小学五年级奥数_找规律
五年级奥数找规律1
1.找规律
在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问,纸上所有数之和是 .
2.火车过桥
两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车 窗共用了14秒,乙车上也有一乘客发现:从甲车车头经过他的车窗时开始到甲车车尾经过他的车窗共用了11秒,那么站在铁路旁的的丙,看到两列火车从车头相 齐到车尾相离时共用多少时间?
虽然排列顺序不同,但只要找到十分位上的数字后,再依验算以上结论成立。
2.计算
一个三位小数四舍五入后成为4.80,原来的三位小数可能是哪些小数?
分析与解答 我们分两种情况考虑:四舍;五入。
四舍不进位得4.80,那么原来千分位上数字只能是1,2,3,4,所以原数为4.801,4.802,4.803,4.804。
五入进位后得4.80,那么原数百分位上的数为9,十分位上的数字为7,而千分位上的数字只能是5、6、7、8、9。所以原数为4.795,4.796,4.797,4.798,4.799。
答:原来的三位小数可能是4.801,4.802,4.803,4.804,4.795,4.796,4.797,4.798,4.799。
1.找规律
用循环小数表示1÷7,2÷7,3÷7的商,比较一下它们的循环节中的数字有什么特点,从中可以找出什么规律?应用找出的规律,写出4÷7,5÷7,6÷7的循环节后,再除一下,看看找到的规律对不对?
分析与解答 通过计算知,用7分别去除1,2,3后所得到循环节的位数相同,所出现的数字也相同
五年级上册数学试题-奥数:小数除法的应用-2.找规律计算人教版 (1)
第五周小数除法的应用2.找规律计算[题型概述]有些计算不需要一部一步地计算,只要通过你的观察,就能直接写出结果。
[典型例题]先计算下面一组算式前三题的结果,然后找出其中的规律,并根据规律直接写出后面几题的得数。
1×0.8+0.1=()12×0.8+0.2=()123×0.8+0.3=()……12345678×0.8+0.8=()123456789×0.8+0.9=()思路点拨通过计算,我们先得出前面三题的得数:1×0.8+0.1=(0.9);12×0.8+0.2=(9.8);123×0.8+0.3=(98.7)。
不难发现得数的变化规律:得数的位数与第一个因数一样,最高位上是9,其余数位上的数依次是8,7,6,5,4,3…,因此12345678×0.8+0.8=(9876543.2)123456789×0.8+0.9=(98765432.1)[举一反三]1.观察算式,找出规律,在括号里填上适当的数。
1.9+9×0.9=1011.8+98×0.9=100111.7+987×0.9=1000……11111.5+()×0.9=()11111111.2 +()×0.9=()2.找出规律后直接填出括号内的数。
199999.8÷9=22222.2299999.7÷9=33333.3()99999.()÷9=44444.4()99999.()÷9=55555.5()99999.()÷9=66666.63.运用发现的规律,在括号内填上合适的数:9×6=5499×96=9504999×996=99550049999×()=99950004[拓展提高]先找出规律,再填空:1×0.9+0.2=1.112×0.9+0.3=11.1123×0.9+0.4=111.1……()×0.9+()=1111111.1思路点拨通过观察前三题,我们可以发现:第二个因数都是0.9;得数整数部分“1”的个数与第一个因数是几位数一样,得数的十分位都是“1”;整个得数部分有几个“1”,加数就是零点几。
小学五年级奥数练习找规律
小学五年级奥数精选一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列: ①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,……规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,…… 例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ;(3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 10 18 20 22 24 32 30 28 26 34 36 38 40 … … … …例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?第一行 1 第二行23 4第三行5 67 8 9第四行 10 11 12 1314 15 16…1 3 6 10 15 21 … 2 5 9 14 20 …4 8 13 19 …712 18 …11 17 (1)6…A B C DE12 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17 … … ………… …例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 … … … …第1行1 2 3 4 5 … 14 15第2行 30 29 28 27 26 … 17 16第3行 31 32 33 3435 … 44 45……………………………………………………例10、右图是一个由数字组成的三角形。
五年级找规律(经典30道)
五年级找规律一.选择题1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.292.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.363.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.424.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+315.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.176.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.307.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.28.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.249.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成个三角形.14.找规律填数.(1)1,4,7,10,,,.(2)2,4,6,8,,,.(3)1,1,2,3,5,8,,.(4)2,5,4,7,6,9,8,,.(5)1,﹣4,9,﹣16,25,,.15.△□□△□□△□□…,这一组图形中第16个是,第21个是.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按的规律摆放的,第51枚棋子是,前20枚棋子中,白色棋子有枚.17.按规律填数:,,,,,,.18.先找规律,再填数:1,,,,,,.19.照下图排列的规律,第10幅图有个圆点,第n个图有个圆点.20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要根这样的小木棒.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了块石子.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有个▲.第m个图形中共有个▲.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要个小三角形,第7个图形的周长是.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有个小圆.25.仔细观察如图,照这样排列下去,第六个图形中共有个三角形,其中涂色的三角形有个.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=2(2)概括:=2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了个三角形.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是.三.解答题(共2小题)29.学校准备了40000元,够不够?30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有个.摆五层一共有个.摆六层一共有个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?.五年级找规律参考答案与试题解析一.选择题(共9小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.29【解】根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.2.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.36【解】1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.3.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.42【解】观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31【解】这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.5.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.17【解】10+5=15故选:B.6.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.30【解】2×9﹣1=18﹣1=17所以:2,3,5,9,17,33,…….故选:C.7.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.2【解】17.4﹣1.2=16.2.故选:C.8.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.24【解】图①三角形的个数:2×3﹣1=5(个)图②三角形的个数:3×3﹣1=8(个)图③三角形的个数:4×3﹣1=11(个)……图n三角形的个数:3(n+1)﹣1=(3n+2)个……第⑥个图三角形的个数为:3×6+2=18+2=20(个)答:第⑥个图三角形的个数为20个.故选:C.9.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54【解】由分析可知,第n项是(3n+3)个点3×9+3=27+3=30答:第(9)个点阵图中有30个点.故选:B.二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【解】第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【解】因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【解】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.14.找规律填数.(1)1,4,7,10,13,16,19.(2)2,4,6,8,10,12,14.(3)1,1,2,3,5,8,13,21.(4)2,5,4,7,6,9,8,11,10.(5)1,﹣4,9,﹣16,25,49,﹣64.【解答】解(1)10+3=1313+3=1616+3=19(2)8+2=1010+2=1212+2=14(3)5+8=138+13=21(4)72=49﹣16×4=﹣64故答案为:13,16,19;10,12,14,13,21,49,﹣64.15.△□□△□□△□□…,这一组图形中第16个是△,第21个是□.【解】16÷3=5…1,所以这一组图形中第16个是△;21÷3=7,所以这一组图形中第21个是□;故答案为:△,□.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按●●〇●〇〇〇的规律摆放的,第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.【解】51÷7=7(周)…2(个)第51枚棋子是黑色的.20÷7=2(周)…6(个)2×4+3=11(个)所以前20枚中一共有11个白色的.答:第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.故答案为:黑色的,11.17.按规律填数:,,,,,,.【解】==故答案为:;.18.先找规律,再填数:1,,,,,,.【解】1=,由前几个分数可知,分子是从1开始的连续奇数,分母是项数的平方;所以,第6项的分子是11,分母是62=36,是.故答案为:.19.照下图排列的规律,第10幅图有33个圆点,第n个图有(3n+3)个圆点.【解】第一幅图圆点个数:1+2+3=6(个)第二副图圆点个数:2+3+4=9(个)第三幅图圆点个数:3+4+5=12(个)……第10幅图圆点个数:10+11+12=33(个)……第n幅图圆点的个数:n+(n+1)+(n+2)=(3n+3)个答:第10幅图有33个圆点,第n个图有(3n+3)个圆点.故答案为:33;(3n+3).20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要34根这样的小木棒.【解】由分析可得:第n幅图需要小棒:4+6(n﹣1)根.所以第6幅图需要小棒:4+6(n﹣1)=4+6×(6﹣1)=4+30=34(根)答:第6幅图需要34根这样的小木棒.故答案为:34.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了77块石子.【解】第一个图形有5块小石子,5=1×(1+4)第二个图形有12块小石子,12=2×(2+4)第三个图形由21块小石子,21=3×(3+4)……由此推出:第n个图形有n(n+4)块石子7×(7+4)=7×11=77(块)答:第7个小房子用了77块石子.故答案为:77.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有114个▲.第m个图形中共有m(m+1)+4个▲.【解】∵第1个图形有1×2+4=6个三角形,第2个图形有4+2×3=10个三角形,第3个图形有4+3×4=16个三角形,…,∴第m个图形中有m(m+1)+4个三角形,∴第10个图形棋子的颗数为:10×(10+1)+4=10×11+4=110+4=114(个)故答案为:114,m(m+1)+4.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要49个小三角形,第7个图形的周长是21.【解】根据题干分析可得:第一个图形是12=1个三角形,边长是1;第二个图形是22=4个三角形,边长是2;第三个图形是32=9个三角形,边长是3;…,第七个图形是72=49个三角形,边长是7,周长是7×3=21.答:摆第7个图形需要49个小三角形,第7个图形的周长是21.故答案为:49;21.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有44个小圆.【解】第1个图形中有6个小圆第2个形中有10个小圆第3个图形中有16个小圆第4个图形中有24个小圆……第n个图形为:[n(n+1)+4]个小圆所以,第6个图形小圆的个数为:6×7+4=42+2=44(个)答:第6个图形有44个小圆.故答案为:44.25.仔细观察如图,照这样排列下去,第六个图形中共有49个三角形,其中涂色的三角形有21个.【解】根据题干分析可得:第n个图形涂色的小三角形个数为1+2+3+…+n,没有涂色的小三角形个数为1+2+3+…+n+n+1,当n=6时,1+2+3+4+5+6=21(个)没有涂色小三角形有1+2+3+4+5+6+7=28(个)21+28=49(个)故答案为:49,21.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=102(2)概括:=n2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=113【解】(1)1+3+5+…+19=(19+1)÷2=10(个),即1+3+5+…+19由10个加数其和是102即1+3+5+…+19=102(2)=n2(3)1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=(1+3+5+7+9+11+13+15)+(1+3+5+7+9+11+13)=82+72=64+49=113故答案为:10,n,113.27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了13个三角形.【解】当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1(根);当有27根小棒时:2n+1=272n=26n=13;答:摆27根小棒能摆出13个三角形.故答案为:13.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是10100.【解】由分析可得:每个图案的纵队棋子个数是:n,每个图案的横队棋子个数是:n+1,那么第n个图案中棋子的总个数与n的关系式为:总个数=n(n+1).那么第100个图案中棋子的总个数:100×(100+1)=100×101=10100(个)答:第100个图案中棋子的总个数是10100个.故答案为:10100.三.解答题(共2小题)29.学校准备了40000元,够不够?【解】172×42+328×45=7224+14760=21984(元)21984<40000答:学校准备了40000元,够.30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【解】(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1)。
五年级奥数8数列中的规律
8、数列中的规律姓名:按某种规律排列的一组数,叫作数列。
数列中常见的规律有以下几种:①规律蕴含在相邻两数的差中。
1,2,3,4,5,发6,7,…后一项减去前面与其相邻的一项,差为1。
100,95,90,85,80,…前一项减去后面与其相邻的一项,差为5。
像这样的一组数,从第二项起,每一项与其前一项的差都相等的数列,叫作等差数列。
后一项与前一项的差,叫作这个数列的公差,通常用d表示。
在等差数列a1,a2,a3,…,an中,数列的公差为d,则:a 2=a1+da 3=a2+d=(a1+d)+d=a1+2da 4=a3+d=(a1+2d)+d=a1+3d由此可见,等差数列从第二项起,每一项都等于第一项加上公差的若干倍,这个倍数等于该项的项数减1的差,即,an =a1+(n-1)×d。
这个公式,我们称之为等差数列的通项公式,利用它可以求出等差数列中的任何一项。
等差数列中的基本公式还包括:项数(n)=(末项-首项)÷公差+1首项(a1)=末项-(项数-1)×公差末项(an)=首项+(项数-1)×公差和(S)三(首项+末项)×项数÷2奇数项等差数列的和=中间项×项数奇数项等差数列的中间项=(首项+末项)÷2②规律蕴含在相邻两数的倍数中。
像1,2,4,8,16,32,…这样的一组数,相邻两数为2倍关系,即前一项乘2等于与其相邻的后一项,也就是说相邻两项的比值相同,我们把它称作等比数列或等倍数列。
③前后几项为一组,以组为单位蕴含一定的规律。
例:1,0,0,1,1,0,0,1,…从左到右,每四项为一组,每组都是“1,0,0,1”四个数字。
④数列中间隔的项之间存在着一定的规律。
例:12,15,17,30,22,45,27,60,…第1,3,5项依次相差5,第2,4,6项依次相差15。
⑤相邻两数的关系中隐含着规律。
例:18,20,24,30,38,48,60,…此数列中相邻两数依次相差2,4,6,8,10,12,…例:2,5,11,23,47,…此数列从第二个数开始,每个数都是它前面那个数的2倍再加1。
五年级奥数讲义-第7讲(找规律-a的n次方的个位数是几)
整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a 的乘积叫做a的三次方,记作a3,即a3=a×a×a。
一般地,n个a相乘,叫做a的n次方,记作a n,即本讲主要讲a n的个位数的变化规律,以及a n除以某数所得余数的变化规律。
因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以a n的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况。
为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么。
从表看出,a n的个位数字的变化规律可分为三类:(1)当a的个位数是0,1,5,6时,an的个位数仍然是0,1,5,6。
(2)当a的个位数是4,9时,随着n的增大,a n的个位数按每两个数为一周期循环出现。
其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。
(3)当a的个位数是2,3,7,8时,随着n的增大,a n的个位数按每四个数为一周期循环出现。
其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a 的个位数是8时,按8,4,2,6的顺序循环出现。
例1 求67999的个位数字。
分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。
999÷4=249……3,所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。
例2 求291+3291的个位数字。
分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8。
类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现,291÷4=72……3,所以3291与33的个位数相同,等于7。
奥数培优 五年级 第5讲 有趣的找规律
第五讲有趣的找规律例1、一串数按规律排列如下:1,2,3,2,3,4,3,4,5,4,5,6,5,6,7,...... 从第一个数算起,前100个数的和是多少?例2 、在平面上画1994条直线,这些直线最多能形成多少个交点?例3、在一个长方形中,如果没有一条直线,则长方形可以看作一个部分,如果在长方形中画一条直线,这个长方形就被分成两个部分,在长方形中画两条直线最多可以将长方形分成四个部分,如果画三条直线最多可以将长方形分成七个部分(如图)。
如果在长方形中画100条直线,最多可以将长方形分成多少个部分?例4、小明放学回家要路过一个有10个台阶的广场,如果上台阶时每步跨一个或两个台阶,要跨上第10个台阶共有多少种不同的走法?例5、在方格纸上画折线(如下图),小方格的边长是1,图中的1,2,3,4,......,分别表示折线的第1,2,3,4,......段,求折线中第1994段的长度。
思考与练习1、找规律,在括号内填上合适的数。
(1)1,3,9,27,(),243;(2)1,3,2,4,3,5,4,();(3)6,3,8,5,10,7,12,9,(),11;(4)81,64,(),36,(),16,9,4,1;(5)1,8,9,17,26,(),69.2、一串数按下面规律排列:1,3,5,2,4,6,3,5,7,4,6,8,5,7,9,......,从第一个算起,前100个数的和是多少?3、有一串黑白相间的珠子(如图),第100个黑珠前面一共有多少种取法?4、从1—9中每次取两个不同的数相加,和大于10的共有多少种取法?5、(1)在平面中任意作20条直线,这些直线最多可把这个平面分成多少个部分?(2)在平面上任意作6个圆,这些圆最多可把这个平面分成多少个部分?序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 ......算式3+11 1+13 2+15 3+17 .......7、已知小正方形的边长是1厘米,依次作出下面这些图形。
小学奥数 图形找规律 精选例题练习习题(含知识点拨)
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化; ⑵图形形状的变化; ⑶图形大小的变化; ⑷图形颜色的变化; ⑸图形位置的变化; ⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】 观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】 请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
【例8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】 在纸上画5条直线,最多可有 个交点。
模块二、图形规律—— 旋转、轮换型规律【例 11】 相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗? ○ □ ☆ △ ○ □ ☆ △ △ ○ □ ☆ △ ○ □ ☆ ☆ △ ○ □ ☆ △ ○ □ ()()()()()()()()【例 12】 下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)(2)(3)【例 13】 观察下图的变化规律,画出丙图.甲DA乙BC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A★B C★D A★D【例15】(希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
五年级奥数:周期问题
五年级奥数:周期问题专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。
我们把这种特殊的规律性问题称为周期问题。
解答周期问题的关键是找规律,找出周期。
确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。
例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。
(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。
第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。
例2:有一列数,按5、6、2、4、5、6、2、4…排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。
所以第129个数是5。
(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549。
例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…分析与解答:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。
39÷4=9…3 88÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。
五年级奥数图形找规律学生版
五年级奥数图形找规律学生版⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【例 6】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例 7】 观察下图中的点群,请回答:(1) 方框内的点群包含 个点;(2) 推测第10个点群中包含 个点; (3)前10个点群中,所有点的总数是 。
【例 8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】在纸上画5条直线,最多可有个交点。
模块二、图形规律——旋转、轮换型规律【例 11】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○ □ ☆△ ○ □ ☆△△ ○ □ ☆△ ○ □ ☆☆△ ○ □ ☆△ ○ □()()()()()()()()【例 12】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)?第1组第3组(2)?第1组第3组(3)★★★★★?第3组第2组第1组【例 13】 观察下图的变化规律,画出丙图.甲D CB A乙DABC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A ★BC ★DA ★D【例 15】 (希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A 、B 、C 、D (线段和正方形)组合(记为*)而成。
五年级奥数专题 数列找规律(学生版)
数列找规律学生姓名授课日期教师姓名授课时长知识定位知识梳理例题讲解【试题来源】【题目】下面每列数都有什么规律呢?你能找到并继续往下填吗?⑴ 1,3,5,7,( ),()。
⑴ 2,4,6,8,(),()。
⑴ 1,4,7,10,(),()。
⑴ 35,30,25,20,(),( )。
【试题来源】【题目】你知道下面数列的规律吗?请继续往下写。
⑴1,3,9,(),()。
⑵1,10,100,1000,(),()。
⑶64,32,16,8,(),()。
【试题来源】【题目】有一个人养了一对刚出生的小兔子,一般而言,一对兔子如果第一个月出生,第二个月长大,第三个月就能生一对小兔子,以后每个月都能生出一对小兔子。
而新生的一对小兔子经过一个月可以长成大兔子,以后也是每月生一对小兔子。
假如所有兔子都不死,问:从一对小兔子出生经过一年的时间一共有多少对兔子?【试题来源】【题目】数列的变化非常多,下面的数列要我们多动脑筋才能找出来。
快来试一试吧!⑴5,7,10,14,( ),25,( )。
⑵100,81,64,49,36,25,( ),9,4,1 。
⑶1,2,6,24 , ( )。
⑷6,9,15,24,39,( ),( )。
【试题来源】【题目】下图的数是按一定规律排列的,请按规律填上所缺数。
习题演练【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、6、10、14、18、22、( )A.25B.28C.26D.21【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )1、2、4、8、16、( )A.30B.32C.15D.28【试题来源】【题目】有这样一列数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,,你知道这个数列第13项是( )?A.198B.213C.250D.233【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、3、5、8、12、17、( )A.23B.22C.19D.25【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
五年级奥数思维训练题上
五年级奥数思维训练题上一、数字规律类。
1. 按规律填数:1,2,4,7,11,16,(),29。
- 解析:相邻两个数的差依次是1、2、3、4、5……,所以16与括号里的数的差应该是6,那么括号里的数是16 + 6=22。
2. 找规律:2,3,5,8,13,(),34。
- 解析:从第三项起,每一项都是前两项之和,5 = 2+3,8 = 3 + 5,13=5+8,所以括号里的数是8+13 = 21。
二、数的整除类。
3. 在1 - 100的自然数中,能被3整除或者能被5整除的数共有多少个?- 解析:能被3整除的数有100÷3 = 33(个)……1,即33个;能被5整除的数有100÷5=20个;能被3和5整除(即能被15整除)的数有100÷15 = 6(个)……10。
根据容斥原理,能被3整除或者能被5整除的数共有33+20 - 6 = 47个。
4. 一个三位数能被9整除,去掉它的末位数字后,所得的两位数是17的倍数。
这样的三位数中,最大是多少?- 解析:17的倍数的两位数有17、34、51、68、85。
因为这个三位数能被9整除,所以它的各个数位上的数字之和能被9整除。
当这个两位数是85时,设末位数字是x,8 + 5+x能被9整除,x = 5,这个三位数是855。
三、行程问题类。
5. 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,两人在距离中点5千米处相遇。
A、B两地相距多少千米?- 解析:甲比乙速度快,在距离中点5千米处相遇,说明甲比乙多走了5×2 = 10千米。
甲每小时比乙多走15 - 10 = 5千米,那么相遇时间是10÷5 = 2小时。
A、B两地相距(15 + 10)×2 = 50千米。
6. 一艘轮船在静水中的速度是每小时20千米,它从甲港顺水航行到乙港用了8小时,已知水速是每小时4千米。
五年级奥数-找规律
找规律一、课前热身1、找出下面各组数排列的规律,在括号里填上适当的数。
(1) 1, 2, 4, 8,( ), ( )(2) 1, 2, 2, 3, 3, 4, 5, 5,( ),( )(3) 1, 2, 4, 7, 11,( ),( ),29(4) 0, 1, 3, 12, 45, 171,( ),2457(5) 100, 102, 106, 112, 120, ( ),142, 156(6) 10, 30, 90, 270,( ), 2430, 7290(7) 3, 6, 4, 7, 5, 8,( ), 9, 7(8) 999, 994, 989, 984, ( ),974, 9692、(1, 5, 10} , (2, 10, 20), (3,15,30} , { ), { };(1)1, 11, 22, 34, 47,( ).(2)1, 3, 9, 27, 81,( ).(3)81, 64, 49, 36, ( ), 16, 9.二、典型例题类型1:对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法在分析。
例1根据下表中的排列规律,在空格里填上适当的数。
练习:找规律填空(1) (2)(3) (4)(5)如图在七色球下面,按照图示的规律,依次逐个写自然数。
问:2008在什么颜色的球下面?赤橙菌痛1 2 3 4 5 671312 11 10 9 81415 16 17 18192524 23 2221202627• • • • • •• • • • • •类型2:对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊 位置有关,这是我们解这类题的突破口。
例2根据前面两个圈里三个数的关系,在第三个圈里的(【分析】经认真观察、分析可以发现前面两个圈中三个数之间有着样的关系:5X12=60, 604-10=6 ; 4X20=80, 804-10=8.练习:根据前面两个圈里三个数的关系,在第三个圈里的((1)498 17 5 10119 121613 35 22 17258 18164 32 8 7 426981)里填上适当的数。
五年级奥数找规律题
五年级奥数找规律题一、找规律的基本方法1. 数字规律(1)等差数列定义:相邻两项的差相等的数列。
例如:1,3,5,7,9,…,相邻两项的差都是2。
通项公式:公式,其中公式是第公式项的数,公式是首项,公式是项数,公式是公差。
题目:求等差数列3,7,11,15,…的第10项。
解析:首先确定公式,公式。
根据通项公式公式,当公式时,公式。
(2)等比数列定义:相邻两项的比值相等的数列。
例如:1,2,4,8,16,…,相邻两项的比值都是2。
通项公式:公式,其中公式是第公式项的数,公式是首项,公式是项数,公式是公比。
题目:等比数列2,6,18,54,…的第6项是多少?解析:这里公式,公式。
根据通项公式公式,当公式时,公式。
(3)混合规律有些数列是由多种规律组合而成的。
例如:1,2,3,5,8,13,…,这个数列从第三项起,每一项都是前两项的和。
题目:数列1,1,2,3,5,8,13,21,…,求第10项。
解析:这是斐波那契数列,规律是从第三项起公式。
依次计算可得:第7项公式,第8项公式,第9项公式,第10项公式。
2. 图形规律(1)图形数量规律题目:观察下列图形,找出规律并回答问题。
△□□△△□□□△△△□□□□…第20个图形是什么?解析:可以分组来看,第一组是1个△和2个□,第二组是2个△和3个□,第三组是3个△和4个□,以此类推。
设第公式组,前面公式组图形的总数为公式。
当公式时,公式,说明第20个图形是第5组的最后一个图形,是□。
(2)图形位置规律题目:下面是一组正方形按规律摆放。
第一个正方形:左上角有一个点;第二个正方形:左上角和右上角各有一个点;第三个正方形:左上角、右上角和右下角各有一个点;第四个正方形:四个角都有一个点。
问第10个正方形有几个点?解析:观察可得,第公式个正方形的点数是公式个角中从左上角开始按顺时针方向连续的角的个数之和。
第10个正方形的点数为公式。
3. 数表规律题目:观察下面的数表:12 34 5 67 8 9 1011 12 13 14 15…问第10行第5个数是多少?解析:先求前9行的数字个数,根据等差数列求和公式公式,当公式时,公式。
五年级奥数操作找规律教师版
操作找规律知识点拨五年级奥数操作找规律教师版在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。
有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。
这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。
这类题主要考查孩子们的发现能力。
例题精讲模块一,周期规律【例1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)【考点】操作找规律【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。
【答案】第2号【例2】在1989后面写一串数字。
从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1 9 8 9 2 8 6 8 8 42 ……那么这串数字中,前2005个数字的和是____________。
【考点】操作找规律【难度】2星【题型】填空【关键词】迎春杯,中年级,初试【解析】由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。
1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。
()-÷=⋯,前2005个数字2005463333和是()()()+++++++++⨯+++271198816120311989286884333286=++=。
【答案】12031【例3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。
找出数列的排列规律(一) 小学数学五年级下册 奥数试题及答案 人教课标版
找出数列的排列规律(一)小学数学五年级下册奥数试题及答案人教课标版找规律是我们在生活、学习、工作中经常使用的一种思想方法,在解数学题时人们也常常使用它,下面我们利用找规律的方法来解一些简单的数列问题。
(一)思路指导例1.在下面数列的()中填上适当的数。
1,2,5,10,17,(),(),50分析与解:这个数列的排列规律是什么?我们逐项分析:第一项是:1第二项是:2,第三项是:5,第四项是:10,……可以看出,这个数列从第二项起,每一项都等于它的前一项依次分别加上单数1,3,5,7,9……,这样我们就可以由第五项算出括号内的数了,即:第一个括号里应填;第2个括号里应填。
例2.自1开始,每隔两个整数写出一个整数,这样得到一个数列:1,4,7,10……问:第100个数是多少?分析与解:这个题由于数太多,很难像例1那样递推,我们可以换一种思路:数列中每相邻两个数的差都是3,我们把这样的数列叫做等差数列。
我们把“3”叫做这个等差数列的公差。
观察下面的数列是等差数列吗?如果是,它们的公差是几?(1)2,3,4,5,6,7……(2)5,10,15,20,25,30……(3)1,2,4,8,16……(4)12,14,16,18,20……现在我们结合例2找一找每一项与第一项,公差有什么关系?第1项是1,第二项比第一项多3,第三项比第一项多2个3,第四项比第一项多3个3,……依次类推,第100项就比第一项多99个3,所以第100个数是。
由此我们可以得出这样的规律:等差数列的任一项都等于:第一项+(这项的项数-1)×公差我们把这个公式叫做等差数列的通项公式。
利用通项公式可以求出等差数列的任一项。
试试看:你能求出数列3,5,7,9……中的第92个数是多少吗?例 3.已知一列数:2,5,8,11,14,……,44,……,问:44是这列数中的第几个数?分析与解:显然这是一个等差数列,首项(第一项)是2,公差是3。
找规律小学奥数题100道及答案(完整版)
找规律小学奥数题100道及答案(完整版)题目1:1,3,5,7,9,()答案:11(相邻两个数的差为2,依次递增)题目2:2,4,6,8,10,()答案:12(相邻两个数的差为2,依次递增)题目3:5,10,15,20,25,()答案:30(相邻两个数的差为5,依次递增)题目4:1,4,9,16,25,()答案:36(分别是1、2、3、4、5 的平方,下一个是 6 的平方)题目5:3,6,9,12,15,()答案:18(相邻两个数的差为3,依次递增)题目6:1,2,4,8,16,()答案:32(后一个数是前一个数的2 倍)题目7:2,6,12,20,30,()答案:42(相邻两个数的差依次为4、6、8、10、12)题目8:1,1,2,3,5,8,()答案:13(前两个数相加等于后一个数)题目9:3,4,7,11,18,()答案:29(前两个数相加等于后一个数)题目10:1,3,7,13,21,()答案:31(相邻两个数的差依次为2、4、6、8、10)题目11:2,5,10,17,26,()答案:37(相邻两个数的差依次为3、5、7、9、11)题目12:9,16,25,36,()答案:49(分别是3、4、5、6 的平方,下一个是7 的平方)题目13:1,8,27,64,()答案:125(分别是1、2、3、4 的立方,下一个是5 的立方)题目14:5,12,19,26,33,()答案:40(相邻两个数的差为7,依次递增)题目15:3,8,15,24,()答案:35(相邻两个数的差依次为5、7、9、11)题目16:2,3,5,8,13,()答案:21(前两个数相加等于后一个数)题目17:1,4,10,22,46,()答案:94(相邻两个数的差依次为3、6、12、24、48)题目18:1,5,14,30,55,()答案:91(相邻两个数的差依次为4、9、16、25、36)题目19:2,6,18,54,()答案:162(后一个数是前一个数的3 倍)题目20:7,14,28,56,()答案:112(后一个数是前一个数的2 倍)题目21:1,2,6,24,120,()答案:720(后一个数依次是前一个数乘2、3、4、5、6)题目22:3,5,9,17,33,()答案:65(相邻两个数的差依次为2、4、8、16、32)题目23:1,3,8,19,42,()答案:89(相邻两个数的差依次为2、5、11、23、47,这些差依次增加3、6、12、24)题目24:2,4,10,28,82,()答案:244(相邻两个数的差依次为2、6、18、54、162,后一个差是前一个差的 3 倍)题目25:5,9,17,33,65,()答案:129(相邻两个数的差依次为4、8、16、32、64)题目26:1,4,27,256,()答案:3125(分别是1、2、3、4 的1、2、3、4 次方,下一个是5 的 5 次方)题目27:1,6,21,66,201,()答案:606(相邻两个数的差依次为5、15、45、135、405,后一个差是前一个差的3 倍)题目28:3,8,15,24,35,()答案:48(相邻两个数的差依次为5、7、9、11、13)题目29:2,3,7,18,47,()答案:123(7 = 3×2 + 1,18 = 7×2 + 4,47 = 18×2 + 11,下一个数应为47×2 + 16 = 123)题目30:1,2,5,14,41,()答案:122(相邻两个数的差依次为1、3、9、27、81,后一个差是前一个差的3 倍)题目31:2,5,11,23,47,()答案:95(相邻两个数的差依次为3、6、12、24、48)题目32:4,9,16,25,36,()答案:49(分别是2、3、4、5、6 的平方,下一个是7 的平方)题目33:6,12,20,30,42,()答案:56(相邻两个数的差依次为6、8、10、12、14)题目34:1,3,7,15,31,()答案:63(相邻两个数的差依次为2、4、8、16、32)题目35:3,9,27,81,()答案:243(后一个数是前一个数的3 倍)题目36:5,13,25,41,()答案:61(相邻两个数的差依次为8、12、16、20)题目37:2,8,32,128,()答案:512(后一个数是前一个数的4 倍)题目38:7,16,29,46,()答案:67(相邻两个数的差依次为9、13、17、21)题目39:1,5,13,25,()答案:41(相邻两个数的差依次为4、8、12、16)题目40:6,18,54,162,()答案:486(后一个数是前一个数的3 倍)题目41:8,18,32,50,()答案:72(相邻两个数的差依次为10、14、18、22)题目42:1,4,13,40,()答案:121(相邻两个数的差依次为3、9、27、81)题目43:3,10,21,36,()答案:55(相邻两个数的差依次为7、11、15、19)题目44:5,15,45,135,()答案:405(后一个数是前一个数的3 倍)题目45:2,6,14,30,()答案:62(相邻两个数的差依次为4、8、16、32)题目46:9,25,49,81,()答案:121(分别是3、5、7、9 的平方,下一个是11 的平方)题目47:7,19,37,61,()答案:91(相邻两个数的差依次为12、18、24、30)题目48:4,12,36,108,()答案:324(后一个数是前一个数的3 倍)题目49:1,6,15,28,()答案:45(相邻两个数的差依次为5、9、13、17)题目50:8,20,36,56,()答案:80(相邻两个数的差依次为12、16、20、24)题目51:3,11,23,39,()答案:59(相邻两个数的差依次为8、12、16、20)题目52:6,15,35,77,()答案:143(相邻两个数的差依次为9、20、42、66,差依次增加11、22、24)题目53:2,9,28,65,()答案:126(分别是1、2、3、4 的立方加1,下一个是5 的立方加1)题目54:1,7,19,37,()答案:61(相邻两个数的差依次为6、12、18、24)题目55:5,16,29,46,()答案:67(相邻两个数的差依次为11、13、17、21)题目56:3,12,27,48,()答案:75(相邻两个数的差依次为9、15、21、27)题目57:7,18,33,52,()答案:77(相邻两个数的差依次为11、15、19、25)题目58:2,10,30,68,()答案:130(相邻两个数的差依次为8、20、38、62,差依次增加12、18、24)题目59:4,15,32,55,()答案:84(相邻两个数的差依次为11、17、23、29)题目60:6,21,42,72,()答案:106(相邻两个数的差依次为15、21、30、34)题目61:1,9,25,49,()答案:81(分别是1、3、5、7 的平方,下一个是9 的平方)题目62:8,24,48,80,()答案:120(相邻两个数的差依次为16、24、32、40)题目63:3,13,31,57,()答案:91(相邻两个数的差依次为10、18、26、34)题目64:5,19,41,71,()答案:105(相邻两个数的差依次为14、22、30、34)题目65:2,11,26,47,()答案:76(相邻两个数的差依次为9、15、21、29)题目66:9,27,51,81,()答案:117(相邻两个数的差依次为18、24、30、36)题目67:7,17,33,55,()答案:83(相邻两个数的差依次为10、16、22、28)题目68:4,14,30,52,()答案:78(相邻两个数的差依次为10、16、22、26)题目69:6,18,36,60,()答案:90(相邻两个数的差依次为12、18、24、30)题目70:1,11,27,51,()答案:81(相邻两个数的差依次为10、16、24、30)题目71:5,17,33,53,()答案:77(相邻两个数的差依次为12、16、20、24)题目72:3,14,31,58,()答案:91(相邻两个数的差依次为11、17、27、33)题目73:8,22,42,70,()答案:106(相邻两个数的差依次为14、20、28、36)题目74:2,13,30,53,()答案:84(相邻两个数的差依次为11、17、23、31)题目75:9,29,55,91,()答案:133(相邻两个数的差依次为20、26、36、42)题目76:7,20,39,64,()答案:95(相邻两个数的差依次为13、19、25、31)题目77:4,16,36,64,()答案:100(分别是2、4、6、8 的平方,下一个是10 的平方)题目78:3,15,33,57,()答案:87(相邻两个数的差依次为12、18、24、30)题目79:6,22,44,74,()答案:110(相邻两个数的差依次为16、22、30、36)题目80:1,13,29,53,()答案:89(相邻两个数的差依次为12、16、24、36)题目81:5,21,41,67,()答案:99(相邻两个数的差依次为16、20、26、32)题目82:8,26,50,82,()答案:118(相邻两个数的差依次为18、24、32、36)题目83:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目84:7,23,45,73,()答案:107(相邻两个数的差依次为16、22、28、34)题目85:2,14,32,56,()答案:88(相邻两个数的差依次为12、18、24、32)题目86:9,31,59,95,()答案:139(相邻两个数的差依次为22、28、36、44)题目87:6,24,48,84,()答案:126(相邻两个数的差依次为18、24、36、42)题目88:1,15,33,57,()答案:87(相邻两个数的差依次为14、18、24、30)题目89:5,23,47,77,()答案:113(相邻两个数的差依次为18、24、30、36)题目90:8,28,52,82,()答案:118(相邻两个数的差依次为20、24、30、36)题目91:3,19,41,69,()答案:105(相邻两个数的差依次为16、22、28、36)题目92:7,27,51,81,()答案:117(相邻两个数的差依次为20、24、30、36)题目93:4,18,38,66,()答案:100(相邻两个数的差依次为14、20、28、34)题目94:6,26,50,80,()答案:116(相邻两个数的差依次为20、24、30、36)题目95:2,16,36,60,()答案:90(相邻两个数的差依次为14、20、24、30)题目96:9,33,63,99,()答案:141(相邻两个数的差依次为24、30、36、42)题目97:8,28,56,92,()答案:136(相邻两个数的差依次为20、28、36、44)题目98:5,21,43,71,()答案:105(相邻两个数的差依次为16、22、28、34)题目99:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目100:7,25,49,79,()答案:115(相邻两个数的差依次为18、24、30、36)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找规律
1、找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26
(2)3,6,9,12,(),18,21
(3)33,28,23,(),13,(),3
(4)55,49,43,(),31,(),19
(5)3,6,12,(),48,(),192
(6)2,6,10,14,(),22,26
(7)33,28,23,(),13,(),3
(8)55,49,43,(),31,(),19
(9)3,6,12,(),48,(),192
(10)2,6,18,(),162,()
(11)128,64,32,(),8,(),2
(12)19,3,17,3,15,3,(),(),11,3
(13)1,2,4,7,(),16,22
(14)3,6,9,12,(),18,21
2、找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,(),31
(2)1,4,9,16,25,(),49,64
(3)3,2,5,2,7,2,(),(),11,2
(4)53,44,36,29,(),18,(),11,9,8
(5)81,64,49,36,(),16,(),4,1,0
3、有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。
问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?
4、节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去。
问:
(1)第100盏灯是什么颜色?
(2)前150盏彩灯中有多少盏蓝灯?
5、有一串数,任何相邻的四个数之和都等于25。
已知第1个数是3,第6个数是6,第11个数是7。
问:这串数中第24个数是几?前77个数的和是多少?。