光纤通信实验指导书
光纤通信系统实验指导
ZY1804I光纤通信原理实验系统简介本实验系统是为配合《光纤通信》课程的理论教学,结合目前光纤通信工程技术最新进展,为了提高大专院校学生实际操作和动手能力而研制开发的。
一、产品的系统特点光纤I型实验系统注重产品的系统和功能组成,产品的设计着重体现系统性、先进性、实用性,并根据市场及客户实际需求,充分考虑工艺外观结构、产品的功能和性价比。
整个系统分中央控制器、备用环和光传输三大部分,各自独立又相互关联,所有模块在单独进行实验同时又可系统集联,实验灵活丰富,可设计、可比较、可操作、可观测性强。
整个系统采用2.048M传输速率,既有利于实验观测,又可以模拟实际光纤传输时的各种性能。
实验紧密结合光通信新技术的发展趋势,将波分复用、光时分复用和SDH传输网等新技术都通过实验演示出来,简单易懂。
采用大规模的现场可编程门阵列器件,使得产品的开放性、可升级性强。
同时为了实现自愈环(即备用环)功能以及使学生有更大的开发和操作空间,特意制作了二次开发板,并预留大量的I/O扩展口,可在开发板上独立完成二次开发设计。
所有实验大多采用开关控制,减小了实验操作时的繁琐性。
该实验系统融合了当今的光纤通信技术发展的一些新技术和新器件,并将其融入到光纤通信原理课程当中,同时与通信原理和程控交换课程的部分原理结合,其主要有以下特点:1、实验箱采用“整板+核心板”设计,特殊光器件玻璃罩保护,元器件贴片化,模块元件布局完全对称。
所有的测试钩和连接孔均有标识,深蓝色的电路板,白色丝印使得整个电路板层次性强、美观、大方。
2、实验箱和光纤通信原理教材紧密结合,实验项目和顺序与教材保持完全同步。
通过八个方面全面实验来了解光纤通信的全过程,八个方面分别是:光纤和光缆;通信用光器件(有源器件和无源器件);光端机(光发、光收端机);数字光纤通信系统;模拟光纤通信系统;光纤通信新技术;光纤通信测量技术;光纤通信网络。
3、系统采用整板上分模块的设计方式,除了核心板——中央控制器外,还配置了光发端机、光收端机、模拟信号源、数字信号源、数字终端、电话模块、串口通信模块等。
光纤通信系统实验指导书
光纤通信系统实验指导书光纤通信系统实验指导书桂林电子科技大学信息科技学院二零零九年三月目录实验一数字光纤传输测试系统实验 (2)实验二SDH点对点组网2M配置实验 (9)实验三SDH 链型组网配置实验 (17)实验四SDH 环形组网配置实验 (27)实验一数字光纤传输测试系统实验概述光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。
光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。
光纤通信有许多优点:首先它有极宽的频带。
目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。
其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。
另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它。
在地球上有取之不尽,用之不竭的光纤原材料—SiO2光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。
波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。
光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。
光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。
光纤通信原理与技术实验指导书
光纤通信原理与技术实验指导书实验一模拟(音频)信号的调制、传输和解调实验目的和要求1、光纤端面的处理和夹持;2、了解模拟信号的光纤调制方法;3、学会已调信号的解调技术;4、观看已调波和调制波的波形;5、光纤折射率的时刻法求解。
实验装置和仪器:GX1000光纤实验仪;半导体激光器;激光功率计;光纤刀;光学实验导轨;光纤调整架;光纤;示波器;音频信号发生器(或收音机)。
实验原理:激光器的输出特性(I—P)特性激光器的光输出特性(P—J特性)是表示注入电流与激光器输出功率之间的关系曲线。
如图1所示。
当注入电流增加时.由于自发辐射量增加,输出功率也会增加,但增加得较慢。
当光辐射量超过PN结中的吸取损耗,增益超过损耗时,激光器就开始振荡,因此光输出功率随注入电流的增加而急剧增加。
图1光的调制将调制信号加在激光器上,操纵激光器的电流,则激光器的输出功率随调制信号而改变。
如图2所示。
光通信系统图3是典型的光纤通信系统。
电信号加在激光器的偏置电路上,操纵激光器的注如电流,从而使激光器的输出光功率随外加信号变化,达到对输出光进行调制.经调制的光由光纤(光纤通信)或空间(空间光通信)传输到光电探测器,探测器将光信号转变为电信号,后续电路检波解调复原所加的电信号。
图2图3 图4实验内容及步骤:(一)光纤端面的处理1、用光纤剥皮钳剥去光纤两端的涂覆层,长度约10mm。
如图5在5mm出用光纤刀刻划一下。
用力不要太大,以不使光纤断裂为限。
在刻划处轻轻弯曲纤芯,使之断裂。
处理过的光纤端面不应再被触摸,以免损坏和污染。
将光纤的一端小心放入光纤夹中,伸出长约10mm,用簧片压住,放入三维光纤架中,用锁紧螺钉锁住。
将光纤的另一端放入光纤座上的刻槽中,伸出约10mm ,用磁吸压住。
光纤的耦合将实验仪置于直流挡。
调整激光的工作电流,使激光不太明亮,用一张白纸在激光器前后移动,确定激光焦点的位置。
通过移动三维光纤调整架和调整Z轴旋钮,使光纤端面尽量靠近焦点。
光纤通信实验指导书(XXXX新编)
光纤通信实验指导书XX学院电子工程与电气自动化学院2016年2月目录实验要求II光纤实验箱使用注意事项III实验一单模光纤特性测量1实验二多模光纤特性测量3实验三光连接器和跳线特性测量6实验四光可变衰减器性能测试实验8实验五光波长区分10实验六 OTDR原理及运用11实验七双音多频检测实验14实验八 PDH终端呼叫处理通信系统综合实验17 实验九 OCDMA直接序列扩频技术25实验十光波分复用器31附录实验系统概述实验要求1、实验前必须充分预习,完成指定的预习任务,预习要求是:1)认真阅读实验知道书,了解实验任务2)复习实验中所有各仪器的使用方法及注意事项。
2、使用仪器和学习前必须了解其性能、操作方法及注意事项,在使用时必须严格遵守。
3、实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导老师审查同意后再接通电源。
4、实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导老师。
找出原因、排除故障,经指导老师同意后再继续实验。
5、实验过程中需要改接线时,应关断电源后才能拆、接线。
6、实验过程中应仔细观察实验现象,认真记录试验结果(数据、波形、现象)。
所记录的实验结果经指导教师审阅签字后在拆除实验线路。
7、实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。
8、实验后每个同学必须按要求独立完成实验报告。
光纤实验箱使用注意事项光学器件属于昂贵易损器件,所以在实验操作过程中应加倍小心,防止光学器件的损坏,为了保证实验顺利地进行,请注意以下事项:1、请仔细阅读实验指导书操作步骤后开机实验,实验各测试点、跳线及开关说明请参考附录III,正确连接导线,以免造成光学器件和芯片的损坏。
2、实验箱使用过程中应有防静电措施,以防静电损坏光学器件。
3、光学器件属于昂贵器件,在安装和拆卸过程中请注意轻拿轻放,遇到问题须及时向老师报告。
光纤通信原理实验指导书
路漫漫其修远兮,吾将上下而求索- 百度文库《光纤通信》实验指导书王玮中南大学信息科学与工程学院通信工程系二〇一一年四月目录光纤通信原理实验系统简介 (1)光纤实验箱使用注意事项 (3)实验一⑴半导体激光器P-I特性测试实验 (4)实验一⑵光电检测器特性实验 (6)实验二模拟信号光纤传输实验 (9)实验三数字信号光纤传输实验 (12)附录ZYE4301G型光纤通信实验箱各模块引脚说明 (14)《光纤通信原理》实验报告 (17)光纤通信原理实验系统简介本套实验系统(ZYE4301G )实验箱是为配合《光纤通信》课程的理论教学,结合目前光纤通信工程技术最新进展,为了提高学生实际操作和动手能力而研制开发的。
它包含了光纤通信系统设备中的各个主要组成部分,具体由以下十二个模块组成,其印刷电路板布局图如图0―1所示。
一、电源模块 二、光发送模块 三、光接收模块 四、预失真补偿模块 五、语音信号处理模块 六、模拟信号源模块 七、电话接口模块 八、数字信号源模块 九、PCM 编译码模块 十、CMI 编译码模块 十一、HDB3编译码模块 十二、CPLD 下载模块可以通过实验箱上述十二个模块灵活组成各种不同光纤通信系统,如:850nm 波长光纤通信系统、1310nm 波长光纤通信系统、1550nm 波长光纤通信系统;同时也可以组成单模光纤通信系统、多模光纤通信系统;模拟光纤通信系统、数字光纤通信系统;光时分复用传输系统和光波分复用传输系统等光纤通信工程中常用的绝大多数光纤通信系统。
实验系统基本组成方框图如图0―2所示: 图0―2 光纤传输实验系统方框图实验系统主要由光发模块,光收模块、光无源器件和辅助通信模块等组成。
光发端机完成将电信号调制至光载波上去,采用强度调制(IM );光接收机完成光信号的解调,采用直接检测(DD ),属于非相干解调。
光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。
(通信企业管理)光纤通信实验指导书
(通信企业管理)光纤通信实验指导书目录系统简介 (2)实验部分实验一数字信源及其光纤传输实验 (5)实验二 HDB3编译码及其光纤传输实验 (11)实验三 CMI编译码及其光纤传输实验 (20)实验四光发送模块实验 (28)实验五光接收模块实验 (35)实验六数字信号电—光、光—电转换传输实验 (39)1)方波信号和NRZ码传输;2)CMI码传输;3)HDB3码传输;实验七波分复用(WDM)光纤通信系统实验 (43)主要由以下功能模块组成:1.数字信号源单元:此单元产生码速率为170.5K的单极性不归零码(NRZ),数字信号帧长为24位,其中包括两路数字信息,每路8位,另外8位中的7位为集中插入帧同步码。
通过拨码开关,可以很方便地改变要传送的码信息并由发光二极管显示出来。
2.AMI(HDB3)编译码单元:此单元将数字信号源单元产生的NRZ码进行编码,通过专用芯片转换成HDB3码或AMI码通过切换开关切换,然后将编码后的信号又经过译码单元还原成NRZ码。
3.电话接口单元此单元有两路独立的电话输入接口、输出接口,通过专用电话接口芯片实现语音的全双工通信。
自带馈电电源。
4.PCM&CMI编译码单元;此单元采用CPLD来实现PCM&CMI编译码电路,可同时完成两路信号的编译码工作。
PCM模块可以实现传输两路语音信号,采用TP3057编译器。
5.可调信号源单元:此单元包括两路频率800HZ—2KHZ可调的方波、正弦波、三角波。
6.串行RS232接口单元:此单元配有RS232接口及信号端口TX和RX,可实现自发自收通信实验,两台计算机间的全双工光纤通信实验。
7.1310波长光发送单元:PHLC-1310nmFP同轴激光二极管。
8.1550波长光发送单元:PHLC-1310nmFP同轴激光二极管。
9.1310波长光接受单元:10.1550波长光接受单元:主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。
光纤通信实验指导书
光纤通信实验指导书指导老师:刘红2008年3月第一部分光纤通信无源光器件连接实验实验一连接器和光纤跳线性能测试实验一、实验仪器1、J H5002型光纤通信原理综合实验系统二台2、J H5002B型光纤光无源器件连接实验箱一台3、光功率计一台二、实验目的1、使学生2、深入了解光连接器和光纤跳线器的各种特性3、熟悉光连接器和光纤跳线器的应用方法三、实验内容准备工作:使用两台发送波长分别为1310nm和1550nm 的“JH5002型光纤通信原理综合实验系统”作为1310nm和1550nm光源。
设置两台“JH5002型光纤通信原理综合实验系统”线路编码工作方式为5B6B、输入数据为m序列。
按图1.1.1连接好测试设备,连接尾纤、连接器和光无源部件时注意定位销方向。
连接器跳线图1.1.1 光连接器和跳线性能测试连接示意1、插入损耗测量1)用光功率计测量1310nm光源经尾纤输出在“a”点的光功率P a;然后将信号接入连接器的输入端口;用光功率计测量经一对光连接器和光纤跳线器输出“b”点光功率P b。
记录测量结果,填入表格,计算一对光连接器和光纤跳线器插入损耗值。
2)可以在“b”点之后,再接入一对光连接器和光纤跳线器,测量输出“c”点光功率P c,观测大致的误差偏离值。
2、回波损耗被测件(连接器+跳线器)的回波损耗是指正向入射到被测件的光功率和沿着输入路径返回被测件入口端的光功率比。
实验步骤如下:(1)测量1550nm光分路器(3dB耦合器)的实际分光数值,按图1.1.2连接。
在不连接被测件条件下,测量3dB耦合器a、b两路输出的功率P a和P b。
图1.1.2 3dB耦合器特性测量(2)测量光分路器(3dB耦合器)两路输出的隔离度A ab,按图1.1.3连接。
在耦合器输出端之一的a点输入功率P c dBm,测量耦合器另一输出端b点的输出功率P c,dBm则a,b两点的隔离度A ab=P c- P c, dB。
光纤通信实验指导书含原理
实验1 电光、光电转换传输实验一、实验目的1.了解本实验系统的基本组成结构;2.初步了解完整光通信的基本组成结构;3.掌握光通信的通信原理。
二、实验仪器1.光纤通信实验箱2.20M双踪示波器3.FC-FC单模尾纤 1根4.信号连接线 2根三、基本原理本实验系统重要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接受两子部分,光信道又可分为光发射端机、光纤、光接受端机三个子部分。
实验系统基本组成结构(光通信)如下图所示:图1.2.1 实验系统基本组成结构在本实验系统中,电发射部分可以是M 序列,可以是各种线路编码(CMI 、5B6B 、5B1P 等),也可以是语音编码信号或者视频信号等,光信道可以是1550nmLD+单模光纤组成,可以是1310nm 激光/探测器组成,也可以是850nmLED+多模光纤(选配)组成。
本实验系统中提供的1550nmLD 光端机是一体化结构,光端机涉及光发射端机TX (集成了调制电路、自动功率控制电路、激光管、自动温度控制等),光接受端机RX (集成了光检测器、放大器、均衡和再生电路)。
其数字电信号的输入输出口,都由铜铆孔开放出来,可自行连接。
一体化数字光端机的结构示意图如下:图1.2.2 一体化数字光端机结构示意图四、实验环节1. 关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm 的光信道),注意收集好器件的防尘帽。
2. 打开系统电源,液晶菜单选择“码型变换实验—CMI 码PN ”。
确认,即在P101铆孔输出32KHZ 的15位m 序列。
3. 示波器测试P101铆孔波形,确认有相应的波形输出。
4. 用信号连接线连接P101、P203两铆孔,示波器A 通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度,最大不超过P204光接受输入光发射输出5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
光纤通信实验指导书_学生用书
光纤通信实验指导书电子技术教研室编2009年3月目录实验要求 (3)光纤实验箱使用注意事项 (4)实验一半导体激光器P-I特性测试实验 (5)实验二数字光纤通信系统线路码型CMI 编译码实验 (9)实验三光发射机性能测试实验 (13)实验四波分复用技术实验 (17)实验五电话光纤传输系统实验 (20)实验六光纤通信系统综合实验 (23)实验要求1、实验前必须充分预习,完成指定的预习任务,预习要求是:1)认真阅读实验知道书,了解实验任务2)复习实验中所有各仪器的使用方法及注意事项。
2、使用仪器和学习前必须了解其性能、操作方法及注意事项,在使用时必须严格遵守。
3、实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导老师审查同意后再接通电源。
4、实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导老师。
找出原因、排除故障,经指导老师同意后再继续实验。
5、实验过程中需要改接线时,应关断电源后才能拆、接线。
6、实验过程中应仔细观察实验现象,认真记录试验结果(数据、波形、现象)。
所记录的实验结果经指导教师审阅签字后在拆除实验线路。
7、实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。
8、实验后每个同学必须按要求独立完成实验报告。
光纤实验箱使用注意事项光学器件属于昂贵易损器件,所以在实验操作过程中应加倍小心,防止光学器件的损坏,为了保证实验顺利地进行,请注意以下事项:1、请仔细阅读实验指导书操作步骤后开机实验,实验各测试点、跳线及开关说明请参考附录III,正确连接导线,以免造成光学器件和芯片的损坏。
2、实验箱使用过程中应有防静电措施,以防静电损坏光学器件。
3、光学器件属于昂贵器件,在安装和拆卸过程中请注意轻拿轻放,遇到问题须及时向老师报告。
4、实验时不可将光纤输出端对准自己或别人的眼睛,以免损伤眼睛。
5、实验箱使用完毕后,请立即将防尘帽盖住光纤输入、输出端口,用光纤端面防尘盖盖住光纤跳线端面,防止灰尘进入光纤端面而影响光信号的传输。
《光纤通信综合实验》指导书(精简版)
2.数字接口单元
3.眼图观察单元
4.图象接口单元
5.CPLD可编程器件构成的信号产生单元
6.LED显示单元
7.数字电话单元
8.1310nm光收发端机单元
9.数字电话单元
10.1550nm光收发端机单元
11.波分复用单元
12.波分复用单元
每个单元电路的详细说明将在后面的实验中逐一介绍。
图1-2 实验系统总方框图
2、多模光纤
用来传输多种模式光波的光纤称为多模光纤,模式的数目取决于芯径、数值孔径(接收角)、折射率分布特性和波长。将单模光纤的纤芯增大,光纤将成为多模光纤。多模光纤的纤芯直径远远大于单模光纤,一般为50-200μm。在临界角内,各个模式的入射光波分别以不同角度,在光纤内的纤芯与包层的的界面处发生全反射而沿光纤全长传输。
识别单模光纤与多模光纤的基本方法是从光纤的产品规格代号中去了解。如我国光纤光缆型号的规格代号的第二部分用J代表多模渐变型光纤,用T代表多模阶跃型光纤,用Z代表多模准阶跃型光纤,用D代表单模光纤。
其次是从光纤的纤芯直径去识别。单模光纤的芯径很细,通常芯径小于10μm;多模光纤的芯径比单模光纤大几倍。例如本实验系统的尾纤外套上标出它的芯径为62.5μm,故可识别出它是多模光纤。
存储温度(℃)
-25~+70
自动关机时间(min)
10
电池持续工作时间(h)
28
外观尺寸(mm)
150×76×26
重量(g)
250
电源
8.4V可充电电池+充电电源适配器
应用范围
电信工程维护
CATV工程与维护
综合布线系统
光器件生产与研究
光通信的教学与试验
13《光纤通信》实验指导书资料
《光纤通信》实验指导书主编和玉梅校对审核西北第二民族学院电子与信息工程系二○○四年八月目录实验一中央处理控制器单元综合设计实验 (2)实验二码型变换综合设计实验 (4)实验三光纤发送系统综合设计实验 (6)实验四PCM编码光传输系统综合设计实验 (11)实验一 CPU中央处理控制单元系统综合设计实验(综合设计性实验)一、实验目的1.了解单片机在光纤通信系统中的应用。
2.了解该单元电路对整个光纤实验系统的管理与控制过程。
3.熟悉本系统中进行各种信号传输实验的电路连接与键盘操作方法。
二、实验仪器与器材1、光纤通信实验箱一个2、20MHz示波器一台3、万用表一台三、实验基本原理及电路中央处理控制器单元电路方框图如图6-1所示,它由AT89C51单片机,显示接口电路、数字接口电路,模拟接口电路与键盘电路等五个部分组成。
该控制单元是综合实验系统中的中心控制部分,它控制着其他各部分实验电路的工作,采用MCS-51单片机技术对全系统实验集中管理与控制,学生上机作某项实验或综合实验时,通过键进行操作,可选择各种方式的实验,通过发光管指示,可了解实验系统的工作状态。
从实验系统的输入键盘可看出,共有12个功能键,其中“脉冲波”、“方波”、“CMI”、“PN”、“数字电话”、“PCM”键为数字信号功能键。
在做数字信号光传输实验时,用此6个功能,若再做数字信号与模拟信号的光传输实验时,则再加上“三角波”、“正弦波”、“外输入”、“模拟电话”4个模拟信号功能键。
具体操作为:若做数字电话光传输实验时,则按一下“数字电话”键后,再按下“确认”键,这时,CPU接通与数字电话有关的数字电路、光发系统与光收系统等单元电路。
实验结束后,再按一下“复位”键,使系统复位重新启动。
四、实验内容及步骤内容:1. 熟悉CPU单元电路模块工作过程。
2. 熟悉CPU单元电路对实验系统的管理与控制。
3. 熟悉键盘的功能键和操作方法。
4. 测量并分析TP101、TP102、TP103、TP104、TP105、TP107、TP109、TP110各测量点波形及数据。
光纤通信实验指导书-改进
目录实验系统概述 (1)实验一光器件认识和测量 (9)实验二光纤传输系统实验 (21)实验三光纤综合传输系统实验 (28)实验系统概述实验系统的整体框图如下:下面对各个模块进行详细的说明:一、1310nm光发模块:完成电信号到光的转换,包括数字和摸拟光调制。
数字光调制中还包括:自动光功率控制电路、无光检测电路、光器件寿命检测电路等。
各部件功能说明:P100、P101:数字信号输入口,输入信号0~5V。
P104、P102:模拟信号输入口,输入信号-5V~5V。
J101:数字光调制和模拟光调制的切换开关。
J100:拨码开关第一位是控制数字光调制的通和断,第二位是控制自动光功率控制补偿电流的通和断。
拨码开关拨上为通,拨下为断。
TP100、TP101、TP102:这三个测试点是用来测量激光器的电流和自动光功率控制的补偿电流,具体的使用方法见实验九。
TP103:输入数字信号测试点。
TP104:无光警告电路的输入信号。
TP105:输入的数字信号减去直流电平后的信号。
TP106:此信号控制自动光功率控制补偿电路的三极管,从而控制补偿电流的大小。
RP100:调节数字光调制的光发射功率大小。
逆时针旋转为光功率增大。
RP101:调节寿命告警电路的门限电压的大小。
RP102:调节无光告警电路的门限电压的大小。
RP103:调节光检测器输出电压的大小RP104:调节输入信号衰减大小。
逆时针旋转衰减小。
二、1550nm光发模块:同1310nm光发模块有同样的功能,其中各部件的功能与1310nm光发模块也是对应。
例如,1550nm中的测试点TP200与1310nm中的测试点TP100的功能一样,RP100同RP200的作用一样。
三、1310nm光收模块:主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。
包括预放大电路、主放大电路和电平判决电路。
各部件功能说明:P103、P105:模拟信号输出口。
P106、P107:数字信号输出口。
光纤通信实验指导书(含原理)
P103:对应的CMI编码信号。
P111:数据接收单元的电信号接收铆孔。
P115:CMI译码输出。
P203:光发射端机的外部电信号输入铆孔。
TX1550:输入1550nm光发射端机的电信号。
P204:1550nm光接收端机输出的电信号。
六、实验结果
1.记录实验中得到的数据和波形,标上必要的实验说明。
2.长连“0”、长连“1”的数字信号不利于接收端的位同步提取,CMI编码是怎样解决这个问题。
实验
一、实验目的
1.掌握5B6B编译码规则;
2.了解5B6B编译码的性能;
3.了解光纤通信中5B6B的选码原则。
二、实验仪器
1.光纤通信实验箱
2.20M双踪示波器
3.FC-FC单模光跳线
4.信号连接线 1根
三、基本原理
9.对应P102码元同步时钟读出码序列,根据CMI编码规则,写出对应的编码序列。
10.观察P103输出编码波形,验证你的序列。
11.关闭系统电源,拆除各光器件并套好防尘帽。
注:本实验也可选择工作波长为1310nm的LD光发射端机,也可选择扩展模块。
五、测量点说明
P101:菜单设置的数字序列输出序列波形测试点。
01000
101011
101000
01001
101001
101001
01010
101010
101010
01011
001011
001011
01100
101100
101100
01101
101101
000101
01110
101110
000110
光纤通信实验指导书
ZY12OFCom23BH1 光纤通信原理实验系统实验指导书电子与信息工程学院电子与通信教学团队光纤通信原理实验指导书光纤通信系统简介光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
光纤通信是人类通信史上一重大突破,现今的光纤通信已成为信息社会的神经系统,其主要优点是:1、光波频率很高,光纤传输频带很宽,故传输容量很大,理论上可通过上亿门话路或上万套电视,可进行图像、数据、传真、控制、打印等多种业务;2、不受电磁干扰,保密性好,且不怕雷击,可利用高压电缆架空敷设,用于国防、铁路、防爆等;3、耐高温、高压、抗腐蚀,不受潮,工作十分可靠;4、光纤材料来源丰富,可节约大量有色金属(如铜、铝),且直径小、重量轻、可绕性好。
在20世纪70年代,光纤通信由起步到逐渐成熟,这首先表现为光纤的传输质量大大提高,光纤的传输损耗逐年下降。
1972~1973年,在850nm波段,光纤的传输损耗已下降到2dB/km左右;与此同时,光纤的带宽不断增加。
光纤的生产从带宽较窄的阶跃型折射率光纤转向带宽较大的渐变型折射率光纤;另外,光源的寿命不断增加,光源和光检测器件的性能也不断改善。
光纤和光学器件的发展为光纤传输系统的诞生创造了有利条件。
到1976年,第一条速率为44.7MB/s的光纤通信系统在美国亚特兰大的地下管道中诞生。
80年代是光纤通信大发展的年代。
在这个时期,光线通信迅速由850nm波段转向1310nm波段,由多模光纤传输系统转向单模光纤传输系统。
通过理论分析和实践摸索,人们发现,在较长波段光纤的损耗可以达到更小的值。
经过科学家和工程技术人员的努力,很快在1300nm和1500nm波段分别实现了损耗为0.5dB/km和0.2dB/km的极低损耗的光纤传输。
光纤通信系统实验指导书
光纤通信系统实验指导书光纤通信系统实验指导书桂林电子科技大学信息科技学院二零零九年三月目录实验一数字光纤传输测试系统实验 (2)实验二SDH点对点组网2M配置实验 (9)实验三SDH 链型组网配置实验 (17)实验四SDH 环形组网配置实验 (27)实验一数字光纤传输测试系统实验概述光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。
光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。
光纤通信有许多优点:首先它有极宽的频带。
目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。
其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。
另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它。
在地球上有取之不尽,用之不竭的光纤原材料—SiO2光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。
波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。
光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。
光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。
光纤通信实验指导书-南通大学
光纤通信实验指导书南通大学电子信息学院2011年10月目录第一章光发射机实验 (4)实验一MZ调制器半波电压和偏置电压对调制的影响 (4)一、实验目的 (4)二、实验原理 (4)三、实验配置图 (6)四、实验步骤 (6)第二章新型光调制格式实验 (8)实验一NRZ、RZ调制原理及产生 (8)一、实验目的 (8)二、实验原理 (8)三、实验配置图 (10)四、实验步骤 (10)实验二CSRZ调制原理及产生 (11)一、实验目的 (11)二、实验原理 (11)三、实验配置图 (11)四、实验步骤 (12)实验三SSB调制原理及产生 (12)一、实验目的 (12)二、实验原理 (12)三、实验配置图 (12)四、实验步骤 (13)第三章光放大器性能实验 (14)实验一观察增益随EDF参量的变化关系 (14)一、实验目的 (14)二、实验原理 (14)三、实验配置图 (15)四、实验步骤 (15)实验二EDFA输入光功率与增益关系曲线测量 (16)一、实验目的 (16)二、实验原理 (16)三、实验配置图 (16)四、实验步骤 (16)附: (16)第四章光接收机性能实验 (17)实验一. 接收机灵敏度的测试 (17)一、实验目的 (17)二、实验原理 (17)三、实验配置图 (17)四、实验步骤 (17)实验二. 光接收机灵敏度的影响因素 (18)一、实验目的 (18)二、实验原理 (18)三、实验配置图 (18)四、实验步骤 (19)第五章光纤色散对传输性能影响实验 (19)实验一、观察不同速率和光纤长度的系统受色散的影响 (19)一、实验目的: (19)二、实验原理 (19)三、实验配置图 (21)四、实验步骤 (21)实验二、色散补偿光纤对传输性能的影响 (23)一、实验目的 (23)二、实验原理 (23)三、实验配置图 (23)四、实验步骤 (23)五、仿真结果 (24)六、实验结论 (24)第七章光纤传输系统综合实验 (25)实验一、WDM长距离传输系统 (25)一、实验目的 (25)二、实验原理 (25)三、实验配置图 (25)四、实验步骤 (25)五、仿真结果 (26)第一章 光发射机实验实验一 MZ 调制器半波电压和偏置电压对调制的影响一、实验目的1.掌握在光通信系统中,外调制光发射机的组成和原理2.掌握马赫-曾德调制器中偏置点的设置对调制结果的影响二、实验原理1、MZ 调制器结构图1.1 MZ 调制器结构示意图 MZ 调制器的典型结构如图1.1所示,输入光波在一个Y 分支处被分为功率相等的两束,分别通过两路光波导由电光材料制成,其折射率随外加电压的大小而变化,从而使两束光信号到达第二个Y 分支处产生相位差,若两束光的光程差是波长的整数倍,则相干加强;若两束光的光程差是波长的半整数倍,则相干抵消。
光通信原理实验指导书
实验一模拟信号光调制实验一、实验目的1、了解模拟信号光纤通信原理。
2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。
二、实验内容1、测量不同的正弦波、三角波和方波的光调制系统性能。
三、实验器材1、主控&信号源、25号模块各1块2、双踪示波器1台3、连接线若干4、光纤跳线1根四、实验原理1、实验原理框图光调制功率检测框图模拟信号光调制传输系统框图2、实验框图说明本实验是输入不同的模拟信号,测量模拟光调制系统性能。
如模拟信号光调制传输系统框图所示,不同频率不同幅度的正弦波、三角波和方波等信号,经25号模块的光发射机单元,完成电光转换,然后通过光纤跳线传输至25号模块的光接收机单元,进行光电转换处理,从而还原出原始模拟信号。
实验中利用光功率计对光发射机的功率检测,了解模拟光调制系统的性能。
注:根据实际模块配置情况不同,自行选择不同波长(比如1310nm、1550nm)的25号光收发模块进行实验。
五、注意事项1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。
2、不要带电插拔信号连接导线。
六、实验步骤1、系统关电,参考系统框图,依次按下面说明进行连线。
(1)用连接线将信号源A-OUT,连接至25号模块的TH1模拟输入端。
(2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。
注意,连接光纤跳线时需定位销口方向且操作小心仔细,切勿损伤光纤跳线或光收发端口。
(3)用同轴连接线将25号模块的P4光探测器输出端,连接至23号模块的P1光探测器输入端。
2、设置25号模块的功能初状态。
(1)将收发模式选择开关S3拨至“模拟”,即选择模拟信号光调制传输。
(2)将拨码开关J1拨至“ON”,即连接激光器;拨码开关APC此时选择“ON”或“OFF”都可,即APC功能可根据需要随意选择。
(3)将功能选择开关S1拨至“光功率计”,即选择光功率计测量功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录系统简介 (2)实验部分实验一数字信源及其光纤传输实验 (5)实验二 HDB3编译码及其光纤传输实验 (11)实验三 CMI编译码及其光纤传输实验 (20)实验四光发送模块实验 (28)实验五光接收模块实验 (35)实验六数字信号电—光、光—电转换传输实验 (39)1)方波信号和NRZ码传输;2)CMI码传输;3)HDB3码传输;实验七波分复用(WDM)光纤通信系统实验 (43)EL-GT-IV光纤通信教学实验系统简介光纤通信教学实验系统是为了配合《光纤通信系统》的理论教学而设计的实验装置,在这套系统上除了完成理论验证实验外,还可实现各种开发性实验,并可配合CPLD进行各模块的二次性开发。
此外本实验箱,可扩展实验模块,实现通信原理的实验。
一、结构简介光纤通信教学实验系统结构框图如下:1310光纤收发模块1550光纤收发模块主要由以下功能模块组成:1.数字信号源单元:此单元产生码速率为170.5K的单极性不归零码(NRZ),数字信号帧长为24位,其中包括两路数字信息,每路8位,另外8位中的7位为集中插入帧同步码。
通过拨码开关,可以很方便地改变要传送的码信息并由发光二极管显示出来。
2.AMI(HDB3)编译码单元:此单元将数字信号源单元产生的NRZ码进行编码,通过专用芯片转换成HDB3码或AMI码通过切换开关切换,然后将编码后的信号又经过译码单元还原成NRZ码。
3.电话接口单元此单元有两路独立的电话输入接口、输出接口,通过专用电话接口芯片实现语音的全双工通信。
自带馈电电源。
4.PCM&CMI编译码单元;此单元采用CPLD来实现PCM&CMI编译码电路,可同时完成两路信号的编译码工作。
PCM模块可以实现传输两路语音信号,采用TP3057编译器。
5.可调信号源单元:此单元包括两路频率800HZ—2KHZ可调的方波、正弦波、三角波。
6.串行RS232接口单元:此单元配有RS232接口及信号端口TX和RX,可实现自发自收通信实验,两台计算机间的全双工光纤通信实验。
7.1310波长光发送单元:PHLC-1310nmFP同轴激光二极管。
8.1550波长光发送单元:PHLC-1310nmFP同轴激光二极管。
9.1310波长光接受单元:10.1550波长光接受单元:主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。
它主要有光检测模块、滤波放大模块组成。
光检测模块采用PHPC-IS01-PFC,是PHOTRON公司的高性能光检测器件,输出可从DC到1GHZ。
11.数字时分复用光纤传输实验12.5B6B编译码实验单元二、实验项目(如正文)三、系统特点模块化设计,灵活搭线,可实现多个实验,并可以自己灵活搭接组成其他实验。
实验箱上配有光纤跳线的接口模块,可自由加入光纤无源器件,使用多种仪表如误码分析仪等进行观测。
完全满足国家教学大纲的教学要求。
此外本实验箱,可扩展实验模块,实现通信原理和DSP的实验,光纤和通信合而为一,还可以让学生了解DSP的工作原理和经典电路。
本实验箱可谓一箱多用,精巧的结构,独特的创意,超高的性价比,让您再次领略达盛人追求完美与人性化的独特魅力。
四、配套仪器必备仪器:20M通用示波器或虚拟仪器可选配仪器:音频信号源,频率计,频谱分析仪,光功率计,稳定光源,光时域反射仪,误码测试仪,光纤熔接机,PCM终端测试仪实验一数字信源及其光纤传输实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容用示波器观察单极性非归零码(NRZ)、位同步信号(BS)及帧同步信号(FS),了解它们的对应关系。
三、基本原理本实验使用数字信源模块。
本模块是整个实验系统的发终端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ 信号为集中插入帧同步码时分复用信号。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点: CLK 晶振信号测试点 BS OUT 信源位同步信号输出点/测试点 FS OUT 信源帧同步信号输出点/测试点 NRZ-OUT NRZ 信号输出点/测试点图1-3为数字信源模块的电原理图。
图1-1中各单元与图1-3中的元器件对应关系如下: 晶振 CRY1:晶体;U1:反相器7404分频器 U3:计数器74161;U4:计数器74193;U9:计数器40160并行码产生器 K4 、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 八选一 U4、U5、U8:8位数据选择器LS151 三选一 U7:8位数据选择器LS151 倒相器 U28:非门74HC04 抽样 U30:D 触发器74HC74BSS5S4S3S2S1BS-OUT NRZ-OUT CLK并 行 码 产 生 器八选一八选一八选一分频器三选一NRZ抽样晶振FS倒相器图1-1 数字信源方框图010×0111××××××××××××××××数据2数据1帧同步码无定义位图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
(1)分频器74161进行13分频,输出信号频率为341kHz 。
74161是一个4位二进制加计数器,预置在3状态。
74193完成÷2、÷4、÷8、÷16运算,输出BS 、S1、S2、S3等4个信号。
BS 为位同步信号,频率为170.5kHz 。
S1、S2、S3为3个选通信号,频率分别为BS 信号频率的1/2、1/4和1/8。
74193是一个4位二进制加/减计数器,当CPD= PL =1、MR=0时,可在Q 0、Q 1、Q 2及Q 3端分别输出上述4个信号。
40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q 0和Q 1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。
分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。
(2)八选一采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。
U24、U25和U27的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别与K1、K2、K3输出的8个并行信号连接。
由表1-1可以分析出U24、U25、U27输出信号都是码速率为170.5KB、以8位为周期的串行信号。
图1-3 数字信源电原理图(3)三选一三选一电路原理同八选一电路原理。
S4、S5信号分别输入到U8的地址端A和B,U24、U25、U27输出的3路串行信号分别输入到U8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB的2路时分复用信号,此信号为单极性不归零信号(NRZ)。
S 3S2S1(a)S5S4S3(b)图1-4 分频器输出信号波形表1-1 4512真值表(4)倒相与抽样图1-1中的NRZ 信号的脉冲上升沿或下降沿比BS 信号的下降沿稍有点滞后。
在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。
倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT 及BS-OUT 信号满足码变换电路的要求。
FS 信号可用作示波器的外同步信号,以便观察2DPSK 等信号。
FS 信号、NRZ-OUT 信号之间的相位关系如图1-5所示,图中NRZ-OUT 的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。
FS 信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT 码第一位起始时间超前一个码元。
FSNRZ-OUT图1-5 FS 、NRZ-OUT 波形四、实验步骤1 熟悉信源模块的工作原理。
用示波器观察数字信源模块上的各种信号波形。
2 用FS作为示波器的外同步信号,进行下列观察:(1)示波器的两个探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
按照实验指导书要求,用K1产生代码11110010,K2产生代码00011100,K3产生代码01110000(其中K1的代码为帧同步码,K2和K3是产生的信息码,可以任意定义).用示波器观察NRZ、FS、BS如下图:检测点波形数字信号远源单元FS数字信号远源单元NRZ数字信号远源单元BS注意:该实验不用连接线,直接在实验箱上的数字信源单元各个观察点加示波器探头进行观测.五、实验报告要求根据实验观察和纪录回答:1、不归零码和归零码的特点是什么?2、根据电路原理图设计出一任意伪随机码(RZ)产生电路.六、实验仪器光纤通信有源实验箱,数字存储示波器实验二 HDB3编译码及其光纤传输实验一、 实验目的1、 掌握AMI 、HDB 3码的编码规则。
2、 掌握从HDB 3码中提取位同步信号的方法。
3、了解HDB 3(AMI )编译码集成电路CD22103。
二、 实验内容1、 用示波器观察传号交替反转码(AMI )、三阶高密度双极性码(HDB 3)。
2、 用示波器观察从HDB 3码中和从AMI 码中提取位同步信号的电路中有关波形。
3、 用示波器观察HDB 3、AMI 译码输出波形。
三、 基本原理本实验用到的电路模块为HDB 3编译码模块。
原理框图、电原理图分别如图2-1和图2-2所示。
本单元有以下测试点及输出点: NRZ 译码器输出信号 CODE –OUT 编码器输出信号 CODE –IN 译码器输入信号(AMI)HDB 3编译码器单—双变 换双—单变 换相加器锁相环限幅放大带通+H-OUT BS-IN -H-OUTNRZ-INHDB3(AMI)+H-HNRZ (AMI )BS-R(AMI)HDB 3-D整流器图2-1 HDB 3编译码方框图本模块上的开关K4用于选择码型,K4位于上端选择HDB3码的编译码,位于下端选择AMI 码编译码。