牛顿运动定律专题
专题三牛顿运动定律知识点总结
专题三牛顿运动定律知识点总结专题三牛顿三定律1.牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1)理解要点:运动是物体的一种属性,物体的运动不需要力来维持。
它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
惯性是物体的固有属性,与物体的受力情况及运动状态无关。
质量是物体惯性大小的量度。
由牛顿第二定律定义的惯性质量mF/a和由万有引力定律定义的引力质量mFr2/GM严格相等。
惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。
力是物体对物体的作用,惯性和力是两个不同的概念。
2.牛顿第二定律(1)定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
(2)公式:F合ma理解要点:因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;方向性:a与F合都是矢量,方向严格相同;瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。
3.牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为FF。
(1)作用力和反作用力与二力平衡的区别内容作用力和反作用力二力平衡受力物体作用在两个相互作用的物体上作用在同一物体上依赖关系同时产生,同时消失,互依存,不可单独存在无依赖关系,撤除一个、另一个可依然存在,只是不冉平衡叠加性两力作用效果不口抵消,不口叠加,不可求合力两力运动效果可相互抵消,可叠加,可求合力,合力为零;形变效果/、能抵消力的性质一定是同性质的力可以是同性质的力也可以不是同性质的力4.牛顿定律在连接体中的应用在连接体问题中,如果不要求知道各个运动物体间的相互作用力,并且各个物体具有相同加速度,可以把它们看成一个整体。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高中物理牛顿运动定律的应用计算题专题训练含答案
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
牛顿运动定律会考复习
一、牛顿运动定律1 、一个置于水平地面上的物体受到的重力为 G,当用力 F 竖直向下压它时,它对地面的压力等于_______________2 、一个做直线运动的物体受到的合外力的方向与物体运动的方向一致,当合外力增大时,则物体运动的加速度将_________速度的将____________.3、下列物理量中属于标量的是 ______________.A.力B.功C.动量D.加速度E.温度F.热量4 、质量为 4 千克的物体静止在光滑的水平地面上,受到 10 牛的水平力作用 2 秒,则物体速度达到_____________m/s。
5 、一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了 4cm ,再将重物向下拉 1cm,然后放手,则在刚释放的瞬间,重物的加速度是 ____________ 。
6 、质量为 2.0kg 的物体,从离地面 16m 高处,由静止开始加速下落,经 2s 落地,则物体下落的加速度的大小是 m/s2,下落过程中物体所受阻力的大小是 N。
(g取 10m/s2 )7、一个物体受到 4N 的力作用时,产生的加速度是 2m/s2. 要使它产生 3m/s2 的加速度,需要施加多大的力8 、一个铁块在 8N 的外力作用下,产生的加速度是 4m/s2. 它在 12N 的外力作用下,产生的加速度是多大?9、质量是 1.0kg 的物体受到互成120°角的两个力的作用,这两个力都是 10N,这个物体产生的加速度是多大?10、汽车满载时总质量是4.0×103kg,牵引力是4.8×103N 。
从静止开始运动,经过 10s 前进了 40m.求汽车受到的阻力。
11、一个质量为 2 千克的物体放在水平地面上,它与地面的滑动摩擦系数为 =0.2,物体受到大小为 5 牛的水平拉力作用,由静止开始运动。
(g 取 10m/s2 )问:(1) 物体受到的滑动摩擦力是多大?(2) 经过 4 秒钟,物体运动的位移是多少?12、一个原来静止在水平面上的物体,质量是 2.0kg,在水平方向受到 4.4 牛的拉力,物体跟平面的滑动摩擦力是 2.2N.求物体 4.0s 末的速度和 4.0s 内发生的位移。
牛顿运动定律专题
(五)简单临界问题的分析和求解 例9、如图所示,质量为m = 4kg的小球挂在小车前壁上,细线与竖直方向成37°角,要使小球对小车的压力刚好为零但又不脱离车壁, 求:小车应如何运动?(sin37°= 0.6 , cos37°= 0.8 ) (g=10m/s²)
A
B
解:剪断细绳前后对两物体进行受力分析:
A
B
剪断前
A
B
剪断后
由剪断后受力可得:aA=2g aB=0
模型分析法
如图a所示,一质量为m的物体系于长度分别为l1、l2的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。下面是某同学对该题的一种解法: 【例3】设l1线上拉力为T1,l2 线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T 1 cosθ=mg,T 1sinθ=T2,T2=mgtanθ。剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。 因为mgtanθ=ma,所以加速度a=gtanθ,方向在T2反方向。你认为这个结果正确吗?请评价说明。
F
分析与解答: 对物体进行受力分析:重力、支持力、摩擦力、推力。 将力沿平行于斜面和垂直于斜面正交分解,分别在两个方向求合力,列方程:
F
G
FN
Ff
沿斜面方向: Fcos α—mgsin α—Ff = ma 垂直斜面方向:FN—mg cos α—F sin α=0 Ff = µFN 联立三式解得: F=m(a+g sin α+µ cos α)/(cos α—µ sin α)
【例4】若将图a中的细线l1改为长度相同、质量不计的轻弹簧,如图b所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由。
牛顿运动定律高考真题专题汇编带答案解析
专题三牛顿运动定律考点1 牛顿运动定律的理解与应用[2019浙江4月选考,12,3分]如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球.A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内.若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁) ()A.A球将向上运动,B、C球将向下运动B.A、B球将向上运动,C球不动C.A球将向下运动,B球将向上运动,C球不动D.A球将向上运动,B球将向下运动,C球不动拓展变式1.[全国卷高考题改编,多选]伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.物体保持静止或匀速直线运动状态的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.[2020江苏,5,3分]中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送抗疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.FB.C.D.3.[2020浙江1月选考,2,3分]如图所示,一对父子掰手腕,父亲让儿子获胜.若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则( )A.F2>F1B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生4.[2015海南,8,5分,多选]如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断瞬间()A.a1=3gB.a1=0C.Δl1=2Δl2D.Δl1=Δl25.[2020山东,1,3分]一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示.乘客所受支持力的大小用F N表示,速度大小用v表示.重力加速度大小为g.以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg6.[2021辽宁六校第一次联考,多选]如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m的物体A、B(B与弹簧连接,A、B均可视为质点),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A上,使A开始向上做加速度大小为a的匀加速运动,测得A、B的v-t图像如图乙所示,已知重力加速度大小为g,则()A.施加力F前,弹簧的形变量为B.施加力F的瞬间,A、B间的弹力大小为m(g+a)C.A、B在t1时刻分离,此时弹簧弹力等于B的重力D.上升过程中,B速度最大时,A、B间的距离为a-7.[2021安徽黄山高三模拟,多选]如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F的作用.A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示.已知物块A的质量m=3 kg,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则()A.两物块间的动摩擦因数为0.2B.当0<F<4 N时,A、B保持静止C.当4 N<F<12 N时,A、B发生相对滑动D.当F>12 N时,A的加速度随F的增大而增大考点2 动力学两类基本问题[2019江苏,15,16分]如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a'B;(3)B被敲击后获得的初速度大小v B.拓展变式1.[2020江西丰城模拟]如图所示,质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后速度减为零.求物体与斜面间的动摩擦因数μ和物体沿斜面向上运动的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)2.[2015新课标全国Ⅰ,20,6分,多选]如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图(a) 图(b)A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度3.[2016上海,25,4分]地面上物体在变力F作用下由静止开始竖直向上运动,力F随高度x的变化关系如图所示,物体能上升的最大高度为h,h<H.当物体加速度最大时其高度为,加速度的最大值为.4.[2020安徽安庆检测]如图所示,质量为10 kg的环在F=140 N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F与杆的夹角θ=37°,力F作用一段时间后撤去,环在杆上继续上滑了0.5 s后,速度减为零,g取 10 m/s2,sin 37°=0.6,cos 37°=0.8,杆足够长.求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.5.[2021山西太原模拟]如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A.B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R.现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为()A.1∶3B.1∶2C.1∶D.1∶6.[2020山东,8,3分]如图所示,一轻质光滑定滑轮固定在倾斜木板上,质量分别为m和2m的物块A、B,通过不可伸长的轻绳跨过滑轮连接,A、B间的接触面和轻绳均与木板平行.A与B间、B与木板间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.当木板与水平面的夹角为45°时,物块A、B刚好要滑动,则μ的值为()A.B.C.D.7.[2017全国Ⅲ,25,20分]如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离8.[2020四川南充模拟]如图传送装置,水平传送带ab在电机的带动下以恒定速率v=4 m/s运动,在传送带的右端点a无初速度轻放一个质量m=1 kg的物块A(视为质点),当物块A到达传送带左端点b点时,即刻再在a点无初速度轻放另一质量为2m的物块B(视为质点).两物块到达b点时都恰好与传送带等速,b端点的左方为一个水平放置的长直轨道cd,轨道上静止停放着质量为m的木板C,从b点滑出的物块恰能水平滑上(无能量损失)木板上表面,木板足够长.已知:物块与传送带间的动摩擦因数μ1=0.8,与木板间的动摩擦因数μ2=0.2;木板与轨道间的动摩擦因数μ3=0.1;设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.试求:(1)物块A、B滑上木板C上的时间差Δt;(2)木板C运动的总时间.9.如图所示,传送带的倾角θ=37°,从A到B的长度为L AB=16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带A 端无初速度释放一个质量为m=0.5 kg 的物体,它与传送带之间的动摩擦因数μ=0.5,则物体从A运动到B所需的时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)10.[新情境——动车爬坡][2020四川宜宾模拟,多选]动车是怎样爬坡的?西成高铁从清凉山隧道开始一路上坡,采用25‰的大坡度穿越秦岭,长达45公里,坡道直接落差1 100米,为国内之最.几节自带动力的车厢加几节不带动力的车厢编成一组就是动车组.带动力的车厢叫动车,不带动力的车厢叫拖车.动车爬坡可以简化为如图所示模型,在沿斜面向上的恒力F作用下,A、B两物块一起沿倾角为θ的斜面向上做匀加速直线运动,两物块间用与斜面平行的轻弹簧相连,已知两物块与斜面间的动摩擦因数相同,则下列操作能保证A、B两物块间的距离不变的是()A.只增加斜面的粗糙程度B.只增加物块B的质量C.只增大沿斜面向上的力FD.只增大斜面的倾角θ考点3 实验:探究加速度与力、质量的关系[2017浙江下半年选考,17,5分]在做“探究加速度与力、质量的关系”实验中(1)右图仪器需要用到的是.(2)下列说法正确的是.A.先释放纸带再接通电源B.拉小车的细线应尽可能与长木板平行C.纸带与小车相连端的点迹较疏D.轻推小车,拖着纸带的小车能够匀速下滑说明摩擦力已被平衡(3)如图所示是实验时打出的一条纸带,A、B、C、D、…为每隔4个点取的计数点,据此纸带可知小车在打点计时器打D点时速度大小为m/s(小数点后保留2位).拓展变式1.[开放题][2020山东济南检测]如图所示的实验装置可以验证牛顿第二定律,小车上固定一个盒子,盒子内盛有砂子.砂桶的总质量(包括桶以及桶内砂子质量)记为m,小车的总质量(包括车、盒子及盒内砂子质量)记为M.2.[同2020北京第15题相似]在探究加速度与力的关系的实验中,小明同学设计了如图甲所示(俯视图)的实验方案:将两个小车放在水平木板上,前端分别系一条细线跨过定滑轮与砝码盘相连,后端各系一细线.(1)平衡摩擦力后,在保证两小车质量相同、盘中砝码质量不同的情况下,用一黑板擦把两条细线同时按在桌子上,抬起黑板擦时两小车同时开始运动,按下黑板擦时两小车同时停下来.小车前进的位移分别为x1、x2,由x=at2,知=,测出砝码和砝码盘的总质量m1、m2,若满足,即可得出小车的质量一定时,其加速度与拉力成正比的结论.若小车的总质量符合远大于砝码和砝码盘的总质量的需求,但该实验中测量的误差仍然较大,其主要原因是.(2)小军同学换用图乙所示的方案进行实验:在小车的前方安装一个拉力传感器,在小车后面固定纸带并穿过打点计时器.由于安装了拉力传感器,下列操作要求中不需要的是.(填选项前的字母)A.测出砝码和砝码盘的总质量B.将木板垫起适当角度以平衡摩擦力C.跨过滑轮连接小车的细线与长木板平行D.砝码和砝码盘的总质量远小于小车和传感器的总质量(3)测出小车质量M并保持不变,改变砝码的质量分别测得小车加速度a与拉力传感器示数F,利用测得的数据在坐标纸中画出如图丙中的a-F图线A;若小军又以为斜率在图像上画出如图丙中的图线B,利用图像中给出的信息,可求出拉力传感器的质量为.3.如图所示,某同学利用图示装置做“探究加速度与物体所受合力的关系”的实验.在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块通过绕过两个滑轮的细绳与弹簧测力计相连,实验时改变钩码的质量,读出弹簧测力计的不同示数F,不计细绳与滑轮之间的摩擦力和滑轮的质量.(1)根据实验装置图,本实验(填“需要”或“不需要”)将带滑轮的气垫导轨右端垫高,以平衡摩擦力;实验中(填“一定要”或“不必要”)保证钩码的质量远小于滑块和遮光条的总质量;实验中(填“一定要”或“不必要”)用天平测出所挂钩码的质量;滑块(含遮光条)的加速度(填“大于”“等于”或“小于”)钩码的加速度.(2)某同学做实验时,未挂细绳和钩码接通气源,然后推一下滑块(含遮光条)使其从气垫导轨右端向左运动,发现遮光条通过光电门2所用的时间大于通过光电门1所用的时间,该同学疏忽大意,未调节气垫导轨使其恢复水平,就继续进行其他实验步骤(其他实验步骤没有失误),则该同学作出的滑块(含遮光条)的加速度a与弹簧测力计示数F的图像可能是(填图像下方的字母).(3)若该同学作出的a-F图像中图线的斜率为k,则滑块(含遮光条)的质量为.4.图(a)[2018全国Ⅱ,23,9分]某同学用图(a)所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f4的值可从图(b)中弹簧秤的示数读出.砝码的质量0.05 0.10 0.15 0.20 0.25m/kg滑动摩擦力2.15 2.36 2.55 f42.93f/N图(b)图(c)回答下列问题:(1)f4= N;(2)在图(c)的坐标纸上补齐未画出的数据点并绘出f-m图线;(3)f与m、木块质量M、木板与木块之间的动摩擦因数μ及重力加速度大小g之间的关系式为f= ,f-m图线(直线)的斜率的表达式为k= ;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ= .(保留2位有效数字)5.[2018江苏,11,10分]某同学利用如图所示的实验装置来测量重力加速度g.细绳跨过固定在铁架台上的轻质滑轮,两端各悬挂一只质量为M的重锤.实验操作如下:①用米尺量出重锤1底端距地面的高度H;②在重锤1上加上质量为m的小钩码;③左手将重锤2压在地面上,保持系统静止.释放重锤2,同时右手开启秒表,在重锤1落地时停止计时,记录下落时间;④重复测量3次下落时间,取其平均值作为测量值t.请回答下列问题:(1)步骤④可以减小对下落时间t测量的(选填“偶然”或“系统”)误差.(2)实验要求小钩码的质量m要比重锤的质量M小很多,主要是为了.A.使H测得更准确B.使重锤1下落的时间长一些C.使系统的总质量近似等于2MD.使细绳的拉力与小钩码的重力近似相等(3)滑轮的摩擦阻力会引起实验误差.现提供一些橡皮泥用于减小该误差,可以怎么做?(4)使用橡皮泥改进实验后,重新进行实验测量,并测出所用橡皮泥的质量为m0.用实验中的测量量和已知量表示g,得g= .答案专题三牛顿运动定律考点1 牛顿运动定律的理解与应用D剪断绳子之前,A球受力分析如图1所示,B球受力分析如图2所示,C球受力分析如图3所示.剪断绳子瞬间,水杯和水都处于完全失重状态,水的浮力消失,杯子的瞬时加速度为重力加速度.又由于弹簧的形状来不及发生改变,弹簧的弹力大小不变,相对地面而言,A球的加速度a A=<g,方向竖直向下,其相对杯子的加速度方向竖直向上.相对地面而言,B球的加速度a B=>g,方向竖直向下,其相对杯子的加速度方向竖直向下.绳子剪断瞬间,C球所受的浮力和拉力均消失,其瞬时加速度为重力加速度,故相对杯子静止,综上所述,D正确.x图1 图2 图31.ACD物体保持静止或匀速直线运动状态的性质叫惯性,所以A、C正确.如果没有力,物体将保持静止或匀速直线运动状态,所以B错误.运动物体如果不受力,将保持匀速直线运动状态,所以D正确.2.C设列车做匀加速直线运动的加速度为a,可将后面的38节车厢作为一个整体进行分析,设每节车厢的质量均为m,每节车厢所受的摩擦力和空气阻力的合力大小均为f,则有F-38f=38ma,再将最后面的2节车厢作为一个整体进行分析,设倒数第3节车厢对倒数第2节车厢的牵引力为F',则有F'-2f=2ma,联立解得F'=F,C项正确,A、B、D项均错误.3.B F1和F2是作用力和反作用力,遵循牛顿第三定律,这对力同时产生、同时消失、大小相等、方向相反,B正确,A、C、D均错误.4.AC设物块的质量为m,剪断细线的瞬间,细线上的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1;剪断细线前对bc和弹簧S2组成的整体分析可知F1=2mg,故a受到的合力F合=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误.设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误.5.D根据位移—时间图像的斜率表示速度可知,0~t1时间内,图像斜率增大,速度v增大,加速度方向向下,由牛顿运动定律可知乘客处于失重状态,所受的支持力F N<mg,选项A错误;t1~t2时间内,图像斜率不变,速度v不变,加速度为零,乘客所受的支持力F N=mg,选项B错误;t2~t3时间内,图像斜率减小,速度v减小,加速度方向向上,由牛顿运动定律可知乘客处于超重状态,所受的支持力F N>mg,选项C错误,D正确.6.AD A与B分离的瞬间,A与B的加速度相同,速度也相同,A与B间的弹力恰好为零.分离后A与B的加速度不同,速度不同.t=0时刻,即施加力F的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F前的相同,但A与B间的弹力发生突变.t1时刻,A与B恰好分离,此时A与B的速度相等、加速度相等,A与B间的弹力为零.t2时刻,B的v-t图线的切线与t轴平行,切线斜率为零,即加速度为零.施加力F前,A、B整体受力平衡,则弹簧弹力大小F0=kx0=2mg,解得弹簧的形变量x0=,选项A正确.施加力F的瞬间,对B,根据牛顿第二定律有F0-mg-F AB=ma,解得A、B间的弹力大小F AB=m(g-a),选项B错误.A、B在t1时刻之后分离,此时A、B具有共同的速度与加速度,且F AB=0,对B有F1-mg=ma,解得此时弹簧弹力大小F1=m(g+a),选项C错误.t2时刻B的加速度为零,速度最大,则kx'=mg,解得此时弹簧的形变量x'=,B上升的高度h'=x0-x'=,A上升的高度h=a,此时A、B间的距离Δh=a-,选项D正确.7.AB根据题图乙可知,发生相对滑动时,A、B间的滑动摩擦力为6 N,所以A、B之间的动摩擦因数μ==0.2,选项A正确;当0<F<4 N时,根据题图乙可知,f2还未达到B与地面间的最大静摩擦力,此时A、B保持静止,选项B正确;当4 N<F<12 N时,根据题图乙可知,此时A、B间的摩擦力还未达到最大静摩擦力,所以A、B没有发生相对滑动,选项C错误;当F>12 N时,根据题图乙可知,此时A、B发生相对滑动,对A有a==2 m/s2,加速度不变,选项D错误.考点2 动力学两类基本问题(1)(2)3μg μg (3)2解析:(1)由牛顿运动定律知,A的加速度大小a A=μg由运动学公式有2a A L=解得v A=.(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿运动定律有F=ma B,得a B=3μg对齐后,A、B所受合外力大小F'=2μmg由牛顿运动定律有F'=2ma'B,得a'B=μg.(3)经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A则v=a A t,v=v B-a B tx A=a A t2,x B=v B t-a B t2且x B-x A=L解得v B=2.1.0.2516.25 m解析:物体受力分析如图所示,设未撤去F前,物体加速运动的加速度为a1,末速度为v,将重力mg和F沿斜面方向和垂直于斜面方向正交分解,由牛顿运动定律得F N=F sin θ+mg cos θF cos θ-f-mg sin θ=ma1又f=μF N加速过程由运动学规律可知v=a1t1撤去F后,物体减速运动的加速度大小为a2,则a2=g sin θ+μg cos θ由匀变速运动规律有v=a2t2由运动学规律知x=a1+a2联立各式解得μ=0.25,x=16.25 m.2.ACD由题图(b)可求出0~t1和t1~2t1时间内物块的加速度分别为a1=、a2=.设斜面的倾角为θ,由牛顿第二定律知,物块上滑时有-(mg sin θ+μmg cos θ)=ma1,下滑时有μmg cos θ-mg sin θ=ma2,联立可求得物块与斜面间的动摩擦因数μ及斜面的倾角θ,A、C正确;从以上两个方程可知,物块质量被约去,即不可求,B错误;物块沿斜面向上滑行的最大高度H=sin θ,可求出,D正确.3.0或h解析:由题图可知,力F随着高度x的增加而均匀减小,即F随高度x的变化关系为F=F0-kx,其中k=,则当物体到达h高度处时,向上的拉力F1=F0-h;由牛顿第二定律知,开始时加速度方向竖直向上,随x的增加加速度逐渐减小,然后反方向增大.物体从地面上升到h高度处的过程中,根据动能定理可得W F+W G=0,即h-mgh=0,求得F0=,则物体在刚开始运动时的加速度大小满足F0-mg=ma1,求得a1=;当物体运动到h高度处时,加速度大小满足mg-F1=ma2,而F1=-,求得a2=,因此加速度最大时其高度是0或h.4.(1)1 s (2) m/s解析:(1)撤去拉力F后,由牛顿第二定律有mg sin θ+μmg cos θ=ma2又0=v1-a2t2联立解得v1=5 m/s撤去拉力F前(注意杆对环的弹力的方向),有F cos θ-mg sin θ-μ(F sin θ-mg cos θ)=ma1而v1=a1t1联立解得t1=1 s.(2)环上滑至速度为零后反向做匀加速直线运动,由牛顿第二定律得mg sin θ-μmg cos θ=ma3,又s=(t1+t2),而v2=2a3s联立解得v= m/s.5.D如题图所示,设圆中任意一条弦为OM,圆的半径为R',则弦OM长s=2R'cos θ,小球下滑的加速度a=g cos θ,根据s=at2得t=2,与角θ无关,因此沿不同弦下滑的时间相等.故小球沿AB下滑所用的时间等于小球在高度为2R 的位置做自由落体运动所用的时间,即2R=g,小球沿AC下滑所用的时间等于小球在高度为4R的位置做自由落体运动所用的时间,即4R=g,联立有=,选项D正确.6.C根据题述, 物块A、B刚要滑动,可知A、B之间的摩擦力f AB=μmg cos 45°,B与木板之间的摩擦力f=μ·3mg cos 45°.隔离A进行受力分析,由平衡条件可得轻绳中拉力F= f AB+ mg sin 45°.对AB整体,由平衡条件得2F=3mg sin 45°-f,联立解得μ=,选项C正确.7.(1)1 m/s(2)1.9 m解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,地面对木板的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g ②f3=μ2(m+m A+m B)g ③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨.(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-a B设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的系统,由牛顿第二定律有f1+f3=(m B+m)a2由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2对A有v2=-v1+a A t2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-a2在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-a A(t1+t2)2A和B相遇时,A与木板的速度恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B联立以上各式,并代入数据得s0=1.9 m.(也可用如图的速度—时间图线求解)8.(1)0.5 s (2)2.75 s解析:(1)物块在传送带上的加速时间即为滑上木板的时间差,设物块A、B在传送带上的加速度为a0,则有μ1mg=ma0解得a0=8 m/s2根据v=a0Δt可得Δt==0.5 s.(2)过程一物块A滑上木板C与木板有相对运动,则有μ2mg=ma A,解得a A=2 m/s2,方向水平向右水平方向对木板C有μ2mg=μ3·2mg,木板C保持静止过程二经过Δt=0.5 s后,物块B滑上木板C,此时物块A的速度为v A=v-a AΔt=3 m/s物块B和木板C有相对运动,则有μ2·2mg=2ma B代入数据解得a B=2 m/s2,方向向右对木板C有μ2·2mg+μ2mg-μ1(2m+2m)g=ma C代入数据解得a C=2 m/s2,方向水平向左木板C由静止开始向左匀加速运动,物块A与木板C共速时有v A-a A t1=a C t1=v AC代入数据解得t1=0.75 s,v AC=1.5 m/s此时v B=v-a B t1=2.5 m/s过程三物块B相对木板C继续向左运动,仍做a B=2 m/s2的匀减速运动,木板C和物块A保持相对静止,将木板C和物块A看作整体有μ2·2mg-μ3(2m+2m)g=2ma AC解得a AC=0故木板C和物块A向左做匀速直线运动,直到A、B、C共速,速度为v B-a B t2=v AC,解得t2=0.5 s过程四三物体保持相对静止,一起做匀减速运动,直到减速到零,木板C停止运动,则有μ3(2m+2m)g=4ma ABC代入数据解得a ABC=1 m/s2t3==1.5 s故木板C运动的总时间为t=t1+t2+t3=2.75 s.图甲9.2 s解析:开始阶段,传送带对物体的滑动摩擦力沿传送带向下,物体由静止开始加速下滑,受力分析如图甲所示由牛顿第二定律得mg sin θ+μmg cos θ=ma1解得a1=g sin θ+μg cos θ=10 m/s2物体加速至速度与传送带速度相等时需要的时间t1==1 s物体运动的位移s1=a1 =5 m<16 m即物体加速到10 m/s时仍未到达B点图乙当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带对物体的滑动摩擦力沿传送带向上,如图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2设此阶段物体滑动到B所需时间为t2,则L AB-s1=v0t2+a2,解得t2=1 s故所需时间t=t1+t2=2 s.10.AD A、B两物块间的距离不变,则弹簧弹力不变,对A、B及弹簧整体应用牛顿第二定律可得F-(m A+m B)g sin θ-μ(m A+m B)·g cos θ=(m A+m B)a,所以两物块做匀加速直线运动的加速度a=-g sin θ-μg cos θ,对物块B应用牛顿第二定律可得T-m B g sin θ-μm B g cos θ=m B a,所以弹簧弹力T=m B(g sin θ+μg cos θ)+m B a=.只改变斜面粗糙。
牛顿运动定律小专题
图51.单体双过程分析1.从水平地面竖直向上抛出一物体,物体在空中运动后最后又落回地面,在空气对物体的阻力不能忽略(假设阻力大小一定)的条件下,以下判断正确的是( )A .物体上升的加速度大于下落的加速度B .物体上升的时间大于下落的时间C .物体落回地面的速度小于抛出的速度D .物体在空中经过同一位置时的速度大小相等2.图为蹦极运动的示意图。
弹性绳的一端固定在O 点,另一端和运动员相连。
运动员从O 点自由下落,至B 点弹性绳自然伸直,经过合力为零的C 点到达最低点D ,然后弹起。
整个过程中忽略空气阻力。
分析这一过程,下列表述正确的是( )A .经过B 点时,运动员的速率最大 B .经过C 点时,运动员的速率最大 C .从C 点到D 点,运动员的加速度增大 D .从C 点到D 点,运动员的加速度不变 3.质点由静止开始做直线运动,所受外力大小随时间变化的图象如图5所示,则有关该质点的运动, 以下说法中错误的是( )A .质点在前2s 内匀加速,后2s 内变加速B .质点在后2s 内加速度和速度都越来越小C .质点在后2s 内加速度越来越小,速度越来越大D .设2s 末和4s 末的速度分别为v2和v4,则质点在后2s 内的平均速度等于242v v +4. 以12m /s 的速度,竖直上抛一物体,上升最大高度为6m ,空气阻力恒为0.2N ,则该物体的质量为多少?落回原地时的速度为多少?(g 取10m /s 2)5.如图,质量为m 的物体在水平力F 为作用下由静止开始沿水平面向右运动,已知该物体与水平面间动摩擦因素为μ,经过一段时间后,撤去力F ,物体再滑动一段时间停下,物体运动整个过程历时为t ,则该物体运动的总位移为多大?6. 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0 m 高处。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
牛顿运动定律图像专题详解
牛顿运动定律图像专题1、一物体静止在光滑水平面上,同时受到两个方向相反的水平拉力F1、F2的作用,Fl、F2随位移变化,如图所示.则物体的动能将()A.一直变大,至20m时达最大B.一直变小,至20m时达最小C.先变大至10m时最大,再变小D.先变小至10m时最小,再变大2、某物体做直线运动的v-t图象如图甲所示,据此判断图乙(F表示物体所受合力)四个选项中正确的是()3、如图所示,表示某物体所受的合力随时间变化的关系图象,设物体的初速度为零,则下列说法中正确的是()A.物体时而向前运动,时而向后运动,2s末在初始位置的前边B.物体时而向前运动,时而向后运动,2s末在初始位置处C.物体一直向前运动,2s末物体的速度为零D.若物体在第1s内的位移为L,则在前4s内的位移为4L4、2008北京奥运会取得了举世瞩目的成功,某运动员(可看作质点)参加跳板跳水比赛,起跳过程中,将运动员离开跳板时做为计时起点,其速度与时间关系图象如图所示,则A.t1时刻开始进入水面B.t2时刻开始进入水面C.t3时刻已浮出水面D.0- t2的时间内,运动员处于超重状态5、一枚火箭由地面竖直向上发射,其速度和时间的关系图线如图8所示,则( )A.t3时刻火箭距地面最远B.t2~t3时间内,火箭在向下降落C.t1~t2时间内,火箭处于失重状态D.0~t3时间内,火箭始终处于失重状态6、质量为10kg的物体置于水平地面上,它与地面间的动摩擦因数??=0.2。
从t=0开始,物体以一定的初速度向右运动,同时受到一个水平向左的恒力F=10N的作用。
则反映物体受到的摩擦力F f随时间t变化的图象是下列图示中的(取水平向右为正方向,g取10m/s2)7、静止物体受到合外力随时间变化图象如下图所示,它的速度随时间变化的图象是下图中的哪个8、“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节处,从几十米高处跳下的一种极限运动。
某人做蹦极运动,所受绳子拉力F 的上部随时间t 变化的情况如图所示,将蹦极过程近似为在竖直方向的运动,重力加速度为g 。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
专题:牛顿运动定律的综合应用
专题:牛顿运动定律的综合应用题型一传送带问题【例1】如图所示,传送带与地面的夹角θ=37°,从A到B的长度为16 m,传送带以10 m/s的速率逆时针转动,在传送带上端A处由静止放一个质量为0.6 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需要的时间是多少.(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【练习】传送带与水平面夹角为37°,皮带以12 m/s的速率运动,皮带轮沿顺时针方向转动,如图所示.今在传送带上端A处无初速度地放上一个质量为m的小物块,它与传送带间的动摩擦因数为0.75,若传送带A到B的长度为24 m,g取10 m/s,则小物块从A运动到B的时间为多少?【练习】如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持以v0=2 m/s的速率运行.现把一质量为m=10 kg的工件(可视为质点)轻轻放在皮带的底端,经时间1.9 s,工件被传送到h=1.5 m的高处,g取10 m/s2.求工件与皮带间的动摩擦因数.【练习】如图所示,传送带的水平部分ab =2 m ,斜面部分bc =4 m ,bc 与水平面的夹角α=37°.一个小物体A 与传送带的动摩擦因数μ=0.25,传送带沿图示的方向运动,速率v =2 m/s.若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不会脱离传送带.求物体A 从a 点被传送到c 点所用的时间.(已知:sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)题型二 临界问题【例2】如图所示,质量m =10 kg 的小球挂在倾角θ=37°的光滑斜面的固定铁杆上,求:(1)斜面和小球以a 1=g 2的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多大?(2)当斜面和小球都以a 2=3g 的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多大?【练习】如图所示,质量为m =1 kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M =2 kg ,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围.(g =10 m/s 2)题型三“假设法”在牛顿运动定律中的应用【例3】如图所示,火车车厢中有一倾角为30°的斜面,当火车以10 m/s2的加速度沿水平方向向左运动时,斜面上的物体m与车厢相对静止,分析物体m所受的摩擦力的方向.【练习】如图所示,物体B放在真空容器A内,且B略小于A,将它们以初速度v0竖直向上抛出,下列说法正确的是()A.若不计空气阻力,在它们上升过程中,B对A压力向下B.若不计空气阻力,在它们上升过程中,B对A压力为零C.若考虑空气阻力,在它们上升过程中,B对A的压力向下D.若考虑空气阻力,在它们下落过程中,B对A的压力向上题型四图象问题【例4】总质量为80 kg的跳伞运动员从离地500 m的直升机上跳下,经过2 s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图象,试根据图象,求:(g取10 m/s2)(1)t=1 s时运动员的加速度和所受阻力的大小.(2)估算14 s内运动员下落的高度及克服阻力做的功.(3)估算运动员从飞机上跳下到着地的总时间.【练习】一质量为m=40 kg的小孩站在电梯内的体重计上.电梯从t=0时刻由静止开始上升,在0到6 s内体重计示数F的变化如图所示.试问:在这段时间内电梯上升的高度是多少?取重力加速度g=10 m/s2.课后练习1.如图所示,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫,已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变,则此时木板沿斜面下滑的加速度为 ( )A .g 2sin α B .g sin α C .32g sin α D .2g sin α 2.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 ( )A .(M +m )gB .(M +m )g -maC .(M +m )g +maD .(M -m )g3.如图所示,两个重叠在一起的滑块,置于固定的、倾角为θ的斜面上,滑块A 、B 的质量分别为m 1、m 2,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知两滑块一起从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力为 ( )A .大小等于零B .大小等于μ1m 2g cos θC .大小等于μ2m 2g cos θD .方向沿斜面向上4.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a ,及从开始到此时物块A 的位移d (重力加速度为g ).。
牛顿运动定律的10种典型例题
9.传送带有关的问题。
8.面接触物体分离的条件及应用
相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关案例。下面举例说明。0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s这段时间内P向上运动的距离: x=mg/k=0.4m 因为 ,所以P在这段时间的加速度 当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N. 当P与盘分离时拉力F最大,Fmax=m(a+g)=360N.
1. 力和运动的关系
加速度与力有直接关系,速度与力没有直接关系。 速度如何变化需分析加速度方向与速度方向之间的关系: 加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。
1.力和运动的关系
例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是( ) 探测器加速运动时,沿直线向后喷气 探测器加速运动时,竖直向下喷气 探测器匀速运动时,竖直向下喷气 探测器匀速运动时,不需要喷气
高中物理 必修一【牛顿运动定律整合】典型题(带解析)
高中物理必修一一、【牛顿运动定律】1.伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,总保持原来的匀速直线运动状态或者静止状态解析:选D.伽利略的斜面实验证明了:运动不需要力来维持,物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态,故D正确.2.关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力方向一定相同解析:选B.力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体受到的合力为零时,物体可能处于静止状态,也可能处于匀速直线运动状态,C错误;物体所受合力的方向可能与物体的运动方向相同或相反,也可能不在一条直线上,D错误.3.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D 正确.4.(多选)下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,但它的惯性却不随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小 解析:选BD .惯性是物体本身的固有属性,其大小只与物体的质量大小有关,与物体的受力及运动情况无关,故选项B 、D 正确;速度大的汽车要停下来时,速度变化大,由Δv =at 可知需要的时间长,惯性未变,故选项A 错误;小球上抛时是由于惯性向上运动,并未受到向上的推力,故选项C 错误.5.夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r,式中r 是正、反顶夸克之间的距离,αs 是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( )A .N ·mB .NC .J/mD .J ·m解析:选D .由题意有k =-3E p r 4αs,αs 是无单位的常量,E p 的国际单位是J ,r 的国际单位是m ,在国际单位制中常数k 的单位是J ·m ,D 正确,A 、B 、C 错误.6. (多选)如图所示,质量为m 的小球被一根橡皮筋AC 和一根绳BC 系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ解析:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mg cos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a=mg sin θ=g sin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小m=球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a=Fm gcos θ,C正确,D错误.7. (多选)搭载着“嫦娥三号”的“长征三号乙”运载火箭在西昌卫星发射中心发射升空,下面关于卫星与火箭升空的情形叙述正确的是()A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体.火箭向下喷气时,喷出的气体对火箭产生向上的反作用力,即为火箭上升的推动力.此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,选项B、C错误,A正确;火箭运载卫星进入轨道之后,卫星与地球之间依然存在相互吸引力,即地球吸引卫星,卫星吸引地球,这就是一对作用力与反作用力,故选项D正确.8.如图,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()A .m g 2-⎝⎛⎭⎫F M +m 2B .m g 2+⎝⎛⎭⎫F M +m 2C .m g 2+⎝⎛⎭⎫F m 2D .(mg )2+F 2解析:选B .先以整体为研究对象,根据牛顿第二定律得:加速度为a =F M +m,再对小球研究,分析受力情况,如图所示,由牛顿第二定律得到:F N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2,由牛顿第三定律可知小球对椭圆面的压力大小为m g 2+⎝ ⎛⎭⎪⎫F M +m 2,故B 正确.9.如图所示,将两个相同的条形磁铁吸在一起,置于桌面上,下列说法中正确的是( )A .甲对乙的压力的大小小于甲的重力的大小B .甲对乙的压力的大小等于甲的重力的大小C .乙对桌面的压力的大小等于甲、乙的总重力大小D .乙对桌面的压力的大小小于甲、乙的总重力大小解析:选C .以甲为研究对象,甲受重力、乙的支持力及乙的吸引力而处于平衡状态,根据平衡条件可知,乙对甲的支持力大小等于甲受到的重力和吸引力的大小之和,大于甲的重力大小,由牛顿第三定律可知,甲对乙的压力大小大于甲的重力大小,故A 、B 错误;以整体为研究对象,整体受重力、支持力而处于平衡状态,故桌面对乙的支持力等于甲、乙的总重力的大小,由牛顿第三定律可知乙对桌面的压力大小等于甲、乙的总重力大小,故C 正确,D 错误.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.11.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则()A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力解析:选C.运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D错误.12.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲对绳的拉力和乙对绳的拉力作用在同一个物体(绳)上,故两力不可能是作用力与反作用力,故选项B错误;若甲的质量比乙大,则甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误.13.(山东省2020等级考试) (多选)如图所示,某人从距水面一定高度的平台上做蹦极运动.劲度系数为k的弹性绳一端固定在人身上,另一端固定在平台上.人从静止开始竖直跳下,在其到达水面前速度减为零.运动过程中,弹性绳始终处于弹性限度内.取与平台同高度的O点为坐标原点,以竖直向下为y轴正方向,忽略空气阻力,人可视为质点.从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示人的速度、加速度和下落时间.下列描述v与t、a与y的关系图象可能正确的是()解析:选AD.人在下落的过程中,弹性绳绷紧之前,人处于自由落体状态,加速度为g;弹性绳绷紧之后,弹力随下落距离均匀增加,人的加速度随下落距离先均匀减小后反向均匀增大,C 错误,D 正确;人的加速度先减小后反向增加,可知速度时间图象的斜率先减小后反向增加.B 错误,A 正确.14.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s 2的加速度做匀加速直线运动,其中F 1与加速度的方向的夹角为37°,某时刻撤去F 1,此后该物体( )A .加速度可能为5 m/s 2B .速度的变化率可能为6 m/s 2C .1 秒内速度变化大小可能为20 m/sD .加速度大小一定不为10 m/s 2解析:选BC .根据牛顿第二定律得F 合=ma =10m ,F 1与加速度方向的夹角为37°,根据几何知识可知,F 2有最小值,最小值为F 2min =F 合sin 37°=6m ,所以当F 1撤去后,合力的最小值为F min =6m ,此时合力的取值范围为F 合≥6m ,所以最小的加速度为a min =F min m=6 m/s 2,故B 、C 正确. 15.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g 3C .物块B 的加速度为0D .物块B 的加速度为g 2 解析:选B .剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统分析,加速度为:a =3mg sin 30°-F 弹3m =g 3,即A 和B 的加速度均为g 3,方向沿斜面向下. 16.(多选) 如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g 2解析:选AD .由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg 2x,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B 错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度大小a =F a m=32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度大小a ′=F b m=12g ,D 正确.二、【牛顿第二定律的应用】1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确. 3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B .倾角θ越大,雨滴对屋顶压力越大C .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短解析:选AC .设屋檐的底角为θ,底边长度为L ,注意底边长度是不变的,屋顶的坡面长度为x ,雨滴下滑时加速度为a ,对雨滴受力分析,只受重力mg 和屋顶对雨滴的支持力F N ,垂直于屋顶方向:mg cos θ=F N ,平行于屋顶方向:ma =mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h=12at2联立解得:F f=4 N.(2)下落过程由牛顿第二定律:mg-F f=ma1得:a1=8 m/s2落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置()A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2, 对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°三、【动力学中的“板块”“传送带”模型】1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a= 2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:。
2024届高考物理强基计划专题讲座课件:牛顿运动定律
返回 退出
二、力学中的常见力
1. 万有引力(universal gravitation)
存在于任何 两个物体间的相互吸引力。
牛顿万有引力定律:
F
G
m1m2 r2
其中m1和m2为两个质点的引力质量,r为两个质点
的距离,G叫做引力常量。
G 6.672 59 1011 N m2 / kg2
合外力的大小成正比,与物体的质量成反比,加速
度的方向与合外力的方向相同。
数学形式: F ma
或
F
dp
m
dv
讨论
dt dt
(1)力是产生加速度的原因。
(2)惯性质量:平动惯性大小的量度
(3)瞬时性,矢量性
分量式: Fx=max , Fy=may , Fz =maz 或 Ft=mat , Fn=man (自然坐标系) (4)在惯性系中成立
FT
2m1m2 m1 m2
(a
g)
讨论
当a =-g时,ar=0,T=0,即滑 a1 轮、质点都成为自由落体,两 个物体之间没有相对加速度。
FT
m1 a2
m1 g
y
FT
m2
m2 g
O
返回 退出
例1-10 一个质量为m、悬线长度为l 的摆锤,挂在架 子上,架子固定在小车上,如图所示。求在下列情况
下悬线的方向(用摆的悬线与竖直方向所成的角表示)
v 2Rg cos
圆轨道的作用力
FN
m
v2 R
mg cos
3mg cos
返回 退出
2. 变力作用下的单体问题 例1-12 计算一小球在水中竖直沉降的速度。已知小 球的质量为m,水对小球的浮力为Fb,水对小球的粘 性力为Fv= -Kv,式中K是和水的黏性、小球的半径有 关的一个常量。
四套牛顿运动定律专题练习题(带答案)高中物理必修1
B.物块的质量为1.5kg
C.物块在6-9s内的加速度大小是2m/s2
D.物块前6s内的平均速度大小是4.5m/s
6、如图所示,质量为M的长平板车放在光滑的倾角为
的斜面上,车上站着一质量为m的人,若要平板车静止在斜面上,车上的人必须()
A.匀速向下奔跑
B.以加速度 向下加速奔跑
解得:
牛顿运动定律练习2
一、选择题
1.在太空站的完全失重环境中,下列仪器可以使用的是()
A.体重计B.打点计时器
C.天平D.弹簧测力计
2.甲乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移——时间图像(s-t)图像如图所示,则下列说法正确的是()
A.t1时刻乙车从后面追上甲车
D、自由落下的物体处于完全失重状态,但物体的惯性并没有消失
2、关于牛顿第二定律,正确的说法是:()
A、物体的质量跟外力成正比,跟加速度成反比
B、加速度跟合外力成正比,跟物体的质量成反比
C、加速度的方向一定与合外力的方向一致
D、由于加速度跟合外力成正比,整快砖的重力加速度一定是半块砖重力加速度的2倍
3、跳高运动员从地面上起跳的瞬间,下列说法中正确的是:()
6、一物体从某高度自由落下,恰好落在直立于地面上的轻弹簧上,如图所示,在A点物体开始与弹簧接触,到B点时物体速度为零,以后被弹回、那么下列说法中正确的是:()
A、下降时物体在AB段的速度越来越小
B、上升时物体在AB段的速度越来越大
C、物体在AB段下降时和在AB段上升时其速度是先增大后减小
D、在B点时因为物体速度为零,所以它受到的合外力也为零
B.力F在时间 t内可以使质量 m的物体移动的距离为s
物理:牛顿运动定律-专题——竞赛班辅导资料(课件)
③矢量性:是指加速度和合外力都是矢量,加 速度的方向与合外力的方向一致。
例3如图所示,小车沿水平面以加速度a向右 做匀加速直线运动,车上固定的硬杆和水平 面的夹角为θ,杆的顶端固定着一个质量为m 的小球,则杆对小球的弹力多大?方向如何?
解析:小球质量为m,小球加 速度为a,方向水平向右,则 小球所受合外力方向也水平向 右,大小等于ma,由于小球只 受重力和杆的弹力作用,所以 合力的分解如图所示,则:
理解要点:
①同一性:是指公式中的a、F和m都对应 于同一物体。 例1如图所示,质量为2m的物块A与水平地 面的摩擦可忽略不计,质量为m的物块B与地 面的动摩擦因数为µ。在已知水平推力F作用 下,A、B作加速运动,A对B的作用力为 ______。
A B
解析:受力如图:
f
F
f
B N
A、B加速度相同,将二者作为整体,运 用牛顿第二定律可得: F-µmg=3ma (1) 将B物体隔离出来作为研究对象,运用牛 顿第二定律: N-µmg=ma (2) 解(1)、(2)两式得: N=(F+2µmg)/3
θ
T2 mg
图1
θ A O
(2)a由0逐渐增大的过程中,开始阶 T1 段,因m 在竖直方向的加速度为0,θ F0 角不变,T1不变,那么,加速度增大 图2 (即合外力增大),OA绳承受的拉 mg 力T2必减小。当T2=0时,m存在一个 加速度a0,如图2所示,物体所受的合 外力是T1的水平分力。当a>a0时,a增 α T1 大,T2=0(OA绳处于松弛状态), 图3 T1在竖直方向的分量不变,而其水平 mg 方向的分量必增加(因 合外力增大), θ角一定增大,设为α。受力分析如图 3所示。
解析:由于 0.5 tan 0.75 所以物体一定沿传送带对地下移,且不会与 传送带相对静止。 设从物块刚放上到皮带速度达10m/ቤተ መጻሕፍቲ ባይዱ,物体 位移为 S1,加速度a1,时间t1,因物速小于 皮带速率,根据牛顿第二定律,
牛顿运动定律(8个微专题)
[方法点拨](1)理解牛顿第二定律的矢量性、瞬时性、同一性、独立性.(2)轻绳、轻杆和接触面的弹力能跟随外界条件发生突变;弹簧(或橡皮绳)的弹力不能突变,在外界条件发生变化的瞬间可认为是不变的.(3)多个物体一起运动时,知其一物体加速度即可知整体加速度,反之亦然.从而知其合外力方向.1.(牛顿运动定律的理解)如图1所示,弹簧左端固定,右端可自由伸长到P点.一物块从光滑水平面的b位置以速度v向左运动,将弹簧压缩到最短a点,之后物块被弹簧向右弹出.物块从P到a的运动过程,以下说法正确的是()图1A.物块的惯性减小B.在a位置,物块的惯性为零C.物块对弹簧的作用力和弹簧对物块的作用力大小相等D.在a位置,物块对弹簧的作用力小于弹簧对物块的作用力2.(瞬时性)如图2,A、B、C三个小球的质量均为m,A、B之间用一根没有弹性的轻绳连在一起,B、C之间用轻弹簧拴接,用细线悬挂在天花板上,整个系统静止,现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线瞬间,A、B、C的加速度的大小分别为()A.1.5g 1.5g0 B.g2g0C.g g g D.g g0图23.(矢量性)(多选)如图3所示,套在绳索上的小圆环P下面用悬线挂一个重为G的物体Q并使它们处于静止状态.现释放圆环P,让其沿与水平面成θ角的绳索无摩擦下滑,在圆环P 下滑过程中绳索处于绷紧状态(可认为是一直线),若圆环和物体下滑时不振动,稳定后,下列说法正确的是()图3A .Q 的加速度一定小于g sin θB .悬线所受拉力为G sin θC .悬线所受拉力为G cos θD .悬线一定与绳索垂直4.(瞬时性)如图4所示,两个完全相同的轻弹簧a 、b ,一端固定在水平面上,另一端与质量为m 的小球相连,轻杆c 一端固定在天花板上,另一端与小球拴接.弹簧a 、b 和轻杆互成120°角,且弹簧a 、b 的弹力大小均为mg ,g 为重力加速度,如果将轻杆突然撤去,则撤去瞬间的加速度大小可能为( )图4A .a =0B .a =gC .a =1.5gD .a =3g5.(矢量性)如图5所示,光滑斜面的倾角为α,一个质量为m 的物体放在斜面上,如果斜面以加速度a 水平向左做匀加速直线运动,物体与斜面间无相对运动,则斜面对物体的支持力的大小错误的是( )图5A .mg cos αB.mg cos αC.ma sin α D .m g 2+a 26.质量相等的甲、乙两物体同时从同一位置由静止开始沿水平直线运动,从开始运动的t =0时刻起,两物体的速度—时间图象如图6所示,则下列判断正确的是( )图6A.开始运动时,甲受到的合外力小于乙受到的合外力B.t0时刻甲、乙两物体所受合外力大小相等C.在0~t0时间内任意时刻,甲受到的合外力都小于乙受到的合外力D.在0~t0时间内,甲物体在中间时刻的速度大于乙物体的平均速度7.以初速度v竖直向上抛出一小球,小球所受空气阻力与速度的大小成正比,下列图象中,能正确反映小球从抛出到落回原处的速度随时间变化情况的是()8.(多选)如图7所示,人站在匀加速斜向上的电梯上,则()图7A.人受到摩擦力方向沿运动方向,即与水平方向成θ角斜向上B.人受到摩擦力方向沿水平方向向右C.人受到梯面的支持力大于其重力D.人受到梯面的支持力等于其重力9.如图8所示,质量均为m的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间()A.木块B对水平面的压力迅速变为2mg图8B.弹簧的弹力大小为mgC.木块A的加速度大小为2gD.弹簧的弹性势能立即减小10.(多选)如图9所示,弹簧p 和细绳q 的上端固定在天花板上,下端用小钩钩住质量为m 的小球C ,弹簧、细绳和小钩的质量均忽略不计.静止时p 、q 与竖直方向的夹角均为60°.下列判断正确的有( )图9A .若p 和球突然脱钩,则脱钩后瞬间q 对球的拉力大小为mgB .若p 和球突然脱钩,则脱钩后瞬间球的加速度大小为32g C .若q 和球突然脱钩,则脱钩后瞬间p 对球的拉力大小为12mg D .若q 和球突然脱钩,则脱钩后瞬间球的加速度大小为g11.(多选)质量为m =2kg 的物块静止放置在粗糙水平地面O 处,物块与水平面间的动摩擦因数μ=0.5,在水平拉力F 作用下物块由静止开始沿水平地面向右运动,经过一段时间后,物块回到出发点O 处,取水平向右为速度的正方向,如图10a 所示,物块运动过程中其速度v 随时间t 变化规律如图b 所示,重力加速度g 取10m/s 2,则( )图10A .物块经过4s 时间回到出发点B .物块运动到第3s 时改变水平拉力的方向C .3.5s 时刻水平力F 的大小为4ND .4.5s 时刻水平力F 的大小为16N12.用一水平力F 拉静止在水平面上的物体,在F 从零开始逐渐增大的过程中,加速度a 随外力F 变化的图象如图11所示,取g =10m/s 2,水平面各处粗糙程度相同,则由此不能计算出( )图11 A .物体与水平面间的滑动摩擦力B.物体与水平面间的动摩擦因数C.外力F为12N时物体的速度D.物体的质量13.如图12所示的水平地面上,直角斜面体M的倾角为30°,物块A、B的质量相等,C为轻质定滑轮.图甲中斜面体M和物块A、B均处于静止状态,图乙中斜面体M和物块A、B 一起以加速度a=3g水平向右做匀加速直线运动,且三者保持相对静止.关于物块A、B 的受力情况,下列说法中正确的是()图12A.图甲中的物块A一定受三个力作用B.图甲中的物块B一定受四个力作用C.图乙中的物块A一定受三个力作用D.图乙中的物块B一定受四个力作用答案精析1.C [物块从P 到a 运动过程中,质量不变,惯性不变,A 、B 项错误;根据牛顿第三定律,作用力和反作用力大小相等,C 项正确,D 项错误.]2.A [在剪断细线的瞬间,弹簧上的力没有来得及发生变化,故C 球受到的重力和弹簧弹力不变,C 球合力为零,加速度为0;A 、B 球被轻绳拴在一起整体受重力和弹簧的拉力,合力为3mg ,则A 、B 的加速度大小均为1.5g ,故A 正确,B 、C 、D 错误.]3.CD [由题意知,小圆环和Q 保持相对静止一起沿绳索无摩擦下滑,整体受重力和支持力作用,加速度方向一定沿绳索方向向下,由牛顿第二定律有,a =(m P +m Q )g sin θm P +m Q,解得:a =g sin θ,A 项错,再对Q 受力分析,受到竖直向下的重力和拉力,合力大小F 合=m Q g sin θ,又重力沿绳索方向的分力也为m Q g sin θ,则由牛顿第二定律可知,悬线上的拉力沿绳索方向的分力为零,所以悬线一定与绳索垂直,而在垂直于绳索方向上,由平衡条件有:悬线上的拉力F =G cos θ,故B 项错,C 、D 项正确.]4.A [弹簧a 、b 的弹力大小均为mg ,当弹簧的弹力为拉力时,其合力方向竖直向下、大小为mg ,轻杆对小球的拉力大小为2mg ,将轻杆突然撤去时,小球合力为2mg ,此时加速度大小为2g ;当弹簧的弹力为压力时,其合力竖直向上、大小为mg ,根据平衡条件,轻杆上的力为零,将轻杆突然撤去时,小球受到的合力为0,此时加速度大小为0,所以只有选项A 正确.]5.A [根据题述,斜面以加速度a 水平向左做匀加速直线运动,物体与斜面间无相对运动,则放在斜面上的物体所受合外力一定向左.隔离物体,分析受力,物体受到斜面支持力和重力,二力的合力向左,大小等于ma ,则有:F 2=(mg )2+(ma )2,解得F =m g 2+a 2,选项D正确;或有F sin α=ma ,解得F =ma sin α,选项C 正确;或有F cos α=mg ,解得F =mg cos α,选项6.D[由题图可知,开始运动时,甲运动图象的斜率大于乙运动图象的斜率,根据斜率表示加速度可知,甲的加速度大于乙的加速度,由牛顿第二定律可知,此时甲受到的合外力大于乙受到的合外力,A错误;t0时刻甲的加速度小于乙的加速度,甲受到的合外力小于乙受到的合外力,B错误;甲做匀加速直线运动,乙做加速度逐渐增大的加速运动,乙的加速度先小于甲,而后加速度逐渐增大又大于甲,所以在0~t0时间内,甲所受合外力先大于乙而后小于乙,C错误;在0~t0时间内,甲的位移大于乙的位移,甲的平均速度大于乙的平均速度,由于甲做匀加速直线运动,甲在中间时刻的速度等于甲的平均速度,所以甲物体在中间时刻的速度大于乙物体的平均速度,D正确.]7.A[由于小球所受空气阻力与速度的大小成正比,上升阶段,由牛顿第二定律有:mg+kv=ma,刚抛出时,速度最大,所受空气阻力最大,加速度最大,速度图象斜率绝对值最大.随着小球上升,速度逐渐减小,所受空气阻力减小,加速度减小,速度图象斜率绝对值减小.下降阶段,由牛顿第二定律有:mg-kv=ma,随着速度的增大,所受空气阻力增大,加速度减小,速度图象斜率绝对值减小.根据上述分析可知,能正确反映小球从抛出到落回原处的速度随时间变化情况的是图象A.]8.BC[对人受力分析:重力mg、支持力F1、摩擦力F2(摩擦力方向一定与接触面平行,由加速度的方向推知F2的方向为水平向右).建立直角坐标系:取水平向右(即F2的方向)为x轴正方向,竖直向上为y轴正方向,如图所示.对加速度分解可得:x轴方向上:xy轴方向上:a y=a sinθ根据牛顿第二定律得x轴方向上:F2=ma x=ma cosθy轴方向上:F1-mg=ma y=ma sinθ即F1=mg+ma sinθ故选项B、C正确.]9.C10.BD[原来p、q对球的拉力大小均为mg.p和球脱钩后,球将开始沿圆弧运动,将q受的力沿法线和切线方向正交分解,如图甲,得F-mg cos60°=m v2r=0,即F=12mg,合力为mg sin60°=ma,故a=32g,选项A错误,B正确;q和球突然脱钩后瞬间,p的拉力未来得及改变,仍为mg,因此合力为mg,如图乙,球的加速度大小为g.故选项C错误,D正确.]11.CD[物块经过4 s时间,速度减小到零,离出发点最远,选项A错误.在0~3 s时间内,物块加速度a1=1 m/s2.由牛顿运动定律,F1-μmg=ma1,解得:F1=12N.在3~4s时间内,物块加速度a2=-3m/s2,由牛顿运动定律,F2-μmg=ma2,解得:F2=4 N.物块运动到第3 s时水平拉力由12 N改变为4 N,但是方向没有改变,选项B错误,C正确.在4~5 s时间内,速度为负值,摩擦力方向改变,物块加速度a3=-3 m/s2.由牛顿运动定律,F3+μmg=ma3,解得:F3=-16N,选项D正确.]12.C[水平力F拉静止在水平面上的物体,在F从零开始逐渐增大的过程中,由牛顿第二定律,得F-μmg=ma,解得加速度a=Fm-μg,由此可知,a-F图象在横轴的截距等于物体与水平面之间的滑动摩擦力μmg,在纵轴截距的绝对值等于μg,斜率等于1m,故选项A、B、D错误;根据图象能够得出外力F为12N时物体的加速度,但不能计算出物体的速度,选项C正确.]13.B[图甲中物块A受重力和拉力两个力的作用,A错误;物块B受重力、支持力、拉力和沿斜面向下的摩擦力四个力的作用,B正确;图乙中加速度a=3g,根据牛顿第二定律可得物块B受重力和绳子拉力两个力的作用,其中拉力大小为2mg,所以物块A受重力、斜面体弹力、绳子拉力和沿竖直面向下的摩擦力四个力的作用,C、D错误.][方法点拨](1)抓住两个分析:受力分析和运动过程分析;(2)解决动力学问题时对力的处理方法:合成法和正交分解法;(3)求解加速度是解决问题的关键.1.(由受力求运动)如图1所示,一倾角θ=37°的足够长斜面固定在水平地面上.当t=0时,滑块以初速度v0=10m/s沿斜面向上运动.已知滑块与斜面间的动摩擦因数μ=0.5,g=10 m/s2,sin37°=0.6,cos37°=0.8,下列说法正确的是()图1A.滑块一直做匀变速直线运动B.t=1s时,滑块速度减为零,然后静止在斜面上C.t=2s时,滑块恰好又回到出发点D.t=3s时,滑块的速度大小为4m/s2.(由运动求受力)若要求汽车空载时的制动距离是:当速度为50km/h时,客车不超过19m,卡车不超过21m.如果客车和卡车质量之比为19∶21,制动时所受阻力不变,在刚好满足上述要求时,客车和卡车()A.所受阻力之比为19∶21B.加速度之比为21∶19C.所受阻力做功之比为21∶19D.制动时间之比为21∶193.(由受力求运动)一飞行器在地面附近做飞行试验,从地面起飞时沿与水平方向成30°角的直线斜向右上方匀加速飞行,此时发动机提供的动力方向与水平方向夹角为60°.若飞行器所受空气阻力不计,重力加速度为g.则可判断()A.飞行器的加速度大小为gB.飞行器的加速度大小为2gC .起飞后t 时间内飞行器上升的高度为12gt 2 D .起飞后t 时间内飞行器上升的高度为gt 24.如图2甲所示,两物体A 、B 叠放在光滑水平面上,对A 施加一水平力F ,规定向右为正方向,F 随时间t 变化关系如图乙所示.两物体在t =0时由静止开始运动,且始终保持相对静止,则下列说法正确的是( )图2A .第1s 末两物体的速度最大B .第3s 内,两物体向左运动C .第2s 内,拉力F 对物体A 做正功D .第2s 内,A 对B 的摩擦力向左5.如图3所示,一质量为m 的物块放置在倾角为θ的斜面体上,斜面体放置于水平地面.若用与水平方向成α角、大小为F 的力推物块,使初速度为v 的物块沿斜面匀减速下滑,加速度大小为a ,斜面体始终静止.下列关于斜面体受地面摩擦力的说法正确的是( )图3A .方向水平向左,大小为F cos α+ma cos θB .方向水平向左,大小为F cos α-ma cos θC .方向水平向右,大小为F cos α+ma cos θD .方向水平向右,大小为F cos α-ma cos θ6.如图4所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和其与BC 段间的动摩擦因数μ2的比值为( )图4A .1B .2C .3D .47.某次滑雪训练中,运动员(可视为质点)站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F=84N而从静止向前滑行,其作用时间为t1=1.0s,撤去水平推力F后经过时间t2=2.0s,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相同.已知该运动员连同装备的总质量为m=60kg,在整个运动过程中受到的滑动摩擦力大小恒为F f =12N,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移;(2)该运动员第二次撤去水平推力后滑行的最大距离.8.在粗糙水平面上,一电动玩具小车以v0=4m/s的速度做匀速直线运动,其正前方平铺一边长为L=0.6 m的正方形薄板,小车在到达薄板前某处立即关闭电源,靠惯性运动x=3 m 的距离后沿薄板一边的中垂线平滑地冲上薄板.小车与水平面以及小车与薄板之间的动摩擦因数均为μ1=0.2,薄板与水平面之间的动摩擦因数μ2=0.1,小车质量M为薄板质量m的3倍,小车可看成质点,重力加速度g=10 m/s2,求:(1)小车冲上薄板时的速度大小;(2)小车从刚冲上薄板到停止时的位移大小.9.航空母舰静止在海面,某型号的舰载机质量m=3×104kg,在航空母舰上无风起飞时,加速度是5m/s2,跑道长160 m,为了使飞机正常起飞,航母上装有舰载机起飞弹射系统,无风时弹射系统必须给飞机30 m/s的初速度才能使飞机从舰上起飞,设加速过程为匀加速直线运动.(1)无风时起飞速度是多少?(2)某次执行任务,有10m/s的平行跑道的海风,飞机逆风行驶起飞,测得平均空气阻力增加ΔF f=2.4×104N,弹射系统必须给飞机多大的初速度才能使飞机正常起飞?(起飞速度为飞机相对空气的速度)答案精析1.D [设滑块上滑时的加速度大小为a 1,由牛顿第二定律可得mg sin θ+μmg cos θ=ma 1,解得a 1=10 m/s 2,上滑时间t 1=v 0a 1=1s ,上滑的距离x 1=12v 0t 1=5m ,因tan θ>μ,mg sin θ>μmg cos θ,滑块上滑到速度为零后,向下运动,选项B 错误;设滑块下滑时的加速度大小为a 2,由牛顿第二定律可得mg sin θ-μmg cos θ=ma 2,解得a 2=2m/s 2,经1s ,滑块下滑的距离x 2=12a 2t 22=1m <5m ,滑块未回到出发点,选项C 错误;因上滑和下滑过程中的加速度不同,故滑块全程不是匀变速直线运动,选项A 错误;t =3s 时,滑块沿斜面向下运动,此时的速度v =a 2(3s -1s)=4m /s ,选项D 正确.]2.B [由v 2=2ax ,可得客车和卡车制动时的加速度之比为a 1a 2=x 2x 1=21∶19,选项B 正确;根据牛顿第二定律F f =ma ,可得所受阻力之比F f1F f2=m 1m 2·a 1a 2=1∶1,选项A 错误;由做功的公式W =F f x ,可得所受阻力做功之比为W f1W f2=F f1F f2·x 1x 2=19∶21,选项C 错误;由v =at 可得制动时间之比为t 1t 2=a 2a 1=19∶21,选项D 错误.]3.A [飞行器受力如图所示:由几何关系可知,飞行器的加速度大小为a=g ,A 项正确,B 项错误;起飞后t 时间内飞行器的位移x =12at 2=12gt 2,所以飞行器上升的高度h =x sin30°=14gt 2,C 、D 项错误.] 4.C [在0~1 s 内,两物体做加速度逐渐增大的加速运动,运动方向向右;在1~2 s 内,两物体做加速度逐渐减小的加速运动,运动方向向右;2~3 s 内,两物体做加速度逐渐增大的减速运动,运动方向向右;在3~4 s 内,两物体做加速度逐渐减小的减速运动,运动方向向右.0~2 s 内物体都在加速,所以在2 s 末物体速度最大,A 项错误;物体始终向右运动,B 项错误;在第2 s 内,物体向右运动,拉力F 也向右,所以拉力做正功,C 项正确;在第2 s 内,物体B 加速度向右,而B 只受到A 对它的摩擦力,所以摩擦力向右,D 项错误.]5.A [对斜面体和物块用整体法进行受力分析,在水平方向上:F f -F cos α=ma cos θ.]6.C [设小物块在A 点时速度大小为v ,AB =BC =l ,则在B 点时速度大小为12v ,由运动学公式有v 2-(12v )2=2μ1gl ,(12v )2=2μ2gl ,解得μ1=3μ2,C 正确.] 7.(1)1.2m/s 0.6m (2)5.2m解析 (1)运动员第一次利用滑雪杖对雪面作用获得的加速度为a 1=F -F f m=1.2m/s 2 第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2m/s位移x 1=12a 1t 21=0.6m (2)运动员停止使用滑雪杖后做匀减速直线运动,加速度大小为a 2=F f m=0.2m/s 2 第一次撤去水平推力后经过时间t 2=2.0s 速度变为v 1′=v 1-a 2t 2=0.8m/s第二次利用滑雪杖获得的速度大小为v 2,则v 22-v 1′2=2a 1x 1第二次撤去水平推力后滑行的最大距离x 2=v 222a 2=5.2m. 8.(1)2m/s (2)1.25m解析 (1)设小车关闭电源后加速度大小为a 1,由牛顿第二定律得:μ1Mg =Ma 1①设小车刚冲上薄板时速度为v 1,由运动学公式,有:v 21-v 20=-2a 1x ②①②联立,得:v 1=2m/s ③(2)小车冲上薄板后,薄板上下两表面受到的摩擦力方向相反,设薄板的加速度大小为a 2,由牛顿第二定律得:μ1Mg -μ2(M +m )g =ma 2④小车冲上薄板后,薄板以a 2加速,车仍以a 1减速,设经时间t 两者共速,则:v 1-a 1t =a 2t ⑤ 联立④⑤并代入数据,得:t =0.5s则此时小车和薄板的速度大小v 2=1m/s该段时间,小车的位移:x 1=v 1+v 22t =0.75m ;薄板的位移:x 2=12a 2t 2=0.25m 由于x 1-x 2<L ,所以小车未滑出薄板.⑥接着小车与薄板共同减速,设加速度大小为a 3,有:μ2(M +m )g =(M +m )a 3⑦设车与薄板共同减速的位移大小为x 3,有:v 22=2a 3x 3⑧⑦⑧式联立,得x 3=0.5m所以小车从刚冲上薄板到停止时位移的大小:x =x 1+x 3=1.25m.9.(1)50m /s (2)16 m/s解析 (1)设起飞速度为v ,无风起飞时初速度v 1=30m /s ,加速度a 1=5 m/s 2,跑道长x =160m 由运动学规律可得v 2-v 21=2a 1x解得v =50m/s(2)当飞机逆风行驶起飞时,相对航母的速度v ′=50m /s -10 m/s =40m/s由牛顿第二定律可得加速度a 2=a 1-ΔF f m=4.2m/s 2 v ′2-v 22=2a 2x解得弹射系统需要给飞机的初速度v 2=16m/s.[方法点拨](1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.1.(由受力判断超重、失重)图1甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的·表示人的重心.图乙是根据传感器采集到的数据画出的力—时间图象.两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10m/s2.根据图象分析可知()图1A.人的重力为1500NB.c点位置人处于超重状态C.e点位置人处于失重状态D.d点的加速度小于f点的加速度2.(由运动判断超重、失重)如图2,一刚性正方体盒内密封一小球,盒子六面均与小球相切,将其竖直向上抛出后,若空气阻力与速度成正比,下列说法正确的是()A.在上升和下降过程中,小球对盒子的作用力均为零B.在上升过程中,盒子底部对小球有向上的作用力图2C.在下降过程中,盒子顶部对小球有向下的作用力D.在抛出点,盒子上升时所受的阻力大于返回时所受的阻力3.小明家住十层,他乘电梯从一层直达十层.则下列说法正确的是()A.他始终处于超重状态B.他始终处于失重状态C.他先后处于超重、平衡、失重状态D.他先后处于失重、平衡、超重状态4.如图3,质量为M的缆车车厢通过悬臂固定悬挂在缆绳上,车厢水平底板上放置一质量为m的货物,在缆绳牵引下货物随车厢一起斜向上加速运动.若运动过程中悬臂和车厢始终处于竖直方向,重力加速度大小为g,则()图3A.车厢对货物的作用力大小等于mgB.车厢对货物的作用力方向平行于缆绳向上C.悬臂对车厢的作用力大于(M+m)gD.悬臂对车厢的作用力方向沿悬臂竖直向上5.如图4所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同,放上A物块后A物块匀加速下滑,B物块获一初速度后匀速下滑,C物块获一初速度后匀减速下滑,放上D物块后D物块静止在斜面上,四个斜面体均保持静止.四种情况下斜面对地面的压力依次为F1、F2、F3、F4,则它们的大小关系是()图4A.F1=F2=F3=F4B.F1>F2>F3>F4C.F1<F2=F4<F3D.F1=F3<F2<F46.如图5所示,质量为M的木楔ABC静置于粗糙水平面上,在斜面顶端将一质量为m的物体,以一定的初速度从A点沿平行于斜面的方向推出,物体m沿斜面向下做减速运动,在减速运动过程中,下列说法中正确的是()图5A.地面对木楔的支持力大于(M+m)gB.地面对木楔的支持力小于(M+m)gC.地面对木楔的支持力等于(M+m)gD.地面对木楔的摩擦力为07.举重运动员在地面上能举起120kg的重物,而在运动着的升降机中却只能举起100kg的重物,求升降机运动的加速度;若在以2.5m/s2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(取g=10 m/s2)答案精析1.B[由题图甲、乙可知,人的重力等于500 N,质量m=50 kg,b点位置人处于失重状态,c、d、e点位置人处于超重状态,选项A、C错误,B正确;d点位置传感器对人的支持力F最大,为1 500 N,由F-mg=ma可知,d点的加速度a d=20 m/s2,f点位置传感器对人的支持力为0N,由F-mg=ma可知,f点的加速度a f=-10m/s2,故d点的加速度大于f 点的加速度,选项D错误.]2.D[由于受到空气阻力,在上升和下降过程中,小球和盒子的加速度均不等于重力加速度,小球对盒子的作用力均不为零,选项A错误;在上升过程中,重力与阻力方向相同,加速度大小大于g,盒子顶部对小球有向下的作用力,选项B错误;在下降过程中,重力与阻力方向相反,加速度大小小于g,盒子底部对小球有向上的作用力,选项C错误;由功能关系可知,盒子上升时的速度大于返回到抛出点时的速度,根据题述,盒子所受空气阻力与速度成正比,因此在抛出点,盒子上升时所受的阻力大于返回时所受的阻力,选项D正确.] 3.C[小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,运动过程中加速度方向最初向上,中间为零,最后向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C对.]4.C[货物随车厢一起斜向上加速运动,由牛顿第二定律可知车厢与货物的重力和悬臂对车厢作用力的合力方向应与加速度方向一致,故悬臂对车厢的作用力方向是斜向上的,选项D 错误;由于车厢和货物在竖直方向有向上的分加速度,处于超重状态,故悬臂对车厢的作用力大于(M+m)g,选项C正确;同理,对车厢中货物用隔离法分析可知,车厢对货物的作用力大小大于mg,方向是斜向上的,但不平行于缆绳,选项A、B错误.]5.C[设物块和斜面体的总重力为G.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页牛顿运动定律经典题解析一、夯实基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式F ma =.对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,x x F ma =,y y F ma =,z z F ma =;(4)牛顿第二定律F ma =定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s 2的加速度的作用力为1N ,即211/N kg m s =⋅.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。
4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。
5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。
处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F mg ma =+.;(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即N F mg ma =-,当a g =时,0N F =,即物体处于完全失重。
6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。
二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
牛顿第二定律F ma =是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1. 如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的65,则人与梯面间的摩擦力是其重力的多少倍?分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:cos30f F ma =︒, sin30N F mg ma -=︒因为65N F mg =,解得f F mg =.问题2:必须弄清牛顿第二定律的瞬时性。
牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=m a 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
2. 如图2(a )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。
现将l 2线剪断,求剪断瞬时物体的加速度。
(l )下面是某同学对该题的一种解法:分析与解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有T 1cosθ=mg , T 1sinθ=T 2, T 2=mgt a nθ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。
因为tan mg ma θ=,所以加速度tan a g θ=,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
aa 图θ1l θ2l 2l 1l b图第 2 页(2)若将图2(a)中的细线1l 改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即tan a g θ=,你认为这个结果正确吗?请说明理由。
分析与解:(1)错。
因为2l 被剪断的瞬间,1l 上的张力大小发生了变化。
剪断瞬时物体的加速度sin a g θ=.(2)对。
因为2l 被剪断的瞬间,弹簧1l 的长度来不及发生变化,其大小和方向都不变。
问题3:必须弄清牛顿第二定律的独立性。
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
那个方向的力就产生那个方向的加速度。
3. 如图所示,一个劈形物体M 放在固定的斜面上,上表面水平,在水平面上放有光滑小球m ,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是:A .沿斜面向下的直线B .抛物线C .竖直向下的直线D .无规则的曲线。
分析与解:因小球在水平方向不受外力作用,水平方向的加速度为零,且初速度为零,故小球将沿竖直向下的直线运动,即C 选项正确。
以下是讨论M 和m 的加速度:分析与解:只要 M 和 m 不完全分离, 则 M 和 m 在竖直方向上的加速度相等. 设这个在竖直方向上的加速度为 a . 设 m 与 M 之间的相互作用力为 F . 则:对 M 在平行于斜面方向上列方程, 有: ()sin sin Ma Mg F θθ+= (1)对 m 在竖直方向上列方程, 有:mg F ma -= (2) 由这两个方程就可以求出: ()m M ga M m θ+=+,则a 它比 g 小. 问题4:必须弄清牛顿第二定律的同体性。
加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。
4. 一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。
图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。
吊台的质量m=15kg ,人的质量为M=55kg ,起动时吊台向上的加速度是a =0.2m/s 2,求这时人对吊台的压力。
(g=9.8m/s 2)分析与解:选人和吊台组成的系统为研究对象,受力如图5所示,F 为绳的拉力,由牛顿第二定律有:2()()F m M g M m a -+=+则拉力大小为:()()3502M m a g F N ++==再选人为研究对象,受力情况如图6所示,其中F N 是吊台对人的支持力。
由牛顿第二定律得:N F F Mg Ma +-=,故()200N F M a g F N =+-=由牛顿第三定律知,人对吊台的压力与吊台对人的支持力大小相等,方向相反,因此人对吊台的压力大小为200N ,方向竖直向下。
问题5:必须弄清面接触物体分离的条件及应用。
相互接触的物体间可能存在弹力相互作用。
对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
下面举例说明。
5. 一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a (a g <)匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F kx =和平板的支持力N 作用。
据牛顿第二定律有:mg kx N ma --=得N mg kx ma =--当N=0时,物体与平板分离,所以此时()m g a x k-=因为212x at =,所以t = 6. 如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s2,则F 的最小值是 ,F 的最大值是 。
分析与解:因为在0.2t s =内F 是变力,在0.2t s =以后F 是恒力,所以在0.2t s =时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0~0.2s 这段时间内P 向上运动的距离:0.4mgx m == 因为212x at =,所以P 在这段时间的加速度22220/x a m s t== 当P 开始运动时拉力最小,此时对物体P 有min N mg F ma -+=,又因此时N mg =,所以有min 240F ma N ==.当P 与盘分离时拉力F 最大,max ()360F m a g N =+=.7. 一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s2) 分析与解:因为在0.2t s =内F 是变力,在0.2t s =以后F 是恒力,所以在0.2t s=)M g+5图a6图7图8图9图第 3 页时,P 离开秤盘。