第5章点的合成运动习题解答
高中物理(新人教版)必修第二册课后习题:第五章习题课运动的合成与分解的两个模型【含答案及解析】
第五章抛体运动习题课:运动的合成与分解的两个模型课后篇巩固提升合格考达标练1.某小船船头垂直于河岸渡河,若水流速度突然增大,其他条件不变,下列判断正确的是()A.小船渡河的时间不变B.小船渡河的时间减少C.小船渡河的时间增加D.小船到达对岸的地点不变,与水速大小无关,选项v,河宽为d,则渡河时间t=dvA正确,B、C错误;由于水速增大,故合速度的方向变化,到达河对岸的地点变化,选项D错误。
2.(2021山东烟台高一期中)光滑半球A放在竖直面光滑的墙角处,用手推着保持静止。
现在A与墙壁之间放入光滑球B,放手让A和B由静止开始运动,当A、B运动到图示位置时,二者球心的连线与水平面成θ角,速度大小分别为v A和v B,则以下关系正确的是()A.v A=v BB.v A=v B sin θC.v A=v B cos θD.v A=v B tan θ,所以两球沿球心连线方向的分速度大小相等,即v A cos θ=v B sin θ,得v A=v B tan θ,故D正确。
3.(多选)如图所示,一人以恒定速度v 0通过定滑轮竖直向下拉小车,使其在水平面上运动,当运动到如图位置时,细绳与水平方向成60°,则此时 ( )A.小车运动的速度为12v 0 B.小车运动的速度为2v 0 C.小车在水平面上做加速运动 D.小车在水平面上做减速运动,如图。
人拉绳的速度与小车沿绳子方向的分速度是相等的,根据三角函数关系:v cos 60°=v 0,则v=vcos60°=2v 0,随小车向左运动,细绳与水平方向的夹角α越来越大,由v=v0cosα知v 越来越大,则小车在水平面上做加速运动,故B 、C 正确。
4.(2021河南焦作期末)不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2 m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
理论力学重难点及相应题解
运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
第5章点的合成运动习题解答080814讲课稿
第 5 章点的合成运动习题解答0 8 08 1 4第五章点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系:定系,动系;三种运动:绝对运动、相对运动和牵连运动,包括三种速度:绝对速度、相对速度和牵连速度;三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即V a V e V r解题要领1定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2牵连速度是牵连点的速度•3速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5用解三角形的方法解速度合成图.三、加速度合成定理1牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即a a a e a r ,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成a;a a a e n t na e a r a r其中a;dv;,n aa2V a tdV e n,a e ,a e2Ve a t,a r dV r,a n2v■ ?a, e, r依次dt a dt e dt r为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
但是,法向加速度只与速度有关,因此,可以通过速度分析予以求解,从而在此处是作为已知的。
《工程力学》课后习题与答案全集
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
第5章点的合成运动习题解答080814课件
第五章 点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系: 定系,动系;三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即r e a v v v +=解题要领1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2 牵连速度是牵连点的速度.3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5 用解三角形的方法解速度合成图. 三、加速度合成定理1 牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即r e a a a a +=,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成n r t r n e t e na t a a a a a a a +++=+其中 t v a d d a t a=,a 2a n a ρv a =,t v a d d e t e =,e2e ne ρv a =,t v a d d r t r =,r 2r n r ρv a =,r e a ,,ρρρ依次为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2 牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
点的运动合成习题参考解答
解:用点的复合运动求解,取重物 B 为动点,动系与水平悬臂固连,则牵连运
动为定轴转动,相对运动为直线运动。
由于
vr
=
dx dt
=
−0.5 m/s
( ←)
方向与轴 x 的正向相反。
当 t = 10 s 时, ve = x ⋅ω = 15 × 0.1 = 1.5 m/s , 方向指向轴 z 的正向。速度图见上
2. 图示曲柄滑道机构中,曲柄长 AB = r,绕轴 O 以ω作匀速转动,滑槽 DΕ与水 平线成60°角。求当ϕ =0、30°、60°时,杆 BC 的速度。
解:本题机构 BC 作平动,可以用点的运动学方法求解。这里应用点的合成运动 求解,以滑块 A 为动点,动系与构件 BC 固结,考虑一般位置速度图如下图所示。
可得
aa = ae + ar
aBC = ae = va sinθ = OA⋅ω 2 sinθ = 0.4 × 0.25sin 30o = 0.05 m/s2 (↓)
6. 小车的运动规律为 x = 50 t2,x 以 cm 计,t 以 s 计。车上摆杆 OM 在铅垂面内
绕轴 O 转动,其转动规律为ϕ = π sin πt 。如 OM = 60 cm。求 t = 1 s 时摆杆端
由 va = ve + vr 和速度三角形,以及正弦定理有
ve sin(30o
−ϕ)
=
va sin60o
⇒
v BC
= ve
=
va sin60 o
sin(30o
−ϕ)
将 va = rω 及ϕ =0、30°、60° 分别代入上式解得当ϕ =0、30°、60° 时,
vBC =
3 rω, 3
理论力学《点的合成运动》答案
4
动系:固连于CBDE上的坐标系。 动系平动, v A = v CBDE = v BC 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度。 相对速度:A相对于DE的速度。 牵连速度:CBDE相对于地面的速度。
→ → →
vr
900 − ϕ A
120 0
va
ϕ
ve = vBC
ϕ O
5
相对速度:C相对于OC杆的速度。 牵连速度:OC杆相对于地面的速度。
ve = OC ⋅ ω =
→ → →
0.4 × 0.5 = 0.231( m / s ) cos 30 0
va = ve + vr va = ve 0.2 = = 0.267( m / s ) 0 cos 30 cos 2 30 0
BC作平动,故
v BC = v a = 1.155lω 0
[习题7-9] 一外形为半圆弧的凸轮A,半径r=300mm,沿水平方向向右作匀加速运动, 其加速度aA=800mm/s 。凸轮推动直杆BC沿铅直导槽上下运动。设在图所示瞬时, vA=600mm/s,求杆BC的速度及加速度。 解: 动点:B。 动系:固连于凸轮A上的坐标系。 静系:固连于地面的坐标系。 绝对速度:B相对于地面的速度。 相对速度:B相对于凸轮的速度。 牵连速度:B相对于凸轮的速度。
θ = 40.930
→ →
即 v 与 v1 之间的夹角为 θ = 40.93 。 种子走过的水平距离为:
0
s = v x t = v cos θ ⋅ t h = vyt +
1 2 gt 2 1 2 gt 2
h = v sin θt +
0.25 = 2.65 sin 40.930 t + 0.5 × 9.8t 2
理论力学习题答案
第一章静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × )1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 1.1.5 两点受力的构件都是二力杆。
( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 1.1.7力的平行四边形法则只适用于刚体。
( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。
( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。
( × ) 1.1.11 合力总是比分力大。
( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。
( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。
( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。
( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。
1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
第5章-刚体定点运动、自由刚体运动、刚体运动的合成陀螺仪近似讲解精品资料
第5章 刚体定点运动、自由刚体运动、刚体运动的合成∙陀螺仪近似理论5-1 曲柄OA 绕固定齿轮中心的轴O 转动,在曲柄上安装一双齿轮和一小齿轮,如图所示。
已知:曲柄转速r/min 300=n ;固定齿轮齿数600=z ,双齿轮齿数401=z 和502=z ,小齿轮齿数353=z 。
求小齿轮的转速和转向。
解:以曲柄OA 为动系分析轮系的运动,轮系相对于动系作定轴转动,0z 齿轮与1z 齿轮相对OA 作反向转动。
设0z 齿轮相对于动系OA 转动角速度为r ω,且0r ωω-=则 r 102r ωωz z -= 因 2z 齿轮与3z 齿轮相对OA 作反向转动2r 323r ωωz z -= 003012r 10323r 3ωωωω-=-==z z z z z z z z 根据合成运动定理 00312003r 3e 32)(ωωωωωω-=-+=+=z z z z rad/min 60203-=-=n n (3n 与0n 转向相反)5-3 在齿轮减速器中,主动轴角速度为0ω,齿轮Ⅱ与定齿轮V 相内啮合。
齿轮Ⅱ和Ⅲ又分别与动齿轮I 和Ⅳ相外啮合。
如齿轮I 、Ⅱ和Ⅲ的半径分别为1r 、2r 和3r ,求齿轮I 和Ⅳ的角速度。
解:将动系固连在系杆,则轮系相对于系杆作定轴转动,原来静止不动的轮V 相对于系杆运动的角速度为05ωω-=r于是轮I 和Ⅳ相对于系杆的角速度分别为015r 51225r 1)1(ωωωr r r r r r =⋅-= 04253r 54325r 4)1(ωωωr r r r r r r r =⋅-= 根据角速度合成定理0150r 1e 1ωωωωωr r +=+= 042350r 4e 4ωωωωωr r r r +=+= 由啮合关系知3214r r r r -+=,2152r r r += 代入上式得)1(21201r r +=ωω(与0ω同向) )())((3212322104r r r r r r r r -+++=ωω(与0ω同向)5-5 图示一双重差动机构,其构造如下:曲柄Ⅲ绕固定轴ab 转动,在曲柄上活动地套一行星齿轮Ⅳ,此行星齿轮由两个半径为mm 501=r 和mm 202=r 的锥齿轮牢固地连接而成。
点的合成运动
点的合成运动一、是非题1. 在研究点的合成运动问题时,所选的动点必须相对地球有运动。
( × )2. 牵连速度是动参考系相对于静参考系的速度。
( × )3. 牵连运动为定轴转动时,科氏加速度始终为零,动点在空间里一定作直线运动。
( × )4. 如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。
( √ )5. 用合成运动的方法分析点的运动时,若牵连角速度00≠ω,相对速度0≠r v ,则一定有不为零的科氏加速度。
( × )6. 牵连速度是动参考系相对于固定参考系的速度。
( × )7. 当牵连运动为定轴转动时,牵连加速度等于牵连速度对时间的一阶导数。
( × )8. 当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。
( √ )9. 在点的复合运动中,下述等式是否一定成立(式中各导数均为相对静系求导):A. t d d e e v a =, ( × ) B. t d d r rv a =, ( × ) C. t v a d d e e=, ( × ) D. t v a d d r r=, ( × ) E.t v d d a a =a , ( √ ) F. tv a a d d a =。
( × ) 10. 在点的复合运动中,请选出正确的说法:A. 若0,0e =≠v r ,则必有0=C a , ( × )B. 若0,0e =≠a r ,则必有0=C a , ( × )C. 若0≠e n a ,则必有0=C a , ( × )D. 若0,0r ≠≠v ϕ,则必有0≠a , ( × )E. 若0,0r ≠≠a ω,则必有0≠a ( × )这里r 为动点的绝对矢径,上面所指皆为某瞬时。
11. 在点的复合运动中,下述说法是否成立:A. 若v r 为常量,则必有0r =a , ( × )B. 若ω为常量,则必有0e =a , ( × )C. 若ω||r v ,则必有0c =a 。
点的合成运动作业 参考答案
点的合成运动作业参考答案(求加速度和角加速度)1、图示倾角ϕ =30º的尖劈以匀速v =200mm/s 沿水平面向右运动,使杆OB 绕定轴O 转动;r =2003mm 。
求当θ =ϕ 时,杆OB 的角速度和角加速度。
思路: 以杆OB 上的点B 为动点,动系与尖劈固结,则绝对轨迹为圆弧,相对轨迹是尖劈上的倾斜直线,牵连运动是水平直线平移。
答案: , rad/s 31=ω逆时针;2rad/s 273 =α ;顺时针。
2、图示小环M 套在半径OC = R =120mm 的固定半圆环和作平动的直杆AB 上。
当OB =BC =60mm 瞬时,AB 杆以速度为30mm/s 及加速度为30mm/s 2向右加速运动;试求小环M 的相对速度和相对加速度。
思路: 以小环M 为动点,动系与杆AB 固结,则绝对轨迹为圆弧,相对轨迹是铅垂直线,牵连运动是水平直线平移。
答案: 2r r mm/s 3310 mm/s, 310==a v3、已知直角弯杆OAB 绕轴O 以匀角速度ω 转动,小环M 同时套在半径为R 的固定圆环和直角弯杆OAB 上(圆环与直角弯杆在同一平面内),几何尺寸如图9 。
在图示瞬时,AB 水平且通过圆环中心C 。
求该瞬时小环M 的绝对速度和绝对加速度。
思路: 以小环M 为动点,动系与直角弯杆OAB 固结,则绝对轨迹为圆弧,相对轨迹是水平直线,牵连运动是绕轴O 的定轴转动。
答案: ↑==→==↑== , , 2ta t2na na ωωωR a a R a a R v v M M M22ωR a M =与水平线夹角450 。
4、机构如图所示,已知圆盘半径为r ,可绕水平轴O 定轴转动;杆AB 可在水平滑道中移动。
其端点A 始终与圆盘边缘接触且在圆盘边缘上运动,若图示瞬时杆AB 以匀速v 向左运动,求该瞬时圆盘的角速度和角加速度。
思路1: 以杆端A 为动点,动系与圆盘C 固结,则绝对轨迹为水平直线,相对轨迹是以点C 为圆心的圆弧,牵连运动是绕轴O 的定轴转动。
新教材2020-2021学年高中物理人教版必修第二册刷题课件-第五章-第2节-运动的合成与分解
解析
当群众演员沿圆周切线方向的速度和出手速度的合速度沿球筐方向时,篮球就可能被投入球筐, 故B正确,A、C、D错误.
易错分析
解答运动的合成与分解问题,要先分析清楚合运动,合运动即为物体的实际运动,然后根据运动效 果判断出分运动的方向.解决此类题的关键是先找到合运动的方向,即判断清楚物体实际运动的方 向,不能盲目地进行猜测.本题中,实际运动就是篮球向大平台圆心处球筐的运动,随大平台的转 动为篮球的一个分运动,通过作平行四边形,就可以找出另一个分运动的方向,即群众演员投篮球 的方向.
第2节 运动的合成与分解
刷基础
2.[湖北沙市中学2019高一下月考]春节期间人们放飞孔明灯表达对新年的祝福,如图所示,孔明灯在 Oy方向做匀加速运动,在Ox方向做匀速运动,则孔明灯的运动轨迹可能为( D )
A.直线OA C.曲线OC
B.曲线OB D.曲线OD
解析
孔明灯在Ox方向做匀速运动,此方向上合力的分力为零,在Oy方向做匀加速运动,则合外力沿 Oy方向,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,孔明灯做曲线运动, 结合合力指向轨迹内侧可知轨迹可能为OD,故D正确,A、B、C错误.
第2节 运动的合成与分解
刷基础
4.[浙江金华十校2018高一下期末]在第十一届珠海国际航展上,歼-20战机是此次航展最大的“明 星”.歼-20战机在降落过程中水平方向的初速度为60 m/s,竖直方向的初速度为6 m/s,已知歼- 20战机在水平方向做加速度大小为2 m/s2的匀减速直线运动,在竖直方向做加速度大小为0.2 m/s2的 匀减速直线运动,则歼-20战机在降落过程中,下列说法正确的是( D ) A.歼-20战机的运动轨迹为曲线 B.经20 s,歼-20战机水平方向的分速度与竖直方向的分速度大小相等 C.在前20 s内,歼-20战机在水平方向的分位移与竖直方向的分位移大小相等 D.歼-20战机在前20 s内,水平方向的平均速度为40 m/s
2022版《优化方案》高一物理人教版必修二配套文档:第五章本章优化总结 Word版含答案
本章优化总结运动的合成与分解1.合运动与分运动的确定物体的实际运动是合运动.当把一个实际运动分解,在确定它的分运动时,两个分运动要有实际意义.2.运动合成的规律(1)合运动与分运动具有等时性;(2)各分运动具有各自的独立性.3.推断合运动性质的方法对于运动的合成,通过图示争辩格外简便.具体做法是:将速度和加速度分别合成,如图所示.(1)直线运动与曲线运动的判定:通过观看合速度与合加速度的方向是否共线进行判定:共线则为直线运动,不共线则为曲线运动.(2)判定是否为匀变速运动:看合加速度是否恒定(即大小和方向是否恒定).4.关于绳(杆)末端速度的分解若绳(杆)末端的速度方向不沿绳(杆),则将其速度沿绳(杆)方向和垂直于绳(杆)方向分解,沿绳(杆)方向的分速度相等.(原创题)如图所示为内燃机的活塞、曲轴、连杆结构示意图,已知:曲轴OA=R,连杆AB=3R,活塞C只能沿虚线OC运动.图示位置时,曲轴转动的角速度为ω,且OA⊥AB.求此时活塞C的速度大小.[解析]由圆周运动学问得:v A=ω·R,方向沿AB方向.活塞的速度v C分解如图,则v C1=v A=ω·R,由几何关系得:v C1v C=ABOB=3RR2+(3R)2,解得:v C=103ωR.[答案]103ωR1.对于两个分运动的合运动,下列说法中正确的是()A.合运动的速度肯定大于两个分运动的速度B.合运动的速度肯定大于某一个分运动的速度C.合运动的方向就是物体实际运动的方向D.由两个分运动速度的大小就可以确定合运动速度的大小解析:选C.依据平行四边形定则,合运动速度的大小和方向可由对角线表示,而邻边表示两个分运动的速度. 由几何关系知,两邻边和对角线的长短关系因两邻边的夹角不同而不同,当两邻边长短不变,而夹角转变时,对角线的长短也将发生转变,即合运动速度也将变化,故选项A、B、D错误,选项C正确.解决平抛运动问题的三条途径1.利用平抛运动的时间特点解题平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动,只要抛出的时间相同,下落的高度和竖直分速度就相同.2.利用平抛运动的偏转角解题(1)做平抛运动的物体在任一时刻、任一位置,其速度方向与水平方向的夹角θ、位移与水平方向的夹角α,满足tan θ=2tan α.(2)做平抛运动的物体任意时刻的瞬时速度的反向延长线肯定通过此时水平位移的中心,即x′=12x.3.利用平抛运动的轨迹解题平抛运动的轨迹是一条抛物线,已知抛物线上的任意一段,就可求出水平初速度和抛出点,其他物理量也就迎刃而解了.设右图为某小球做平抛运动的一段轨迹,在轨迹上任取两点A 和B ,E 为AB 的中间时刻(只需CD =DB ).设t AE =t EB =T由竖直方向上的匀变速直线运动得FC -AF =gT 2,所以T =Δyg =FC -AF g由水平方向上的匀速直线运动得v 0=EF T =EF g FC -AF.(改编题)如图所示,斜面高h =5 m ,底面长a =8 m ,底面宽b =6 m .现将小球由斜面的A 点水平抛出,恰好落到C 点,求:(1)小球抛出时的速度v 0的大小;(2)小球到C 点时的速度与水平方向的夹角.(取g =10 m/s 2)[解析] (1)小球平抛运动的时间: 由h =12gt 2得:t =2h g=2×510s =1 s. 小球的水平位移:x =a 2+b 2=82+62m =10 m水平初速度为:v 0=x t =101 m/s =10 m/s.(2)小球到C 点时的竖直速度 v y =gt =10×1 m/s =10 m/s. 设与水平方向间的夹角为θ则:tan θ=v y v 0=1010=1θ=45°.[答案] (1)10 m/s (2)45°2.在高度为h 的同一位置向水平方向同时抛出两个小球A 和B ,若A 球的初速度v A 大于B 球的初速度v B ,则下列说法中正确的是( )A .A 球比B 球先落地B .在飞行过程中的任一段时间内,A 球的水平位移总是大于B 球的水平位移C .若两球在飞行中遇到一堵墙,A 球击中墙的高度大于B 球击中墙的高度D .在空中飞行的任意时刻,A 球总在B 球的水平正前方,且A 球的速率总是大于B 球的速率解析:选BCD.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.由题意知,A 、B 两小球在竖直方向同时由同一位置开头做自由落体运动,因此在飞行过程中,它们总在同一高度.而在水平方向上,A 球以较大的速度、B 球以较小的速度同时由同一位置开头向同一方向做匀速直线运动,在飞行过程中,A 球总在B 球的水平正前方,故选项A 错,B 、D 正确;因v A >v B ,抛出后A 球先于B 球遇到墙,即从抛出到遇到墙A 球运动时间短,B 球用时长,那么A 球下落的高度小,故选项C 正确.圆周运动中的临界问题1.水平面内的圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动(半径有变化)的趋势.这时,要依据物体的受力状况,推断物体所受的某个力是否存在以及这个力存在时方向朝哪(特殊是一些接触力,如静摩擦力、绳的拉力等).2.竖直平面内的圆周运动的临界问题竖直平面内的圆周运动,往往是典型的变速圆周运动.对于物体在竖直平面内的变速圆周运动问题,中学阶段只分析通过最高点和最低点的状况.在解答竖直面内的圆周运动问题时,对球在最高点的临界状况,要留意两类模型的区分:绳和杆,绳只能供应拉力,而杆既能供应拉力又能供应支持力.有一水平放置的圆盘,上面放有一劲度系数为k 的轻质弹簧,如图所示,弹簧的一端固定于轴O 上,另一端挂一质量为m 的物体A ,物体与圆盘面间的动摩擦因数为μ,开头时弹簧未发生形变,长度为R .(1)圆盘的转速n 0多大时,物体A 开头滑动?(2)分析转速达到2n 0时,弹簧的伸长量Δx 是多少?[思路点拨] 若圆盘转速较小,则静摩擦力供应向心力,当圆盘转速较大时,弹力与摩擦力的合力供应向心力.[解析] (1)A 刚开头滑动时,A 所受最大静摩擦力供应向心力, 则有μmg =mω20R ①又由于ω0=2πn 0②由①②得n 0=12π μgR ,即当n 0=12π μgR 时,物体A 开头滑动.(2)转速增加到2n 0时,有μmg +k Δx =mω21r ,ω1=2π·2n 0,r =R +Δx ,整理得Δx =3μmgRkR -4μmg .[答案] (1)12π μg R (2)3μmgRkR -4μmg[借题发挥] 处理临界问题常用的方法(1)极限法:把物理问题(或过程)推向极端,从而使临界现象显现,达到尽快求解的目的. (2)假设法:有些物理过程中没有明显消灭临界问题的线索,但在变化过程中可能消灭临界问题.(时间:60分钟,满分:100分)一、单项选择题(本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一个选项正确.)1.下列关于曲线运动的说法中,正确的是( ) A .做曲线运动的物体的加速度肯定是变化的 B .做曲线运动的物体其速度大小肯定是变化的C .做匀速圆周运动的物体,所受的合力不肯定时刻指向圆心D .骑自行车冲到圆弧形桥顶时,人对自行车座的压力减小,这是失重造成的解析:选D.曲线运动的加速度不肯定变化,如平抛运动,选项A 错误.曲线运动的速度大小可以不变,如匀速圆周运动,选项B 错误.做匀速圆周运动的物体,所受合力肯定指向圆心,选项C 错误.自行车行驶至桥顶时,加速度方向向下,处于失重状态,选项D 正确.2.若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小.现假设河的宽度为120 m .河中心水的流速大小为4 m/s ,船在静水中的速度大小为3 m/s ,要使船以最短时间渡河,则( )A .船渡河的最短时间是24 sB .在行驶过程中,船头始终与河岸垂直C .船在河水中航行的轨迹是一条直线D .船在河水中的最大速度为7 m/s解析:选B.当船头的指向(即船相对于静水的航行方向)始终垂直于河岸时,渡河时间最短,且t min =1203 s=40 s ,选项A 错误,选项B 正确;因河水的流速随距岸边距离的变化而变化,而小船的实际航速、航向都在变化,航向变化引起船的运动轨迹不在一条直线上,选项C 错误;船在静水中的速度肯定,则水流速度最大时,船速最大,由运动的合成可知,选项D 错误.3.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮边缘上的两个点,则偏心轮转动过程中a 、b 两点( )A .角速度大小相同B .线速度大小相同C .周期大小不同D .转速大小不同解析:选A.同轴转动,角速度大小相等,周期、转速都相等,选项A 正确,C 、D 错误;角速度大小相等,但转动半径不同,依据v =ωr 可知,线速度大小不同,选项B 错误.本题答案为A.4.如图所示,质量为m 的物体从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v .若物体滑到最低点时受到的摩擦力是F f ,则物体与碗的动摩擦因数为( )A.F f mgB.F f mg +mv 2RC.F f mg -m v 2R D.F fmv 2R解析:选B.设在最低点时,碗对物体的支持力为F N ,则F N -mg =m v 2R ,解得F N =mg +m v 2R.由F f =μF N解得μ=F fmg +mv 2R,选项B 正确.5.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度v 0做平抛运动,从抛出到击中槽面所用时间为Rg(g 为重力加速度),则平抛的初速度可能是( )A .v 0=2±32gRB .v 0=3±22gRC .v 0=3±32gRD .v 0=2±22gR解析:选A.小球做平抛运动,下落的高度y =12gt 2=R 2,水平位移x =R ±R 2-(R /2)2=2±32R ,所以小球做平抛运动的初速度v 0=x t =2±32gR ,选项A 正确.6.质量为m 的飞机以恒定速率v 在空中水平回旋(如图所示),其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对飞机的作用力大小为( )A .m v 2RB .mgC .m g 2+v 4R 2D .m g 2-v 4R2解析:选C.飞机在空中水平回旋时在水平面内做匀速圆周运动,受到重力和空气的作用力两个力的作用,其合力供应向心力F n =m v 2R .飞机受力示意图如图所示,依据勾股定理得F =(mg )2+F 2n =m g 2+v 4R2.二、多项选择题(本题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.)7.西班牙某小镇进行了西红柿狂欢节,其间若一名儿童站在自家的平房顶上,向距离他L 处的对面的竖直高墙上投掷西红柿,第一次水平抛出的速度是v 0,其次次水平抛出的速度是2v 0,则比较前后两次被抛出的西红柿在遇到墙时,有( )A .运动时间之比是2∶1B .下落的高度之比是2∶1C .下落的高度之比是4∶1D .运动的加速度之比是1∶1解析:选ACD.由平抛运动的规律得t 1∶t 2=L v 0∶L2v 0=2∶1,故选项A 正确.h 1∶h 2=⎝⎛⎭⎫12gt 21∶⎝⎛⎭⎫12gt 22=4∶1,选项B 错误,C 正确.由平抛运动的性质知,选项D 正确. 8.中心电视台《今日说法》曾报道了一起发生在某路上的离奇交通事故.家住大路拐弯处的张先生和李先生家在三个月内患病了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严峻损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图所示.交警依据图示作出以下推断,你认为正确的是( )A .由图可知汽车在拐弯时发生侧翻是由于车做离心运动B .由图可知汽车在拐弯时发生侧翻是由于车做向心运动C .大路在设计上可能内(东)高外(西)低D .大路在设计上可能外(西)高内(东)低解析:选AC.由题意知汽车在转弯时路面不能供应足够的向心力,车将做离心运动,该处的设计可能是外低内高,故选项A 、C 正确.9.如图所示,人在岸上拉船,已知船的质量为m ,水的阻力恒为F f ,当轻绳与水平面的夹角为θ时,船的速度为v ,此时人的拉力大小为F ,则此时( )A .人拉绳行走的速度为v cos θB .人拉绳行走的速度为vcos θC .船的加速度为F cos θ-F fmD .船的加速度为F -F fm解析:选AC.船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时针转动,因此将船的速度进行分解如图所示,人拉绳行走的速度v 人=v cos θ,选项A 正确,选项B 错误;绳对船的拉力等于人拉绳的力,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,得a =F cos θ-F fm ,选项C 正确,选项D 错误.10.如图所示,长l =0.5 m 的轻质细杆,一端固定有一个质量为m =3 kg 的小球,另一端由电动机带动,使杆绕O 点在竖直平面内做匀速圆周运动,小球的速率为v =2 m/s.取g =10 m/s 2,下列说法正确的是( )A .小球通过最高点时,对杆的拉力大小是24 NB .小球通过最高点时,对杆的压力大小是6 NC .小球通过最低点时,对杆的拉力大小是24 ND .小球通过最低点时,对杆的拉力大小是54 N解析:选BD.设小球在最高点时受杆的弹力向上,则mg -F N =m v 2l ,得F N =mg -m v 2l=6 N ,由牛顿第三定律知小球对杆的压力大小是6 N ,A 错误,B 正确;小球通过最低点时F N -mg =m v 2l ,得F N =mg +m v 2l =54 N ,由牛顿第三定律知小球对杆的拉力大小是54 N ,C 错误,D 正确.三、非选择题(本题共3小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最终答案的不能得分,有数值计算的题,答案中必需明确写出数值和单位.)11.(10分)将来在一个未知星球上用如图甲所示装置争辩平抛运动的规律.悬点O 正下方P 点处有水平放置的酷热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.现对小球接受频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了小球在平抛运动过程中的多张照片,经合成后,照片如图乙所示.a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:(1)由已知信息,可知a 点________(选填“是”或“不是”)小球的抛出点; (2)由已知信息,可以推算出该星球表面的重力加速度为________m/s 2; (3)由已知信息可以算出小球平抛的初速度是________m/s ; (4)由已知信息可以算出小球在b 点时的速度是______m/s.解析:(1)由初速度为零的匀加速直线运动经过相邻的相等的时间内通过位移之比为1∶3∶5可知a 点为抛出点;(2)由ab 、bc 、cd 水平距离相同可知,a 到b 、b 到c 、c 到d 运动时间相同,设为T ,在竖直方向有Δh =gT 2,T =0.10 s ,可求出g =8 m/s 2;(3)由两位置间的时间间隔为0.10 s ,实际水平距离为8 cm ,x =v x t ,得水平速度为0.8 m/s ;(4)b 点竖直分速度为ac 间的竖直平均速度,依据速度的合成求b 点的合速度,v yb =4×4×1×10-22×0.10m/s=0.8 m/s ,所以v b =v 2x +v 2yb =425m/s. 答案:(1)是 (2)8 (3)0.8 (4)42512.(14分)(2021·高考重庆卷改编)同学们参照伽利略时期演示平抛运动的方法制作了如图所示的试验装置,图中水平放置的底板上竖直地固定有M 板和N 板.M 板上部有一半径为R 的14圆弧形的粗糙轨道,P 为最高点,Q 为最低点,Q 点处的切线水平,距底板高为H ,N 板上固定有三个圆环.将质量为m 的小球从P 处静止释放,小球运动至Q 飞出后无阻碍地通过各圆环中心,落到底板上距Q 水平距离为L 处.不考虑空气阻力,重力加速度为g .求:(1)距Q 水平距离为L2的圆环中心到底板的高度;(2)小球运动到Q 点时速度的大小以及对轨道压力的大小和方向.解析:(1)设小球在Q 点的速度为v 0,由平抛运动规律有H =12gt 21,L =v 0t 1,得v 0=L g2H.从Q 点到距Q 点水平距离为L 2的圆环中心的竖直高度为h ,则L 2=v 0t 2,得h =12gt 22=14H .该位置距底板的高度:Δh =H -h =34H .(2)由(1)问知小球运动到Q 点时的速度大小v 0=L g2H.设小球在Q 点受的支持力为F ,由牛顿其次定律F -mg =m v 20R,得F =mg ⎝⎛⎭⎫1+L 22HR ,由牛顿第三定律可知,小球对轨道的压力F ′=F ,方向竖直向下. 答案:见解析 13.(16分)如图所示,半径为R ,内径很小的光滑半圆管竖直放置.质量为m 的小球以某一速度进入管内,通过最高点A 时,对管壁的作用力为12mg .求:小球落地点距轨道最低点B 的距离的可能值.解析:小球通过最高点A 时,对管壁的作用力为12mg ,有两种可能:一是对下管壁的压力为12mg ,二是对上管壁的压力为12mg .小球对下管壁的压力为12mg 时的受力如图.由牛顿其次定律得:mg -F N1=mv 21R又F N1=12mg解得:v 1= gR2小球对上管壁的压力为12mg 时的受力如图.由牛顿其次定律得:mg +F N2=mv 22R又F N2=12mg解得:v 2=3gR2小球从A 到落地的时间由12gt 2=2R 得:t =2Rg小球落点到B 点的距离可能值: x 1=v 1t =gR 2·2Rg =2R x 2=v 2t =3gR2·2Rg=6R . 答案:2R 或6R。
点的合成运动
r
45
e 4
a 8 e
e r 式向y方向投影: 由 a
sin r sin 45 a 4 / sin a
x方向:
cos e r cos 45 4 a 45
r a sin
r OA
OO1 sin OO1 sin OA
向 x 轴投影: e a cos
O B
1
e
O1 A
a cos
O1 A
cos 1 sin 2 O1 A
y
OA sin(180 ) sin
大小 ? √ ?
e r a
? √ ?
方向 ? √ √
? √ √
注意:绝对速度 a及夹角,无论坐标怎样选取,其大
小和方向都不变。 因此
a
r e r e
r cos 45 8 4 4
r
将上式投影到x方向:
A b v
va ve vr
x
M
300
y
B
n τ n aa aa ae ar ar ac
0
求速度和加速度因轨 迹变化复杂,相对速 度和相对法向加速度 无法求解,导致其他 速度和加速度解不出, 因此动点选取时应选 该动点不变的点,如 直角端点为动点。
τ ae
3 ac 21 vr r 4
2
aen=2r/8
3 r 4
2
1
ae
0' M
理论力学运动学习题及详解
y f 2 (t ) z f 3 (t )
2 2
a x x a y y a z z
2 2 2
v vx v y vz
2
a ax a y az
方向均由相应的方向余弦确定。
第2章 运动学练习
二.基本公式 自然法(轨迹已知时)
运动方程 速度
ae 5 2 0 r 4
5 2a r0 4
B
aC 0
O2
3销钉C固定在AB杆,在滑槽O2D中运动,该瞬时O1A与AB水平,O2D
铅直,且O1A=AC=CB=O2C=r,ω0=常数,求
AB、O2 D、 AB、O2 D .
D
n aCA
(2)加速度分析
AB 0
a 常量, an 0
,点做何种运动( B)。
B.匀变速曲线运动 D.匀变速直线运动
(3)已知点的运动方程为 x 2t 2 4, y 3t 2 3 ,其轨迹方程为(
B)
A.3x 4 y 36 0, C.2 x 2 y 24 0,
第2章 运动学练习
B.3x 2 y 18 0 D.2 x 4 y 36 0
1.选择题:
【练习题】
(4). 如图所示平面机构中,O1A=O2B= r, O1O2 =AB, O1A以匀角速度绕垂直于图 面的O1轴转动,图示瞬时,C点的速度为:( D )
A.
B. C.
Vc 0
Vc r a
2 2
水平向右
O1 A
O2
Vc r0 D. Vc r0
铅直向上 水平向右
2.刚体运动学
基本运动 平面运动
理论力学哈工大第八版答案
哈尔滨工业大学理论力学教研室理论力学(I)第8版习题答案《理论力学(1 第8版)/“十二五”普通高等教育本科国家级规划教材》第1版至第7版受到广大教师和学生的欢迎。
第8版仍保持前7版理论严谨、逻辑清晰、由浅入深、宜于教学的风格体系,对部分内容进行了修改和修正,适当增加了综合性例题,并增删了一定数量的习题。
本书内容包括静力学(含静力学公理和物体的受力分析、平面力系、空间力系、摩擦),运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动),动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。
本书可作为高等学校工科机械、土建、水利、航空、航天等专业理论力学课程的教材,也可作为高职高理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案专、成人高校相应专业的自学和函授教材,亦可供有关工程技术人员参考。
本书配套的有《理论力学学习辅导》、《理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学关注网页底部或者侧栏二维码回复理论力学(I)第8版答案免费获取答案引言第一章静力学公理哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学引言第一章静力学公理和物体的受力分析第二章平面力系第三章空间力系第四章摩擦理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案§4-4 滚动摩阻的概念运动学引言第五章点的运动学*§5-5 点的速度和加速度在球坐标中的投影思考题习题第六章刚体的简单运动§6-1 刚体的平行移动§6-2 刚体绕定轴的转动§6-3 转动刚体内各点的速度和加速度§6-4 轮系的传动比§6-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度思考题习题第七章点的合成运动第八章刚体的平面运动动力学引言第九章质点动力学的基本方程第十章动量定理第十一章动量矩定理第十二章动能定理第十三章达朗贝尔原理第十四章虚位移原理参考文献习题答案索引Synopsis哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案第十四章虚位移原理。
点的运动合成
va ve B a vr vA A
3.1半径为R的圆轮以匀角速度ω沿水平轨道作纯滚动,OA
杆作定轴转动,若取轮心C为动点,以OA杆为动坐标,试 在轮心C上画出绝对速度、相对速度和牵连速度的方向。
A vr ω va ve O
3.2
ds ve (a b sint )' b cos t dt
7
ar dt
1、平行四边形机构,在图示瞬时,杆O1A以角速度 2.1 ω转动。淆块M相对AB杆运动,若取M为动点, AB为动坐标,则该瞬时动点的牵连速度与杆AB间 的夹角为 2 。 ①0;②30; ③60;④90。
A M
B
ω O1
60°
O2
60°
2一曲柄连杆机构,在图示位置时(φ=60, 2.2 OA⊥AB),曲柄OA的角逸度为ω,若取滑块B 为动点,动坐标与OA固连在一起,设OA长r, 则在该瞬时 动点牵连速度的大小为 2 。 ②2r ω ;
O1
va
O
L
在图示机构中,凸轮D和水平杆AB通过小滑块A连接,凸 轮D沿铅垂滑道运动.带动AB杆水平运动。己知:滑块 6 A相对于D的运动方程为xA=1+t2,yA=t3,式中xA、yA 以cm计,t以s计。当t=1s时;凸轮D恰处图示位置,试 求该瞬时AB杆上B点的速度和加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 点的合成运动本章要点一、绝对运动、相对运动和牵连运动一个动点,两个参照系: 定系,动系;三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度;牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。
二、速度合成定理动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即r e a v v v +=解题要领1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上.2 牵连速度是牵连点的速度.3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的.4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置.5 用解三角形的方法解速度合成图. 三、加速度合成定理1 牵连运动为平移时的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即r e a a a a +=,当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成n r t r ne t e n a t a a a a a a a +++=+其中 t v a d d a t a=,a 2a n a ρv a =,t v a d d e t e =,e2e n e ρv a =,t v a d d r t r =,r 2r nr ρv a =,r e a ,,ρρρ依次为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。
解题要领1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要.2 牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。
但是,法向加速度只与速度有关,因此,可以通过速度分析予以求解,从而在此处是作为已知的。
剩下的三个切向加速度的大小方向共有六个因素,能且只能有2个未知量时方可求解。
3 因加速度合成定理涉及的矢量较多,一般不用几何作图的方法求解,而是列投影式计算,千万不能写成“平衡方程”的形式。
4 在加速度分析中,因动点和动系的选择不当而出现了一种似是而非的分析过程。
教材中例5.3.5的一个典型错误解法如下:例:半径为r 的半圆凸轮移动时,推动靠在凸轮上的杆OA 绕O 轴转动,凸轮底面直径DE 的延长线通过O 点,如图所示。
若在 30=ϕ的图示瞬时位置,已知凸轮向左的移动速度为u ,加速度为a 且与u 反向,求此瞬时OA 杆的角速度ω与角加速度α。
“解”:取OA 杆上与凸轮相接触的B 点为动点,动系固结在凸轮上。
设OA 杆的角 速度和角加速度分别为 和。
1)速度分析:根据速度合成定理,可画出速度平行四边形如图所a 示。
由几何关系可得u v v 2130sin e a == , u v v 2330cos e r == 方向如图所示。
由此可求得OA 杆在图示瞬时的角速度为ru u r OB v ω63230ctg 1a ===, 转向如图所示。
2) 加速度分析:根据牵连运动为平移时的加速度合成定理,有(a )(b)n r t r en ata a a a a a ++=+大小: αOB ? 2ωOB a ? BCv 2r方向: OA ⊥ 指向O 点 ← BC ⊥ 指向C 点加速度矢量关系图如图b 所示。
在这个矢量关系式中,各加速度分量的大小、方向共有十个要素,已知八个要素,可以求解。
将图示的加速度矢量关系向CB 方向投影,得()⎪⎪⎭⎫ ⎝⎛+-=--=--=--=r u a r u/aBC v a a a a 43223230sin 30sin 222rn re ta, t a a 为负值说明τa a 的真实指向应与图设的指向相反。
由此,可求得OA 杆在图示瞬时的角加速度的大小为⎪⎪⎭⎫⎝⎛+=+===r u a r rr /u a/BC a OB a α2323343230ctg 22ta t a , 转向如图所示(由t a a 的真实指向决定)。
上述解法是“避免 ”了取OA 杆为动系时出现的科氏加速度,错在何处?这不难从杆OA 的转动方程xR=ϕsin , 对时间求导求得OA 杆的角速度和角加速度值得到验证,式中OA x =。
可以看到,速度分析的结果是正确的,而加速度分析结果是错误的。
原因是“取OA 杆上与凸轮相接触的B 点为动点”,此动点只在此瞬时与凸轮相接触,随后就分道扬镳了,其相对轨迹不是凸轮轮廓线,相对轨迹不清楚,因此,上面分析中nr a 用凸轮轮廓线的半径作为相对轨迹的曲率半径的计算是错误的。
2 牵连运动为转动时的加速度合成定理牵连运动为转动时点的加速度合成定理:当牵连运动为转动时,动点的绝对加速度,等于该瞬时动点的牵连加速度、相对加速度与科氏加速度的矢量和c r e a a a a a ++=,其中科氏加速度为r e c ω2v a ⨯=,当相对速度矢量与牵连角速度矢量垂直时,相对速度顺着牵连角速度转90的方向就是科氏加速度的方向,大小为r e ω2v a c =.当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成c n r t r ne t e n a t a a a a a a a a ++++=+.解题要领:1 在加速度分析中要特别注意动系是否有角速度,如果有,就要考虑科氏加速度。
2 牵连运动为转动时的加速度合成定理涉及的矢量较多,最多有7个矢量,分析和列投影式时不要遗漏了。
3 法向加速度和科氏加速度只与速度和角速度有关,因此,在加速度分析时应作为是已知的。
4 牵连运动为转动时的加速度合成定理只可以解2个未知量。
第五章 点的合成运动 习题解答5-1 在图a 、b 所示的两种机构中,已知20021==a O O mm ,31=ωrad/s 。
求图示位置时杆A O 2的角速度。
解:(1)取杆A O 1上的A 点为动点,杆A O 2为动系。
1a ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图a 所示),得a v v 1a e 2330cos ω==, rad/s 5.1212e 2===ωωAO v , (逆时针)(2)取滑块A 为动点,杆A O 1为动系, 1e ωa v =,由r e a v v v +=作速度平行四边形(如题5-1图b 所示),得1e a 3230cos ωa v v ==,rad/s 23212a 2===ωωA O v .(逆时针)5-2图示曲柄滑道机构中,杆BC 为水平,杆DE 保持铅直。
曲柄长10.OA =m ,并以匀角速度20=ωrad/s 绕O 轴转动,通过滑块A 使杆BC 作往复运动。
求当曲柄水平线的交角分别为0=ϕ、 30、 90时杆BC 的速度。
解:取滑块A 为动点,动系为BCE 杆。
m /s 2OA a =⋅=ϕv . 由 r e a v v v += 得 ϕsin a e v v =题5-2图(a)( b)题5-1图当 0=ϕ 时, 0e =v ;当30=ϕ时,m/s 1e =v ;当90=ϕ时,m/s 2e =v .5-3图示曲柄滑道机构中,曲柄长r OA =,并以匀角速度ω饶O 轴转动。
装在水平杆上的滑槽DE 与水平线成60角。
求当曲柄与水平线交角0=ϕ、30、60时,杆BC 的速度。
解:取滑块A 为动点,动系为杆BC ,ωωr v =⋅=OA a . 作速度矢量图如图示。
由正弦定理)30-sin()60-sin(180ea ϕv v =, 解得)30-sin(32-e ϕω⋅=r v . 当0=ϕ时, 33e v r ω=; 当30oϕ=时, 0=e v ;当60oϕ=时, 33e v r ω=-(向右). 5-4如图所示,瓦特离心调速器以角速度ω绕铅垂轴转动。
由于机器转速的变化,调速器重球以角速度1ω向外张开。
如该瞬间10rad/s =ω,1.2rad/s 1=ω。
球柄长500mm =l ,悬挂球柄的支点到铅垂的距离为50mm =e ,球柄与铅垂轴间所成的夹角30=β。
求此时重球绝对速度的大小。
解:取重球为动点,转轴AB 为动系,则 ωl v r =,方向如图示;牵连速度()ωβsin e l e v +=,方向与ADB 垂直。
根据r e a v v v +=,题5-3图题5-4图由勾股定理得 m/s 059.32r 2e a =+=v v v .5-5图示L 形杆BCD 以匀速v 沿导槽向右平动,CD BC ⊥,hBC =。
靠在它上面并保持接触的直杆OA 长为l ,可绕O 轴转动。
试以x 的函数表示出直杆OA 端点A 的速度。
解: 以L 形杆上的B 为动点,OA 杆为动系,则动点相对于动系做直线运动。
v v =a ,设OBC ∠为θ,由速度合成定理得 v x h h v v 22a e cos +==ϑ,由此可求得v xh hl l x h v v eA 2222+=+=. 也可以利用以下关系解出A v 。
由h xh x arctan ,tan ==θθ,vt x = v x h hl r v x h vh h x h vt A 22222,1d d +==+=⎪⎭⎫⎝⎛+==ωθω.5-6如图所示,摇杆OC 绕O 轴转动,拨动固定在齿条AB 上的销钉K 而使齿条在铅直导轨内移动。
齿条再传动半径100=r mm 的齿轮D 。
连线1OO 是水平的,距离400=l mm 。
在图示位置,摇杆角速度50.=ωrad/s , 30=ϕ。
试求此时齿轮D 的角速度。
解: 解法一:分两步计算。
(1)计算齿条AB 的速度。
取K 为动点,OC 杆为动系,则ωOK v =e . 由速度合成定理得:ϕωϕ2e a cos cos l v v v AB ===, (2)计算齿轮D 的角速度。
rad/s 67.238cos 2====ϕωωr l r v AB D .(逆时针) 解法二:设齿轮D 和齿条AB 的啮合点到K 点的距离为h ,题5-5图题5-6图则 ωϕϕ-== ,tan l h ,从而有 ()tl l t t h v AB ωωϕ2cos tan dd d d -===, 代入数据,m/s 15430cos 5.04.02-=⨯-= AB v .其中负号表示AB v 是沿h 减小的方向,即向下。
齿轮D 的角速度为 m/s 67.238===r v v AB D .(逆时针) 5-7绕轴O 转动的圆盘及直杆OA 上均有一导槽,两导槽间有一活动销子M 如图所示,0.1m =b 。