最新3塑性变形的基本定律汇总
3塑性变形的基本定律
3 塑性变形的基本定律3.1 体积不变定律及应用一、 体积不变定律内容在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。
若设变形前金属的体积为0V ,变形后的体积为1V ,则有:0V =1V =常数实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于:(1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。
这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。
(2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。
例如,冷加工时金属的比重约减少0.1~0.2%。
不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。
二、 体积不变定律的应用1、确定轧制后轧件的尺寸设矩形坯料的高、宽、长分别为L B H 、、,轧制以后的轧件的高、宽、长分别为l b h 、、(如图3-1所示),根据体积不变条件,则HBL V =1hbl V =2即 hbl HBL =在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即图3-1 矩形断面工件加工前后的尺寸hbHBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少?解:坯料体积 V 0=120×120×3000=4.32×107mm 350×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3由体积不变定律可得4.32×107=480×103×l轧后长度 l ≈90m2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。
塑性力学03-塑性本构关系
3-2 广义Hooke定律 • 在弹性范围内, 广义Hooke定律可以表达为 1 ij 1 ij ij kk E 1 2 1 • 也可以表示为: ii ii eij Sij E 2G 由应力和应变的分解式,即 ij Sij ij m , ij eij ij m 代入上面广义Hooke定律的公式,考虑到 G E / 2 1 1 eij ij m 1 S ij ij m ij kk E 1 1 1 2 1 S 3 S ij m ij ij m ij m ij E 2G E 所以可以写成两个相应分解张量之间的关系. 我们来证明一下:
因为应力强度和应变强度的公式为:
3 i Sij Sij 2 2 i eij eij 3
把 eij Sij 代入上面右式并考虑上面左式得到
(3)应力强度是应变强度的强度函数 i i 线假定的硬化条件.
3 i 2 i , 即按单一曲
综上所述, 全量型塑性本构方程为 3 i 1 2 eij Sij i i ii ii 2 i E 注意的是上式只是描述了加载过程中的弹塑性变形规律. 加 载的标志是应力强度 i 成单调增长. i 下降时为卸载过 程, 它时服从增量Hooke定律.
1. Levy-Mises流动法则 这个理论认为应变增量主轴和应力 主轴重合, 应变增量分量与相应的应力偏量分量成比例, 即
d ij d Sij
d 0
式中的比例系数决定于质点的位置和荷载的水平. 这一理论是 Levy和Mises分别在1871年和1931年独立提出的, 所以被称为 Levy-Mises流动法则. 这个关系式不包括弹性变形部分, 所以 只适用刚塑性体. 2. Prandtl-Reuss流动法则 这个理论考虑了塑性状态变形中 的弹性变形部分, 并认为弹性变形服从广义Hooke定律; 而对 于塑性变形部分, 被认为塑性应变增量的主轴和应力偏量的主 轴重合. 即 1 e e deij deij deij dSij d Sij 这就是 2G Prandtl1 2 又由塑性不可压缩性, Reuss流 d ii d ii 体积变化式弹性的,有 E 动法则
塑性变形的基本定律
二、金属压力加工金属压力加工利用金属在外力作用并不破坏自身完整状态的条件下,稳定改变其形状与尺寸,而且也改善其组织和性能的加工方法,称为金属压力加工。
这种加工过程也是使金属产生塑性变形的过程,因此也叫做金属塑性加工。
1、锻造:主要包括两种基本方式,用于制造各种零件或型材毛坯。
(1)自由锻造(简称自由锻)-使已加热的金属坯料在上下砧之间承受冲击力(自由锻锤)或压力(压力机)而变形的过程,用于制造各种形状比较简单的零件毛坯。
(2)模型锻造(简称模锻)-使已加热的金属坯料在已经预先制好型腔的锻模间承受冲击力(自由锻锤)或压力(压力机)而变形,成为与型腔形状一致的零件毛坯,用于制造各种形状比较复杂的零件。
2、轧制:金属坯在两个旋转的轧辊之间受到压缩而产生塑性变形,使横断面缩小、形状改变、长度增加,达到用户要求的加工方法。
按轧制温度分为冷轧(金属坯料不加热)和热轧(850℃-1250℃);按加工方法分为纵轧、横轧、斜轧;按产品分为板材、棒材、型材、管材等。
3、挤压:把放置在模具容腔内的金属坯料从模孔中挤出来成形为零件的过程,包括冷挤压和热挤压,多用于壁厚较薄的零件以及制造无缝管材等。
4、冲压:使金属板坯在冲模内受到冲击力或压力而成形的过程,也分冷冲压与热冲压。
5、拉拔:将金属坯料拉过模孔以缩小其横截面的过程,用于制造如丝材、小直径薄壁管材等,也分为冷拉拔和热拉拔。
2.1、塑性变形的基本定律材料力学的解释是:在某物质的弹性限度之内,在外力作用下,应力与应变成正比,且在撤销外力之后,物体能恢复原状;超过这个限度,就不成正比了,即应力不增加、或增加很少;而应变增加的很大。
并且在撤销外力之后,物体不能恢复原状。
简单地说:物体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的变形叫做塑性变形。
金属在发生塑性变形时,作用在物体上的力有两种:作用力和约束反力。
2.1.1体积不变定律在压力加工过程中,只要金属的密度不发生变化,塑性变形前后的体积就不会产生变化,这一规律称为体积不变定律。
第3章金属塑性变形的力学基础之屈服准则
变形体单位体积内的总弹性变形能
1 1 m
m
3
1 An = ij ij 2
体积变化引起的单位体积弹性变形能
2
3 AV = m m 2
2 m m
m
3
m
18
3.6 形状变化引起的单位体积弹性变形能
3.6 Deformation energy per unit volume induced by shape change
max min s 2 K
10
2.3 任意应力状态下的Tresca屈服准则
2.3 Tresca yield criterion of any stress state
x xy xz yx y yz zx zy z
形状变化引起的单位体积弹性变形能
NWPU 广义胡克定律
A An AV
1 3 = ij ij m m 2 2
1 A [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 12G 1 2 1 2 1 E J2 G 19 2G 2 1 6G 3E
第四节 屈服准则
Part 4. Yield Criterion
P105-P116
1
本节主要内容 Contents
NWPU
1. 2.
基本概念★ ★Concepts 屈雷斯加屈服准则★ ★ ★ Tresca yield criterion
掌握标准 ★ ★ ★要求熟练掌 握并能应用 ★ ★要求熟练掌握 ★ 要求了解
等倾线定义 任意应力矢量
塑性变形理论
第2章 金属塑性变形的物性方程物性方程又称本构方程,是εσ-关系的数学表达形式。
弹性变形阶段有广义Hooke 定律,而塑性变形则较为复杂。
在单向受力状态下,可由实验测定εσ-曲线来确定塑性本构关系。
但在复杂受力情况下实验测定困难,因此只能在一定的实验结果基础上,通过假设、推理,建立塑性本构方程。
为了建立塑性本构方程,首先需弄清楚塑性变形的开始条件——屈服,以及进入塑性变形后的加载路径等问题。
§2.1 金属塑性变形过程和力学特点2.1.1 变形过程与特点以单向拉伸为例说明塑性变形过程与特点,如图2-1所示。
金属变形分为弹性、均匀塑性变形、破裂三个阶段。
塑性力学视s σ为弹塑性变形的分界点。
当s σσ<时,σ与ε存在统一的关系,即εσE =。
当s σσ≥以后,变形视作塑性阶段。
εσ-是非线性关系。
当应力达到b σ之后,变形转为不均匀塑性变形,呈不稳定状态。
bσ点的力学条件为0d =σ或d P =0。
经短暂的不稳定变形,试样以断裂告终。
若在均匀塑性变形阶段出现卸载现象,一部分变形得以恢复,另一部分则成为永久变形。
卸载阶段εσ-呈线性关系。
这说明了塑性变形时,弹性变形依然存在。
弹塑性共存与加载卸载过程不同的εσ-关系是塑性变形的两个基本特征。
由于加载、卸载规律不同,导致εσ-关系不唯一。
只有知道变形历史,才能得到一一对应的εσ-关系,即塑性变形与变形历史或路径有关。
这是第3个重要特征。
事实上,s σσ>以后的点都可以看成是重新加载时的屈服点。
以g 点为例,若卸载则εσ-关系为弹性。
卸载后再加载,只要g σσ<点,εσ-关系仍为弹性。
一旦超过g 点,εσ-呈非线性关系,即g 点也是弹塑性变形的交界点,视作继续屈服点。
一般有s g σσ>,这一现象为硬化或强化,是塑性变形的第4个显著特点。
在简单压缩下,忽略摩擦影响,得到的压缩s σ与拉伸s σ基本相同。
但是若将拉伸屈服后的试样经卸载并反向加载至屈服,反向屈服一般低于初始屈服。
第三章 金属塑性变形的物理基础
(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0
℃
200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法
第三章 塑性变形的基本规律
第三章塑性变形的基本规律1、体积不变定律的概念在金属压力加工的理论研究和实际计算中,通常认为变形前后金属的体积保持不变,它是变形计算的基本依据之一。
若设变形前金属的体积为V0,变形后的体积为V1,则有:V0 = V1 =常数2、最小阻力定律的内容实践证明:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将是沿着阻力最小的方向移动,这就是通常所讲的最小阻力定律的定义。
3、弹塑性共存定律的概念和实际意义A 概念我们把金属塑性变形在加工中一定会有弹性变形存在的情况,称之为弹塑性共存定律。
B 实际意义弹塑性共存定律在轧钢中具有很重要的实际意义,可用以指导我们生产的实践。
(1)用以选择工具(2)由于弹塑性共存,轧件的轧后高度总比预先设计的尺寸要大4、极限状态理论A 极限状态的类型第一种极限状态是屈服,第二种极限状态是破坏。
屈服是金属由弹性变形转变为塑性变形的转折点,是塑性变形的开端。
破坏则是金属塑性变形过程的终结。
B 金属屈服极限σs与金属屈服的概念(1)金属屈服极限σs的概念:它是在特定条件下测得的,即是在室温下,慢速单向拉伸或单向压缩(线应力状态)时测定的金属发生屈服时的单向拉伸或单向压缩的应力值。
(2)金属的屈服:金属发生塑性变形时所需的外力大,则我们说金属难屈服,它的变形抗力就大,即不容易变形;金属发生塑性变形时所需的外力小,则我们说金属容易屈服,它的变形抗力就小,即容易变形。
C 在线应力状态下由拉伸实验建立的屈服条件拉伸一试样,当主应力σ1的数值达到该材料的屈服极限(σ1=σs )时,试样开始发生塑性变形。
D 极限状态理论它是研究弹性变形终了、塑性变形即将开始时主应力与屈服极限间关系的理论。
E 主应力差理论(Tresca 屈服条件)Tresca 屈服条件为: (3-6) F 能量理论(Mises 屈服条件)其屈服条件表达式为:(3-7)Mises 屈服条件的简化形式:(3-8)式中的m=1~1.155。
《塑性变形》课件
当物体受到外力作用时,物体内部会产生应力,使得物体发生塑性变形。在这个过程中,物体总是沿着阻力最小 的方向发生变形,这是因为阻力最小的方向所需的力最小,因此物体更容易沿着这个方向发生变形。
流动法则
总结词
在塑性变形过程中,物体的流动方向与最大主应力的方向一致。
详细描述
在塑性变形过程中,物体的流动方向与最大主应力的方向是一致的。这是因为最大主应力决定了物体 变形的难易程度,当最大主应力较大时,物体更容易沿着这个方向发生变形。同时,物体的流动也受 到最小阻力定律的影响,使得物体更容易沿着阻力最小的方向发生变形。
拉拔
通过拉拔机将金属材料拉制成所需形 状和尺寸的工艺,用于制造线材、管 材等。
塑料的加工成型
注塑成型
挤出成型
将塑料原料加热熔化后注入模具中,冷却 固化后得到所需形状和尺寸的塑料制品。
将塑料原料加热熔化后通过挤出机挤出成 所需形状和尺寸的塑料制品,如塑料管、 塑料薄膜等。
压延成型
吹塑成型
将塑料原料加热熔化后通过压延机压制成 所需厚度和宽度的塑料制品,如塑料板材 、塑料片材等。
塑性变形过程的数值模拟与优化
有限元分析
利用有限元方法对塑性变形过程 进行数值模拟,预测材料的变形
行为、应力分布和应变场等。
优化设计
基于数值模拟结果,对塑性变形过 程进行优化设计,提高材料的塑性 变形能力、减少缺陷和节约成本。
工艺参数优化
通过调整塑性变形过程中的工艺参 数,如温度、压力、变形速度等, 实现更佳的塑性变形效果。
04
CATALOGUE
塑性变形过程中的力学行为
应力状态对塑性的影响
应力状态对塑性变形的影响主 要体现在不同应力分量对材料
第三章 弹塑性本构关系
d ij d 0 dσ n 0
p ij
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
德鲁克公设的适用条件:
(1)应力循环中外载所作 的真实功与ij0起点无关;
p ij
ij d ij 0
(2)附加应力功不符合功的 定义,并非真实功
1 屈服曲面的外凸性
0 ( ij ij )dijp | A0 A || d p | cos 0
ij
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向 与塑性应变向量之间所成的夹角不应 该大于90° 稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
0 ij
由得屈服条件流动法则硬化规律判断何时达到屈服屈服后塑性应变增量的方向也即各分量的比值决定给定的应力增量引起的塑性应变增量大小本节内容屈服后塑性应变增量的方向也即各分量的比值1加载曲面后继屈服面由单向拉伸试验知道对理想塑性材料一旦屈服以后其应力保持常值屈服应力卸载后再重新加载时其屈服应力的大小也不改变没有强化现象
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性 位势理论。他假设经过应力空间的任何一点M,必有 一塑性位势等势面存在,其数学表达式称为塑性位势 函数,记为:
g I1, J 2 , J3 , H 0
g ij , H 0
或
式中, H 为硬化参数。 塑性应变增量可以用塑性位势函数对应力微分的表达 式来表示,即: g p
残余应力增量与塑性 应变增量存在关系:
p p d ij D d ij
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
第三章 金属的塑性变形
主要工艺:微细晶粒超塑性、相变超塑性
小结
1.认识单晶体金属塑性变形的主要方式-滑移的主 要特点;
2.认识多晶体金属塑性变形的特点和晶界与晶粒位 向对塑性变形的影响; 3.掌握金属在塑性变形过程中,结构、组织与性能 的变化规律,加工硬化产生的原因和实际意义;
滑移的同时必然伴随着晶体的转动。
孪生
孪生:在切应力作用下,晶体的一部分 相对于另一部分沿一定晶面(孪生面)和晶 向(孪生方向)发生切变的变形过程。
孪生的特点
金属晶体中变形部分与未变形部分在孪生面
两侧形成镜面对称关系。 发生孪生的部分(切变部分)称为孪生带或 孪晶。
孪生带的晶格位向发
生变化,发生孪生时 各原子移动的距离是 不相等的。
一、单晶体的塑性变形
塑性变形主要方式:滑移、孪生
单晶体
弹性变形
滑移变形
孪生变形
滑移变形在晶体表面留下变形痕迹 孪晶变形在晶体内部留下变形痕迹
滑移
滑移是在切应力作用下,晶体的一部分 沿一定的晶面(滑移面)上的一定方向(滑 移方向)相对于另一部分发生滑动。
滑移示意图
机械工程材料
滑移的特点
滑移与位错
多晶体由许多晶粒组成,各个晶粒位向不同,且存在许 多晶界,变形复杂。
2、多晶体的塑性变形
多晶体由许多晶粒组成,各个晶粒位向不同, 且存在许多晶界,变形复杂。
(A)晶界的影响
晶界起强化作用
( B)晶粒位向的影响
轴向拉力F,试样横截面积A , 外力F作用在滑移面上,沿滑 移 方向的分切应力为:
晶界的影响
金属在热轧时变形和再结晶的示意图
热加工对金属组织和性能的影响⑴
①改善铸锭组织,表现在:
(2)金属塑性变形宏观规律与微观机制课件
图3-4 拔长坯料的变形模式
图3-5 不同宽度坯料轧制时 宽展情况
图3-6 轨辊直径不同时 轧件变形区 纵横方向阻力图 (D′>D,B′2>B2)
§3. 2 影响金属塑性流动和变形的因素
3. 2. 1 摩擦的影响 3. 2. 2 变形区的几何因素的影响 3. 2. 3 工具的形状和坯料形状的影响 3. 2. 4 外端的影响 3. 2. 5 变形温度的影响 3. 2. 6 金属性质不均的影响
2.工艺条件对残余应力的影响
变形条件: 主要是变形温度、变形速度、变形程度、接触摩擦、工具和变形物体形状等等。 热处理条件:
淬火温度、淬火介质条件、淬火方式、工件形状尺寸等。
3.残余应力所引起的后果
(1)引起物体尺寸和形状的变化。 (2)使零件的使用寿命缩短。 (3)降低了金属的塑性加工性能。 (4)降低金属的耐蚀性以及冲击韧性和疲劳强度等。
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
图3-10 钢球压缩时的流线
图3-11 受塑压时物体内部质点 滑移变形的近似模型
图3-12 h2 为各种数值时的情况
3. 2. 4 外端的影响
外端(未变形的金属)ห้องสมุดไป่ตู้变形区金属的影响主要是阻碍变形区金属流动,进而产生或加剧附加的应力和应变。
图3-15 拔长时外端的影响
(a)
(b)
图3-16 开式冲孔时的“拉缩” 图3-17 弯曲变形对外端的影响
3. 2. 1 摩擦的影响
摩擦影响的实质:由于摩擦力的作用,在一定程度上改变了金属的流动特性并使应力分布受到影响。
塑性成形
二、 冷变形强化与再结晶
1. 冷变形强化Cold Deformation Strengthening
在冷变形时,随着变形程度的增加,金属材料的所有强 度指标和硬度都有所提高,但塑性有所下降的现象。 原因:晶格畸变distortion of lattice 作用:阻碍继续变形,提高金属强度指标 应用:代替热处理
–碳素结构钢,拔长锻造比≥3, 镦粗锻造比≥2.5; –合金结构钢,锻造比为3~4
铸造缺陷严重,碳化物粗 大的高合金钢钢锭 :不锈 钢的锻造比选为 4 ~ 6 ,高 速钢的锻造比选为5~12 y太大,会增加各向异性。
2. 锻造流线
锻造后金属组织具 有方向性
– 脆性杂质:碎粒状或 链状分布 – 塑性杂质:带状分布
四、塑性成形基本规律
1. 体积不变定律 Volume Constance 金属塑性变形前后的体积相等,即体积为 常数,也称为不可压缩定律。
2. 临界切应力定律 Critical Shear Stress
晶体滑移的驱动力是外 力在滑移系上的分切 应力。只有当滑移系 上分切应力(τ )达到 一定值时,则该滑移 系才 Sliding Deformation:在切应力作用
下,晶体一部分沿一定晶面(滑移面)和晶向(滑 移方向)相对于另一部分产生滑动的变形方式称为 滑移。 – 孪生变形 Twinning Deformation:在切应力 作用下,晶体一部分相对于其余部分沿一定晶面及 晶向产生一定角度切变引起变形
显微组织特征 Characteristics of Microstructure:
–晶内微观结构变化 :晶内点缺陷增加,位错密度提高, 晶格严重畸变。 –纤维组织形成:形变量很大时,晶界遭到破坏,变得模 糊不清,各晶粒被拉成细条形,呈纤维状。 –形变织构:由变形引起晶粒的择优取向,退火难以消除。
弹塑性力学定理和公式
应力应变关系弹性模量 ||广义虎克定律1。
弹性模量对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:a 弹性模量单向拉伸或压缩时正应力与线应变之比,即b 切变模量切应力与相应的切应变之比,即c 体积弹性模量三向平均应力与体积应变θ(=εx+εy+εz)之比,即d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即此外还有拉梅常数λ。
对于各向同性材料,这五个常数中只有两个是独立的。
常用弹性常数之间的关系见表3-1 弹性常数间的关系。
室温下弹性常数的典型值见表3—2 弹性常数的典型值。
2。
广义虎克定律线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。
它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质.A 各向同性材料的广义虎克定律表达式(见表3—3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。
对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。
B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应力偏量与应变偏量关系式在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。
弹性力学基本方程及其解法弹性力学基本方程|| 边界条件||按位移求解的弹性力学基本方法||按应力求解的弹性力学基本方程|| 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式1.弹性力学基本方程在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性方程确定,即(1)3个平衡方程[式(2-1—22)],或用脚标形式简写为(2)6个变形几何方程[式(2—1—29)],或简写为(3)6个物性方程[式(3-5)或式(3—6)],简写为或2.边界条件弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。
塑性变形与强化
(4)材料具有明显屈服点条件 ① 变形前晶体中可动位错少 ② 随塑性变形位错能迅速增殖; ③ 相当低的应力敏感指数m。
22
(三)加工硬化现象
1.定义
金属屈服后,欲使之继续变形必须增加应力的现象。 表现为强度显著提高、塑性明显下降。 发生加工硬化时应力-应变经验关系式:
K n
n为加工硬化指数,0.1-0.5,反映加工硬化的强弱。
一、弹性变形
(一)基本概念
材料在外力作用下产生变形,当外力去除后能回复到原 来形状的能力为其弹性性质,这种可逆变形就叫做弹性 变形。
分类 普弹性:在较小负荷下产生的变形。 高弹性:高分子材料(如橡胶)在高弹态所表现出的特性: 变形量大,有热效应-伸长时放热,回缩时吸热。
1
(二)广义虎克定律
2G exp[ 2a ]
1
(1 )b
a为滑移面的面间距,b为滑移方向上的原子间距
(3)多系滑移时不同滑移面上的位错产生相互作用,使 位错进一步运动的阻力增加,因此多系滑移比单系滑移要 困难。
7
双滑移或多系滑移,会出现交叉形的滑移带
8
交叉形的滑移带
9
螺位错交滑移
扩展位错的交滑移:不全位错须先束集为全螺位错, 再进行交滑移。
(1)通过冷变形强化金属材料 是一些金属材料强化的重 要手段,如铜、铝、奥氏体不锈钢等。 通过拔丝、轧板、拉伸使金属材料在成型的同时,整体 强化。 应用:铜铝导线、型材、冷轧板材、冷拔弹簧等。 通过塑性变形提高表层、局部强度(喷丸处理、局部挤 压) 通过过载实现局部变形强化 (2)形变强化是金属材料成型加工、安全使用的保障。
子晶体LiF也都存在屈服点
20
(3)变形抗力与位错运动速度
塑性变形机制
钢、铝、铜、钛等及其合金。
3. 主要加工方法
(1) 轧制:金属通过旋转的轧辊受到压缩,横断面积 减小,长度增加的过程。(可实现连续轧制)纵轧、横 轧、斜轧。
举例:汽车车身板、烟箔等; 其它:多辊轧制(24辊)、孔型轧制等。
3. 主要加工方法
(2) 挤压:金属在挤压筒中受推力作用从模孔中流出 而制取各种断面金属材料的加工方法。
■ 对一定结构晶体,滑移方向随变形温度不变,但滑移面随变形温度有所 改变.如变形温度较高时,Al的滑移面可能改变为(100),Mg的滑移面 可能变为(10 1 1) 。
金属的主要滑移面、滑移方向和滑移系
临界切应力(Critical Shear Stress):
能够引起滑移系开动的分切应力,决定滑移系能否开动.
2 c sin 2
45时,
m ax达到 c时,
max 2 s最小,且
s
2 c
拉伸时Mg单晶体的取向
等于与趋近此方位称为有利方位或软取向;
因子与屈服应力的关系
远离此方向称为不利方向或硬取向;
处于软取向的滑移首先发生滑移.
只有 c一定时 s 与 cos cos
举例:飞机大梁,火箭捆挷环等
万吨级水压机模锻的飞机大梁、火箭捆挷环
3. 主要加工方法
(5) 冲压:金属坯料在冲模之间受压产生分离或 变 形的加工方法。
4. 特点
(1)质量比铸件好(尺寸精度高,表面质量好、 性 能好);a. 细化晶粒;b.消除微观缺陷。
(2)不产生切削,金属利用率高; (3)易实现连续化、自动化、高速、大批量生产; (4)设备较庞大,相对铸造能耗较高。
(整理)3塑性变形的基本定律.
3 塑性变形的基本定律3.1 体积不变定律及应用一、 体积不变定律内容在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。
若设变形前金属的体积为0V ,变形后的体积为1V ,则有:0V =1V =常数实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于:(1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。
这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。
(2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。
例如,冷加工时金属的比重约减少0.1~0.2%。
不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。
二、 体积不变定律的应用1、确定轧制后轧件的尺寸设矩形坯料的高、宽、长分别为L B H 、、,轧制以后的轧件的高、宽、长分别为l b h 、、(如图3-1所示),根据体积不变条件,则HBL V =1hbl V =2即 hbl HBL =在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即图3-1 矩形断面工件加工前后的尺寸hbHBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少?解:坯料体积 V 0=120×120×3000=4.32×107mm 350×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3由体积不变定律可得4.32×107=480×103×l轧后长度 l ≈90m2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。
塑性变形与轧制技术:体积不变定律及其应用
例如:沸腾钢锭热轧前比重6.9吨/米3,轧制后7.85吨/米3,体积约减 少13%,继续加工体积不再改变。镇静钢锭和连铸坯的比重一般在7.6 吨/米3左右,轧制后为7.85吨/米3,体积的变化仅约为3%。
实际上,塑性变形中体积会不会改变?
(2)在热轧过程中金属因温度变化而发生相变,并且在 冷轧过程中,金属的组织结构被破坏,也会引起金属体积 的变化,不过这种变化都极为微小。
l≈90m
谢谢大家!
若已知H、B、L、h、b, l HBL
hb
矩形断面工件加工前后的尺寸
二、体积不变定律的应用
2、可以确定使金属的消耗最小的坯料尺寸,提高金属收 得率架轧机上轧件出口的断面积F1、F2……Fn
,和成品机架的轧辊速度vn,即可求其余轧机的轧辊速度
v1、v2……等。
金属秒流量体积相等 F1v1 F2v2 Fnvn
例题
某厂轧制50×5角钢,原料为连铸方坯,尺寸为120×120×3000mm, 已知50×5角钢每米理论重3.77kg,密度为7.85t/m3,计算轧后长度l为 多少?
解: 坯料体积V0=120×120×3000/109=4.32×10-2m3 50×5角钢每米体积V1=3.77/(7.85×103)=4.8×10-4mm3 由体积不变定律可得V0=V1l l =(4.32×10-2)/(4.8×10-4) ≈90m
例:冷加工时金属的比重仅减少0.1%~0.2%。经过再结晶退火后, 其比重仍会恢复到原有的数值。
二、体积不变定律的应用
1、可以确定轧制后轧件的尺寸
矩形坯料的高、宽、长分别为H、B、L,V1=HBL;
在轧制过程中,轧件在高度方向被压下的金属,将向纵向和横向流动 而形成延伸和宽展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3塑性变形的基本定
律
3 塑性变形的基本定律
3.1 体积不变定律及应用
一、体积不变定律内容
在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。
若设变形前金属的体积为
V,变形后的体积为
1
V,则有:
V=
1
V=常数
实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于:
(1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。
这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。
(2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。
例如,冷加工时金属的比重约减少
0.1~0.2%。
不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。
二、体积不变定律的应用
1、确定轧制后轧件的尺寸
设矩形坯料的高、宽、长分别为L
B
H、
、,轧制以后的轧件的高、宽、长分别为l
b
h、
、(如图3-1所示),根据体积不变条件,则
HBL
V=
1
hbl
V=
2
即hbl
HBL=
在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即
图3-1 矩形断面工件加工前后的尺寸
hb
HBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少?
解:
坯料体积 V 0=120×120×3000=4.32×107mm 3
50×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3
由体积不变定律可得
4.32×107=480×103×l
轧后长度 l ≈90m
2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。
例题2:某轨梁轧机上轧制50Kg/m 重轨,其理论横截面积为6580mm 2,孔型设计时选定的钢坯断面尺寸为325×280mm 2,要求一根钢坯轧成三根定尺为25m 长的重轨,计算合理的钢坯长度应为多少?
根据生产实践经验,选择加热时的烧损率为2%,轧制后切头、切尾及重轨加工余量共长1.9m ,根据标准选定由于钢坯断面的圆角损失的体积为2%。
由此可得轧后轧件长度应为
=l (3×25+1.9)×103=76900mm
由体积不变定律可得
325×280L (1-2%)(1-2%)=76900×6580
由此可得钢坯长度
L =
mm 567398
.02803256580769002=⨯⨯⨯ 故选择钢坯长度为5.7m 。
3、在连轧生产中,为了保证每架轧机之间不产生堆钢和拉钢,则必须使单位时间内金属从每架轧机间流过的体积保持相等,即
n n v F v F v F === 2211
式中 n F F F 21、为每架轧机上轧件出口的断面积,
n v v v 21、为各架轧机上轧件的出口速度,它比轧辊的线速度稍大,但可看作近似相等。
如果轧制时n F F F 21、为已知,只要知道其中某一架轧辊的速度(连轧时,成品机架的轧辊线速度是已知的),则其余的转数均可一一求出。
3.2 最小阻力定律及其应用
一、最小阻力定律内容
叙述1:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将沿着阻力最小的方向移动。
叙述2:金属塑性变形时,若接触摩擦较大,其质点近似沿最法线方向流动,也叫最短法线定律。
叙述3:金属塑性变形时,各部分质点均向耗功最小的方向流动,也叫最小功原理。
二、最小阻力定律的应用1、判断金属变形后的横断面形状。
例1:矩形六面体的镦粗
图3-2为塑压矩形断面的变化情况。
由图可清楚地看出:随着压缩量的增加,矩形断面的变化逐渐变成多面体、椭圆和圆形断面。
对于这个现象的分析:
用角平分线的方法把矩形断面划分为四个流动区域——两个梯形和两个三角形。
为什么用角平分线划分呢?因为角平分线上的质点到两个周边的最短法线长度是相等的。
因此,在该线上的金属质点向两个周边流动的趋势也是相等的。
由图可见,每个区域内的金属质点,将向着垂直矩形各边的方向移动,由于向长边方向移动的金属质点较向短边移动的多,故当压缩量增大到一定程度时,将使变形的最终断面变形为圆形。
结论:任何断面形状的柱体,当塑压量很大时,最后都将变成圆形断面。
图3-2 塑压矩形断面柱体变化规律
2.确定金属流动的方向。
例2:轧制生产中的情况
(1)利用最小阻力定律分析小辊径轧制的特点。
如图2-3
在压下量相同的条件下,对于不同辊径的轧制,其变形区接触弧长度是不相同的,小辊径的接触弧较大辊径小,因此,在延伸方向上产生的摩擦阻力较小,根据最小阻力定律可知,金属质点向延伸方向流动的多,向宽度方向流动的少,故用小辊径轧出的轧件长度较长,而宽度较小。
(2)为什么在轧制生产中,延伸总是大于宽展?首先,在轧制时,变形区长度一般总是小于轧件的宽度,根据最小阻力定律得,金属质点沿纵向流动的比沿横向流动的多,使延伸量大于宽展量;其次,由于轧辊为圆柱体,沿轧制方向是圆弧的,而横向为直线型的平面,必然产生有利于延伸变形的水平分力,它使纵向摩擦阻力减少,即增大延伸,所以,即使变形区长度与轧件宽度相等时,延伸与宽展的量也并不相等,延伸总是大于宽展
3.3 弹塑性共存定律
一、弹塑性共存定律内容
物体在产生塑性变形之前必须先产生弹性变形,在塑性变形阶段也伴随着弹性变形的产生,总变形量为弹性变形和塑性变形之和。
为了说明在塑性变形过程中,有弹性变形存在,我们通过拉伸实验为例来说明这个问题。
图2-4为拉伸实验的变化曲线(OABC),当应力小于屈服极限时,为弹性变形的范
图3-3 轧辊直径对宽展的影响
围,在曲线上表现为OA段,随着应力的增加,即应力超过屈服极限时,则发生塑性变形,在曲线上表现为ABC段,在曲线的C点,表明塑性变形的终结,即发生断裂。
从图中可以看出,
(1)变形的范围内(OA),应力与变形的关系成正比,可用虎克定律近似表示。
(2)在塑性变形的范围内(ABC),随着拉应力的增加(大于屈服极限),当加载到B点时,则变形在图中为OE段,即为塑性变形δ与弹性变形ε之和,如果加载到B点后,立即停止并开始卸载,则保留下来的变形为OF(δ),而不是有载时的OE段,它充分说明卸载后,其弹性变形部分EF(ε)随载荷的消失而消失,这种消失使变形物体的几何尺寸多少得到了一些恢复,由于这种恢复,往往在生产实践中不能很好控制产品尺寸。
(3)弹性变形与塑性变形的关系,要使物体产生塑性变形,必须先有弹性变形或者说在弹性变形的基础上,才能开始产生塑性变形,只有塑性变形而无弹性变形(或痕迹)的现象在金属塑性变形加工中,是不可能见到的。
因此,我们把金属塑性变形在加工中一定会有弹性变形存在的情况,称之为弹塑共存定律。
二、弹塑性共存定律在压力加工中的实际意义
弹塑性共存定律在轧钢中具有很重要的实际意义,可用以指导我们生产的实践。
1、用以选择工具
在轧制过程中工具和轧件是两个相互作用的受力体,而所有轧制过程的目的是使轧件具有最大程度的塑性变形,而轧辊则不允许有任何塑性变形,并使弹性变形愈小愈好。
因此,在设计轧辊时应选择弹性极限高,弹性模数大的材料;同时应尽量使轧辊在低温下工作。
相反的,对钢轧件来讲,其变形抗力愈小,塑性愈高愈好。
图3-4 拉伸时应力与变形的关系
2 由于弹塑性共存,轧件的轧后高度总比预先设计的尺寸要大
例:如图(3-5)所示,轧件轧制后的真正高度h 应等于轧制前事先调整好的辊缝高度
0h ,轧制时轧辊的弹性变形n h ∆,(轧机所有部件的弹性变形在辊缝上所增加的数值)和轧制后轧件的弹性变形M h ∆之和,即:
M n h h h h ∆+∆+=0
因此,轧件轧制以后,由于工具和轧件的弹性变形,使得轧件的压下量比我们所期望的值小。
小结:本章应重点掌握三大定律的内容,熟悉三大定律的实际应用。
图3-5 轧辊及轧件的弹性变形图。