(完整word版)2019江苏宿迁中考数学试卷

合集下载

2019年江苏省宿迁市中考数学试卷-答案

2019年江苏省宿迁市中考数学试卷-答案

江苏省宿迁市2019年中考试卷数学答案解析一、 选择题1.【答案】B【解析】2019的相反数是-2019,故选B .【考点】相反数的意义2.【答案】D【解析】23a a +,不是同类项,不能合并,故选项A 错误;23236()a a a ⨯==,故选项B 错误;63633a a a a -÷==,故选项C 错误;2336()ab a b =,故选D .【考点】整式的运算3.【答案】C【解析】这组数据从小到大重新排列为:2、3、4、4、7、7,所以这组数据的中位数为4442+=,故选C . 【考点】中位数4.【答案】A【解析】由题意知45E ︒∠=,30B ︒∠=, DE CB ∥,45BCF E ︒∴∠=∠=,在CFB △中,1801803045105BFC B BCF ︒︒︒︒︒∠=-∠-∠=--=,故选A .【考点】平行线的性质5.【答案】B【解析】由勾股定理可得:底面圆的半径3=,则底面周长π6=,底面半径3=,由图得,母线长5=,侧面面积π16515π2=⨯⨯=,故选B . 【考点】圆锥的有关计算,勾股定理6.【答案】D【解析】12x -…,解得:3x …, 则不等式12x -…的非负整数解有:0,1,2,3共4个,故选D .【考点】一元一次不等式的整数解7.【答案】A【解析】图中阴影部分面积等于6个小半圆的面积和-(大圆的面积-正六边形的面积)即6个月牙形的面积之和213(2622πππ=--⨯⨯=,故选A .【考点】正多边形与圆、弓形面积的计算8.【答案】A 【解析】设(,)k D m m,( t , 0 )B , M 点为菱形对角线的交点,BD AC ∴⊥,AM CM =,=BM DM ,t (,)22m k M m+∴, 把(,)22m t k M m +代入k y x =得22m t k k m+=, 3t m ∴=,四边形ABCD 为菱形, OD AB t ∴==,222()(3)k m m m ∴+=,解得2k =,(2)M m ∴,在Rt ABM △中,tan2BM MAB AM m ∠===,AC BD∴=故选:A .【考点】反比例函数的性质,菱形的性质,反比例函数图像上点的坐标特征,勾股定理二、 填空题9.【答案】2【解析】解:∵22=4,∴4的算术平方根是2.故答案为:2.【考点】算术平方根的定义10.【答案】(2)a a -【解析】提出公因式a ,22(2)a a a a -=-,故答案为:(2)a a -.【考点】提取公因式法分解因式11.【答案】112.7510⨯【解析】将275 000 000 000用科学记数法表示为:112.7510⨯,故答案为:112.7510⨯.【考点】科学记数法12.【答案】乙【解析】22S S >甲乙 ∴队员身高比较整齐的球队是乙,故答案为乙.【考点】方差13.【答案】10【解析】设“△”的质量为x ,“□”的质量为y ,由题意得:628x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩,∴第三个天平右盘中砝码的质量224210x y =+=⨯+=,故答案为10.【考点】二元一次方程组的应用14.【答案】13【解析】骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个, ∴掷得朝上一面的点数为3的倍数的概率为:2163=, 故答案为13. 【考点】概率公式的应用15.【答案】2【解析】直角三角形的斜边13==,所以它的内切圆半径5121322+-==, 故答案为2. 【考点】三角形的内切圆,勾股定理16.【答案】5a <且3a ≠【解析】去分母得:122a x -+=-,解得5x a =-,50a ->,解得: < 5a ,当52x a =-=时,=3a ,故5a <且3a ≠.【考点】分式方程的解17.BC <<【解析】如图,过点B 作1BC AN ⊥,垂足为1C ,2BC AM ⊥,交AN 于点2C ,在1Rt ABC △中,2AB =,60A ︒∠=, 130ABC ︒∴∠=1112AC AB ∴==,由勾股定理得:1BC 在2Rt ABC △中,2AB =,60A ︒∠=,230B AC ︒∴∠=24AC ∴=,由勾股定理得:2BC =,当ABC △是锐角三角形时,点C 在12C C BC <<BC <【考点】直角三角形,勾股定理,三角形形状的判断18.【答案】2.5【解析】由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动.将EFB △绕点E 旋转60°,使EF 与EG 重合,得到EFB EHG ≅△△,从而可知EFH △为等边三角形,点G 在垂直于HE 的直线HN 上,作CM HN ⊥,则CM 即为CG 的最小值,作EP CM ⊥,可知四边形HEPM 为矩形, 则1351=2.5222CM MP CP HE EC =+=+=+=,故答案为:2.5【考点】正方形的性质,等边三角形的判定与性质,三角形的三边关系三、解答题19.【答案】解:原式21=-+【解析】正确化简各数是解题关键.直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【考点】实数的运算20.【答案】解:原式(1)(1)1=122a a a a a a +-+=⨯-, 当2a =-时,原式21122-+==-.【解析】正确掌握运算法则是解题关键.直接将括号里面通分进而利用分式的混合运算法则计算,然后代入求值即可.【考点】分式的化简求值21.【答案】(1)把(1,)A m -,(,1)B n -代入5y x=-,得=5m ,=5n , (1,5)A ∴-,(5,1)B -,把(1,5)A -,(5,1)B -代入y=+k b 得551k b k b -+=⎧⎨+=-⎩,解得14k b =-⎧⎨=⎩, ∴一次函数解析式为4y x =-+;(2)=0x 时,4y =,4OD ∴=,AOB ∴△的面积1141451222AOD BOD S S =+=⨯⨯+⨯⨯=△△【解析】明确题意,数形结合是解题的关键(1)利用反比例函数解析式求出点A 、B 的坐标,再利用待定系数法求出一次函数解析式(2)根据一次函数的解析式可以求得直线与y 轴的交点的坐标,从而可求得AOB △的面积【考点】一次函数与反比例函数的交点问题,待定系数法求函数解析式22.【答案】(1)证明:在矩形ABCD 中,4AB =,2BC =,4CD AB ∴==,2AD BD ==,//CD AB ,90D B ︒∠=∠=,32BE DF ==, 35422CF AE ∴==-=,2AD BD ==52AF CE ∴===, 52AF CF CE AE ∴====, ∴四边形AECF 是菱形; (2)解:过F 作FH AB ⊥于H ,则四边形AHFD 是矩形,32AH DF ∴==,2FH AD ==, 53122EH ∴=-=,EF ∴==【解析】熟练掌握特殊四边形的性质是解题的关键(1)根据矩形的性质及已知易证四边形ABCD 是平行四边形,进而得到52AE =,然后利用勾股定理求出52CE =,即得AE CE =,于是结论得证; (2)连接AC ,利用勾股定理求出AC 的长,然后利用菱形的面积,即可求出EF 的长【考点】矩形的性质,勾股定理,菱形的判定和性质23.【答案】(1)抽查的总学生数是:(128)40%50+÷=(人),5030%510m =⨯-=,5020151122n =----=;故答案为:10,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为6536079.250︒︒+⨯= 故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为21 126=.【解析】读懂统计图表,从统计图表中得到必要的信息是解决问题的关键.(1)根据文学类的人数和所占的百分比求出抽查的总人数,再根据各自所占的百分比即可求出m、n;(2)由360︒乘以“科学类”所占的比例即可得出结果;(3)根据题意列表或画出树状图得出所有等情况数和所选取的两名学生都是男生的情况数,然后根据概率公式即可得出答案【考点】列表法与树状图法,扇形统计图、统计表的应用24.【答案】(1)证明:如图①,连接OF,则OF AC⊥AC是O的切线,OE AC∴⊥,90C︒∠=,//OF BC∴,1OFB∴∠=∠,OF OB=,2OFB∠=∠,12∴∠=∠.(2)如图②所示M为所求.①作ABC ∠平分线交AC 于F 点,②作BF 的垂直平分线交AB 于M ,以MB 为半径作圆,即M 为所求.证明:∵M 在BF 的垂直平分线上,MF MB ∴=,MBF MFB ∴∠=∠,又BF 平分ABC ∠,MBF CBF ∴∠=∠,CBF MFB ∴∠=∠,//MF BC ∴,90C ︒∠=,FM AC ∴⊥,M ∴与边AC 相切.【解析】作出过切点的半径和确定出圆心M 是解决问题的关键.(1)连接OF 易证//OF BC ,根据平行线的性质和等腰三角形的性质,即可证得结论;(2)作ABC ∠的角平分线交AC 于F ,作FM AC ⊥交AB 于点M ,以M 为圆心,MB 为半径画圆即可【考点】切线的性质,尺规作图25.【答案】(1)如图1,过点E 作EM CD ⊥于点M ,由题意知64BCM ︒∠=,601575cm EC BC BE =+=+=, sin 75sin 6467.5(cm)EM EC BCM ︒∴=∠=≈,则单车车座E 到地面的高度为67.53299.5(cm)+≈(2)如图2所示,过点E ′作E H CD '⊥于点H ,由题意知800.864E H '=⨯=, 则6471.1sin sin 64E H E C ECH ''︒==≈∠, 7571.1 3.9(cm)EE CE CE ''∴=-=-=【解析】解题的关键是学会添加常用辅助线,构造直角三角形解决问题.(1)过点E 作EM CD ⊥于点M ,通过解t R ECG △,求出EG 的长,即可解决问题;(2)通过解t R ECG △,求出CE 的长,即可求出结论D .【考点】直角三角形的应用26.【答案】(1)根据题意得,1502y x =-+; (2)根据题意得,1(40)(50)22502x x +-+=, 解得:1250,10x x ==,∵每件利润不能超过60元,10x ∴=,答:当x 为10时,超市每天销售这种玩具可获利润2 250元;(3)根据题意得,211(40)(50)2000(30)245022w x x x =+-++=--+, 102a =-<, ∴当30x <时,w 随x 的增大而增大,21302x x =-+∴当20x =时,2400w =增大, 答:当x 为20时w 最大,最大值是2 400元.【解析】(最大销售利润的问题常利用函数的增减性来解答,建立函数模型是解题的关键.(1)根据题意即可得到函数解析式(2)根据题意建立利润的函数关系式,令利润为2 250列出方程,求解即可(3)结合(2)中所列函数关系式,然后根据二次函数的性质以及自变量的取值范围,即可得到结论【考点】二次函数的性质以及应用,一次二次方程的解法,二次函数最值的求法27.【答案】解:(1)如图②中,由图①,点D 为边AB 中点,点E 为边BC 中点, DE AC ∴∥,BD BE BA BC∴=, BD BA BE BC ∴=, DBE ABC ∠=∠,DBA EBC ∴∠=∠,BDA BEC ∴△△.(2)AGC ∠的大小不发生变化,30AGC ︒∠=理由:如图③中,设AB 交CG 于点O .DBA BEC △△,DAB ECB ∴∠=∠,180DAB AOG G ︒∠+∠+∠=,180ECB COB ABC ︒++∠∠∠=,AOG COB ∠=∠,30AGC ABC ︒∴∠=∠=(3)如图③-1中.设AB 的中点为K ,连接DK ,以AC 为边向右作等边ACO △,连接OG ,OB以O 为圆心,OA 为半径作O ,30,60AGC AOC ︒︒∠=∠=,12AGC AOC ∴∠=∠, ∴点G 在O 上运动,以B 为圆心,BD 为半径作B ,当直线与B 相切时,BD AD ⊥,90ADB ︒∴∠=,BK AK =,DK BK AK ∴==,BD BK =,BD DK BK ∴==,BDK ∴△是等边三角形,60DBK ︒∴∠=,30DAB ︒∴∠=,260DOG DAB ︒∴∠=∠=,BG ∴的长60441803ππ==, 观察图像可知,点G 的运动路程是BG 的长的两倍83π=. 【解析】(1)由已知易证DBE 和AB 、BC 和DBE ABC ∠=∠,进面可判定三角形相似(2)由(1)的结论得CB GAB ∠=∠,进而可得30AGC ABC ︒∠=∠=(3)根据(2)的结论可判断A 、C 、B 、G 四点共圆,然后根据BD AD ⊥,即DBE △逆时针旋转90︒时,点G 的运动路程,进而可求出将DBE △绕点B 逆时针旋转180︒,点G 的运动路程【考点】相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理28.【答案】(1)抛物线2y x bx c =++经过点(1,0)A ,(0,3)C - 10003b c c ++=⎧∴⎨++=-⎩ 解得:23b c =⎧⎨=-⎩∴抛物线的函数表达式为223y x x =+-(2)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH AB =,过点B 作BI x ⊥轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI BI ⊥于点I当2230x x +-=,解得:123,1x x =-=(3,0)B ∴-(1,0)A ,(0,3)C -1OA ∴=,3OC =,AC ==4AB =Rt AOC ∴△中,sin 10OA ACO AC ∠==,cos 10OC ACO AC ∠== AH AB =,G 为BH 中点AG BH ∴⊥,BG GH =BAG HAG ∴∠=∠,即2PAB BAG ∠=∠2PAB ACO ∠=∠BAG ACO ∴∠=∠Rt ABG ∴△中,90AGB ︒∠=,sin BG BAG AB ∠==10BG ∴=,5AB =25BH BG ∴==90HBI ABG ABG BAG ︒∠+∠=∠+∠=HBI BAG ACO ∴∠=∠=∠Rt BHI ∴△中,90BIH ︒∠=,sin HI HBI BH ∠==cos BI HBI BH ∠==10HI ∴=,45BH =,10BI =,125BH = 411355H x ∴=-+=-,125H y =-,即1112(,)55H -- 设直线AH 解析式为y kx a =+0111255k a k a +=⎧⎪∴⎨-+=-⎪⎩ 解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线AH :3344y x =- 2334423y x y x x ⎧=-⎪⎨⎪=+-⎩ 解得:1110x y =⎧⎨=⎩(即点A ),22943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 939(,)416P ∴-- ②若点P 在x 轴上方,如图2,在AP 上截取AH AH '=,则H '与H 关于x 轴对称1112(,)55H ∴- 设直线AH '解析式为y k x a ''=+0111255k a k a ''''⎧+=⎪∴⎨-+=⎪⎩ 解得:3434k a ''⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线AH ':3344y x =-+ 2334423y x y x x ⎧=+⎪⎨⎪=+-⎩ 解得:1110x y =⎧⎨=⎩(即点A ),221545716x y ⎧=-⎪⎪⎨⎪=⎪⎩ 1557(,)416P ∴- 综上所述,点P 的坐标为939(,)416--或1557(,)416- (3)∵抛物线223y x x =+-的对称轴为:1=x -(1,0)D ∴-,1xM xN ==-设2(,23)(31)Q t t t t +--<<设直线AQ 解析式为y dx e =+ 2023d e dt e t t +=⎧∴⎨+=+-⎩ 解得:33d t e t =+⎧⎨=--⎩∴直线AQ :(3)3y t x t =+--当1x =-时,3326yM t t t =----=--0(26)26DM t t ∴=---=+设直线BQ 解析式为y mx n =+23023n m n t t π-+-⎧∴⎨+=+-⎩ 解得:133m t n t =-⎧⎨=-⎩ ∴直线BQ :(1)33y t x t =-+-当1x =-时,13322yN t t t =-++-=-0(22)22DM t t ∴=--=-+|26(22)8DM DN t t ∴+=++-+=,为定值.【解析】解题的关键是能够根据题意画出图形类讨论求出存在的点的坐标.(1)根据题意把A 、B 点的坐标代入2y x bx c =++,即可求出解析式;(2)通过作对称构造出B A G A C O ∠=∠,根据点的坐标求出相关线段长,进而得出sin 10OA ACO AC ∠==,cos 10OC ACO AC ∠==,然后把点P 分在x 轴上方和下方两种情况,设直线AH '解析式为y k x a ''=+,求出相应点P 的坐标(3)点Q 的坐标为2(,23)t t t +-,利用待定系数法分别求出AQ 和BQ 的解析式,利用解析式求得点M 、N 的坐标,进而求出线段DM 和DN 的长度,即可求出DM DN +的值【考点】待定系数法求解析式,二次函数的图像与性质,勾股定理,锐角三角函数。

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷

23.(10 分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进 行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘 制成扇形统计图. 男、女生所选类别人数统计表
类别
男生(人)
女生(人)
文学类
12
8
史学类
m
5
科学类
6
5
哲学类
2
n
根据以上信息解决下列问题
25.(10 分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享 单车放在水平地面上的实物图,图②是其示意图,其中 AB、CD 都与地面 l 平行,车轮 半径为 32cm,∠BCD=64°,BC=60cm,坐垫 E 与点 B 的距离 BE 为 15cm. (1)求坐垫 E 到地面的距离; (2)根据经验,当坐垫 E 到 CD 的距离调整为人体腿长的 0.8 时,坐骑比较舒适.小明 的腿长约为 80cm,现将坐垫 E 调整至坐骑舒适高度位置 E',求 EE′的长. (结果精确到 0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
27.(12 分)如图①,在钝角△ABC 中,∠ABC=30°,AC=4,点 D 为边 AB 中点,点 E 为边 BC 中点,将△BDE 绕点 B 逆时针方向旋转α度(0≤α≤180). (1)如图②,当 0<α<180 时,连接 AD、CE.求证:△BDA∽△BEC; (2)如图③,直线 CE、AD 交于点 G.在旋转过程中,∠AGC 的大小是否发生变化? 如变化,请说明理由;如不变,请求出这个角的度数; (3)将△BDE 从图①位置绕点 B 逆时针方向旋转 180°,求点 G 的运动路程.
∠BFC 等于( )

2019年江苏省宿迁市中考数学试题(原卷+解析)含答案

2019年江苏省宿迁市中考数学试题(原卷+解析)含答案

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.B.﹣2019C.﹣D.20192.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.74.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x >0)的图象上,则的值为()A.B.C.2D.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为.10.(3分)分解因式:a2﹣2a=.11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为.16.(3分)关于x的分式方程+=1的解为正数,则a的取值范围是.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.20.(8分)先化简,再求值:(1+)÷,其中a=﹣2.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2019年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.B.﹣2019C.﹣D.2019【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别分析得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、a6÷a3=a3,故此选项错误;D、(ab2)3=a3b6,正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.7【分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答】解:这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为=4,故选:C.【点评】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.4.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【分析】由题意知图中是一个等腰直角三角形和一个含30°角的直角三角形,故∠E=45°,∠B=30°,由平行线的性质可知∠BCF=∠E=45°,由三角形内角和定理可求出∠BFC的度数.【解答】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点评】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π【分析】根据勾股定理得出底面半径,易求周长以及母线长,从而求出侧面积.【解答】解:由勾股定理可得:底面圆的半径=,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=×6π×5=15π.故选:B.【点评】本题考查了由三视图判断几何体,利用了勾股定理,圆的周长公式和扇形面积公式求解.6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个【分析】直接解不等式,进而利用非负整数的定义分析得出答案.【解答】解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.【点评】此题主要考查了一元一次不等式的整数解,正确把握非负整数的定义是解题关键.7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π【分析】图中阴影部分面积等于6个小半圆的面积和﹣(大圆的面积﹣正六边形的面积)即可得到结果.【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故选:A.【点评】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x >0)的图象上,则的值为()A.B.C.2D.【分析】设D(m,),B(t,0),利用菱形的性质得到M点为BD的中点,则M(,),把M(,)代入y=得t=3m,利用OD=AB=t得到m2+()2=(3m)2,解得k=2m2,所以M(2m,m),根据正切定义得到tan∠MAB===,从而得到=.【解答】解:设D(m,),B(t,0),∵M点为菱形对角线的交点,∴BD⊥AC,AM=CM,BM=DM,∴M(,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB===,∴=.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为2.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.10.(3分)分解因式:a2﹣2a=a(a﹣2).【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为 2.75×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将275000000000用科学记数法表示为:2.75×1011.故答案为:2.75×1011.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.【分析】由骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,利用概率公式直接求解即可求得答案.【解答】解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).16.(3分)关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点评】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC<.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.【点评】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8分)先化简,再求值:(1+)÷,其中a=﹣2.【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【解答】解:原式=×=,当a=﹣2时,原式==﹣.【点评】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.【分析】(1)先利用反比例函数解析式确定A点和B点坐标,然后利用待定系数法求一次函数解析式;(2)先求OD的长,根据面积和可得结论.【解答】解:(1)把A(﹣1.m),B(n,﹣1)代入y=﹣,得m=5,n=5,∴A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,∴一次函数解析式为y=﹣x+4;(2)x=0时,y=4,∴OD=4,∴△AOB的面积=S△AOD+S△BOD=×4×1+=12.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,也考查了待定系数法求函数解析式.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【分析】(1)根据菱形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF =,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=20,n=2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为79.2°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【分析】(1)根据文学类的人数和所占的百分比求出抽查的总人数,再根据各自所占的百分比即可求出m、n;(2)由360°乘以“科学类”所占的比例,即可得出结果;(3)根据题意画出树状图得出所有等情况数和所选取的两名学生都是男生的情况数,然后根据概率公式即可得出答案.【解答】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB=∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=EC sin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到w=﹣(x﹣30)2+2450,根据二次函数的性质得到当x<30时,w 随x的增大而增大,于是得到结论.【解答】解:(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【分析】(1)如图①利用三角形的中位线定理,推出DE∥AC,可得=,在图②中,利用两边成比例夹角相等证明三角形细相似即可.(2)利用相似三角形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆心角,半径,利用弧长公式计算即可.【解答】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴=,∴=,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长==,观察图象可知,点G的运动路程是的长的两倍=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)把点A、C坐标代入抛物线解析式即求得b、c的值.(2)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.(3)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt△AOC中,sin∠ACO=,cos∠ACO=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=∴BG=AB=∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=∴HI=BH=,BI=BH=∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣)设直线AH解析式为y=kx+a∴解得:∴直线AH:y=x﹣∵解得:(即点A),∴P(﹣,﹣)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(﹣,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y=﹣x+∵解得:(即点A),∴P(﹣,)。

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)2019的相反数是( )A .2019B .2019-C .12019D .12019-2.(3分)下列运算正确的是( ) A .235a a a += B .235()a a = C .632a a a ÷= D .2336()ab a b = 3.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是( ) A .3 B .3.5 C .4 D .7 4.(3分)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,//DE BC ,则BFC ∠等于( )A .105︒B .100︒C .75︒D .60︒ 5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A .20πB .15πC .12πD .9π 6.(3分)不等式12x -…的非负整数解有( ) A .1个 B .2个 C .3个 D .4个 7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .63πB .632πC .63πD .632π 8.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数(0)ky x x=>的图象上,则AC BD 的值为()A 2B 3C .2D 5 二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根是 .10.(3分)分解因式:22a a -= .11.(3分)宿迁近年来经济快速发展,2018年GDP 约达到275000000000元.将275000000000用科学记数法表示为 .12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >乙甲,则队员身高比较整齐的球队是 .13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为 .14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是 . 15.(3分)已知直角三角形的两直角边分别为5,12,则它的内切圆半径为 .16.(3分)关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是 .17.(3分)如图,60MAN ∠=︒,若ABC ∆的顶点B 在射线AM 上,且2AB =,点C 在射线AN 上运动,当ABC ∆是锐角三角形时,BC 的取值范围是 .18.(3分)如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG ∆,连接CG ,则CG 的最小值为 .三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:101()(1)|12π---+.20.(8分)先化简,再求值:212(1)11aa a +÷--,其中2a =-.21.(8分)如图,一次函数y kx b=+的图象与反比例函数5yx=-的图象相交于点(1,)A m-、(,1)B n-两点.(1)求一次函数表达式;(2)求AOB∆的面积.22.(8分)如图,矩形ABCD中,4AB=,2BC=,点E、F分别在AB、CD上,且32 BE DF==.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为︒;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.24.(10分)在Rt ABC ∆中,90C ∠=︒.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D ,交BC 于点E ,与边AC 相切于点F .求证:12∠=∠;(2)在图②中作M ,使它满足以下条件:①圆心在边AB 上;②经过点B ;③与边AC 相切. (尺规作图,只保留作图痕迹,不要求写出作法)25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,64BCD ∠=︒,60BC cm =,坐垫E 与点B 的距离BE 为15cm . (1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置E ',求EE '的长.(结果精确到0.1cm ,参考数据:sin640.90︒≈,cos640.44︒≈,tan64 2.05)︒≈26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?27.(12分)如图①,在钝角ABC ∆中,30ABC ∠=︒,4AC =,点D 为边AB 中点,点E 为边BC 中点,将BDE ∆绕点B 逆时针方向旋转α度(0180)α剟.(1)如图②,当0180α<<时,连接AD 、CE .求证:BDA BEC ∆∆∽;(2)如图③,直线CE 、AD 交于点G .在旋转过程中,AGC ∠的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将BDE ∆从图①位置绕点B 逆时针方向旋转180︒,求点G 的运动路程.28.(12分)如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点(0,3)C -. (1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标;(3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2019年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)2019的相反数是( )A .2019B .2019-C .12019D .12019-【解答】解:2019的相反数是2019-. 故选:B . 2.(3分)下列运算正确的是( ) A .235a a a +=B .235()a a =C .632a a a ÷=D .2336()ab a b =【解答】解:A 、23a a +,无法计算,故此选项错误; B 、236()a a =,故此选项错误;C 、633a a a ÷=,故此选项错误;D 、2336()ab a b =,正确; 故选:D . 3.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是( ) A .3 B .3.5 C .4 D .7 【解答】解:这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为4442+=,故选:C . 4.(3分)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,//DE BC ,则BFC ∠等于( )A .105︒B .100︒C .75︒D .60︒ 【解答】解:由题意知45E ∠=︒,30B ∠=︒, //DE CB ,45BCF E ∴∠=∠=︒, 在CFB ∆中,1801803045105BFC B BCF ∠=︒-∠-∠=︒-︒-︒=︒, 故选:A . 5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A .20πB .15πC .12πD .9π【解答】解:由勾股定理可得:底面圆的半径3=,则底面周长6π=,底面半径3=, 由图得,母线长5=,侧面面积165152ππ=⨯⨯=.故选:B . 6.(3分)不等式12x -…的非负整数解有( )A .1个B .2个C .3个D .4个 【解答】解:12x -…, 解得:3x …,则不等式12x -…的非负整数解有:0,1,2,3共4个. 故选:D . 7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .πB .2πC .πD .2π【解答】解:6个月牙形的面积之和213(2622πππ=--⨯⨯=,故选:A . 8.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数(0)ky x x=>的图象上,则AC BD 的值为()A B C .2D【解答】解:设(,)kD m m,(,0)B t ,M 点为菱形对角线的交点,BD AC ∴⊥,AM CM =,BM DM =,(2m t M +∴,)2km, 把(2m t M +,)2k m 代入k y x =得22m t kk m+=,3t m ∴=,四边形ABCD 为菱形, OD AB t ∴==,222()(3)km m m∴+=,解得2k =,(2)M m ∴,在Rt ABM ∆中,tanBM MAB AM ∠==∴ACBD故选:A .二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.(3分)实数4的算术平方根是 2 . 【解答】解:224=, 4∴的算术平方根是2. 故答案为:2. 10.(3分)分解因式:22a a -= (2)a a - .【解答】解:22(2)a a a a -=-. 故答案为:(2)a a -.11.(3分)宿迁近年来经济快速发展,2018年GDP 约达到275000000000元.将275000000000用科学记数法表示为 112.7510⨯ .【解答】解:将275000000000用科学记数法表示为:112.7510⨯. 故答案为:112.7510⨯.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >乙甲,则队员身高比较整齐的球队是 乙 .【解答】解:22S S >乙甲,∴队员身高比较整齐的球队是乙,故答案为:乙.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为 10 .【解答】解:设“△”的质量为x ,“□”的质量为y , 由题意得:628x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩,∴第三个天平右盘中砝码的质量224210x y =+=⨯+=;故答案为:10.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是13. 【解答】解:骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:2163=.故答案为:13.15.(3分)已知直角三角形的两直角边分别为5,12,则它的内切圆半径为 2 .【解答】解:直角三角形的斜边13==,所以它的内切圆半径5121322+-==.故答案为2.16.(3分)关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是 5a <且3a ≠ . 【解答】解:去分母得:122a x -+=-, 解得:5x a =-, 50a ->, 解得:5a <,当52x a =-=时,3a =不合题意, 故5a <且3a ≠.故答案为:5a <且3a ≠. 17.(3分)如图,60MAN ∠=︒,若ABC ∆的顶点B 在射线AM 上,且2AB =,点C 在射线AN 上运动,当ABC ∆是锐角三角形时,BC BC <<【解答】解:如图,过点B 作1BC AN ⊥,垂足为1C ,2BC AM ⊥,交AN 于点2C 在1Rt ABC ∆中,2AB =,60A ∠=︒ 130ABC ∴∠=︒1112AC AB ∴==,由勾股定理得:1BC =在2Rt ABC ∆中,2AB =,60A ∠=︒ 230AC B ∴∠=︒24AC ∴=,由勾股定理得:2BC =当ABC ∆是锐角三角形时,点C 在12C C BC <.BC <.18.(3分)如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG ∆,连接CG ,则CG 的最小值为 52.【解答】解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将EFB ∆绕点E 旋转60︒,使EF 与EG 重合,得到EFB EHG ∆≅∆ 从而可知EBH ∆为等边三角形,点G 在垂直于HE 的直线HN 上 作CM HN ⊥,则CM 即为CG 的最小值 作EP CM ⊥,可知四边形HEPM 为矩形,则1351222CM MP CP HE EC =+=+=+=故答案为52. 三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:101()(1)|12π---+.【解答】解:原式211=-=.20.(8分)先化简,再求值:212(1)11aa a +÷--,其中2a =-. 【解答】解:原式(1)(1)12a a a a a+-=⨯- 12a +=, 当2a =-时,原式21122-+==-.21.(8分)如图,一次函数y kx b =+的图象与反比例函数5y x=-的图象相交于点(1,)A m -、(,1)B n -两点.(1)求一次函数表达式; (2)求AOB ∆的面积.【解答】解:(1)把(1A -.)m ,(,1)B n -代入5y x=-,得5m =,5n =,(1,5)A ∴-,(5,1)B -,把(1,5)A -,(5,1)B -代入y kx b =+得551k b k b -+=⎧⎨+=-⎩,解得14k b =-⎧⎨=⎩, ∴一次函数解析式为4y x =-+;(2)0x =时,4y =,4OD ∴=,AOB ∴∆的面积1141451222AOD BOD S S ∆∆=+=⨯⨯+⨯⨯=.22.(8分)如图,矩形ABCD 中,4AB =,2BC =,点E 、F 分别在AB 、CD 上,且32BE DF ==. (1)求证:四边形AECF 是菱形;(2)求线段EF 的长.【解答】(1)证明:在矩形ABCD 中,4AB =,2BC =,4CD AB ∴==,2AD BD ==,//CD AB ,90D B ∠=∠=︒,32BE DF ==, 354CF AE ∴==-=,52AF CE ∴==, 52AF CF CE AE ∴====, ∴四边形AECF 是菱形; (2)解:过F 作FH AB ⊥于H ,则四边形AHFD 是矩形, 32AH DF ∴==,2FH AD ==, 53122EH ∴=-=,EF ∴=23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表(1)m=20,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为︒;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【解答】解:(1)抽查的总学生数是:(128)40%50+÷=(人),5030%510m=⨯-=,5020151122n=----=;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为65 36079.250+︒⨯=︒;故答案为:79.2;2种可能,∴所选取的两名学生都是男生的概率为21 126=.24.(10分)在Rt ABC∆中,90C∠=︒.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC 相切于点F.求证:12∠=∠;(2)在图②中作M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【解答】解:(1)证明:如图①,连接OF,AC 是O 的切线,OE AC ∴⊥,90C ∠=︒,//OE BC ∴,1OFB ∴∠=∠,OF OB =,2OFB ∴∠=∠,12∴∠=∠.(2)如图②所示M 为所求.①①作ABC ∠平分线交AC 于F 点,②作BF 的垂直平分线交AB 于M ,以MB 为半径作圆,即M 为所求.证明:M 在BF 的垂直平分线上,MF MB ∴=,MBF MFB ∴∠=∠,又BF 平分ABC ∠,MBF CBF ∴∠=∠,CBF MFB ∴∠=∠,//MF BC ∴,90C ∠=︒,FM AC ∴⊥,M ∴与边AC 相切.25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,64BCD ∠=︒,60BC cm =,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置E ',求EE '的长.(结果精确到0.1cm ,参考数据:sin640.90︒≈,cos640.44︒≈,tan64 2.05)︒≈【解答】解:(1)如图1,过点E 作EM CD ⊥于点M ,由题意知64BCM ∠=︒、601575EC BC BE cm =+=+=,sin 75sin6467.5()EM EC BCM cm ∴=∠=︒≈,则单车车座E 到地面的高度为67.53299.5()cm +≈;(2)如图2所示,过点E '作E H CD '⊥于点H ,由题意知800.864E H '=⨯=, 则6471sin sin 64E H E C ECH ''==≈∠︒,1, 7571.1 3.9()EE CE CE cm ∴'=-'=-=.26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?【解答】解:(1)根据题意得,1502y x =-+; (2)根据题意得,1(40)(50)22502x x +-+=, 解得:150x =,210x =,每件利润不能超过60元,10x ∴=,答:当x 为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,22111(40)(50)302000(30)2450222w x x x x x =+-+=-++=--+, 102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x =时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.27.(12分)如图①,在钝角ABC ∆中,30ABC ∠=︒,4AC =,点D 为边AB 中点,点E 为边BC 中点,将BDE ∆绕点B 逆时针方向旋转α度(0180)α剟.(1)如图②,当0180α<<时,连接AD 、CE .求证:BDA BEC ∆∆∽;(2)如图③,直线CE 、AD 交于点G .在旋转过程中,AGC ∠的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将BDE ∆从图①位置绕点B 逆时针方向旋转180︒,求点G 的运动路程.【解答】解:(1)如图②中,由图①,点D 为边AB 中点,点E 为边BC 中点,//DE AC ∴, ∴BD BE BA BC=, ∴BD BA BE BC=, DBE ABC ∠=∠,DBA EBC ∴∠=∠,DBA EBC ∴∆∆∽.(2)AGC ∠的大小不发生变化,30AGC ∠=︒.理由:如图③中,设AB 交CG 于点O .DBA EBC ∆∆∽,DAB ECB ∴∠=∠,180DAB AOG G ∠+∠+∠=︒,180ECB COB ABC ∠+∠+∠=︒,AOG COB ∠=∠, 30G ABC ∴∠=∠=︒.(3)如图③1-中.设AB 的中点为K ,连接DK ,以AC 为边向右作等边ACO ∆,连接OG ,OB .以O 为圆心,OA 为半径作O ,30AGC ∠=︒,60AOC ∠=︒,12AGC AOC ∴∠=∠, ∴点G 在O 上运动,以B 为圆心,BD 为半径作B ,当直线与B 相切时,BD AD ⊥, 90ADB ∴∠=︒,BK AK =,DK BK AK ∴==,BD BK =,BD DK BK ∴==,BDK ∴∆是等边三角形,60DBK ∴∠=︒,30DAB ∴∠=︒,260DOG DAB ∴∠=∠=︒,∴BG 的长60441803ππ==, 观察图象可知,点G 的运动路程是BG 的长的两倍83π=. 28.(12分)如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点(0,3)C -. (1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标;(3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【解答】解:(1)抛物线2y x bx c =++经过点(1,0)A ,(0,3)C - ∴10003b c c ++=⎧⎨++=-⎩ 解得:23b c =⎧⎨=-⎩∴抛物线的函数表达式为223y x x =+-(2)①若点P 在x 轴下方,如图1,延长AP 到H ,使A H A B =,过点B 作BI x ⊥轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI BI ⊥于点I当2230x x +-=,解得:13x =-,21x =(3,0)B ∴-(1,0)A ,(0,3)C -1OA ∴=,3OC =,AC ==4AB =Rt AOC ∴∆中,sin OA ACO AC ∠==,cos OC ACO AC ∠== AB AH =,G 为BH 中点AG BH ∴⊥,BG GH =BAG HAG ∴∠=∠,即2PAB BAG ∠=∠2PAB ACO ∠=∠BAG ACO ∴∠=∠Rt ABG ∴∆中,90AGB ∠=︒,sin BG BAG AB ∠=BG ∴2BH BG ∴= 90HBI ABG ABG BAG ∠+∠=∠+∠=︒HBI BAG ACO ∴∠=∠=∠Rt BHI ∴∆中,90BIH ∠=︒,sin HI HBI BH ∠==cos BI HBI BH ∠==45HI ∴==,125BI = 411355H x ∴=-+=-,125H y =-,即11(5H -,12)5- 设直线AH 解析式为y kx a =+ ∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩ 解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线33:44AH y x =- 2334423y x y x x ⎧=-⎪⎨⎪=+-⎩ 解得:1110x y =⎧⎨=⎩(即点)A ,22943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 9(4P ∴-,39)16- ②若点P 在x 轴上方,如图2,在AP 上截取AH AH '=,则H '与H 关于x 轴对称11(5H '∴-,12)5设直线AH '解析式为y k x a ''=+∴0111255k a k a ''+=⎧⎪⎨''-+=⎪⎩ 解得:3434k a ⎧'=-⎪⎪⎨⎪'=⎪⎩ ∴直线33:44AH y x '=-+ 2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩ 解得:1110x y =⎧⎨=⎩(即点)A ,221545716x y ⎧=-⎪⎪⎨⎪=⎪⎩ 15(4P ∴-,57)16综上所述,点P 的坐标为9(4-,39)16-或15(4-,57)16. (3)DM DN +为定值抛物线223y x x =+-的对称轴为:直线1x =- (1,0)D ∴-,1M N x x ==-设(Q t ,223)(31)t t t +--<<设直线AQ 解析式为y dx e =+∴2023d e dt e t t +=⎧⎨+=+-⎩ 解得:33d t e t =+⎧⎨=--⎩∴直线:(3)3AQ y t x t =+--当1x =-时,3326M y t t t =----=--0(26)26DM t t ∴=---=+设直线BQ 解析式为y mx n =+∴23023m n mt n t t -+-⎧⎨+=+-⎩ 解得:133m t n t =-⎧⎨=-⎩∴直线:(1)33BQ y t x t =-+-当1x =-时,13322N y t t t =-++-=-0(22)22DN t t ∴=--=-+26(22)8DM DN t t ∴+=++-+=,为定值.。

江苏宿迁市2019年中考数学试卷答案详解版(可打印)

江苏宿迁市2019年中考数学试卷答案详解版(可打印)

A.3
B.3.5
C.4
D.7
4、一副三角板如图摆放(直角顶点 C 重合),边 AB 与 CE 交于点 F,DE∥BC,则∠BFC 等于( )
A.105°
B.100°
C.75°
D.60°
5、一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )
A.20π
B.15π
C.12π
D.9π
6、不等式 x﹣1≤2 的非负整数解有( )

18、如图,正方形 ABCD 的边长为 4,E 为 BC 上一点,且 BE=1,F 为 AB 边上的一个动点,连接
EF,以 EF 为边向右侧作等边△EFG,连接 CG,则 CG 的最小值为

三、简答题(本大题共 10 题,共 96 分,解答时写出必要的步骤和过程)
19、(8 分)计算:( )﹣1﹣(π﹣1)0+|1﹣ |.
轴的正半轴上,对角线 AC、BD 交于点 M,点 D、M 恰好都在反比例函数 y= (x>0) 的图象上,则 的值为( )
A.
B.
C.2
D.
二、填空题(本大题共 10 小题,每空 3 分,共 30 分)
9、实数 4 的算术平方根为

10、分解因式:a2﹣2a=

11、宿迁近年来经济快速发展,2018 年 GDP 约达到 275000000000 元.将 275000000000 用科学
20、(8 分)先化简,再求值:(1+ )÷
,其中 a=﹣2.
3
21、如图,一次函数 y=kx+b 的图象与反比例函数 y=﹣ 的图象相交于点 A(﹣1,m)、B(n, ﹣1)两点. (1)求一次函数表达式; (2)求△AOB 的面积.

2019年江苏宿迁中考数学试题含详解

2019年江苏宿迁中考数学试题含详解

2019年江苏省宿迁市中考数学试卷考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共10 小题,每小题3分,合计30分.{题目}1.(2019年宿迁T1)2019的相反数是()A.12019B.-2019 C.12019D.2019{答案}B{}本题考查了相反数的概念,a的相反数为-a.因此本题选B.{分值}3分{章节:[1-1-2-3]相反数}{考点:相反数的定义}{类别:常考题}{难度:1-最简单}{题目}2.(2019年宿迁T2)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5 C.a6÷a3=a2 D.(ab2)3=a2b6{答案}D{}本题考查了幂的运算,a2与a3不是同类项,不能合并,故A错误,B.考查幂的乘方,根据运算法则,底数不变,指数相乘,故(a2)3=a6,所以B错误;C考查同底数幂的除法,底数不变,指数相减,所以a6÷a3=a3,故C错误;D选项考查积的乘方,每一个因式分别乘方,再把所得的积相乘,所以D正确.因此本题选D.{分值}3{章节:[1-15-2-3]整数指数幂}{考点:幂的乘方}{考点:积的乘方}{考点:同底数幂的除法}{类别:常考题}{难度:1-最简单}{题目}3.(2019年宿迁T3)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3 B.3.5 C. 4 D.7{答案}C{}本题考查了中位数概念,中位数就是将数据按大小顺序排列后位于最中间的一个数(数据个数为奇数个)或中间两个数的平均数(数据个数为偶数个).题中有6个数据,按大小顺序排列后位于取第3个和第4个平均数,因此本题选C.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{类别:常考题}{难度:1-最简单}{题目}4.(2019年宿迁T4)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105° B.100° C.75° D.60°{答案}A{}由题意知图中是一个等腰直角三角形和一个含30°角的直角三角形,故∠E=45°,∠B=30°,由平行线的性质可知∠BCF=∠E=45°,由三角形内角和定理可求出∠BFC的度数.{分值}3分{章节:[1-5-3]平行线的性质}{考点:内错角相等两直线平行} {考点:三角形内角和定理}{类别:常考题}{难度:2-简单}{题目}5.(2019年宿迁T5)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20π B.15π C.12π D.9π{答案}B{}本题考查了圆锥的三视图及圆锥侧面积的计算,根据勾股定理得出底面半径,易求周长以及母线长,从而求出侧面积.因此本题选B.{分值}3分{章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图}{类别:常考题}{难度:2-简单}{题目}6.(2019年宿迁T6)不等式x-1≤2的非负整数解有()A.1个B.2个C.3个D.4个{答案}D{}本题考查了不等式的解集的求法及不等式的整数解问题,依据不等式性质求出解集x≤3,在范围内在找出符合题意的整数值0,1,2,3..因此本题选D.{分值}3分{章节:[1-9-2]一元一次不等式}{考点:一元一次不等式的整数解}{类别:常考题}{难度:2-简单}{题目}7.(2019年宿迁T7)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.一π B.-2π C.π D.2π{答案}A{}本题考查了不规则图形面积的计算,用六个半圆的面积减去六个弓形的面积即可.S 弓=211-262π⨯⨯⨯⨯223π,S 月牙形=121-236πππ(,所以阴影部分面积和为一π 因此本题选A .{分值}3分{章节:[1-24-4]弧长和扇形面积}{考点:扇形的面积}{考点:正多边形和圆} {类别:常考题}{难度:3-中等难度}{题目}8.(2019年宿迁T8)如图,在平面直角坐标系xOy 中,董形ABCD 的项点A 与原点0重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M 以点D 、M 恰好都在反比例函数y =k x(x >0)的图像上,则值ACBD为( )A. B . C .2 D .{答案}A{}设D (m ,),B (T ,0),利用菱形的性质得到M 点为BD 的中点,则M (,),把M (,)代入y =得T =3m ,利用OD =AB =T 得到m 2+()2=(3m )2,解得k=2m 2,所以M (2m ,m ),根据正切定义得到T an ∠MAB ===,从而得到=.{分值}3分{章节:[1-26-1]反比例函数的图像和性质}{考点:双曲线与几何图形的综合} {考点:菱形的性质} {类别:常考题}{难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共10 小题,每小题 3分,合计30分.{题目}9.(2019年宿迁T9)实数4的算术平方根为.{答案}2{}本题考查了算术平方根的概念,依据乘方的逆运算即可求得.{分值}3分{章节:[1-6-1]平方根}{考点:算术平方根}{类别:易错题}{难度:1-最简单}{题目}10.(2019年宿迁T10)分解因式a2-2a=.{答案}a(a-2){}本题考查了因式分解的方法和步骤,本题提取公因式a即可.{分值}3分{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{类别:常考题}{难度:2-简单}{题目}11.(2019年宿迁T11)宿迁近年来经济快速发展,2018年GDP约达到275000 000 000元.将275 000 000 000用科学记数法表示为.{答案}2.75×1011{}本题考查了较大数的科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值..{分值}3分{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:2-简单}}{题目}12.(2019年宿迁T12)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别2 S 甲、2S乙,且2S甲>2S乙,则队员身高比较整齐的球队是.{答案}乙{}根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.{分值}3分{章节:[1-20-2-1]方差}{考点:方差}{类别:常考题}{难度:2-简单}{题目}13.(2019年宿迁T13)下面3个天平左盘中“△”“ ”分别表示两种不同质量的物体,则第三个天平右盘中砝码的质量是.{答案}10{}设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.{分值}3分{章节:[1-8-3]实际问题与一元一次方程组}{考点:二元一次方程组的应用}{类别:常考题}{难度:2-简单}{题目}14.(2019年宿迁T14)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.{答案}1 3{}由骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,利用概率公式直接求解即可求得答案.{分值}3分{章节:[1-25-2]用列举法求概率}{考点:一步事件的概率}{类别:常考题}{难度:2-简单}{题目}15.(2019年宿迁T15)直角三角形的两条直角边分别为5和12,则它的内切圆半径为.{答案}2{}本题考查了直角三角形内切圆半径的计算,先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.{分值}3分{章节:[1-24-2-2]直线和圆的位置关系}{考点:三角形的内切圆与内心}{类别:常考题}{难度:2-简单}{题目}16.(2019年宿迁T16)关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是.{答案}a<5且a≠3{}本题考查了带参数的分式方程的计算,直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.{分值}3分{章节:[1-15-3]分式方程}{考点:分式方程的增根}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}17.(2019年宿迁T17)如图,∠MAN=80°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.{答案<BC<{}本题考查了直角三角形的存在性问题及锐角三角形、钝角三角形三边关系。

2019年江苏省宿迁市中考数学试题含答案

2019年江苏省宿迁市中考数学试题含答案

2019年江苏省宿迁市中考数学试题含答案1.本文是一篇数学考试试题,共分为两大部分:选择题和填空题。

2.选择题共8小题,每小题3分,总共24分,需要在答题卡上涂黑正确选项的字母代号。

3.填空题共10小题,每小题3分,总共30分,需要直接在答题卡上填写答案。

4.注意考试时间为150分钟,答案必须写在答题卡上,作图必须用2B铅笔并加黑加粗。

5.文中有一些明显格式错误的段落需要删除。

6.部分题目需要进行小幅度改写,以便更好地理解。

13.根据天平左盘的形状,我们可以得知三个物体的质量大小关系为:△<□<未知物体。

根据天平平衡的原理,未知物体和砝码的质量相等,因此第三个天平右盘中砝码的质量应该与未知物体的质量相等。

14.一枚骰子共有6个面,其中3的倍数为3、6.因此,朝上一面的点数是3的倍数的概率为2/6=1/3.15.解方程a-2/a+2=1/a+2,得到a=4.因此,a的取值范围为a>0.16.分式方程x-2/(2-x)=a的解为x=(2a-2±√(4a^2-12a+1))/2,其中分母2-x不能为0,即x≠2.因此,x的取值范围为x≠2.17.根据正弦定理,BC/sin∠XXX∠CAB。

当△ABC是锐角三角形时,sin∠BCA和sin∠CAB均为正数,因此BC的取值范围为2<BC<4.18.根据勾股定理,AD=4,因此AE=3.根据等边三角形的性质,∠EFG=60°,因此EF=EG=3.连接AG,由于AG是正三角形的边长,因此AG=3.根据三角形不等式,CG+AG>AC,即CG>AC-AG=4-3=1.因此,CG的最小值为1.19.计算过程如下:1-1/2-(π-1)+1-3/2=-π/2.20.化简12a(1+a)/(2-a),得到6a(1+a)/(1-a^2)。

代入a=-2,得到-12/5.21.⑴由于一次函数y=kx+b经过点A(-1,x),因此有x=-k+b。

2019年宿迁市中考数学试卷(Word版)

2019年宿迁市中考数学试卷(Word版)

13江苏省宿迁市2019年初中毕业暨升学考试数 学注意事项:1 •本试卷共6页•全卷满分150分•考试时间120分钟•考生答题全部答在答题卡上,答在本试卷上无效.2 •请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3 •答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑•如需改动,请用橡皮擦干净后,再选涂其他答案•答非选择题必须用 0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.」、选择题(本大题共~~8小题,每小题3分,共24分•在每小题给出的四个选项中,有 且只有一项是符合题目要求的,请将正确选项填涂在答题卡相应位置 上)1 • -2的绝对值是A • 2B • 11C •D • -2222 •下列运算的结果为 a 的是"3 丄 3r/3\3A • a aB • (a )1的正方体组成的几何体,其俯视图的面积是B • 4C • 5rL2ru-_Jt □第4题图4•如图,将• AOB 放置在5 5的正方形网格中,贝U tan ,AOB 的值是23A • -B •—3 2a 23.13 133.下图是由六个棱长为第3题图5 •下列选项中,能够反映一组数据离散程度的统计量是13A・平均数 B •中位数 C •众数 D •方差数学试卷2x 16. 方程——1 ---- 的解是x -1x -1A . X--1B . X=0C . X = 1D . X = 21 27. 下列三个函数:① y=x ・1 :②y :③y=x-xT .其图象既是轴对称图形,x又是中心对称图形的个数有 A . 0B . 1C . 2D . 3&在等腰. ABC 中,.ACB =90“,且AC = 1 .过点C 作直线I // AB , P 为直线I 上 一点,且 AP 二AB .则点P 到BC 所在直线的距离是A . 110 .已知L 01与L O 2相切,两圆半径分别为 3和5,则圆心距O 1O 2的值是 ▲ 11.如图,为测量位于一水塘旁的两点A 、B 间的距离,在地面上确定点 O ,分别取OA 、OB 的中点C 、D ,量得CD = 20 m ,则A 、B 之间的距离是 ▲ m .12 .如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,贝,〉也随之变化,两条对角线长度也在发生改变.当 •〉为 ▲ 度时,两条对角线长度相等.13 .计算2 - .3^ .6 的值是 ▲.14 .已知圆锥的底面周长是 10二,其侧面展开后所得扇形的圆心角为 90,则该圆锥的母线长是 ▲二、填空题(本大题共 103分,共30分.不需写出解答过程,请把答案直I』0 3 第9题图B .第12题图15 .在平面直角坐标系xOy中,已知点A(0 ,1) , B(1, 2),点P在x轴上运动,当点P 22.22.到A 、B 两点距离之差的绝对值最大时,点P 的坐标是▲2 _16.若函数y =mx 2x 1的图象与x 轴只有一个公共点,则常数 m 的值是 ▲ 17.如图,AB 是半圆0的直径,且 AB=8,点C 为 半圆上的一点•将此半圆沿 BC 所在的直线折叠, 若圆弧BC 恰好过圆心0,则图中阴影部分的面积 是 ▲.(结果保留二)1 518. 在平面直角坐标系 xOy 中,一次函数y 二1x • 2与反比例函数y 二5(x 0)的图象交3 x点的横坐标为x 0 .若k ::: x 0 k 1,则整数k 的值是 ▲.三、解答题(本大题共 10题,共96分•请在答题卡指定区域内.作答,解答时应写出必要 的文字说明、证明过程或演算步骤) 19. (本题满分8分)计算:(、、2-1)0 - 12cos60「20. (本题满分8分)2先化简,再求值: (1 —24x 4,其中x=3.X -1 x -1 21. (本题满分8分)某景区为方便游客参观,在每个景点均设置两条通道,即楼梯和无障碍通道•如图, 已知在某景点P 处,供游客上下的楼梯倾斜角为 30 (即.PBA =30*),长度为4 m (即 PB=4m ),无障碍通道 PA 的倾斜角为15(即N PAB=15 ).求无障碍通道的长度.(结果精确到0.1 m ,参考数据:A第17题图(本题满分8分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制」人数22.成如下两幅不完整的统计图.根据以上信息,解答下列问题: (1) 被调查的学生共有 ▲ 人,并补全条形统计图;(2)在扇形统计图中, m = ▲, n = ▲ ,表示区域(3)全校学生中喜欢篮球的人数大约有多少?23. (本题满分10分) 如图,在平行四边形 ABCD 中,AD AB .(1) 作出.ABC 的平分线(尺规作图,保留作图痕迹,不写作法) ;(2)若(1)中所作的角平分线交 AD 于点E ,AF 丄BE ,垂足为点0,交BC 于 点F ,连接EF .求证:四边形 ABFE 为菱形.24.(本题满分10分) 第23题图妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全 一样,女儿有事先吃.(1) 若女儿只吃一个粽子,则她吃到肉馅的概率是 ▲;(2)若女儿只吃两个粽子,求她吃到的两个都是肉馅的概率.25. (本题满分10分)某公司有甲种原料 260 kg ,乙种原料270 kg ,计划用这两种原料生产 A 、B 两种产A :踢毽子B :乒乓球C :跳绳D :篮球C 的圆心角为 ▲ 度;AD品共40件.生产每件A种产品需甲种原料8 kg,乙种原料5 kg,可获利润900元;生产每件B种产品需甲种原料 4 kg,乙种原料9 kg,可获利润1100元•设安排生产A种产品x件.(1 )完成下表甲(kg)乙(kg)件数(件)A5x xB4(40 —x)40-x(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.26.(本题满分10分)如图,在厶ABC中,.ABC =90:,边AC的垂直平分线交BC于点D,交AC于点E,连接BE .(1 )若• C =30,求证:BE是厶DEC外接圆的切线;(2)若BE =丫;3 , BD =1,求△ DEC外接圆的直径.第26题图27.(本题满分12分)如图,在平面直角坐标系xOy中,二次函数y二ax2• bx-3 (a , b是常数)的图象与x轴交于点A(-3 , 0)和点B( 1,0,与y轴交于点C .动直线y = t (t为常数) 与抛物线交于不同的两点P、Q.(1 )求a和b的值;(2 )求t的取值范围;(3)若.PCQ =90;,求t 的值.28.(本题满分12分)如图,在梯形ABCD 中,AB // DC , B =90;,且AB =10, BC =6, CD = 2•点E从点B出发沿BC方向运动,过点E作EF // AD交边AB于点F .将厶BEF沿EF所在的直线折叠得到△ GEF ,直线FG、EG分别交AD于点M、N,当EG 过点D时,点E 即停止运动.设BE = x, △ GEF与梯形ABCD的重叠部分的面积为y .(1)证明△ AMF是等腰三角形;(2)当EG过点D时(如图(3)),求x的值;(3)将y表示成x的函数,并求y的最大值.F第28题图(1) A F B第28题图(2)A F第28题图(3)G D(N)。

【中考真题】2019年江苏省宿迁市中考数学试题(Word含答案)word【推荐】

【中考真题】2019年江苏省宿迁市中考数学试题(Word含答案)word【推荐】

2019年江苏省宿迁市中考数学试题(Word含答案)江苏省宿迁市2019年初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 2019的相反数是A. B. -2019 C. D. -20192. 下列运算正确的是A. B. C. D.3. 一组数据:2、4、4、3、7、7,则这组数据的中位数是A. 3B. 3.5C. 4D. 74. 一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A. 105°B. 100°C. 75°D. 60°5. 一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A. 20πB. 15πC. 12πD. 9π6. 不等式x一1≤2的非负整数解有A. 1个B. 2个C. 3个D. 4个7. 如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A. 6—πB. 6-2πC. 6+πD. +2π8. 如图在平面直角坐标系xoy中,菱形ABCD的顶点A与原点o重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图像上,则的值为A. B. C. 2 D.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 实数4的算术平方根为▲10. 分解因式a2-2a= ▲11. 宿迁近年来经济快速发展,2018年GDP约达到275 000 000 000元。

将275 000000 000用科学记数法表示为▲12. 甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是,则队员身高比较整齐的球队是▲13. 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为▲14.抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是▲15.直角三角形的两条直角边分别是5和12,则它的内切圆半径为▲16.关于x的分式方程的解为正数,则a的取值范围是▲17.如图∠MAN=600,若△ABC的顶点B在射线AM上,且A B=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是▲18.如图正方形ABCD的边长为4,E为BC上一点,且B E=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为▲三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)计算:20. (本题满分8分)先化简,再求值:,其中a=-221. (本题满分8分)如图,一次函数y=kx+b的图像与反比例函数的图像相交于点A (-1,m)、B(n,-1)两点。

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷

A.1 个
B.2 个
C.3 个
D.4 个
【分析】直接解不等式,进而利用非负整数的定义分析得出答案.
【解答】解: x 1„ 2 , 解得: x„ 3 , 则不等式 x 1„ 2 的非负整数解有:0,1,2,3 共 4 个. 故选: D . 7.(3 分)如图,正六边形的边长为 2,分别以正六边形的六条边为直径向外作半圆,与正 六边形的外接圆围成的 6 个月牙形的面积之和(阴影部分面积)是 ( )
26.(10 分)(2019•宿迁)超市销售某种儿童玩具,如果每件利润为 40 元(市场管理部门
规定,该种玩具每件利润不能超过 60 元),每天可售出 50 件.根据市场调查发现,销售单 价每增加 2 元,每天销售量会减少 1 件.设销售单价增加 x 元,每天售出 y 件. (1)请写出 y 与 x 之间的函数表达式; (2)当 x 为多少时,超市每天销售这种玩具可获利润 2250 元? (3)设超市每天销售这种玩具可获利 w 元,当 x 为多少时 w 最大,最大值是多少? 27.(12 分)(2019•宿迁)如图①,在钝角 ABC 中, ABC 30 , AC 4 ,点 D 为边 AB 中点,点 E 为边 BC 中点,将 BDE 绕点 B 逆时针方向旋转 度 (0„ „ 180) . (1)如图②,当 0 180 时,连接 AD 、 CE .求证: BDA∽BEC ; (2)如图③,直线 CE 、 AD 交于点 G .在旋转过程中, AGC 的大小是否发生变化?如 变化,请说明理由;如不变,请求出这个角的度数; (3)将 BDE 从图①位置绕点 B 逆时针方向旋转180 ,求点 G 的运动路程.
2019 年江苏省宿迁市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中, 有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷

轴上,对角线 AC 、 BD 交于点 M ,点 D 、 M 恰好都在反比例函数 y k (x 0) 的图象上,则 AC 的值为 (
x
BD
)
A. 2
B. 3
C.2
【解答】解:设 D(m, k ) , B(t, 0) , m
M 点为菱形对角线的交点,
BD AC , AM CM , BM DM ,
当 ABC 是锐角三角形时, BC 的取值范围是 .
18.(3 分)如图,正方形 ABCD 的边长为 4, E 为 BC 上一点,且 BE 1, F 为 AB 边上的一个动点,连接 EF ,以 EF 为边向右侧作等边 EFG ,连接 CG ,则 CG 的最小值为 .
三、解答题(本大题共 10 题,共 96 分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证 明过程或演算步骤) 19.(8 分)计算: (1 )1 ( 1)0 |1 3 | .
在 RtABM 中, tan MAB BM 2m 1 , AM 2m 2
AC 2 . BD
故选: A .
D 、 (ab2 )3 a3b6 ,正确;
故选: D . 3.(3 分)一组数据:2、4、4、3、7、7,则这组数据的中位数是 ( )
A.3
B.3.5
C.4
D.7
【解答】解:这组数据重新排列为:2、3、4、4、7、7, 这组数据的中位数为 4 4 4 ,
2 故选: C . 4.(3 分)一副三角板如图摆放(直角顶点 C 重合),边 AB 与 CE 交于点 F ,DE / / BC ,则 BFC 等于 ( )
C. 1 2019
D. 1 2019
A. a2 a3 a5

2019年江苏省宿迁市中考数学试卷以及解析答案

2019年江苏省宿迁市中考数学试卷以及解析答案

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.B.﹣2019C.﹣D.20192.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.74.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x >0)的图象上,则的值为()A.B.C.2D.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为.10.(3分)分解因式:a2﹣2a=.11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为.16.(3分)关于x的分式方程+=1的解为正数,则a的取值范围是.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.20.(8分)先化简,再求值:(1+)÷,其中a=﹣2.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表类别男生(人)女生(人)文学类128史学类m5科学类65哲学类2n 根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2019年江苏省宿迁市中考数学试卷答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别分析得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、a6÷a3=a3,故此选项错误;D、(ab2)3=a3b6,正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答】解:这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为=4,故选:C.【点评】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.4.【分析】由题意知图中是一个等腰直角三角形和一个含30°角的直角三角形,故∠E=45°,∠B=30°,由平行线的性质可知∠BCF=∠E=45°,由三角形内角和定理可求出∠BFC的度数.【解答】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点评】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.【分析】根据勾股定理得出底面半径,易求周长以及母线长,从而求出侧面积.【解答】解:由勾股定理可得:底面圆的半径=,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=×6π×5=15π.故选:B.【点评】本题考查了由三视图判断几何体,利用了勾股定理,圆的周长公式和扇形面积公式求解.6.【分析】直接解不等式,进而利用非负整数的定义分析得出答案.【解答】解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.【点评】此题主要考查了一元一次不等式的整数解,正确把握非负整数的定义是解题关键.7.【分析】图中阴影部分面积等于6个小半圆的面积和﹣(大圆的面积﹣正六边形的面积)即可得到结果.【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故选:A.【点评】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.8.【分析】设D(m,),B(t,0),利用菱形的性质得到M点为BD的中点,则M(,),把M(,)代入y=得t=3m,利用OD=AB=t得到m2+()2=(3m)2,解得k=2m2,所以M(2m,m),根据正切定义得到tan∠MAB===,从而得到=.【解答】解:设D(m,),B(t,0),∵M点为菱形对角线的交点,∴BD⊥AC,AM=CM,BM=DM,∴M(,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB===,∴=.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.10.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将275000000000用科学记数法表示为:2.75×1011.故答案为:2.75×1011.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.14.【分析】由骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,利用概率公式直接求解即可求得答案.【解答】解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.15.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).16.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点评】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.17.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.18.【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.【点评】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【解答】解:原式=×=,当a=﹣2时,原式==﹣.【点评】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.21.【分析】(1)先利用反比例函数解析式确定A点和B点坐标,然后利用待定系数法求一次函数解析式;(2)先求OD的长,根据面积和可得结论.【解答】解:(1)把A(﹣1.m),B(n,﹣1)代入y=﹣,得m=5,n=5,∴A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,∴一次函数解析式为y=﹣x+4;(2)x=0时,y=4,∴OD=4,∴△AOB的面积=S△AOD+S△BOD=×4×1+=12.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,也考查了待定系数法求函数解析式.22.【分析】(1)根据矩形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF =,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.【分析】(1)根据文学类的人数和所占的百分比求出抽查的总人数,再根据各自所占的百分比即可求出m、n;(2)由360°乘以“科学类”所占的比例,即可得出结果;(3)根据题意画出树状图得出所有等情况数和所选取的两名学生都是男生的情况数,然后根据概率公式即可得出答案.【解答】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:男1男2女1女2男1﹣﹣男2男1女1男1女2男1男2男1男2﹣﹣女1男2女2男2女1男1女1男2女1﹣﹣女2女1女2男1女2男2女2女1女2﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.24.【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB=∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,25.【分析】(1)作EM⊥CD于点M,由EM=EC sin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.26.【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到w=﹣(x﹣30)2+2450,根据二次函数的性质得到当x<30时,w 随x的增大而增大,于是得到结论.【解答】解:(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.27.【分析】(1)如图①利用三角形的中位线定理,推出DE∥AC,可得=,在图②中,利用两边成比例夹角相等证明三角形细相似即可.(2)利用相似三角形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆心角,半径,利用弧长公式计算即可.【解答】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴=,∴=,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长==,观察图象可知,点G的运动路程是的长的两倍=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.28.【分析】(1)把点A、C坐标代入抛物线解析式即求得b、c的值.(2)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.(3)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt△AOC中,sin∠ACO=,cos∠ACO=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=∴BG=AB=∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=∴HI=BH=,BI=BH=∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣)设直线AH解析式为y=kx+a∴解得:∴直线AH:y=x﹣∵解得:(即点A),∴P(﹣,﹣)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(﹣,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y=﹣x+∵解得:(即点A),∴P(﹣,)综上所述,点P的坐标为(﹣,﹣)或(﹣,).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴解得:∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴解得:∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.【点评】本题考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.第(2)题由于不确定点P位置需分类讨论;(2)(3)计算量较大,应认真理清线段之间的关系再进行计算.。

2019年江苏省宿迁市中考数学真题(解析版)

2019年江苏省宿迁市中考数学真题(解析版)

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的)1.2019的相反数是()A.B.﹣2019 C.﹣D.2019【答案】B【解析】2019的相反数是﹣2019.故选:B.2.下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b6【答案】D【解析】A.a2+a3,无法计算,故此选项错误;B.(a2)3=a6,故此选项错误;C.a6÷a3=a3,故此选项错误;D.(ab2)3=a3b6,正确;故选:D.3.一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3 B.3.5 C.4 D.7【答案】C【解析】这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为=4,故选:C.4.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC 等于()A.105°B.100°C.75°D.60°【答案】A【解析】由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π【答案】B【解析】由勾股定理可得:底面圆的半径=,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=×6π×5=15π.故选:B.6.不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【解析】x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π【答案】A【解析】6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故选:A.8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为()A.B.C.2 D.【答案】A【解析】设D(m,),B(t,0),∵M点为菱形对角线的交点,∴BD⊥AC,AM=CM,BM=DM,∴M(,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB===,∴=.故选:A.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程)9.实数4的算术平方根为2.【解析】∵22=4,∴4的算术平方根是2.故答案为:2.10.分解因式:a2﹣2a=a(a﹣2).【解析】a2﹣2a=a(a﹣2).故答案为:a(a﹣2).11.宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为 2.75×1011.【解析】将275000000000用科学记数法表示为:2.75×1011.故答案为:2.75×1011.12.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.【解析】∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.13.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【解析】设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.14.抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.【解析】∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.15.直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【解析】直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.16.关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【解析】去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.17.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN 上运动,当△ABC是锐角三角形时,BC的取值范围是<BC<.【解析】如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.18.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.三、解答题(本大题共10题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.解:原式=2﹣1+﹣1=.20.(8分)先化简,再求值:(1+)÷,其中a=﹣2.解:原式=×=,当a=﹣2时,原式==﹣.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.解:(1)把A(﹣1.m),B(n,﹣1)代入y=﹣,得m=5,n=5,∴A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,∴一次函数解析式为y=﹣x+4;(2)x=0时,y=4,∴OD=4,∴△AOB的面积=S△AOD+S△BOD=×4×1+=12.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表类别男生(人)女生(人)文学类12 8史学类m 5科学类 6 5哲学类 2 n根据以上信息解决下列问题(1)m=20,n=2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为79.2°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:男1 男2 女1 女2男1 ﹣﹣男2男1 女1男1 女2男1男2 男1男2 ﹣﹣女1男2 女2男2女1 男1女1 男2女1 ﹣﹣女2女1女2 男1女2 男2女2 女1女2 ﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC 于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?解:(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴=,∴=,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长==,观察图象可知,点G的运动路程是的长的两倍=.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y 轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2+2x﹣3.(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG 交BI于点F,过点H作HI⊥BI于点I,∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1,∴B(﹣3,0),∵A(1,0),C(0,﹣3),∴OA=1,OC=3,AC=,AB=4,∴Rt△AOC中,sin∠ACO=,cos∠ACO=,∵AB=AH,G为BH中点,∴AG⊥BH,BG=GH,∴∠BAG=∠HAG,即∠P AB=2∠BAG,∵∠P AB=2∠ACO,∴∠BAG=∠ACO,∴Rt△ABG中,∠AGB=90°,sin∠BAG=,∴BG=AB=,∴BH=2BG=,∵∠HBI+∠ABG=∠ABG+∠BAG=90°,∴∠HBI=∠BAG=∠ACO,∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=,∴HI=BH=,BI=BH=,∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣),设直线AH解析式为y=kx+a,∴,解得:,∴直线AH:y=x﹣,∵解得:(即点A),,∴P(﹣,﹣),②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称,∴H'(﹣,),设直线AH'解析式为y=k'x+a',∴,解得:,∴直线AH':y=﹣x+,∵,解得:(即点A),,∴P(﹣,),综上所述,点P的坐标为(﹣,﹣)或(﹣,).(3)DM+DN为定值,∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1,∴D(﹣1,0),x M=x N=﹣1,设Q(t,t2+2t﹣3)(﹣3<t<1),设直线AQ解析式为y=dx+e,∴,解得:,∴直线AQ:y=(t+3)x﹣t﹣3,当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6,∴DM=0﹣(﹣2t﹣6)=2t+6,设直线BQ解析式为y=mx+n,∴,解得:,∴直线BQ:y=(t﹣1)x+3t﹣3,当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2,∴DN=0﹣(2t﹣2)=﹣2t+2,∴DM+DN=2t+6+(﹣2t+2)=8,为定值.。

2019年江苏省宿迁市中考数学试卷及答案解析

2019年江苏省宿迁市中考数学试卷及答案解析

2019年江苏省宿迁市中考数学试卷及答案解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.2019的相反数是( ) A .12019B .﹣2019C .−12019D .2019解:2019的相反数是﹣2019. 故选:B .2.下列运算正确的是( ) A .a 2+a 3=a 5 B .(a 2)3=a 5 C .a 6÷a 3=a 2D .(ab 2)3=a 3b 6解:A 、a 2+a 3,无法计算,故此选项错误; B 、(a 2)3=a 6,故此选项错误; C 、a 6÷a 3=a 3,故此选项错误; D 、(ab 2)3=a 3b 6,正确; 故选:D .3.一组数据:2、4、4、3、7、7,则这组数据的中位数是( ) A .3B .3.5C .4D .7解:这组数据重新排列为:2、3、4、4、7、7, ∴这组数据的中位数为4+42=4,故选:C .4.一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE ∥BC ,则∠BFC 等于( )A .105°B .100°C .75°D .60°解:由题意知∠E =45°,∠B =30°, ∵DE ∥CB ,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π解:由勾股定理可得:底面圆的半径=√52−42=3,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=12×6π×5=15π.故选:B.6.不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6√3−πB.6√3−2πC.6√3+πD.6√3+2π解:6个月牙形的面积之和=3π﹣(22π﹣6×12×2×√3)=6√3−π,故选:A.8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数y =k x(x >0)的图象上,则ACBD的值为( )A .√2B .√3C .2D .√5解:设D (m ,k m),B (t ,0), ∵M 点为菱形对角线的交点, ∴BD ⊥AC ,AM =CM ,BM =DM , ∴M (m+t 2,k 2m),把M (m+t2,k2m)代入y =kx得m+t 2•k 2m=k ,∴t =3m ,∵四边形ABCD 为菱形, ∴OD =AB =t ,∴m 2+(km )2=(3m )2,解得k =2√2m 2,∴M (2m ,√2m ),在Rt △ABM 中,tan ∠MAB =BMAM =√2m2m =2,∴AC BD=√2.故选:A .二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.实数4的算术平方根为 2 .解:∵22=4,∴4的算术平方根是2. 故答案为:2.10.分解因式:a 2﹣2a = a (a ﹣2) . 解:a 2﹣2a =a (a ﹣2). 故答案为:a (a ﹣2).11.宿迁近年来经济快速发展,2018年GDP 约达到275000000000元.将275000000000用科学记数法表示为 2.75×1011 .解:将275000000000用科学记数法表示为:2.75×1011. 故答案为:2.75×1011.12.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S 甲2、S 乙2,且S 甲2>S乙2,则队员身高比较整齐的球队是 乙 .解:∵S 甲2>S 乙2,∴队员身高比较整齐的球队是乙, 故答案为:乙.13.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为 10 .解:设“△”的质量为x ,“□”的质量为y , 由题意得:{x +y =6x +2y =8,解得:{x =4y =2,∴第三个天平右盘中砝码的质量=2x +y =2×4+2=10; 故答案为:10.14.抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是13.解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个, ∴掷得朝上一面的点数为3的倍数的概率为:26=13.故答案为:13.15.直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.解:直角三角形的斜边=√52+122=13,所以它的内切圆半径=5+12−132=2.故答案为2.16.关于x的分式方程1x−2+a−22−x=1的解为正数,则a的取值范围是a<5且a≠3.解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.17.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN 上运动,当△ABC是锐角三角形时,BC的取值范围是√3<BC<2√3.解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°∴AC1=12AB=1,由勾股定理得:BC1=√3,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2√3,当△ABC是锐角三角形时,点C在C1C2上移动,此时√3<BC<2√3.故答案为:√3<BC<2√3.18.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为52.解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG 从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上 作CM ⊥HN ,则CM 即为CG 的最小值 作EP ⊥CM ,可知四边形HEPM 为矩形, 则CM =MP +CP =HE +12EC =1+32=52故答案为52.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(12)﹣1﹣(π﹣1)0+|1−√3|.解:原式=2﹣1+√3−1 =√3.20.(8分)先化简,再求值:(1+1a−1)÷2a2,其中a =﹣2.解:原式=aa−1×(a+1)(a−1)2a=a+12,当a =﹣2时,原式=−2+12=−12. 21.(8分)如图,一次函数y =kx +b 的图象与反比例函数y =−5x的图象相交于点A (﹣1,m )、B (n ,﹣1)两点. (1)求一次函数表达式; (2)求△AOB 的面积.解:(1)把A (﹣1.m ),B (n ,﹣1)代入y =−5x,得m =5,n =5, ∴A (﹣1,5),B (5,﹣1),把A (﹣1,5),B (5,﹣1)代入y =kx +b 得 {−k +b =55k +b =−1,解得{k =−1b =4, ∴一次函数解析式为y =﹣x +4; (2)x =0时,y =4, ∴OD =4,∴△AOB 的面积=S △AOD +S △BOD =12×4×1+12×4×5=12.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=3 2.(1)求证:四边形AECF是菱形;(2)求线段EF的长.(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=3 2,∴CF=AE=4−32=52,∴AF=CE=√22+(32)2=52,∴AF=CF=CE=AE=5 2,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=32,FH=AD=2,∴EH=52−32=1,∴EF=√FH2+HE2=√22+12=√5.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表类别男生(人)女生(人)文学类128史学类m5科学类65哲学类2n 根据以上信息解决下列问题(1)m=10,n=2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为79.2°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:10,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×6+550=79.2°;故答案为:79.2;(3)列表得:男1男2女1女2男1﹣﹣男2男1女1男1女2男1男2男1男2﹣﹣女1男2女2男2女1男1女1男2女1﹣﹣女2女1女2男1女2男2女2女1女2﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为212=16.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C=E′Hsin∠ECH=64sin64°≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?解:(1)根据题意得,y=−12x+50;(2)根据题意得,(40+x)(−12x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(−12x+50)=−12x2+30x+2000=−12(x﹣30)2+2450,∵a=−12<0,∴当x<30时,w随x的增大而增大,∵40+x≤60,x≤2∴当x=20时,w最大=2400,答:当x为20时w最大,最大值是2400元.27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.解:(1)如图②中,由图①,∵点D 为边AB 中点,点E 为边BC 中点, ∴DE ∥AC , ∴BD BA =BE BC , ∴BD BE=BA BC,∵∠DBE =∠ABC , ∴∠DBA =∠EBC , ∴△DBA ∽△EBC .(2)∠AGC 的大小不发生变化,∠AGC =30°. 理由:如图③中,设AB 交CG 于点O .∵△DBA ∽△EBC , ∴∠DAB =∠ECB ,∵∠DAB +∠AOG +∠G =180°,∠ECB +∠COB +∠ABC =180°,∠AOG =∠COB , ∴∠G =∠ABC =30°.(3)如图③﹣1中.设AB 的中点为K ,连接DK ,以AC 为边向左边等边△ACO ,连接OG ,OB .以O 为圆心,OA 为半径作⊙O , ∵∠AGC =30°,∠AOC =60°, ∴∠AGC =12∠AOC , ∴点G 在⊙O 上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊥AD , ∴∠ADB =90°, ∵BK =AK , ∴DK =BK =AK , ∵BD =BK , ∴BD =DK =BK , ∴△BDK 是等边三角形, ∴∠DBK =60°, ∴∠DAB =30°,∴∠BOG =2∠DAB =60°, ∴BG ̂的长=60⋅π⋅4180=4π3, 观察图象可知,点G 的运动路程是BĜ的长的两倍=8π3. 28.(12分)如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足∠P AB =2∠ACO .求点P 的坐标; (3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,﹣3) ∴{1+b +c =00+0+c =−3 解得:{b =2c =−3 ∴抛物线的函数表达式为y =x 2+2x ﹣3(2)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I ∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1 ∴B (﹣3,0)∵A (1,0),C (0,﹣3)∴OA =1,OC =3,AC =√12+32=√10,AB =4 ∴Rt △AOC 中,sin ∠ACO =OA AC =√1010,cos ∠ACO =OC AC =3√1010∵AB =AH ,G 为BH 中点 ∴AG ⊥BH ,BG =GH∴∠BAG =∠HAG ,即∠P AB =2∠BAG ∵∠P AB =2∠ACO ∴∠BAG =∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=BGAB=√1010∴BG=√1010AB=2√105∴BH=2BG=4√10 5∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=HIBH=√1010,cos∠HBI=BIBH=3√1010∴HI=√1010BH=45,BI=3√1010BH=125∴x H=﹣3+45=−115,y H=−125,即H(−115,−125)设直线AH解析式为y=kx+a∴{k+a=0−115k+a=−125解得:{k=34a=−34∴直线AH:y=34x−34∵{y=34x−34y=x2+2x−3解得:{x1=1y1=0(即点A),{x2=−94y2=−3916∴P(−94,−3916)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(−115,125)设直线AH'解析式为y=k'x+a'∴{k′+a′=0−115k′+a′=125解得:{k′=−34a′=34∴直线AH':y=−34x+34∵{y=−34x+34y=x2+2x−3解得:{x1=1y1=0(即点A),{x2=−154y2=5716∴P(−154,5716)综上所述,点P 的坐标为(−94,−3916)或(−154,5716).(3)DM +DN 为定值∵抛物线y =x 2+2x ﹣3的对称轴为:直线x =﹣1 ∴D (﹣1,0),x M =x N =﹣1 设Q (t ,t 2+2t ﹣3)(﹣3<t <1) 设直线AQ 解析式为y =dx +e∴{d +e =0dt +e =t 2+2t −3 解得:{d =t +3e =−t −3 ∴直线AQ :y =(t +3)x ﹣t ﹣3当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6 ∴DM =0﹣(﹣2t ﹣6)=2t +6 设直线BQ 解析式为y =mx +n∴{−3m +n =0mt +n =t 2+2t −3 解得:{m =t −1n =3t −3 ∴直线BQ :y =(t ﹣1)x +3t ﹣3 当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2 ∴DN =0﹣(2t ﹣2)=﹣2t +2∴DM +DN =2t +6+(﹣2t +2)=8,为定值.。

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.12019B.﹣2019C.−12019D.20192.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.74.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63−πB.63−2πC.63+πD.63+2π8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则A B的值为()A.2B.3C.2D.5二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为.10.(3分)分解因式:a2﹣2a=.11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为.16.(3分)关于x的分式方程1K2+K22−=1的解为正数,则a的取值范围是.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(12)﹣1﹣(π﹣1)0+|1−3|.20.(8分)先化简,再求值:(1+1K1)÷22−1,其中a=﹣2.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=−5的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=32.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表类别男生(人)女生(人)文学类128史学类m5科学类65哲学类2n 根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y 轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2019年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.12019B.﹣2019C.−12019D.2019【解答】解:2019的相反数是﹣2019.故选:B.2.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b6【解答】解:A、a2+a3,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、a6÷a3=a3,故此选项错误;D、(ab2)3=a3b6,正确;故选:D.3.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.7【解答】解:这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为4+42=4,故选:C.4.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【解答】解:由题意知∠E=45°,∠B=30°,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π【解答】解:由勾股定理可得:底面圆的半径=52−42=3,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=12×6π×5=15π.故选:B.6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个【解答】解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63−πB.63−2πC.63+πD.63+2π【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6×12×2×3)=63−π,8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则A B的值为()A.2B.3C.2D.5【解答】解:设D(m,),B(t,0),∵M点为菱形对角线的交点,∴BD⊥AC,AM=CM,BM=DM,∴M(r2,2),把M(r2,2)代入y=得r2•2=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=22m2,∴M(2m,2m),在Rt△ABM中,tan∠MAB=B B==∴A B=2.故选:A.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为2.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.10.(3分)分解因式:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为 2.75×1011.【解答】解:将275000000000用科学记数法表示为:2.75×1011.故答案为:2.75×1011.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.【解答】解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:+=6+2=8,解得:=4=2,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是13.【解答】解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:26=13.故答案为:13.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【解答】解:直角三角形的斜边=52+122=13,所以它的内切圆半径=5+12−132=2.故答案为2.16.(3分)关于x的分式方程1K2+K22−=1的解为正数,则a的取值范围是a<5且a ≠3.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC<BC<【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°∴AC1=12AB=1,由勾股定理得:BC1=3,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=23,当△ABC是锐角三角形时,点C在C1C2上移动,此时3<BC<23.故答案为:3<BC<23.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为52.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+12EC=1+32=52故答案为52.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(12)﹣1﹣(π﹣1)0+|1−3|.【解答】解:原式=2﹣1+3−1=3.20.(8分)先化简,再求值:(1+1K1)÷22−1,其中a=﹣2.【解答】解:原式=K1×(r1)(K1)2=r12,当a=﹣2时,原式=−2+12=−12.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=−5的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.【解答】解:(1)把A(﹣1.m),B(n,﹣1)代入y=−5,得m=5,n=5,∴A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得−+=55+=−1,解得=−1=4,∴一次函数解析式为y=﹣x+4;(2)x=0时,y=4,∴OD=4,+S△BOD=12×4×1+12×4×5=12.∴△AOB的面积=S△AOD22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=32.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=32,∴CF=AE=4−3252,∴AF=CE==52,∴AF=CF=CE=AE=52,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=32,FH=AD=2,∴EH=52−32=1,∴EF=B2+B2=22+12=5.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表类别男生(人)女生(人)文学类128史学类m5科学类65哲学类2n 根据以上信息解决下列问题(1)m=10,n=2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为79.2°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【解答】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:10,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×6+550=79.2°;故答案为:79.2;(3)列表得:男1男2女1女2男1﹣﹣男2男1女1男1女2男1男2男1男2﹣﹣女1男2女2男2女1男1女1男2女1﹣﹣女2女1女2男1女2男2女2女1女2﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为212=16.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C=′sYA=64sC4°≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解答】解:(1)根据题意得,y=−12x+50;(2)根据题意得,(40+x)(−12x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(−12x+50)=−12x2+30x+2000=−12(x﹣30)2+2450,∵a=−12<0,∴当x<30时,w随x的增大而增大,∵40+x≤60,x≤2∴当x=20时,w=2400,最大答:当x为20时w最大,最大值是2400元.27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【解答】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴B B=B A,∴B B=B A,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向左边等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=12∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠BOG=2∠DAB=60°,的长=60⋅δ4180=43,∴B的长的两倍=83.观察图象可知,点G的运动路程是B28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y 轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴1++=00+0+=−3解得:=2=−3∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=12+3210,AB=4∴Rt△AOC中,sin∠ACO=B A=cos∠ACO=A A=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠PAB=2∠BAG∵∠PAB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=B B=∴BG==∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=H B=cos∠HBI=H B=∴HI==45,BI==125∴x H=﹣3+45=−115,y H=−125,即H(−115,−125)设直线AH解析式为y=kx+a∴+=0−115+=−125解得:=34=−34∴直线AH:y=34x−34∵=34−34=2+2−3解得:1=11=0(即点A),2=−942=−3916∴P(−94,−3916)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(−115,125)设直线AH'解析式为y=k'x+a'∴′+′=0−115′+′=125解得:′=−34′=34∴直线AH':y=−34x+34∵=−34+34=2+2−3解得:1=11=0(即点A),2=−1542=5716∴P(−154,5716)综上所述,点P的坐标为(−94,−3916)或(−154,5716).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴+=0B+=2+2−3解得:=+3=−−3∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴−3+=0B+=2+2−3解得:=−1=3−3∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.。

江苏省宿迁市2019年中考数学试题

江苏省宿迁市2019年中考数学试题

江苏省宿迁市2019年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2019的相反数是( ) A .2019B .-2019C .12019D .12019-2.下列运算正确的是( ) A .235a a a +=B .()325a a =C .632a a a ÷=D .()3236ab a b =3.一组数据:2、4、4、3、7、7,则这组数据的中位数是( ) A .3B .3.5C .4D .74.一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于( )A .105︒B .100︒C .75︒D .60︒5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A .20πB .15πC .12πD .9π6.不等式12x -≤的非负整数解有( ) A .1个B .2个C .3个D .4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .πB .2πC .πD .2π8.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数()0k y x x=>的图象上,则ACBD的值为( )AB C .2 D二、填空题9.9的算术平方根是_____. 10.分解因式:22a a -=_____.11.宿迁近年来经济快速发展,2018年GDP 约达到275000000000元.将275000000000用科学记数法表示为_____.12.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.13.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为_____.14.抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是_____. 15.直角三角形的两条直角边分别是5和12,则它的内切圆半径为_____. 16.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 17.如图,60MAN ∠=︒,若ABC ∆的顶点B 在射线AM 上,且2AB =,点C 在射线AN 上运动,当ABC ∆是锐角三角形时,BC 的取值范围是_____.18.如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG ∆,连接CG ,则CG 的最小值为_____.三、解答题19.计算:()11112π-⎛⎫--+ ⎪⎝⎭20.先化简,再求值:212111a a a ⎛⎫+÷ ⎪--⎝⎭,其中2a =-. 21.如图,一次函数y kx b =+的图象与反比例函数5y x=-的图象相交于点()1,A m -、(),1B n -两点.(1)求一次函数表达式; (2)求AOB ∆的面积.22.如图,矩形ABCD 中,4AB =,2BC =,点E 、F 分别在AB 、CD 上,且32BE DF ==(1)求证:四边形AECF 是菱形; (2)求线段EF 的长.23.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题 (1)m = ,n = ;(2)扇形统计图中“科学类”所对应扇形圆心角度数为 ︒;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率. 24.在Rt ABC ∆中,90C ∠=︒.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D ,交BC于点E ,与边AC 相切于点F .求证:12∠=∠; (2)在图②中作M e ,使它满足以下条件: ①圆心在边AB 上;②经过点B ;③与边AC 相切. (尺规作图,只保留作图痕迹,不要求写出作法)25.宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,64BCD ∠=︒,60BC cm =,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置'E ,求'EE 的长. (结果精确到0.1cm ,参考数据:sin 640.90︒≈,cos640.44︒≈,tan 64 2.05︒≈) 26.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少? 27.如图①,在钝角ABC ∆中,30ABC ∠=︒,4AC =,点D 为边AB 中点,点E 为边BC 中点,将BDE ∆绕点B 逆时针方向旋转α度(0180α≤≤).(1)如图②,当0180α<<时,连接AD 、CE .求证:BDA BEC ∆∆:;(2)如图③,直线CE 、AD 交于点G .在旋转过程中,AGC ∠的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将BDE ∆从图①位置绕点B 逆时针方向旋转180︒,求点G 的运动路程. 28.如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为()1,0,与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标; (3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1. 2019的相反数是()A.B.﹣2019 C.﹣D.20192.下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a6÷a3=a2 D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3 B.3.5 C.4 D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π6.不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为()A.B.C.2 D.二、填空题,(本大题共10小题,每小题3分,共30分)9.实数4的算术平方根为.10.分解因式:a2﹣2a=.11.宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为.12.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S 2,则队员身高比较整齐的球队是.乙13.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.14.抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.15.直角三角形的两条直角边分别是5和12,则它的内切圆半径为.16.关于x的分式方程+=1的解为正数,则a的取值范围是.17.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.18.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三、解答题(本大题共10题,共96分)19.计算:()﹣1﹣(π﹣1)0+|1﹣|.20.先化简,再求值:(1+)÷,其中a=﹣2.21.如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B (n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.22.如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.24.在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)25.宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)26.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?27.如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.28.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2019年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2019的相反数是()A.B.﹣2019C.﹣D.2019【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别分析得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、a6÷a3=a3,故此选项错误;D、(ab2)3=a3b6,正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)一组数据:2、4、4、3、7、7,则这组数据的中位数是()A.3B.3.5C.4D.7【分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答】解:这组数据重新排列为:2、3、4、4、7、7,∴这组数据的中位数为=4,故选:C.【点评】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.4.(3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【分析】由题意知图中是一个等腰直角三角形和一个含30°角的直角三角形,故∠E=45°,∠B=30°,由平行线的性质可知∠BCF=∠E=45°,由三角形内角和定理可求出∠BFC的度数.【解答】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点评】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(3分)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A.20πB.15πC.12πD.9π【分析】根据勾股定理得出底面半径,易求周长以及母线长,从而求出侧面积.【解答】解:由勾股定理可得:底面圆的半径=,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积=×6π×5=15π.故选:B.【点评】本题考查了由三视图判断几何体,利用了勾股定理,圆的周长公式和扇形面积公式求解.6.(3分)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个【分析】直接解不等式,进而利用非负整数的定义分析得出答案.【解答】解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.【点评】此题主要考查了一元一次不等式的整数解,正确把握非负整数的定义是解题关键.7.(3分)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6﹣πB.6﹣2πC.6+πD.6+2π【分析】图中阴影部分面积等于6个小半圆的面积和﹣(大圆的面积﹣正六边形的面积)即可得到结果.【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故选:A.【点评】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.8.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B 落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x >0)的图象上,则的值为()A.B.C.2D.【分析】设D(m,),B(t,0),利用菱形的性质得到M点为BD的中点,则M(,),把M(,)代入y=得t=3m,利用OD=AB=t得到m2+()2=(3m)2,解得k=2m2,所以M(2m,m),根据正切定义得到tan∠MAB===,从而得到=.【解答】解:设D(m,),B(t,0),∵M点为菱形对角线的交点,∴BD⊥AC,AM=CM,BM=DM,∴M(,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB===,∴=.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.二、填空题,(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)实数4的算术平方根为2.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.10.(3分)分解因式:a2﹣2a=a(a﹣2).【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.11.(3分)宿迁近年来经济快速发展,2018年GDP约达到275000000000元.将275000000000用科学记数法表示为 2.75×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将275000000000用科学记数法表示为:2.75×1011.故答案为:2.75×1011.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是乙.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴队员身高比较整齐的球队是乙,故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.14.(3分)抛掷一枚质地均匀的骰子一次,朝上一面的点数是3的倍数的概率是.【分析】由骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,利用概率公式直接求解即可求得答案.【解答】解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.15.(3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).16.(3分)关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点评】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.17.(3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC<.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.18.(3分)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.【点评】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.三、解答题(本大题共10题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8分)先化简,再求值:(1+)÷,其中a=﹣2.【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【解答】解:原式=×=,当a=﹣2时,原式==﹣.【点评】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.【分析】(1)先利用反比例函数解析式确定A点和B点坐标,然后利用待定系数法求一次函数解析式;(2)先求OD的长,根据面积和可得结论.【解答】解:(1)把A(﹣1.m),B(n,﹣1)代入y=﹣,得m=5,n=5,∴A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,∴一次函数解析式为y=﹣x+4;(2)x=0时,y=4,∴OD=4,∴△AOB的面积=S△AOD+S△BOD=×4×1+=12.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,也考查了待定系数法求函数解析式.22.(8分)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【分析】(1)根据菱形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF =,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.(10分)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=20,n=2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为79.2°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【分析】(1)根据文学类的人数和所占的百分比求出抽查的总人数,再根据各自所占的百分比即可求出m、n;(2)由360°乘以“科学类”所占的比例,即可得出结果;(3)根据题意画出树状图得出所有等情况数和所选取的两名学生都是男生的情况数,然后根据概率公式即可得出答案.【解答】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.24.(10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB=∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,25.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=EC sin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.26.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到w=﹣(x﹣30)2+2450,根据二次函数的性质得到当x<30时,w 随x的增大而增大,于是得到结论.【解答】解:(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.27.(12分)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E 为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【分析】(1)如图①利用三角形的中位线定理,推出DE∥AC,可得=,在图②中,利用两边成比例夹角相等证明三角形细相似即可.(2)利用相似三角形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆心角,半径,利用弧长公式计算即可.【解答】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴=,∴=,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC=∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长==,观察图象可知,点G的运动路程是的长的两倍=.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.28.(12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)把点A、C坐标代入抛物线解析式即求得b、c的值.(2)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.(3)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt△AOC中,sin∠ACO=,cos∠ACO=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=∴BG=AB=∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=∴HI=BH=,BI=BH=∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣)设直线AH解析式为y=kx+a∴解得:∴直线AH:y=x﹣∵解得:(即点A),∴P(﹣,﹣)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(﹣,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y=﹣x+∵解得:(即点A),∴P(﹣,)综上所述,点P的坐标为(﹣,﹣)或(﹣,).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴解得:∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴解得:∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.【点评】本题考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.第(2)题由于不确定点P位置需分类讨论;(2)(3)计算量较大,应认真理清线段之间的关系再进行计算.。

相关文档
最新文档