土的物理性质和分类

合集下载

土力学课件第2章_土的物理性质及分类

土力学课件第2章_土的物理性质及分类
• 一类是根据直接指标换算的,称为间接指标(换 算指标),有 孔隙比(void rate) 孔隙率(porosity) 饱和度(degree of saturation)
2.2.1 土的三相比例关系图
质量
m mw ms
气 水 土粒
体积
Va
Vv
Vw
V
Vs
ms:土粒质量 mw:土中水质量 m:土的总质量
100 %
(7)干密度ρd干容重γd • 定义:单位体积内土粒的质量或重量
• 表达式:
d

ms V
d

ms g V

d
g
• 土烘干,体积要减小,因而土的干密度不 等于烘干土的密度。
• 土的干密度或干容重是评价土密实程度的 指标,干密度或干容重越大表明土越密实, 反之越疏松。常用它来控制填土工程的施 工质量。
干密度与湿密度和含水率的关系
m
V
d
wd
1
d 1 w
d

1 w
孔隙比与比重和干密度的关系
d

ms V
s
1 e
e dsw 1 d
饱和度与含水率、比重和孔隙比的关系
Sr
Vw Vv

ws w
e
wd s e
当土饱和时,即为Sr=100%

e wsat ds
w
sat

Gs e 1 e

w


Gs 1 1 e

e Gs (1 w)w 1
n 1 d Gs w
St

w d nw
kN/m3 kN/m3 kN/m3 kN/m3

第1章 土的物理性质及分类

第1章 土的物理性质及分类

筛分法
200g 10 5.0 2.0 1.0 0.5 0.25 0.1 P % 95 87 78 66 55 36
筛分法就是用一套标准筛子如孔 直径(mm):20、10、5.0、2.0、 l.0、0.5、0.25、0.1、0.075, 将烘干且分散了的200g有代表性 的试样倒入标准筛内摇振,然后 分别称出留在各筛子上的土重, 并计算出各粒组的相对含量,即 得土的颗粒级配。 沉降分析法:具体有密度计法(也 称比重计法)或移液管法(也称吸管 法)。该两法的理论基础都是依据 Stokes(司笃克斯)定律,即球状的 细颗粒在水中的下沉速度与颗粒 直径的平方成正比
第1章 土的物理性质及工程分类
§1.1 §1.2 §1.3 §1.4 §1.5 土的形成与三相组成 土的三相比例指标 无粘性土的密实度 粘性土的物理特征 土的工程分类
土的形成过程
土的三相组成 土的物理状态 土的结构
决定
渗透特性 变形特性 强度特性
土的工程分类:便于研究和应用 土 的 压 实 性:如何获得较好的土
知识要点
1.掌握土体的三相组成及三相比例 指标之间的换算 2.领会无粘性土密实度概念、判别 方法及砂土相对密度的计算 3.掌握粘性土的塑限、液限、塑性 指数和液性指数的概念及其物理状态评价 4.掌握无粘性土和粘性土的分类依据 和分类方法 5.掌握土的工程分类
§1.1 土的形成与三相组成 一、土的形成
固体颗粒 – 颗粒级配
土的三相组成 – 固体颗粒
矿物成分取决于母岩的矿物成分和风化作用 原生矿物:由岩石经过物理风化形成,其矿物
成分与母岩相同。
例:石英、云母、长石等 特征:矿物成分的性质较稳定,由其组成的土具
有无粘性、透水性较大、压缩性较低的特点

第一章土的物理性质及分类

第一章土的物理性质及分类

第⼀章⼟的物理性质及分类第⼀章⼟的物理性质及分类1—1 概述⼟的定义:⼟是连续,坚固的岩⽯在风化作⽤下形成的⼤⼩悬殊的颗粒,经过不同的搬运⽅式,在各种⾃然环境中⽣成的沉积物。

⼟的三相组成:⼟的物质成分包括有作为⼟⾻架的固态矿物颗粒、孔隙中的⽔及其溶解物质以及⽓体。

因此,⼟是由颗粒(固相)、⽔(液相)和⽓(⽓相)所组成的三相体系。

第⼆节⼟的⽣成⼀、地质作⽤的概念地质作⽤--导致地壳成分变化和构造变化的作⽤。

根据地质作⽤的能量来源的不同,可分为内⼒地质作⽤和外⼒地质作⽤内⼒地质作⽤: 由于地球⾃转产⽣的旋转能和放射性元素蜕变产⽣的热能等,引起地壳物质成分、内部构造以及地表形态发⽣变化的地质作⽤。

如岩浆作⽤、地壳运动(构造运动)和变质作⽤。

外⼒地质作⽤:由于太阳辐射能和地球重⼒位能所引起的地质作⽤。

它包括⽓温变化、⾬雪、⼭洪、河流、湖泊、海洋、冰川、风、⽣物等的作⽤。

风化作⽤--外⼒(包括⼤⽓、⽔、⽣物)对原岩发⽣机械破碎和化学变化的作⽤。

沉积岩和⼟的⽣成--原岩风化产物(碎屑物质),在⾬雪⽔流、⼭洪急流、河流、湖浪、海浪、冰川或风等外⼒作⽤下,被剥蚀,搬运到⼤陆低洼处或海洋底部沉积下来,在漫长的地质年代⾥,沉积的物质逐渐加厚,在覆盖压⼒和含有碳酸钙、⼆氧化硅、氧化铁等胶结物的作⽤下,使起初沉积的松软碎屑物质逐渐压密、脱⽔、胶结、硬化⽣成新的岩⽯,称为沉积岩。

未经成岩作⽤所⽣成的所谓沉积物,也就是通常所说的“⼟”。

风化、剥蚀、搬运及沉积--外⼒地质作⽤过程中的风化、剥蚀、搬运及沉积,是彼此密切联系的。

⼆、矿物与岩⽯的概念岩⽯--⼀种或多种矿物的集合体。

矿物--地壳中天然⽣成的⾃然元素或化合物,它具有⼀定的物理性质、化学成份和形态.(⼀) 造岩矿物组成岩⽯的矿物称为造岩矿物。

矿物按⽣成条件可分为原⽣矿物和次⽣矿物两⼤类。

区分矿物可以矿物的形状、颜⾊、光泽、硬度、解理、⽐重等特征为依据。

(⼆)岩⽯岩⽯的主要特征包括矿物成分、结构和构造三⽅⾯。

土的物理性质及工程分类

土的物理性质及工程分类

如有你有帮助,请购买下载,谢谢!第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。

固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。

2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。

粒径大于等于0.075mm 的颗粒可采用筛分法来区分。

粒径小于等于0.075mm 的颗粒需采用水分法来区分。

颗粒级配曲线斜率: 某粒径范围内颗粒的含量。

陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。

特征粒径: d 50 : 平均粒径;d 60 : 控制粒径;d 10 : 有效粒径;d 30粗细程度: 用d 50 表示。

曲线的陡、缓或不均匀程度:不均匀系数C u = d 60 / d 10 ,Cu ≤5,级配均匀,不好Cu ≥10,,级配良好,连续程度:曲率系数C c = d 302 / (d 60 ×d 10 )。

较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。

Cc = 1~ 3, 级配连续性好。

粒径级配累积曲线及指标的用途:1.粒组含量用于土的分类定名;2)不均匀系数Cu 用于判定土的不均匀程度:Cu ≥ 5, 不均匀土; Cu < 5, 均匀土;3)曲率系数Cc 用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。

4)不均匀系数Cu 和曲率系数Cc 用于判定土的级配优劣:如果 Cu ≥ 5且C c = 1 ~ 3,级配良好的土;如果 Cu < 5 或 Cc > 3或Cc < 1, 级配不良的土。

土粒的矿物成份——矿物分为原生矿物和次生矿物。

原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状) 次生矿物:原生矿物经化学风化后发生变化而形成。

(针状、片状、扁平状) 粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。

土的物理性质指标与工程分类

土的物理性质指标与工程分类

土的物理性质指标与工程分类土壤是地球上生物生存和人类农业生产的重要基础,具有多种物理性质指标和工程分类。

下面将对这些指标和分类进行详细阐述。

土壤的物理性质指标主要包括质地、结构、孔隙度、密实度、比表面积、水分性质等。

首先是土壤的质地。

质地是指土壤中各种粒子的组成比例,一般包括沙、粉砂、粉砂、粉土和黏土等颗粒。

不同质地的土壤具有不同的通透性、保水性和保肥性。

其次是土壤的结构。

结构是指土壤中颗粒之间的排列和连接方式。

常见的土壤结构包括团聚体结构、块状结构和砂状结构等。

结构良好的土壤通透性强、保水性好,便于根系伸展和气体交换。

孔隙度是土壤中的空隙占总体积的比例。

孔隙度分为总孔隙度、毛管孔隙度和大隙隙度等不同类型。

孔隙度决定了土壤的通气性、透水性和保水性。

密实度是指土壤颗粒的紧密程度,也称为容重。

密实度通常以湿容比和干容比来表示。

密实度影响土壤的通透性、保水性和根系的适宜生长。

比表面积是指单位质量土壤颗粒的表面积。

比表面积的大小影响土壤负离子交换、吸附性能和微生物活动。

水分性质是指土壤的保水性和透水性。

土壤的含水量、毛细管水持力和渗透速率等指标可以衡量土壤的保水性和透水性,影响土壤的水分循环和水分利用效率。

土壤的工程分类主要包括黏性土、砂性土和淤泥土等。

黏性土是一类具有较高黏性和可塑性的土壤,例如粘土和壤土等。

黏性土常见于河流沉积物、湖沼底质和一些盆地地区,其工程性质主要取决于水分含量和结构。

砂性土是一类颗粒较大、容重较低的土壤,例如砂和砾石等。

砂性土主要存在于河床、滩涂和海岸线等地区,其工程性质主要取决于孔隙度和排水性。

淤泥土是一类富含有机质的细粒土壤,例如湖泊和河口地区的泥沙沉积物。

淤泥土的工程性质主要受到有机质含量、液限和塑限等因素的影响。

此外,还有其他一些土壤工程分类,如粉砂土、粉土和黏土等,它们具有不同的物理性质和工程应用特点。

总之,土壤的物理性质指标和工程分类是研究土壤科学和应用工程中的重要内容。

土力学 第2版 第二章 土的物理性质及分类

土力学 第2版 第二章 土的物理性质及分类
环刀法
环刀的容积V=60cm3; 环刀的质量m1; 环刀和土的质量m2;
土的密度: m2 m1
V
2.2.2 指标的定义
土力学
2.特殊条件下土的密度
质量m
体积V
Vw Va Vv

mw

m
ms
土粒
Vs V
(1)干密度ρd :单位体积中固
体颗粒部分的质量 (紧密程度)
d
ms V
(2)饱和密度ρsat :土体中孔 (3)浮密度ρ :在地下水位
出合适的名称,可以概略评价土的工程性质。
第2章 土的物理性质及分类
2.1 概述 2.2 土的三相比例指标 2.3 粘性土的物理特征 2.4 无粘性土的密实度 2.5 粉土的密实度和湿度 2.6 土的胀缩性、湿陷性和冻胀性 2.7 土的分类
土力学
2.2 土的三相比例指标
2.2.1 土的三相比例关系图 2.2.2 指标的定义 2.2.3 指标的换算
土力学
2.2.1 土的三相比例关系图
土力学
质量m

mw —土中水质量
mw

m
ms —土粒质量
ms
土粒
Vs V
Vw Va Vv
体积V
Va —土中气体积 Vw —土中水体积
Vs —土粒体积
m ms mw
Vv Vw Va
(土的总质量)
(土中孔隙体积)
V Vs Vw Va
(土的总体积)
2.2 土的三相比例指标
ds
ms
Vs 1
s 1
测定方法:比重瓶法
ρs—土粒密度,单位体积土粒质量 ρw1 —纯水在40C时的密度,1g/cm3
土粒相对密度变化范围不大:一般,砂类土2.65~2.69;粉性土

土力学-物理性质及分类

土力学-物理性质及分类

沉降
不均匀沉降会导致建筑物开裂、倾 斜等问题。为了减小沉降,可以采 取加强基础、设置沉降缝等方法。
地震液化
地震液化会导致土壤失去承载力, 影响建筑物安全。为了解决地震液 化问题,可以采取振实、排水、换 填等方法。
05
结论
土力学物理性质及分类的重要性
土力学物理性质及分类是工程设计和施工的重 要依据,能够提供土的强度、变形和渗透等特 性,从而确保工程的安全性和稳定性。
了解土的物理性质和分类有助于预测土的行为, 为工程提供科学依据,避免因对土的性质了解 不足而导致的工程事故。
土的物理性质和分类对于地质工程、环境工程、 岩土工程等领域的研究和应用具有重要意义, 能够为相关领域提供基础数据和理论支持。
对未来研究的展望
随着科技的发展和研究的深入,未来对土的物理性质和分类的研究将更加精细和全面,有望揭示更多 土的内在规律和特性。
颗粒组成
土是由固体颗粒、水和空气组成的混合物。固体颗粒的成分和大小对土的性质 有重要影响。根据颗粒的大小和成分,土可以分为砂土、壤土和粘土等类型。
结构
土的结构是指固体颗粒之间的排列和相互关系。土的结构对土的强度、压缩性 和渗透性等性质有显著影响。
土的含水量
含水量
指土中水的质量与土的固体颗粒 质量的比值,通常以百分比表示 。含水量对土的力学性质和工程 性质有重要影响。
03
土的分类
按颗粒大小分类
粗粒土
粒径在2~0.1mm 之间的颗粒占优势 的土。
极细粒土
粒径在0.01~ 0.005mm之间的颗 粒占优势的土。
巨粒土
大于2mm的颗粒占 优势的土。
细粒土
粒径在0.1~ 0.01mm之间的颗 粒占优势的土。

土的物理性质及分类

土的物理性质及分类

Dr. Han WX
1.土中水
土中水可以处于液态、固态或气态。
土中细粒愈多多,即土的分散度愈大,
土中水对土性影响也愈大。
土中水是成分复杂的电解质水溶液,它与土粒有着复杂的相互作用。土中
水在不同作用力之下而处于不同的状态,根据丰要作用力的不同,工程上对土
中水的分类见表1—2。
H2O的类型: Ⅰ固态水
Ⅱ液态水
土粒下沉速度
v s w gd 2 18
速度又
v L t
密度 s Gs wl Gs w
粒度
14
《土力学》 第1章 土的物理性质及分类
§1.2 土的组成 1.2.2 土粒的大小
Dr. Han WX
2.颗粒组成累计曲线
Effective size D10: 0.02 mm
均匀性系数:Cu
d 60 d10
《土力学》 第1章 土的物理性质及分类
§1.1 概述
土的物质成分包括作为上骨架的固态矿物颗粒、土孔隙中的液态水及其溶 解物质以及土孔隙中的气体。因此,土是由颗粒(固相)、水(液相)和气(气相)
土的组成
土粒 S : Solid
水 W: Liquid 气 A: Air
Soil particle
Water (electrolytes) Air
13
《土力学》 第1章 土的物理性质及分类
§1.2 土的组成 1.2.2 土粒的大小
Dr. Han WX
1.颗分析实验 Experiment
沉降分析法的理论基础是土粒在水中的沉降原理,如 图l-1所示,将定量的土样与水混合倾注量筒中,悬液经 过搅拌,使各种粒径的土粒在悬液中均匀分布,此时悬 液浓度(单位体积悬液内含有的土粒重量)在上下不同深度 处是相等的。但静置后,土粒在悬液中下沉,较粗的颗 粒沉陈较快,图中在深度Li处只含有≤di粒径的土粒,悬 液浓度降低了。如在Li深度处考虑一小区段mn,则mn段 悬液的浓度(ti时)与开始浓度(t=0)之比,即可求得≤di的 累计百分含量。

《土力学》第一、二章土的物理性质及工程分类

《土力学》第一、二章土的物理性质及工程分类

3、描述土的孔隙体积相对含量的指标 (1)、土的孔隙比 )、土的孔隙比 )、土的孔隙率 (2)、土的孔隙率 )、土的饱和度 (3)、土的饱和度 二、指标的换算
1. 4 无黏性土的密实度
一、 砂土的相对密实度 二、无黏性土密实度划分的其他方法
1. 5 黏性土的物理特征
一、黏性土的可塑性及界限含水量 黏性土的状态随含水量的增大而变软: 黏性土的状态随含水量的增大而变软:
一、 渗流力 二、 渗砂或流土现象
当 且方向向上,就会出现土粒悬浮,随水流动现象。 且方向向上,就会出现土粒悬浮,随水流动现象。 这种现象称为渗砂或流土。 这种现象称为渗砂或流土。 开始出现流砂或流土时的水力梯度称为临界水力梯度。 开始出现流砂或流土时的水力梯度称为临界水力梯度。
三、管涌现象和潜蚀作用
在渗透水流作用下,土中细颗粒在粗颗粒形成的孔隙中流失, 在渗透水流作用下,土中细颗粒在粗颗粒形成的孔隙中流失,导致孔 隙扩大,渗流速度加快,这种现象称为管涌。管涌是一种潜蚀作用, 隙扩大,渗流速度加快,这种现象称为管涌。管涌是一种潜蚀作用, 可导致土体内部强度下降,造成土体失稳。 可导致土体内部强度下降,造成土体失稳。 在工程中可通过设置隔水层、反滤层或止水帷幕预防流砂或管涌现象。 在工程中可通过设置隔水层、反滤层或止水帷幕预防流砂或管涌现象。
二、黏性土的可塑性指标
1、塑性指数 Ip = wL – wp 2、液性指数 IL =
三、黏性土的结构性和触变性
黏性土的结构性是指天然结构受扰动而改变的特性。以灵敏度衡量: 黏性土的结构性是指天然结构受扰动而改变的特性。以灵敏度衡量: :低灵敏土 灵敏度: 灵敏度: :中灵敏土 :高灵敏土 黏性土经扰动后强度降低,扰动停止后强度又随时间而逐渐恢复。 黏性土经扰动后强度降低,扰动停止后强度又随时间而逐渐恢复。 这种胶体化学性质称为土的触变性。 这种胶体化学性质称为土的触变性。

土的物理性质指标与分类

土的物理性质指标与分类
不同类型的土
土的物理性质指标与分类
1-2 土的组成
一、土的固相 土的固相物质包括无机矿物பைடு நூலகம்粒和有机质,是构成土
的骨架最基本的物质,称为土粒。对土粒应从其矿物成 分、颗粒的大小和形状来描述。 (一)成土矿物:原生矿物,次生矿物
原生矿物是指岩浆在冷凝过程中形成的矿物,如石英 、长石、云母等。
次生矿物是由原生矿物经过风化作用后形成的新矿物 ,如三氧化二铝、三氧化二铁、次生二氧化硅、粘土矿 物以及碳酸盐等。
土的物理性质指标与分类
1-2 土的组成
3.土的级配曲线
土1的-物1理颗性粒质指分标析与试分验类 曲线
1-2 土的组成
(四)颗粒分析试验曲线的主要用途
按粒径分布曲线可求得:
(1)土中各粒组的土粒含量,用于粗粒土的分类和大致评 估土的工程性质;
土的物理性质指标与分类
1-2 土的组成
一、土的固相 (二)土粒的大小和土的级配
粒组:把工程性质相近的土粒合并为一组;某粒组的 土粒含量定义为该粒组的土粒质量与干土总质量之比
土的级配:土中各种大小的粒组中土粒的相对含量。
我国GB 50021-94《岩土工程勘察规范》的粒组划分标准可参见
表1-1。 粒 组 名 称
固相:土的颗粒、粒间胶结物; 液相:土体孔隙中的水; 气相:孔隙中的空气。
土的物理性质指标与分类
1-2 土的组成
当土骨架的孔隙全部被水占满时,这种土称为饱和土; 当土骨架的孔隙仅含空气时,就成为干土; 一般在地下水位以上地面以下一定深度内的土的孔隙中兼 含空气和水,此时的土体属三相系,称为湿土。 根据土的粘性分: 粘性土:颗粒很细; 无粘性土:颗粒较粗,甚至很大。砂、碎石、甚 至堆石(直径几十cm甚至1m)

土的物理性质及分类

土的物理性质及分类

2.1.4 土的结构和构造
1. 单粒结构
2. 蜂窝结构 3. 絮凝结构
2.1.5土的构造:土体在空间构成上不均匀特征的总和。
不同土类和成因类型,构造特征不一样 1. 层状构造 2. 分散构造
3. 裂隙构造
2.1.4 土的结构和构造
(c) 孔隙胶结物(2000倍)
(a) 粒间空隙(500倍) (b)微裂隙(1200倍)
2.1.4 土的结构和构造
粘土矿物的片状结构
粘土矿物的定向排列
粘土矿物中的网状结构
2.2
土的三相比例指标
三相简图法
Three-phase diagram
ma=0
m mw ms
Air Water Soil
Va Vv Vw Vs V
质量mass/quality
体积volume
2.2.1 室内测定的三个基本物理指标
2.1.2 土中水(liquid
1、结合水
强结合水
phase)
弱结 合水
重力水
2、自由水
毛细水
2.1.2 土中水(liquid
毛细水
phase)
毛细水导致岩块产生裂 缝、肿胀现象
2.1.3 土中气体
vapor phase
土中气体按其所处的状态和结构特点可分以下几种类型: 自由气体:与大气连通,对土的性质影响不大 封闭气体:增加土的弹性;阻塞渗流通道
对数 坐标
粒径(mm)
0.01 0.005
0.001
0.10 0.05
1.0 0.5
10 5.0
小于某粒径土重含量(%)
特征粒径及定义 d60 : 限定粒径;d30 : 中值粒径
100 Particle-size distribution curve d10 : 有效粒径;d50 :平均粒径 90 80 分别相当于小于某粒径土 70 重累计百分含量为60%、 60 50%、30%及10%对应的粒 50 径,d60>d50>d30>d10 40 30 20 度量指标 10 (1)土粒大小的均匀程度: d60 d30 d10 0 Cu = d60 / d10(不均匀系数) lgd (mm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形成过程 形成条件
影响
物理力学性质
土的基本特性
② 三相体系
Soil mechanics Chapter 1 (WRH)
① 碎散性
③ 自然变异性
土的基本特性
二、土的组成 土体
土的三相比例不同,其性CS质hoailpm不teerc1同ha(WniRcsH)
气体为零,为湿饱土和液。相是为一零种,非为饱干 状态。此时粉和细土砂土。。若此为时粘粘土土多呈 或粉土在震动为下可容坚塑硬性状土态。,砂土 易产生液化。 呈松散状态。
ma=0
mw m
Air Water
ms
Soil
质量
Va Vw Vv V
Vs
体积
Soil mechanics Chapter 1 (WRH)
共有九个参数: V Vv Vs Va Vω / ms m ω ma m 已知关系五个:
m ms m ma ma 0 m V
V Vs Va V Vv Va V
原生矿物 石英、长石、云母等
次生矿物 主要是粘土矿物,包括三种类型
高岭石、伊利石、蒙脱石
粘土矿物:
由硅氧四面体和铝氢氧八面体构 成的晶胞所组合而成
1、固体矿物颗粒(固相) ② 颗粒级配
Soil mechanics Chapter 1 (WRH)
a.颗粒大小
影响土性 质的主因
b.各粒径成 分在土中占 的比例
➢土的成分 ➢形成条件
反映 土的结构 分类
影 响
➢单粒结构 ➢蜂窝结构 ➢絮状结构
力学特性
单粒结构
指粗颗粒在重力作用下独立下沉并与其 它稳定颗粒相接触所形成的一种结构形式
Soil mechanics Chapter 1 (WRH)
粗粒土 的结构
➢ 示意图
➢ 粒间作用力 重力、毛细力 ➢ 排列形式 点与点、点与面 ➢ 矿物成分 原生矿物
重力水 毛细水
3、土体中气体(气相)
Soil mechanics Chapter 1 (WRH)
土体中的气体是指存于土体空隙中未被水占据的部分, 存在形式有两种:
土体中气体
自由气体:与大气相通,对土的性质影响不大 封闭气体:与大气隔绝,增大土体的弹性和压缩性
小结 土有三个组成部分:固相、液相和气相
Soil mechanics Chapter 1 (WRH)
1. 固体颗粒 2. 土中水 3. 土中气体
▪ 粒径级配 ▪ 矿物成分 ▪ 颗粒形状
结合水 (强结合水、弱结合水) 自由水 (重力水、毛细水)
自由气体 封闭气体
三、 土的结构
Soil mechanics Chapter 1 (WRH)
定义:土体的结构是指土颗粒之间的相互排列和连接方式。
物性指标是比例关系: 可假设任一参数为1
1. 常用表格法或 2. 累计曲线法表示 3. 三角坐标法
1、固体矿物颗粒(固相)
③ 颗粒形状
Soil mechanics Chapter 1 (WRH)
•原生矿物 圆状、浑圆状、棱角状 •次生矿物 针状、片状、扁平状
2、土体中水(液相)
Soil mechanics Chapter 1 (WRH)
扫描电镜
Soil mechanics Chapter 1 (WRH)
Soil mechanics Chapter 1 (WRH)
土的构造:是指同一土层中土颗粒之间的相互关系特征。
土的构造 类型
影 响
➢层状构造 ➢分散构造 ➢裂隙构造 ➢结核状构造
力学特性
通常分散构造土的工程性质最好,结核状构造土的工程性 质取决于细粒土部分,裂隙状构造土的工程性质最差。
3.掌握粘性土的塑性、液限、塑性指数和液性指数 的概念 及其物理状态评价
4.掌握无粘性土和粘性土的分类依据和分类方法
§2.1 土的成因与土的组成
Soil mechanics Chapter 1 (WRH)
一、土的成因
土是岩石经过风化后,在不同条件下形成的自然历史的产物
岩石 地球
风化 搬运、沉积
土 地球
固相 + 液相 + 气相
重要影响 次要作用 构成土骨架,起决定作用
土体三相组成示意图
1、固体矿物颗粒(固相)
② 粒径级配
Soil mechanics Chapter 1 (WRH)
① 矿物成分
③ 颗粒形状
物理状态 力学特性
1、固体矿物颗粒(固相) ① 矿物成分
Soil mechanics Chapter 1 (WRH)
Soil mechanics Chapter 1 (WRH)
第2章 土的组成与物理性质
主要内容 介绍土的形成,从定性和定量两个方 面描述土体的物质组成和物理性质。
知识要点
Soil mechanics Chapter 1 (WRH)
1.掌握土体的三相组成及三相比例指标之间的换算
2.领会无粘性土密实度概念、判别方法及砂土相对 密度的计算
§2.2 土的三相比指标
Soil mechanics Chapter 1 (WRH)
土的物理性质指标
(三相间的比例关系)
表示
土的物理状态 影
粗粒土的松密程度 粘性土的软硬状态

力学特 性
土的三相比例指标对研究土的性质十分重要
Soil mechanics Chapter 1 (WRH)
特点: 指标概念简单,数量很多 要点:名称、概念或定义、符号、表达式、
单位或量纲、常见值或范围、联系与区别
ቤተ መጻሕፍቲ ባይዱ什么是土的三相比例?
密实程度 干湿程度
……
定义
土的三个组成相的体积 和质量上的比例关系
基本方法: 三相草图法
一. 土的三相草图
ma=0
m
mw
Air Water
ms
Soil
质量
Soil mechanics Chapter 1 (WRH)
Va
Vv
Vw
V
Vs
体积
三相草图
土中的水即为土 体中的液相,其含 量及性质明显地 影响土的性质.
结晶水 结合水 自由水 土中冰
矿物内部的水 吸附在土颗粒表面的水 电场引力作用范围之外的水 由自由水冻成,冻胀融陷
根据土体中水分子受到电场力的作用大小,土体中的 水主要可以分为:
强结合水
结合水: 吸附在土颗粒表面的水
弱结合水
自由水: 电场引力作用范围之外的水
细粒土的结构
Soil mechanics Chapter 1 (WRH)
➢ 示意图
蜂窝结构
絮状结构
➢ 形成环境
淡水中沉积
海水中沉积
➢ 粒间作用力
表面力、胶结力
表面力、胶结力
(粒间斥力占优势) (斥力减小引力增加)
➢ 排列形式
面与面
边、角与面 边、角与边
➢ 矿物成分
次生矿物
次生矿物
注意:天然条件下,可能是多种组合,或者由一种结构过渡向另一种结构。
相关文档
最新文档