全等三角形讲义知识点+典型例题(完美打印版)

合集下载

全等三角形的讲义整理讲义

全等三角形的讲义整理讲义

全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。

(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。

)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。

【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。

(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。

【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。

(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。

全等三角形—知识讲解及典型例题解析

全等三角形—知识讲解及典型例题解析

中考总复习:全等三角形—知识讲解及典型例题解析【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∵AE AFEAO FAO AO AO=⎧⎪=⎨⎪=⎩∠∠∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,(对顶角相等)则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【总结升华】本题考查了全等三角形的判定和性质,涉及到三角形内角和定理,熟练掌握全等三角形的判定方法是解题的关键.类型三、综合运用5 .如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB 中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个B【答案】D.6.如图,已知△ABC.(1)请你在BC边上分别取两点D、E(BC的中点除外),连结AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE≠DE,有△ABD和△ACE,△ABE和△ACD面积相等.(2)取DE的中点O,连结AO并延长到F点,使得FO=AO,连结EF,CF.在△AD0和△FEO中,又∠AOD=∠FOE,DO=EO,可证△ADO≌△FEO.所以AD=FE.因为BD=CE,DO=EO,所以BO=CO.同理可证△ABD≌△FCO,所以AB=FC.延长AE交CF于G点,在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。

《全等三角形》讲义(完整版)

《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。

(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。

(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。

全等三角形经典讲义

全等三角形经典讲义

全等三角形状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E, C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:专题一 三角形全等的判定1.如图,BD 是平行四边形ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:△ABE≌△CDF .2.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________; (2)证明:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )AB .4C .D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N .求证:AM =AN .6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .NME D B CA专题三全等三角形的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B′,使∠ACB′=∠ACB ,这时只要量出AB′的长,就知道AB 的长,对吗?为什么?10.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF于F .求证:CE = CF11.已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADFA BECD12.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB13.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B14.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.DBACPEDCBA D CBA15.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):16.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCBAFEA17.已知:在△ABC中,∠BAC=90,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.18、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E,,在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);图1图2DCAB(2)证明:DC BE⊥.19.如图-1,ABC△的边BC在直线l上,AC BC⊥,且AC BC=;EFP△的边FP也在直线l上,边EF与边AC重合,且EF FP=.(1)在图-1中,请你通过观察、测量,猜想并写出AB与AP关系;(2)将EFP△沿直线l向左平移到图-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP的关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E)B C (F)Pl l l图-1 图-2图-3全等三角形——角的平分线的性质状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt △ABC 中,∠C=90°,,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AC =3 cm ,求BE 的长.专题二 角平分线的性质的应用 4.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在∠A 、∠B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm (指图上距离),则图中工厂的位置应在__________,理由是__________.21BAC B ∶∶∠∠6. 如图, ∠ B= ∠ C=90 °, M 是 BC 中点, DM 平分 ∠ ADC ,求证: AM 平分 ∠ DAB .7. 如图,已知 △ ABC 的周长是 22 , OB 、 OC 分别平分 ∠ ABC 和 ∠ ACB , OD ⊥ BC 于 D ,且 OD=3 , △ ABC 的面积是多少?8.如图,已知 ∠ 1= ∠ 2 , P 为 BN 上的一点, PF ⊥ BC 于 F , PA=PC ,求证: ∠ PCB+ ∠ BAP=180 º9.如图,△ ABC 中, P 是角平分线 AD , BE 的交点. 求证:点 P 在∠ C 的平分线上.10. 如图,在 △ ABC 中, BD 为 ∠ ABC 的平分线, DE ⊥ AB 于点 E ,且 DE=2cm , AB=9cm , BC=6cm ,求 △ ABC 的面积.21NP F C BA11.如图, D 、 E 、 F 分别是△ ABC 的三条边上的点, CE=BF ,△ DCE 和△ DBF 的面积相等.求证: AD 平分∠ BAC .。

(完整版)全等三角形的判定常考典型例题及练习

(完整版)全等三角形的判定常考典型例题及练习

全等三角形的判定一、知识点复习:两边和它们的夹角对应相等的两个三角形全等。

(SAS)在△ABC和△DEF中②:两角和它们的夹边对应相等的两个三角形全等。

(ASA)在△ABC和△DEF中③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)④“边边边”定理:三边对应相等的两个三角形全等。

(SSS )⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。

(HL )在△ABC 和△DEF 中一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗?二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是()A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋•娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。

全等三角形讲义

全等三角形讲义

全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。

全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。

例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。

最新全等三角形(知识点讲解)经典例题含答案

最新全等三角形(知识点讲解)经典例题含答案

全等三角形一、目标认知学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。

重点:1. 使学生理解证明的基本过程,掌握用综合法证明的格式;2 .三角形全等的性质和条件。

难点:1.掌握用综合法证明的格式;2 .选用合适的条件证明两个三角形全等经典例题透析类型一:全等三角形性质的应用1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解.解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角.总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边.已知两对对应边,第三对边是对应边,对应边所对的角是对应角.举一反三:【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么?【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE,则AB-BE=DB-BC,即AE=CD。

【变式2】如右图,,。

求证:AE∥CF【答案】∴AE∥CF2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC的长。

思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。

解析:在ΔABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为ΔABC≌ΔDEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)。

所以∠DFE=100°EC=EF-FC=BC-FC=FB=2。

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

第十二章 全等三角形一、全等三角形【全等三角形的概念和性质】 1. 全等形:能够重合的两个图形. 2. 全等三角形:能够重合的两个三角形.把两个全等的三角形重合到一起时,重合的顶点称为对应点..., 重合的边称为对应边...,重合的角称为对应角...。

3. 全等三角形的性质:全等三角形的对应边相等,对应角相等; 表示方法:“全等”用“≌”表示,读作:_________; 【例题一】(1)如图所示,△OCA ≌△OBD ,对应顶点有:点 和点 ,点 和点 ,点 和点 ; 对应角有: 和, 和 ,和 ;对应边有: 和 , 和 , 和 .(2)如图△ABD ≌△CDB,若AB=4,AD=5,BD=6,∠ABD=50°,∠ADB=30°,则BC= ,CD= ,∠BDC= ,∠C= .【基础练习一】1. 已知∆ABC ≌∆EFD ,若59A ∠=︒,31B ∠=︒,8DE =,10EF =,则AB = ,D ∠= .2. 如图,△AOB ≌△ADC ,点B 和点C 是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC ∥OA 时,α与β之间的数量关系为( )A 、α=βB 、α=2βC 、α+β=90°D 、α+2β=180°3. 下列说法错误的是( )DBACOA、全等三角形的公共角是对应角,对顶角也是对应角B、全等三角形的公共边也是对应边C、全等三角形的公共点是对应顶点D、全等三角形中相等的边所对的角是对应角,相等的角所对的边是对应边。

4.如图,已知△ABD≌△ACE,AD=3cm,BD=1cm,BC=6cm,求△ADE的周长.5.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,求AB的长.【全等三角形的判定】1. 全等三角形的判定1:三边分别相等的两个三角形全等(简写“SSS ”)2. 全等三角形的判定2:两边和它们的夹角分别相等的两个三角形全等(简写“SAS ”)3. 证明三角形全等:判断两个三角形全等的推理过程,叫做证明三角形全等 【例题二】1. 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC ∴ =∴在△和△ 中AB= BD= AD=∴△ABD △ACD( )提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

全等三角形讲义知识点+典型例题(完美打印版)

全等三角形讲义知识点+典型例题(完美打印版)

BPAa专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA%③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .,【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形 已知:如图,线段a ,b ,c.'求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:【例4】已知两边及夹角作三角形 已知:如图,线段m ,n, ∠ .求作:△ABC,使∠A=∠α,AB=m,AC=n.…【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.@随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.3.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角#C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半%C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。

证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。

2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。

证明:AC∥DE;若BF=13,EC=5,求BC的长。

3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。

证明:BE=CD。

4.点O是线段AB和线段CD的中点。

证明:△AOD≌△BOC;AD∥BC。

5.点C是AE的中点,∠A=∠ECD,AB=CD。

证明:∠B=∠D。

6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。

证明:AE=BC。

7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。

证明:AF=DF。

8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。

证明:AB∥DE。

9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。

证明:AE=CE。

10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。

证明:DE=CF。

11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。

证明:AE=FB。

12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。

13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。

证明:AB=AC。

14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。

证明:∠B=∠E。

15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。

证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。

16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。

全等三角形讲义知识点+典型例题(完美打印版)

全等三角形讲义知识点+典型例题(完美打印版)

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

全等三角形的判定讲义

全等三角形的判定讲义

A D
C
B E
4. 如图∠CAB=∠DBA,AC=BD, 求证:⊿CBA≌⊿DBA
C A
D B
例6
如图,已知 AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证: (1)BE=DC, (2)BE⊥DC.
B
D
A P
Q E
C
【经典练习】 1.在△ABC 和△ ABC 中,若 AB= AB ,AC= AC ,还要加一个角的条件,使△ABC≌△ ABC ,那 么你加的条件是( A.∠A=∠ A ) B.∠B=∠ B C.∠C=∠ C ) D.∠A=∠ B
全等三角形(1)SAS
【知识要点】 边角边公理(SAS) :有两边和它们的夹角对应相等的两个三角形全等. 【典型例题】 例 1 已知:如图,AB=AC,AD=AE,求证:BE=CD.
D A
E
B
C
例 2. 如图,已知 AD∥BC, AD=BC,AE=CF,求证:⊿AFD≌⊿CEB
A E B
D F C
例3
如图,已知:点 D、E 在 BC 上,且 BD=CE,AD=AE,∠1=∠2,求证:△ADB≌△AEC
A
B
1 D
2 E
C
例4
如图已知:AE=AF,AB=AC,∠A=60°,∠B=24°,求∠BOE 的度数.
B E
O C
A F
例5
如图,已知等腰△ABC 与△ADE 中,AB=AC,AD=AE,且∠BAC=∠DAE,试说明△ABD≌△ACE.
13. 如图, ABC 为等边三角形,点 M , N 分别在 BC , AC 上,且 BM CN , AM 与 BN 交于 Q 点。 求 AQN 的度数。

全等三角形讲义

全等三角形讲义

ADB C E FO A DEB C F 平移型对称型全等三角形讲义【知识要点】1、全等三角形的定义:(1)操作方式:能够完全重合的两个三角形叫全等三角形; (2)几何描述:大小、形状完全相同的两个三角形叫全等三角形;(几何中就是借助于边、角以及其它可度量的几何量来描述几何图形的大小和形状) 2、全等三角形的几何表示:如图,△ABC ≌△DEF ;(注意对应点、对应边、对应角) 3、全等的性质:(求证线段相等、求证角相等的常规思维方法) 性质1:全等三角形对应边相等; 性质2:全等三角形对应角相等; 几何语言 ∵△ABC ≌△DEF∴AB=DE ;AC=DF ,BC=EF ;∠A=∠D ,∠B=∠E ,∠C=∠F. 性质3:全等三角形的对应边上的高、对应角平分线、对应边上的中线相等 性质4:全等三角形的周长、面积相等 4、三角形全等的常见基本图形【新知讲授】例1、如图,△OAB ≌△OCD ,AB ∥EF ,求证:CD ∥EF.例2、如图,在△ABC 中,AD ⊥BC 于点 D ,BE ⊥AC 于 点E ,AD 、BE 交于点F ,△ADC ≌△BDF (1)∠C=50°,求∠ABE 的度数.(2)若去掉原题条件“AD ⊥BC 于点 D ,BE ⊥AC 于 点E ”,仅保持“△ADC ≌△BDF ”不变,试问:你能证明:“AD ⊥BC 于点 D ,BE ⊥AC ”吗?AD B CE 例3、如图,△ABC ≌△ADE ,延长边BC 交DA 于点F ,交DE 于点G.(1)求证:∠DGB=∠CAE ; (2)若∠ACB=105°,∠CAD=10°,∠ABC=25°,求∠DGB 的度数.例4、如图,Rt △ABC 中,∠C=90°,将Rt △ABC 沿DE 折叠,使A 点与B 点重合,折痕为DE. (1)图中有全等三角形吗?请写出来;(2)若∠A=35°,求∠CBD 的度数;(3)若AC=4,BC=3,AB=5,求△BCD 的周长.例5、如图,△ABF ≌△CDE.(1)求证:AB ∥CD ;AF ∥CE ;(2)若△AEF ≌△CFE ,求证:∠BAE=∠DCF ;(3)在(2)的条件下,若∠B=35°,∠CED=30°,∠DCF=20°,求∠EAF 的度数.AE F C【课后练习】一、选择题1、下面结论是错误的是( ). (A )全等三角形对应角所对的边是对应边 (B )全等三角形两条对应边所夹的角是对应角 (C )全等三角形是一个特殊的三角形(D )如果两个三角形都与另一个三角形全等,那么这两个三角形全等 2、如图,△ABC ≌△AEF ,则下列结论中不一定成立的是( ).(A )AC=AF (B )∠EAB=∠FAC (C )EF=BC (D )EF 平分∠AFB3、如图,已知△ABC ≌△DEF ,AB=DE ,AC=DF ,则下列结论:①BC=EF ;②∠A=∠D ;③∠ACB=∠DEF ;④BE=CF ,其中正确结论的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个4、如图,△ABD ≌△EFC ,AB=EF ,∠A=∠E ,AD=EC ,若BD=5,DF=2.2则CD=( ). (A )2.2 (B )2.8 (C )3.4 (D )4(第2题图) (第3题图) (第4题图) 5、如图,已知△ABD≌△ACD,下列结论: ①△ABC 为等腰三角形;②AD 平分∠BAC ;③AD ⊥BC ;④AD=BC. 其中正确结论的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个二、填空题6、已知:如图,△ACD ≌△AEB ,其中CD=EB ,AB=AD ,则∠ADC 的对边是 ,AC 的对应边是 ,∠C 的对应角是 .7、如图,已知△ABD ≌△DCA ,AB 的对应边是DC ,AD 的对应边是 ,∠BAD 的对应角是 ,AB 与CD 的位置关系是 .8、如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°则∠OAD= .AAFA D C E F(第6题图) (第7题图) (第8题图)三、解答题9、如图,直线l ⊥BC ,将△ABC 沿直线l 翻折得到△DEF ,AB 分别交DF 、DE 于M 、Q 两点,AC 交DF 于点Q.(1)图中共有多少对全等三角形?(不添加其它字母)(2)写出(1)中所有的全等的三角形. 10、如图,△ABC ≌△ADE ,点E 正好在线段BC 上.(1)求证:∠DEB=∠EAC ;(2)若∠1=50°,求∠DEB 的度数.【知识要点】全等三角形判定定理 1、“SAS ”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:(“全等五行”)如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用; ③“边边角”不能证明两个三角形全等;DBDA1FB CDAA BC D EO在△ABC 和△DEF 中:AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(SAS )【新知讲授】“SAS”公理的运用例1、如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1、如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2、已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.例2、已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1、已知:如图,AB ∥CD ,AB=CD ,AE=DF ,求证:CE ∥BF.2、已知:如图,AB=AD ,AC=AE ,∠1=∠2,求证:∠DEB=∠2.例3、如图,BD 、CE 为△ABC 的两条中线,延长BD 到G ,使BD=DG ,延长CE 到F ,使CE=EF.(1)求证:AF=AG ;(2)试问:F 、A 、G 三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,AB=CD ,BE=DF ,求证:∠EAF=∠ECF.A BC DEF A B C D EF2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.例4、已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1、已知:如图,OD=OE,OA=OB,求证:∠A=∠B.2、已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.AD B C EF A D B C EA DC B 【课后作业】1、已知:如图,AB ⊥BD ,CD ⊥BD ,AB=DE ,BE=CD ,试判断△ACE 的形状并说明理由.2、如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE=DF ,AB=DC ,求证:∠ACE=∠DBF.3、已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.4、如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.5、如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)ABED C ADBC EF6、如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.2、“SSS ”定理:三边对应相等的两个三角形全等;如:3、①“ASA ”定理:两角及两角所夹的边对应相等的两个三角形全等;②“AAS ”定理:两角及其中一角所对的边对应相等的两个三角形全等; 如:【定理运用】例1、如图,E 、F 两点在线段BC 上,AB=CD ,AF=DE ,BE=CF ,求证:∠AFB=∠DEC.巩固练习:1、如图,已知,AB=AC ,AD=AE ,BD=CE ,延长BD 交CE 于点P ,求证:∠BAC=∠DAE ;在△ABC 和△DEF 中:AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ∽△DEF.(SSS )在△ABC 和△DEF 中: B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ∽△DEF.(ASA ) 在△ABC 和△DEF 中:A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ∽△DEF.(AAS )C A E BD例2、已知:如图,AB=AC ,AD=AE ,∠1=∠2,求证:AF=AG.巩固练习:1、如图,已知,AB=CD ,BE=DF ,AF=CE ,求证:AD ∥BC.例3、如图,C 为线段AB 的中点,AD ∥CE ,∠D=∠E ,求证:CD=EB.巩固练习1、如图,AD 为△ABC 的高线,E 、F 为直线AD 上两点,DE=DF ,BE ∥CF ,求证:AB=AC.E AF DC B 2、如图,∠ABC=∠DCB,BD 、CA 分别是∠ABC、∠DCB 的平分线,求证:AB=DC.例4、如图,△ABC 中,AB=AC ,D 、E 分别在BC 、AC 的延长线上,∠1=∠2=∠3,求证:AD=AE.巩固练习:1、已知:如图,∠A=∠D ,OA=OD ,求证:∠1=∠2.2、已知:AD ∥BC ,AE ⊥BD ,CF ⊥BD ,AE=CF ,求证:AB=CD.E A D C B 例5、已知:如图,AB=CD ,∠A=∠D ,求证:∠ABC=∠DCB.巩固练习:1、已知:如图,AB=AC ,AD=AE ,求证:∠DBC=∠ECB.2、已知:如图,△ABC 中,∠BAC=∠BCA ,延长BC 边的中线AD 到E 点,使AD=DE ,F 为BC 延长线上一点,且CE=CF ,求证:AF=2AD.例6、在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD ,AC 、BD 交于点P.(1)①如图1,∠AOB=∠COD=60°,则∠APD= ,AC 与BD 的数量关系是 ;②如图2,∠AOB=∠COD=90°,则∠APD= ,AC 与BD 的数量关系是 ;(2)如图3,∠AOB=∠COD=α°,则∠APD 的度数为 (用含α的式子表示),AC 与BD 之间的等量关系是 ;填写你的结论,并给出你的证明;图1 图2 图3AB CE FDO P D C BA O P D CB AααO P D CB AEBCD CEABE A D B CF ADF图1图2图3F巩固练习:点C 为线段AB 上一点,分别以AC 、BC 为腰在直线AB 的同侧作等腰△ACD 和等腰△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 、BD 交于点F.(1)如图1,若∠ACD=60°,则∠AFB= ;(2)如图2,若∠ACD=α°,则∠AFB= ;(用α的代数式表示) (3)如图3,将图2中的△ACD 绕点C 顺时针旋转一个角度,延长BD 交线段AE 于点F ,试探究∠AFB 与α之间的数量关系,并给出你的证明.例7、已知:AB=AC ,AD=AE ,AF ⊥CD ,AG ⊥BE ,求证:AF=AG.巩固练习:1、如图,已知,AB=AD ,AC=AE ,∠1=∠2.(1)求证:BC=DE ;(2)若AF 平分∠BAC ,求证:AF=AC.AB EDC2、已知:如图,AB=AC ,AD=AE ,求证:AO 平分∠BAC.3、如图,等腰Rt △ABC 中AB=AC ,过A 任作直线l ,BD ⊥l 于点D ,CE ⊥l 于点E. (1) 若l 与BC 不相交,求证:BD+CE=DE ;(2) 当直线l 绕A 点旋转到与BC 相交时,其它条件不变,试猜想BD 、CE 和DE 的关系? 画图并给出证明.课后作业:1、如图,等腰Rt △ABC 和等腰Rt △ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE=90°. (1)求证:BD=CE ;(2)求证:BD ⊥CE.A B C D EA B CA BDCOA DBC E AD C B 2、已知:如图,AB=AC ,AD=AE ,BD=CE ,求证:∠BAE=∠CAD.3、如图,四边形ABCD 中,AB=CD ,AD=BC ,求证:AB ∥CD ,AD ∥BC.4、已知:如图,在四边形ABCD 中,AB=CB ,AD=CD ,求证:∠A=∠C.5、已知:如图,AD=BC ,AC=BD ,求证:∠D=∠C.A DBCC M E A BD 6、如图1,等腰△ABC 中AB=AC ,D 、E 分别在AC 、AB 上,且AD 、AE ,M 、N 分别BE 、CD 的中点.(1)CD BE ,AM AN ;(填“>”、“=”、“<”)(2)如图2,把图1中的△ADE 绕A 点逆时针旋转任意一个角度,(1)中的两个结论是否仍然成立?若成立请证明,若不成立请说明理由.7、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,求证:AB=CD ,AD=BC.8、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。

全等三角形专题复习(含练习讲评)

全等三角形专题复习(含练习讲评)

一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。

(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。

例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。

练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。

3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
P
A
a
专题 三角形的尺规作图
知识点解析
作三角形的三种类型:
① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA
%
③ 已知三边作三角形: 作图依据------SSS
典型例题
【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .

【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB
【例3】已知三边作三角形 已知:如图,线段a ,b ,c.
'
求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:
【例4】已知两边及夹角作三角形 已知:如图,线段m ,n, ∠ .
求作:△ABC,使∠A=∠α,AB=m,AC=n.

【例5】已知两角及夹边作三角形
已知:如图,∠α,∠β,线段c .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.
@
随堂练习
1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()
A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角
C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定
2.
3.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()
A.作一条线段等于已知线段B.作一个角等于已知角
#
C.作两条线段等于已知三角形的边,并使其夹角等于已知角
D.先作一条线段等于已知线段或先作一个角等于已知角
3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边
C.三角形的两个角和它们的夹边;D.三角形的三个角
4.已知三边作三角形时,用到所学知识是()
A.作一个角等于已知角B.作一个角使它等于已知角的一半
%
C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线
专题利用三角形全等测距离
知识点解析
一、利用三角形全等测距离
目的:变不可测距离为可测距离。

依据:全等三角形的性质。

关键:构造全等三角形。


二、方法
(1)延长法构造全等三角形;(2)垂直法构造全等三角形。

三、步骤
利用已有的全等三角形,或者是构造出全等的三角形,利用全等三角形的性质把难以测量或不能直接测量的线段(或角)转化为易测的线段(或角).
四、模型
典型例题
例1 如右图,要测量河岸相对两点A,B的距离,可以从AB的垂线BF上取两点C,D.使BC=CD,过D作DE⊥BF,且A,C,E三点在一直线上,若测得DE=30米,则AB的距离为多少,请你说明理由.
;
例2 为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,有以下两种方法:(1)如图所示,找一处看得见A,B的点P,连接AP并延长到D,使PA=PD,连接BP并延长到C,使PC=PB.测得CD=35m,就确定了AB也是35m,说明其中的理由;
随堂练习
1、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的是()*
A.∠A
B.∠B
C.∠C
D.∠B或∠C
2、使两个直角三角形全等的条件是()
A.一锐角对应相等 B.两锐角对应相等C.一条边对应相等 D.两条直角边对应相等
3、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',
⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()
A、①②③
B、①②⑤
C、①②④
D、②⑤⑥
4、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()

A. 40°
B. 80° ° D. 不能确定
5、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度
数为()
A.60°B.70° C.75° D.85°
6、如图,已知AB=DC,AD=BC,在DB上两点且BF=DE,若∠AEB=120°,∠ADB
=30°,则∠BCF= ( )
A. 150° ° ° D. 90°

7、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等;以上条件能判断两个三角形全等的是( )
A.①③B.②④C.②③④D.①②④
8、下列条件中,不能判定两个三角形全等的是()
A.三条边对应相等B.两边和一角对应相等
C.两角及其一角的对边对应相等D.两角和它们的夹边对应相等
M N
D
C B
A
9、如图,已知MB ND
=,MBA NDC
∠=∠,下列条件不能判定是ABM CDN

△△的是(),
A.M N
∠=∠ B. AB CD
=C.AM CN
= D. AM CN

10、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是()A.BC=EF B.AC=DF C.∠B=∠E D.∠C=∠F
11、如图,点CF在BE上,ACB DFE BC EF
∠=∠=
,,请补充一个条件,使
ABC DEF

△△,补充的条件是.
12、如图,90
E F
∠=∠=︒,B C AE AF
∠=∠=
,,给出下列结论:
①CAD BAD
∠=∠②BE CF
=③ACN ABM

△△④CD DN
=其中
正确的结论是_________ _________
-
13、如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC
14、已知:如图,C D BAC ABD
∠=∠∠=∠
,,求证:OC OD
=
O
D C
B
A
15、已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.
求证:(1)AE=CF (2)AF//CE
F E
D
C
B
A
N
M
F
E
D
C
B
A
16、已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF ⊥CD
C
D
A
B
E
F
17、已知:如图ABC △和ECD △都是等边三角形,且B C D ,
,在一条直线上。

求证:BE AD = E
D
C B A
18、如图,OAB △和COD △均为等腰直角三角形,90AOB COD ∠=∠=︒, 连接AC BD 、
.求证:AC BD =
O
D
C
B
A
19、 如图所示,也可先过B 点作AB 的垂线BF ,再在BF 上取C ,D•两点,•使BC=CD .接着过点D 作BD 的垂线DE
交AC的延线长于E,则测出DE的长即为A,B的距离.•你认为这种方案是否切实可行,请说出你的理由.作BD⊥AB,ED⊥BF的目的是什么若满足∠ABD=∠BDE≠90°,此方案是否仍然可行为什么。

相关文档
最新文档