形状与题干所给图形形状不同,均不符合题意;D选项中的图形形状与题干所给图形形状相同,符合题意;故选:D.【点睛】本题考查相似图形的概念理解,准确把握图形相似的概念是本题的解题关键.2.下列说法正确的是()A.所有的菱形都是相似形B.对应边成比例的两个多边形相似C.对应角相等的两个多边形相似D.所有的正方形都是相似形【答案】D【分析】此题主要考查了相似图形的判定,熟练应用判定方法是解题关键.利用相似图形的判定方法分别判断得出即可.【详解】解:A、所有的菱形不一定是相似形,对应角不一定相等,故此选项错误;B、对应边成比例的两个多边形不一定相似,对应角不一定相等,故此选项错误;C、对应角相等的两个多边形不一定相似,对应边的比值不一定相等,故此选项错误;D、所有的正方形都是相似形,对应边成比例且对应角相等,故此选项正确;故选:D3.如图,D是△ABC边AB上一点,连接CD,则添加下列条件后,仍不能判定△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACBC.ADAC =CDBCD.AC2=AD⋅AB【答案】C【分析】本题考查添加条件证明三角形相似.根据相似三角形的判定方法(两边对应成比例且夹角相等、三边对应成比例或两角对应相等的两个三角形相似),逐一进行判断是解题的关键.【详解】A.当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意;B.当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意;C.当ADAC =CDBC时,再由∠A=∠A,无法判定△ACD∽△ABC,故此选项符合题意;D.当AC2=AD⋅AB,即ACAB =ADAC时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不符合题意.故选C.4.如图,在平行四边形ABCD中,点E是CD边上一点,连接AE并延长交BC的延长线于点F,DE=1,AB=4,则下列结论正确的是()A.EF=4AE B.CF=4AD C.AF=4AE D.CF=4BC【答案】C【分析】本题主要考查了平行四边形的性质,平行线分线段成比例定理,先由平行四边形的性质得到AD∥BC,AD=BC,AB=CD=4,根据DE=1,得出CE=CD−DE=3,根据平行线分线段成比例定理得出AE EF =ADCF=DECE=13,然后逐项进行判断即可.【详解】解:∵在平行四边形ABCD中,∴AD∥BC,AD=BC,AB=CD=4,∵DE=1,∴CE=CD−DE=3,∵AD∥BC,∴AE EF =ADCF=DECE=13,∴EF=3AE,CF=3AD,故A、D不符合题意;∴AF=AE+EF=4AE,故C符合题意;∵CF=3AD,BC=AD,∴CF=3BC,故D不符合题意.故选:C.5.已知:a−ba+b =12,则ab的值为()A.13B.12C.1D.3【答案】D【分析】本题考查的是已知条件式,求解分式的值,掌握“用含有一个未知数的代数式表示另外一个未知数”是解本题的关键.由a−ba+b =12可得a=3b,再代入要求值的分式ab中,再计算即可.【详解】解:∵a−ba+b =12,∴2(a−b)=a+b,∴a=3b,∴a b =3bb=3,故选:D.6.0.618是黄金分割率的比值,它被认为是最美的数值.研究发现,当成人的体重(kg)与身高(cm)的比达到(1−0.618):1时,那么这个成人的体重就比较理想.若王老师的身高是165cm,下列选项中,最接近她的理想体重的是()A.65kg B.63kg C.60kg D.55kg【答案】B【分析】本题考查黄金分割的应用,解题的关键是读懂黄金分割.根据黄金分割直接列式求解即可得到答案.【详解】解:∵王老师的身高是165cm,∴根据题意得,体重=165×(1−0.618)=63.03(kg).∴最接近她的理想体重的是63kg.故选:B.7.如图,在平面直角坐标系中,△ABC与△DEC是以点C为位似中心的位似图形,若点A坐标为(5,4),点C的坐标为(3,0),且AB=2DE,则点D的坐标为()A.(2,2)B.(2,−2)C.(1,2)D.(1,−2)【答案】B【分析】本题考查位似变换,坐标与图形.正确作出辅助线,构造相似三角形是解题的关键.过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N .利用相似三角形的性质求出DN ,ON 即可解答.【详解】解:过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N .∵△ABC 与△DEC 是以点C 为位似中心的位似图形,∴△ABC ∽△DEC ,∴AC DC =AB DE =2,∵A(5,4),C(3,0),∴OM =5,OC =3,AM =4,∴CM =OM−OC =5−3=2,∵AM ⊥x 轴, DN ⊥x 轴,∴AM ∥DN ,∴△AMC ∽△DNC ,∴AM DN =MC NC =AC DC =2,∴CN =1,DN =2,∴ON =OC−ON =3−1=2,∴D(2,−2).故选:B .8.如图,点P 是△ABC 的重心,点D 是边AC 的中点,PE ∥AC 交BC 于点E ,DF ∥BC 交EP 于点F .若四边形CDFE 的面积为6,则△ABC 的面积为( )A .12B .18C .20D .24【答案】B 【分析】本题考查了三角形重心的性质,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.连接BD ,根据三角形重心的性质可知:P 在BD 上,由三角形中线平分三角形的面积可知:S △ABC =2S △BDC ,证明△DFP ∽△BEP 和△BEP ∽△BCD ,根据相似三角形面积的比等于相似比的平方可解答.【详解】解:如图,连接BD .∵点P 是△ABC 的重心,点D 是边AC 的中点,∴P 在BD 上,S △ABC =2S △BDC ,∴BP:PD =2:1,∵DF ∥BC ,∴△DFP ∽△BEP ,∴ S △DFP S △BEP =14,∵EF ∥AC ,∴△BEP ∽△BCD ,∴ S △BEPS △BCD =(BP BD )2=(23)2=49,设△DFP 的面积为m ,则△BEP 的面积为4m ,△BCD 的面积为9m ,∵四边形CDFE 的面积为6,∴m +9m−4m =6,∴m =1,∴△BCD 的面积为9,∴△ABC 的面积是18.故选:B .9.手影游戏利用的物理原理是:光是沿直线传播的,图1中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁2米,爸爸拿着的光源与小明的距离为4米,如图2所示,若在光源不动的情况下,要使小狗手影的高度增加一倍,则光源与小明的距离应( )A .增加1米B .减少1米C .增加2米D .减少2米【答案】D 【分析】此题考查了中心投影,相似三角形的判定与性质,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.根据题意作出图形,然后利用相似三角形的性质构建方程求解即可.【详解】解:如图,点O 为光源,AB 表示小明的手,CD 表示小狗手影,则AB ∥CD ,过点O 作OE ⊥AB ,延长OE 交CD 于F ,则OF ⊥CD ,∵AB ∥CD ,∴∠OAB =∠OCD,∠OBA =∠ODC ,∴△AOB ∽△COD ,∴AB CD =OE OF ,∵EF =2米,OE =4米,则OF =6米,∴AB CD =OE OF =23,AB =2k ,CD =3k ,∵在光源不动的情况下,要使小狗手影的高度增加一倍,如图,即AB =2k ,C ′D ′=6k ,△AO ′B ∽△C ′O ′D ′,∴AB C ′D ′=O ′E ′O ′F ′=13,则O ′E ′=2米,∴光源与小明的距离减少OE−O ′E ′=4−2=2(米),故选:D .10.如图,在正方形ABCD 中,M 为CD 上一点,连接AM 与BD 交于点N ,点F 在BC 上,点E 在AD 上,连接EF 交BD 于点G ,且AM ⊥EF ,垂足为H .若H 为AM 的中点,则下列结论:①AM =EF ;②BG GD =MD CM ;③GH=FG+HE;④△AHE∽△GHN.其中结论正确的个数有( )A.1个B.2个C.3个D.4个【答案】B【分析】本题考查正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟练运用相关知识,运用特殊值法与反证法是解决本题的关键.过点F作FK⊥AD于点K,证明△FKE≌△ADM(AAS)即可判断①;采用特殊值法判断②,若点M是CD的中点,则DMCM =1,又△BFG∽△DEG,得到BGGD=BFDE=13,从而BGGD≠MDCM,故②错误;过点M作MP∥AD,交FE于点P,交BD于点Q,证得△MPH≌△AEH(AAS),得到PH=EH,MP=AE,根据正方形的性质与△FKE≌△ADM(AAS)得到MQ=MD=KE,进而有PQ=AK,从而可证得△BFG≌△QPG(ASA),有FG=PG,因此FG+EH=PG+PH=HG,故③正确;利用反证法证明④,假设△AHE∽△GHN成立,则∠AEH=∠GNH,根据同角的余角相等推出∠BAN=∠BNA,即BN=BA,而AB是定值,BN随着点M的变化而变化,故BN=BA不成立,从而△BFG∽△DEG不成立,故④错误.【详解】解:如图,过点F作FK⊥AD于点K,∴∠FKA=∠FKE=90°,∵在正方形ABCD中,∠ABC=∠BAD=∠ADC=90°,∴四边形ABFK是矩形,∴FK=BA,∵在正方形ABCD中,AB=AD,∴FK=AD,∵AM⊥EF,∴∠AHE=90°,∴∠AEH+∠EAH=90°,∵∠AMD+∠MAD=180°?∠ADM=90°,∴∠FEK=∠AMD,∵∠FKE=∠ADM=90°,∴△FKE≌△ADM(AAS),∴FE=AM;故①正确;如图,若点M 是CD 的中点,则DM CM =1,设正方形ABCD 的边长为2a ,即AD =CD =2a ,∴DM =12CD =a ,在Rt △ADM 中,AM =AD 2+DM 2=5a ,∵点H 是AM 的中点,∴AH =12AM =52a ,∵△ADM≌△FKE ,∴KE =DM =a ,∵∠AHE =∠ADM =90°,∠EAH =∠MAD ,∴△AHE ∽△ADM ,∴ AH AD =AE AM ,即52a 2a =AE 5a ,∴DE =AD?AE =2a?54a =34a ,AK =AE?DM =54a?a =14a ,∴在矩形ABFK 中,BF =AK =14a ,∵在正方形ABCD 中,BC ∥AD ,∴△BFG ∽△DEG ,∴ BG GD =BF DE =14a 34a =13,∴ BG GD ≠MD CM ,故②错误;过点M 作MP ∥AD ,交FE 于点P ,交BD 于点Q ,∴∠MPH =∠AEH ,∠PMH =∠EAH ,∵点H 是AM 的中点,∴MH =AH ,∴△MPH≌△AEH(AAS),∴PH =EH ,MP =AE ,∵在正方形ABCD 中,BD 平分∠ADC ,∴∠BDC =12∠ADC =12×90°=45°,∵PM ∥AD ,∴∠QMD =180°?∠ADC =180°?90°=90°,∴∠MQD =90°?∠MDQ =90°?45°=45°,∴∠MQD =∠MDQ ,∴MQ =MD ,由①知,△FKE≌△ADM(AAS),∴KE =DM ,∴MQ =KE ,∴PM−QM =AE−KE ,即PQ =AK ,由①得,四边形ABFK 是矩形,∴BF =AK ,∴BF =PQ ,∵BC ∥AD ,MP ∥AD ,∴BC ∥PM ,∴∠GBF =∠GQP ,∠BFG =∠QPG ,∴△BFG≌△QPG(ASA),∴FG =PG ,∴FG +EH =PG +PH =HG ,故③正确;对于④,假设△AHE ∽△GHN 成立,则∠AEH =∠GNH ,∵∠AHE =90°,∴∠AEH +∠EAH =90°,∵∠BAH +∠EAH =∠BAD =90°,∴∠BAN =∠BNA ,∴BN =BA ,∵AB 是定值,BN 随着点M 的变化而变化,∴BN =BA 不成立,∴△BFG ∽△DEG 不成立.故④错误.综上所述,结论正确的有2个.故选:B二、填空题11.已知线段a ,b ,c ,d 是成比例线段,其中a =6,b =3,c =2,则d 的值是 .【答案】1【分析】本题主要考查了比例线段,熟练掌握比例线段的性质是解题的关键.根据比例线段的定义得到a:b =c:d ,即可得到答案.【详解】解:由于线段a ,b ,c ,d 是成比例线段,故a:b =c:d ,即6:3=2:d解得d =1故答案为:1.12.如图①是装了液体的高脚杯示意图,用去一部分液体后如图②所示,此时液面AB = cm .【答案】3【分析】本题考查了相似三角形的应用,根据两三角形相似列出比例式进而求解即可.【详解】依题意,两高脚杯中的液体部分两三角形相似,则AB 6=11−715−7=48=12,解得AB =3.故答案为:3.13.将三角形纸片△ABC 按如图的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,则BF = .【答案】2或127【分析】本题考查相似三角形的性质,解答此题时要注意进行分类讨论.由于折叠前后的图形不变,要考虑△B ′FC 与△ABC 相似时的对应情况,分两种情况讨论.【详解】解:根据△B ′FCAC 与△ABC 相似时的对应关系,有两种情况:①△B ′FC ∽△ABC 时,B ′F AB=CFBC ,又∵AB =AC =3,BC =4,B ′F =BF ,∴B ′F 3=4−BF 4解得BF =127;②△B ′CF ∽△BCA 时,B ′F BA=CFCA ,AB =AC =3,BC =4,B ′F =CF ,BF =B ′F ,而BF +FC =4,即2BF =4,解得BF =2.故BF 的长度是2或127故答案为:2或12714.如图,△ABC 是边长为1的等边三角形,取BC 的中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记为S 1,取BE 的中点E 1,作E 1D 1∥EB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2,照此规律,则S 2023=.【答案】324047【分析】本题考查了相似三角形的性质和判定,三角形中位线定理,等边三角形的性质和应用,找出规律,是解题的关键.首先求出DE 是三角形的中位线,得出△CDE ∽△CAB ,根据相似三角形的性质得出∴S △CDE S △CAB =(DE AB)2=(12)2=14,根据△ABC 的面积求出S △CDE =14×34,S △BEF =14×34,求出S 1=12×34,同理S 2=12S △BEF S 3=12×14×14×34,S 4=12×14×14×14×34, ⋯⋯根据规律可写出S n ,再n 将取2023,计算即可得答案.【详解】解∶∵BC 的中点E ,ED ∥AB ,∴E 为BC 中点,∴DE =12AB ,∵ED ∥AB ,∴△CDE ∽△CAB ,∴S △CDES△CAB=(DE AB)2=(12)2=14,∵△ABC 的面积是12×1×32=34∴S △CDE =14×34,推理S △BEFS △BAC =14,∴S △BEF =14×34∴S 1=34−14×34−14×34=12×34,同理S 2=12S △BEF =12×14×34, S 3=12×14×14×34,S 4=12×14×14×14×34, ⋯⋯S 2023=12×14×14×⋯×14×34(2022个14),=2342024=324047故答案为∶32404715.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC:OF =1:2.若△ABC 的周长为4,则△DEF 的周长为 .【答案】8【分析】本题考查的是位似图形的概念、相似三角形的性质,熟记相似三角形的周长比等于相似比是解题的关键.根据位似图形的概念得到△ABC ∽△DEF ,BC ∥EF ,进而得到△OBC ∽△OEF ,则BC:EF =OC:OF =1:2,根据相似三角形的性质即可解答.【详解】解:∵△ABC 与△DEF 是位似图形,∴△ABC ∽△DEF ,BC ∥EF ,∴△OBC ∽△OEF ,∵BC:EF =OC:OF =1:2,∴△ABC 的周长:△DEF 的周长=1:2,∵△ABC 的周长为4,∴△DEF的周长为8,故答案为:8.16.如图,在矩形ABCD中,AD=4,AB=6,若E,F分别是AD,DC边上的动点,且AE:DF=3:2,AF与BE交于点P,连接DP.则DP的最小值为.【答案】2【分析】通过证明相似得出∠APB=90°,再确定点P是在以AB为直径的⊙M上,进而确定当M,P,D在同一直线上时,DP最小,再用直角三角形的性质和勾股定理求解即可.【详解】解:取AB的中点M,连结MP,MD,PD,如图所示:∵AB AD =64=32,AEDF=32,∴AB AD =AEDF,∵∠BAD=∠ADF=90°,∴△BAD∼△ADF,∴∠ABE=∠DAF,∴∠APB=∠DAF+∠AEB=∠ABE+∠AEB=90°,∵M是AB的中点,∴MP=12AB=3,在Rt△MPD中,MD=MA2+AD2=5,∵∠APB=90°,∴点P在以AB为直径的⊙M上,∴PD≤MD−MP,∴当M,P,D在同一直线上时,DP最小,DP的最小值为:MD−MP=5−3=2,故答案为:2.【点睛】本题考查了相似三角形的判定和性质,圆周角定理的推论,矩形的性质和直角三角形的性质,确定点P在以AB为直径的⊙M上是解题的关键.三、解答题17.已知:2a=3b.(a,b均不为0)(1)求a:b的值;(2)求a−ba的值.【答案】(1)3∶2;(2)13.【分析】(1)利用内项之积等于外项之积求解即可;(2)利用合比性质即可求解;本题考查了比例的性质,掌握比例的性质是解题的关键.【详解】(1)解:∵2a=3b,∴a∶b=3∶2(2)解:∵2a=3b,∴b a =23,∴b−aa =2−33,即b−aa =−13,∴a−ba =13.18.如图,AB,CD相交于点O,AC∥BD.求证∶△OAC∽△OBD【答案】见解析【分析】本题考查了平行线的性质以及相似三角形的判定,由平行线的性质,得出∠A=∠B,∠C=∠D,再结合两个对应角分别相等的三角形是相似三角形,即可作答.【详解】证明∶∵AC∥BD,∴∠A=∠B,∠C=∠D,∴△OAC∽△OBD.19.已知如图,点D是ΔABC边BC上一点,且BD:DC=2:3,过点C任作一条直线与AB、AD分别交于点F和E,求证:AEED =5AF3BF.【答案】证明见解析【分析】过点D 作DG ∥AB ,DH ∥FC 构造平行四边形DGFH ,得到DG =HF ,再根据平行线分线段成比例定理,得到DGBF =DCBC 和AEED =AFDG ,结合DG =HF 即可得证.【详解】证明:过D 点分别作DG ∥AB ,DH ∥FC ,得到四边形DGFH 是平行四边形,∴DG =HF ,∵DG ∥BF ,∴DGBF =DCBC ,∵BDCD =23,∴CDBC =35,∴DGBF =35,设DG =3a ,则FH =DG =3a ,BF =5a ,∴BH =2a ,∴FH =35BF ,∵DG ∥AF ,∴AEED =AF DG ,∵DG =FH ,∴AEED =AF FH ,∵FH =35BF ,∴AEED =AF35BF=5AF3BF,即AEED =5AF3BF.【点睛】本题考查的知识点是平行四边形性质、平行线分线段成比例定理,解题关键是熟练掌握平行线分线段成比例定理.20.如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(−3,2),B(−1,3),C(−2,0),△A1B1 C1与△ABC关于坐标原点O位似,且相似比为2:1.(1)在x轴下方,画出△A1B1C1:(2)直接写出OA1OA=________.(3)直接写出△A1B1C1的面积________.【答案】(1)画图见解析(2)2(3)10【分析】本题考查的是画位似图形,位似图形的性质,确定关键点的位似对应点是解题的关键.(1)分别确定A,B,C关于O的位似对应点A1,B1,C1,再顺次连接即可;(2)由位似图形的性质可得答案.(3)利用割补法求解三角形的面积即可;【详解】(1)解:如图,△A1B1C1即为所求;.(2)解:由位似图形的性质可得:OA1OA=2;(3)解:S△A1B1C1=4×6−12×2×4−12×2×4−12×2×6=24−4−4−6=10.21.如图,在锐角三角形ABC中,AC>BC.以点C为圆心BC长为半径画弧,交边AB于点D,连接CD.点E 是CB延长线上的一点,连接AE,若AB平分∠CAE.(1)求证:△ACD∽△AEB.(2)当AD=BD时,求BCEB的值.【答案】(1)见解析(2)12【分析】本题考查了角平分线的定义、等腰三角形的性质、相似三角形的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由题意得:BC=CD,由等边对等角得出∠CBD=∠CDB,从而得出∠ADC=∠ABE,再由角平分线的定义得出∠DAC=∠EAB,即可证明△ACD∽△AEB;(2)由题意得出ADAB =12,由相似三角形的性质得出CDEB=12,从而即可得解.【详解】(1)证明:由题意得:BC=CD,∴∠CBD=∠CDB,∴∠ADC=∠ABE,∵AB平分∠CAE,∴∠DAC=∠EAB,∴△ACD ∽△AEB ;(2)解:∵AD =BD ,∴AD AB =12∵△ACD ∽△AEB ,∴ADAB =CDEB ,∴CD EB =12∵BC =CD ,∴BCEB =12.22.赵玲和张羽计划合作完成测量凤凰雕塑顶端到地面的高度PO 这一任务.如图,赵玲在点B 处竖立一根高3m 的标杆AB ,张羽测出地面上的点D 、标杆上的点C 和点P 在一条直线上,利用皮尺测出BC =2m ,BD =2.5m .张羽向后退,又测出地面上的点E 、标杆顶点A 和点P 在一条直线上,利用皮尺测出EB =3.9m .已知AB ⊥OE ,PO ⊥OE ,点E 、D 、B 、O 在同一水平线上,点C 在AB 上,图中所有点都在同一平面内,请你根据测量过程和数据,求出凤凰雕塑顶端到地面的高度PO .【答案】28米【分析】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.根据已知条件推出△CBD ∽△POD ,△ABE ∽△POE ,得到POBC =DOBD ,POAB =EOEB ,代入已知数据计算即可求解.【详解】解:由题意可得∠ABE =∠POE =90°,∵∠CDB =∠PDO ,∠E =∠E ,∴△CBD ∽△POD ,△ABE ∽△POE ,∴POBC =DOBD ,POAB =EOEB ,∴PO 2=2.5+BO 2.5,PO 3=3.9+BO 3.9,解得PO =28.∴凤凰雕塑顶端到地面的高度PO 为28米.23.综合与实践:根据以下素材,探索完成任务问题:你了解黄金矩形吗?问题背景素材一矩形就是长方形,四个角都是90°,两组对边平行且相等素材二宽与长的比是5−12(约为0.618)的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.如希腊的巴特农神庙.素材三我们在学习二次根式时.常遇到23+1这种分母含有无理式的式子,需要通过分式性质和平方差公式来进行化简.我们称之为“分母有理化”.例如:23+1=2(3−1)(3+1)(3−1)=2(3−1)(3)2−12=3−1素材四黄金矩形是可以通过折纸折叠出来的操作步骤【第一步】在一张矩形纸片的一端,利用图2所示的方法折出一个正方形,然后把纸片展平【第二步】如图3,把这个正方形折成两个相等的矩形,再把纸片展平.【第三步】折出内侧矩形的对角线AB ,并把AB 折到图4中所示的AD 处.【第四步】展平纸片,按照所得的点D 折出DE ,矩形BCDE (图5)就是黄金矩形.解决问题任务一化简:12−1任务二设MN 为x ,请用含x 的式子表示AB ,并证明矩形BCDE 是黄金矩形任务三如图5,若MN =2,连接MC ,求点E 到线段MC 的距离(提示:等面积法)【答案】任务一:2+1;任务二:AB =52x ,理由见解析;任务三:10+22【分析】本题考查了黄金分割、矩形与折叠及分母有理化问题,解决本题的关键是熟练掌握黄金分割、矩形与折叠及分母有理化.(1)对原式进行分母有理化即可;(2)设MN =x ,根据题意可得,BC =NC =MN =x ,AB =AD ,由勾股定理可得AB =52x ,从而可得CD =AD−AC =5−12x ,再求解即可;(3)由黄金矩形的性质及勾股定理求解即可.【详解】任务一:12−1=2+1(2−1)(2+1)=2+1任务二:解:设MN =x ,根据题意可得,BC =NC =MN =x ,AB =AD ,∴AC =12NC =12x ,根据勾股定理可得AB =BC 2+AC 2=52x ,∴AD =52x ,∴CD =AD−AC =5−12x ∴CD BC =5−12∴矩形BCDE 是黄金矩形.任务三:∵矩形BCDE 是黄金矩形∴BEBC =5−12,即BE 2=5−12,∴BE =5−1∴ME =MB +BE =2+5−1=5+1∵MN =MB =2∴MC =MN 2+MB 2=22∴设点E 到线段MC 的距离为ℎ,∴S △MCE =12ME ⋅BC =12MC ⋅ℎ,∴12×(5+1)×2=12×22ℎ∴ℎ=10+22.∴点E到线段MC的距离10+22.24.【问题提出】在Rt△ABC中,AC=BC=2cm,∠ACB=90°,一动点D从点A出发,沿折线A−B−C运动,连接CD,将CD绕点D顺时针旋转90°得到DE,连接BE、CE,若点D在AB上的运动速度为2cm/s,在BC上的速度为1cm/s,设运动的时间为t(s),BE、CE、BC围成的图形的面积为S(cm2),探究S与t的关系;【初步感知】某数学活动小组在研究此类动点问题时,想利用数形结合的思想,通过画图象来解决此类问题.(1)如图1,当点D在线段AB上时,经探究发现S与t的函数图象如图所示,求NP所在直线的表达式;【延伸探究】(2)若存在3个时刻t1、t2、t3(t1<t2<t3)对应的△BCE的面积均相等.①t1+t2=________;②当t1+t3=2t2时,求△BCE的面积S的值.【答案】(1)S=2t−2;(2)①2;②S=2+427【分析】本题考查相似三角形的判定与性质,等腰直角三角形的性质;(1)取AB中点F,证明△DCF∽△ECB,得到S△DCFS△ECB=(CF BC)2=12,即可得到S与t的函数关系;(2)①分别求出三种情况下的函数解析式,再根据△BCE的面积均相等可得S=−2t1+2=2t2−2=−2t3 +2+22,即可得到t1+t2的值;②由S=−2t1+2=2t2−2=−2t3+2+22可得t2=−t1+2,t3=2t1+2,代入t1+t3=2t2解方程计算即可.【详解】(1)当点D在线段AB上时,取AB中点F,连CF,则CF=AF=BF=2,BC=2CF,∠BCF=45°,∵将CD绕点D顺时针旋转90°得到DE,∴CD=DE,CE=2DC,∠DCE=45°,∴∠DCF=∠BCE=45°−∠BCF,CEDC =BCCF=2,∴CE BC =DCCF,∴△DCF∽△ECB ∴S△DCFS△ECB=(CF BC)2=12,∴S =S △ECB =2S △DCF ,当点D 在线段AF 上时,0≤t ≤1,AD =2t ,DF =AF−AD =2−2t ,∴S △DCF =12DF ⋅CF =12×2×(2−2t )=1−t ,∴S =S △ECB =2S △DCF =−2t +2(0≤t ≤1),当点D 在线段BF 上时,1≤t ≤2,AD =2t ,DF =AD−AF =2t−2,∴S △DCF =12DF ⋅CF =12×2×(2t−2)=t−1,∴S =S △ECB =2S △DCF =2t−2(1≤t ≤2),∴NP 所在直线的表达式为S =2t−2;(2)①t 1当点D 在线段BC 上时,2≤t ≤4,AB +BD =2t ,CD =BC−BD =AB +BC−(AB +BD)=2+22−2t ,由题意可得∠DCE =∠BCF =45°,CE DC =BC CF =2,∴CE BC =DC CF ,∴△DCF ∽△ECB∴S △DCF S △ECB =(CF BC )2=12,∴S =S △ECB =2S △DCF ,过D 作DG ⊥BC 于G ,则FG =12BC =1,∴S △DCF =12CD ⋅GF =12×1×(2+22−2t ),∴S=S△ECB=2S△DCF=−2t+2+22(2≤t≤4),∵存在3个时刻t1、t2、t3(t1<t2<t3)对应的△BCE的面积均相等,∴S=−2t1+2=2t2−2=−2t3+2+22,∴t1+t2=2,故答案为:2;②∵S=−2t1+2=2t2−2=−2t3+2+22,∴t2=−t1+2,t3=2t1+2∵t1+t3=2t2,∴t1+2t1+2=2(−t1+2),解得t1=6−227,∴S=−2t1+2=−2×6−227+2=2+427.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形单元测试卷(共100分)
一、填空题:(每题5分,共35分)
1、已知a =4,b =9,c 是a b 、的比例中项,则c = .
2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).
3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则
S S ADE ∆=四边形DBCE : .
C
E
D
B
A C
D
B A
C
B
P
A 图1 图2 图3
4、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)
5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.
C
E
D
B F A
C
O
E
D
B F
A
C
E
D
B
F
A 图4 图5 图6
6、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .
7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)
8、若
k b
a
c a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在
9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )
A 、
21 B 、31 C 、32 D 、4
1 C
E D
B
G F
A
C
D
B
A
图7 图8 图9
10、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,
则FG 的长为( )
A 、8cm
B 、6cm
C 、64cm
D 、26cm 11、下列说法中不正确的是( )
A .有一个角是30°的两个等腰三角形相似;
B .有一个角是60°的两个等腰三角形相似;
C .有一个角是90°的两个等腰三角形相似;
D .有一个角是120°的两个等腰三角形相似.
12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中
三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:4
13、两个相似多边形的面积之比为1∶3,则它们周长之比为( )
A .1∶3
B .1∶9
C .13
D .2∶3
14、下列3个图形中是位似图形的有( )
C '
B '
A '
C
O
B
A
D '
C '
B '
A 'C
D
B
A
E '
D '
C '
B 'A '
C
O E D B A
A 、0个
B 、1个
C 、2个
D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、B
E 是△ABC 的两条高,试说明AD ·BC=BE ·AC
16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;
(2)当小华走到路灯B 时,他在路灯A 下的影长是多少?
Q
P A B
17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,
点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?
(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;
(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.
A
B C E
D
参考答案
一、 填空题:
(1)、1或4或16;(2)、±6;(3)、-
9
4;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2
三、作图题: 23、(略) 四、解答题:
24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C
∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC
25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2
∴△ABC ∽△DEF
26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4
∴AB=2.4+2=4.4
答:这棵树高4.4m 。

27、1.(1)18m. (2)3.6m.。

相关文档
最新文档