九年级数学何时获得最大利润同步练习

合集下载

数学人教版九年级上册求商品最大利润问题滚动练习

数学人教版九年级上册求商品最大利润问题滚动练习

如何求商品的最大利润滚动练习
1、某商品原来每周卖出80件,每降价1元,每周多卖出5件,现降价x 元,每周卖件。

2、某商品原利润为60元,涨价x元后利润为元,如果原来每月卖出100件,若每涨价2元,每月就少出售10件,涨价x元后每月出售该商品的利润y元与x之间的函授关系式为:。

3、某一商品的进价是每个70元,以100元售出,则每个利润是多少?若一天售出50个,则获得的总利润是多少?
4、小王以每件120元的价格进回20件衣服,又以每件160元的价格全部卖出,问这次销售活动小王共盈利多少元?
5、提出问题:某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?
6、某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?
7、(2015江苏南京,第27题10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?。

北师大版九年级(下) 中考题同步试卷:2.6 何时获得最大利润(01)

北师大版九年级(下) 中考题同步试卷:2.6 何时获得最大利润(01)

第5页(共9页)
24.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点 A 处的正上方,假设每 次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端
点 A 的水平距离为 x(米),与桌面的高度为 y(米),运行时间为 t(秒),经多次测试后, 得到如下部分数据:
t(秒) 0
时间(第 x 天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求 m 关于 x 的一次函数表达式; (2)设销售该产品每天利润为 y 元,请写出 y 关于 x 的函数表达式,并求出在 90 天内 该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每
件销售价格﹣每件成本)】
0.16
0.2
0.4
0.6
0.64
0.8
6
X(米) 0
0.4
0.5
1
1.5
1.6
2

y(米) 0.25 0.378 0.4
0.45
0.4 0.378 0.25

(1)当 t 为何值时,乒乓球达到最大高度? (2)乒乓球落在桌面时,与端点 A 的水平距离是多少? (3)乒乓球落在桌面上弹起后,y 与 x 满足 y=a(x﹣3)2+k. ①用含 a 的代数式表示 k; ②球网高度为 0.14 米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以 将球沿直线恰好擦网扣杀到 A,求 a 的值.
第2页(共9页)
元时,该服装店平均每天的销售利润最大.
14.抛物线 y=x2+1 的最小值是

15.函数 y=(x﹣1)2+3 的最小值为

沪科版-数学-九年级上册-21.6 综合与实践 获取最大利润 练习

沪科版-数学-九年级上册-21.6 综合与实践 获取最大利润 练习

综合与实践---获取最大利润1.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为()A.4和-3 B.-3和-4 C.5和-4 D.-1和-42.将进货单价为90元的某种商品按100元售出时,能卖出500个;价格每上涨1元,其销售量就减少10个,为了获得最大利润,售价应定为()A.110元 B.120元 C.130元 D.150元3.三金书店销售练习册所获的利润y(元)与所卖的本数x之间的关系满足y=-x2+10000x+24997500,则当0<x≤4500时的最大利润为()A.2500元 B.25002500元 C.2250元 D.24997500元4.某旅行社有100张床位,每床每晚收费10元时,客床可全部租出,若每床每晚收费提高2元,则减少10张床位的租出;若每床每晚收费再提高2元,则再减少10张床位租出,以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚应提高()A.4元或6元 B.4元 C.6元 D.8元5.某商场超市经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg,设销售单价为每千克x元,月销售利润为y元.(1)求y与x之间的函数关系式;(2)画出(1)中函数图象(不考虑x取值范围);(3)观察图象,x取何值时,y=0;当x在什么范围变化时,经销这种水产品不亏本.(4)超市想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)请分别求出上述正比例函数表达式与二次函数表达式.(2)如果该企业同时对A,B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.参考答案1.C2.B3.B4.C5.(1)y=-10x2+1400x-40000(2)图象略(3)由图象可知,当x=40或100时,y=0(4)80元/千克6.解:(1)当x=5时,y A=2,2=5k,k=0.4,∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B=3.2.∴2.442,0.23.2164 1.6a b aa b b=+=-⎧⎧⎨⎨=+=⎩⎩解得,∴y B=-0.2x2+1.6x.(2)设投资B种产品x万元,则投资A种产品(10-x)万元,获得利润W万元,根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4,∴W=-0.2(x-3)2+5.8,当投资B种产品3万元时,可以获得最大利润5.8万元,所以投资A种产品7万元,B种产品3万元,这样投资可以获得最大利润5.8万元.。

九年级数学上册二次函数的应用——最大利润问题同步练习及答案

九年级数学上册二次函数的应用——最大利润问题同步练习及答案

最大利润问题——典型题专项训练知识点 1 利润最大化问题1.毕节某旅行社在十一黄金周期间接团去外地旅游,经计算所获营业额y(元)与旅行团人员x(人)之间满足关系式y=-x2+100x+28400,要使所获营业额最大,则旅行团应有( )A.30人B.40人C.50人D.55人2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.36元3.2017·贵阳模拟某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式.(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?知识点 2 利用二次函数的最值解决其他实际问题4.两个数的和为6,这两个数的积最大可以达到________.5.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.6.生物学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测量出这种植物高度的增长情况(如下表).科学家经过猜想,推测出y与x之间是二次函数关系.(1)求y与x之间的函数表达式;(2)推测最适合这种植物生长的温度,并说明理由.图2-4-127.如图2-4-13所示,正方形ABCD的边长为4,E,F分别是边BC,CD上的两个动点,且AE⊥EF,则AF的最小值是________.图2-4-138.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小明和小华提出的问题.图2-4-149.经市场调查,某种商品在第x天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求y与x之间的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?10.东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p=\f(1412)t+48(25≤t≤48,t为整数),且其日销售量y(千克)与时间t(天)的关系如下表:(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t的增大而增大,求n的取值范围.详解1.C 2.A3.解:(1)根据题意,得65k+b=55,75k+b=45,)解得k=-1,b=120.)∴一次函数的表达式为y=-x+120.(2)根据题意,得W=(x-60)(-x+120)=-x2+180x-7200=-(x-90)2+900.∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而60≤x≤87,∴当x=87时,W最大=-(87-90)2+900=891.∴当销售单价定为87元/件时,商场可获得最大利润,最大利润是891元.4.95.20 [解析] 设果园里增种x棵橘子树,那么果园里共有(x+90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x)个橘子.∴y=(x+90)(520-4x)=-4x2+160x+46800,∴当x=-b2a=-1602×(-4)=20时,y最大,橘子总个数最多.6.解:(1)设y=ax2+bx+c(a≠0),选(0,49),(2,41),(-2,49)代入后得方程组c=49,4a-2b+c=49,4a+2b+c=41,解得a=-1,b=-2,c=49,∴y与x之间的函数表达式为y=-x2-2x+49.(2)最适合这种植物生长的温度是-1 ℃.理由:由(1)可知,当x=-b2a=-1时,y取最大值50,即说明最适合这种植物生长的温度是-1 ℃.7.5 [解析] 在Rt△ADF中,AF2=AD2+DF2=42+(4-CF)2,若AF最小,则CF最大.设BE=x,CF=y,∵∠B=∠AEF=90°,则∠BAE+∠AEB=∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴ABEC=BECF,即44-x=xy,化简得y=-x2+4x4=-14(x-2)2+1,∴当x=2时,y有最大值为1,此时DF最小,为3,由勾股定理得到AF=AD2+DF2=5.8.解:(1)小华的问题解答:设利润为W元,每个定价为x元,则W=(x-2)·[500-100(x-3)]=-100x2+1000x -1600=-100(x-5)2+900.当W=800时,解得x=4或x=6,又因为2×240%=4.8(元),所以x=6不符合题意,舍去,故每个定价为4元时,每天的利润为800元.(2)小明的问题解答:当x<5时,W随x的增大而增大.所以当x=4.8时,W最大,为-100(4.8-5)2+900=896(元).所以800元销售利润不是最多,每个定价为4.8元时,才会使每天利润最大.9.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.(2)当1≤x<50时,二次函数图象的开口向下,对称轴为直线x=-b2a=45,∴当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y随x的增大而减小,∴当x=50时,y最大=-120×50+12000=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.10.解:(1)依题意,得y=120-2t.当t=30时,y=120-60=60.答:在第30天的日销售量为60千克.(2)设日销售利润为W元,则W=(p-20)y.当1≤t≤24时,W=(14t+30-20)(120-2t)=-12t2+10t+1200=-12(t-10)2+1250.当t=10时,W最大=1250.当25≤t≤48时,W=(-12t+48-20)(120-2t)=t2-116t+3360=(t-58)2-4.由二次函数的图象及性质知,当t=25时,W最大=1085.∵1250>1085,∴在第10天的销售利润最大,最大日销售利润为1250元.(3)依题意,得每天扣除捐款后的日销售利润W=(14t+30-20-n)(120-2t)=-12t2+2(n+5)t+1200-120n.其图象对称轴为直线t=2n+10,要使W随t的增大而增大.由二次函数的图象及性质知,2n+10≥24,解得n≥7.又∵n<9,∴7≤n<9.。

北师大版九年级数学下册商品利润最大问题同步练习题

北师大版九年级数学下册商品利润最大问题同步练习题

2.4 二次函数与一元二次方程第2课时 商品利润最大问题1.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x 元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-2.某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元 3.已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。

4.某旅馆有30个房间供旅客住宿。

据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。

该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。

当房价定为每天多少时,该旅馆的利润最大?5.最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。

某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。

经市场调查发现,该产品每天的销售量w (千克)与销售量x (元)有如下的关系:w=-2x+80。

设这种产品每天的销售利润为y (元)。

(1)求y 与x 之间的函数关系式;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?6.与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。

经调查分析,该厂每月获得的利润y(万元)和月份x之间满足函数关系式2=-++,已知3月份、4月份的利润分别是9万元、16万元。

21.6 综合与实践获得最大利润 沪科版数学九年级上册练习题(附答案解析)

21.6 综合与实践获得最大利润 沪科版数学九年级上册练习题(附答案解析)

;初中数学沪科版九年级上册第二十一章21.6练习题一、选择题1.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=―n2+15n―36,那么该企业一年中应停产的月份是( )A. 1月,2月B. 1月,2月,3月C. 3月,12月D. 1月,2月,3月,12月2.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200―x)件,若想获得最大利润,则x应定为( )A. 150元B. 160元C. 170元D. 180元3.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=―3t2+12t+30,若这种礼炮在点火升空到最高点引爆,2则从点火升空到引爆需要的时间为( )A. 3sB. 4sC. 5sD. 6s4.心理学家发现:学生对提出概念的接受能力y与提出概念的时间x(min)之间满足二次函数关系y=―0.1x2+2.6x+43.则使学生对概念的接受能力最大.则提出概念的时间应为( )A. 13minB. 26minC. 52minD. 59.9min5.竖直向上发射的小球的高度为ℎ(m)关于运动时间t(s)的函数解析式为ℎ=at2+bt.若小球在发射后第4秒与第8秒时高度相等,则下列哪个时刻中,小球的高度最高( )A. 第5秒B. 第5.5秒C. 第6.2秒D. 第6.5秒6.关于二次函数y=x2+2x―8,下列说法正确的是( )A. 图象的对称轴在y轴的右侧B. 图象与y轴的交点坐标为(0,8)C. 图象与x轴的交点坐标为(―2,0)和(4,0)D. y的最小值为―9x27.已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=―13 +2x+5图象的一部分,其中x为爆炸后经过的时间(秒),y为残片离地面的高度(米),请问在爆炸后1秒到6秒之间,残片距离地面的高度范围为( )A. 0米到8米B. 5米到8米C. 203到8米D. 5米到203米8.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件,设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( )A. y =(60―x)(300―20x)B. y =60(300+20x)C. y =(60―x)(300+20x)D. y =300(60―20x)9.已知某公司生产季节性产品,其一年中每个月获得的利润y 和月份n 之间函数表达式y =―n 2+14n ―9,则下列四个选项中说法错误的是( ).A. 7月份获得的利润最高B. 1月到7月获得的利润逐月增加C. 一年中有4个月获得的利润超过36万元D. 5月份和9月份获得的利润一样多10.某产品进货单价为90元,按100元一个售出时,能售出500个,如果这种商品涨价1元,其销售量就减少10个,为了获得最大利润,其单价应定为( )A. 130元B. 120元C. 110元D. 100元二、填空题11.已知二次函数y =―12(x +1)2+3,在―2≤x ≤4这个范围内,该二次函数的最大值为______.12.以40m/s 的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线.如果不考虑空气阻力,球的飞行高度ℎ(单位m)与飞行时间t(单位s)之间具有函数关系:ℎ=20t ―5t 2,那么球从飞出到落地要用的时间是______.13.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x(单位:min)满足函数表达式y =―0.2x 2+1.5x ―2,则最佳加工时间为______min .14.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是______.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为______元.三、解答题16.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)之间近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)之间近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元,进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.当这两种水果各进多少吨时,获得的销售利润之和最大⋅最大利润是多少⋅17.“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?18.每年九月开学前后,是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了15天的销售数量和销售单价,其中销售单价y(元/个)与时间第x天(x为整数)的数量关系如图所示,日销量p(个)与时间第x天(x为整数)的函数关系式为:P=20x+180(1≤x≤9)―60x+900(9≤x≤15)(1)直接写出y与x的函数关系式,并注明自变量x的取值范围;(2)设日销售额为W(元),求W(元)关于x(天)的函数解析式;在这15天中,哪一天销售额W(元)达到最大,最大销售额是多少元;(3)由于需要进货成本和人员工资等各种开支,如果每天的营业额低于1800元,文具盒专柜将亏损直接写出哪几天文具盒专柜处于亏损状态?19.某公司研发了一款新型玩具,成本为每个50元,投放市场进行试销售,其销售单价不低于成本,按照物价部门规定,销售利润率不高于70%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)(x为整数)符合一次函数关系,如图所示.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?答案和解析1.【答案】D【解析】解:令y=0,则―n2+15n―36=0,∴n2―15n+36=0,∴(n―3)(n―12)=0,∴n1=3,n2=12,∵a=―1<0,∴抛物线开口向下,∴n=1和n=2时,y<0,∴该企业一年中应停产的月份是1月,2月,3月,12月.故选:D.求出利润为0时n的值,即令y=0,则―n2+15n―36=0,解方程得到n1=3,n2=12,所以3月和12月要停产,然后根据二次函数的性质得到抛物线开口向下,则n=1和n=2时,y<0,于是得到该企业一年中应停产的月份还有是1月,2月.本题考查了二次函数的应用:根据二次函数y=ax2+bx+c(a≠0)的性质解决实际问题.2.【答案】A【解析】解:设获得的利润为y元,由题意得:y=(x―100)(200―x)=―x2+300x―20000=―(x―150)2+2500∵a=―1<0∴当x=150时,y取得最大值2500元.故选:A.设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.【解析】解:∵礼炮在点火升空到最高点引爆,∴t=―b2a =―122×(―32)=4s.故选:B.到最高点爆炸,那么所需时间为―b2a.考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.4.【答案】A【解析】解:∵y=―0.1x2+2.6x+43=―0.1(x―13)2+59.9∴当x=13时,y取得最大值,故选:A.直接把y=―0.1x2+2.6x+43配方成y=―0.1(x―13)2+59.9后即可确定正确的答案.此题主要考查了二次函数的应用,关键是掌握确定二次函数的顶点坐标的方法,难度不大.5.【答案】C【解析】解:由题意可知:ℎ(4)=ℎ(8),即16a+4b=64a+8b,解得b=―12a,函数ℎ=at2+bt的对称轴t=―b2a=6,故在t=6s时,小球的高度最高,题中给的四个数据只有C第6.2秒最接近6秒,故在第6.2秒时小球最高,故选:C.根据题中已知条件求出函数ℎ=at2+bt的对称轴t=6,四个选项中的时间越接近6小球就越高.本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【解析】解:∵二次函数y =x 2+2x ―8=(x +1)2―9=(x +4)(x ―2),∴该函数的对称轴是直线x =―1,在y 轴的左侧,故选项A 错误;当x =0时,y =―8,即该函数与y 轴交于点(0,―8),故选项B 错误;当y =0时,x =2或x =―4,即图象与x 轴的交点坐标为(2,0)和(―4,0),故选项C 错误;当x =―1时,该函数取得最小值y =―9,故选项D 正确;故选:D .根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.7.【答案】B【解析】解:如图.∵y =―13x 2+2x +5=―13(x ―3)2+8,∴顶点坐标为B(3,8),对称轴为x =3.又∵爆炸后1秒点A 的坐标为(1,203),6秒时点的坐标为(6,5),∴爆炸后1秒到6秒之间,残片距离地面的高度范围为5≤y ≤8.故选:B .首先求得二次函数y =―13x 2+2x +5的顶点坐标,求得点(1,y 1)的坐标,再求得(6,y 2)这个点的坐标,观察图象即可解答.此题考查求二次函数的顶点坐标及图象上的点,渗透数形结合的思想.8.【答案】C【解析】【分析】此题主要考查了二次函数的应用.解题关键是正确理解题意,利用总销售额y =销量×售价的等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60―x)元,销售量为(300+20x)件,根据题意得:y=(60―x)(300+20x),故选C.9.【答案】C【解析】【分析】本题考查的是二次函数的性质与最值有关知识,首先根据题意利用二次函数的性质与最值对选项进行逐一判断即可.【解答】解:∵y=―n2+14n―9=―(n―7)2+40,∴―1<0,则该函数有最大值,∴7月获得的利润最大,故A正确.由该二次函数可知:在1到7月获得的利润逐月增加,故B正确,当n=5和n=9时,y=36,则获得的利润一样多,故D正确.根据n=5和n=9时,y=36,及该抛物线的性质可知,只有6、7、8三个月的利润超过36万,故C错误;故选C.10.【答案】B【解析】【分析】本题考查的是二次函数的应用有关知识,根据题意找出数量关系,列出函数关系式即可解答.【解答】解:设单价定为x,总利润为w,由题意可得:w=(x―90)[500―10(x―100)]=―10(x―120)2+9000,当定价定为120元时,利润最大.故选B.11.【答案】3(x+1)2+3的对称轴为直线x=―1,【解析】解:二次函数y=―12∵a=―1<0,2∴当x=―1时,函数有最大值3,∵―2<―1<4,∴在―2≤x≤4内,x=―1时,y有最大值3,故答案为:3.先求出二次函数的对称轴为直线x=―1,然后根据二次函数的性质解答.本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴解析式是解题的关键.12.【答案】4s【解析】解:当ℎ=0时,0=20t―5t2,解得:t1=0,t2=4,则小球从飞出到落地需要4s.故答案为:4s.根据函数关系式,当ℎ=0时,0=20t―5t2,解方程即可解答.本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键.13.【答案】3.75【解析】解:根据题意:y=―0.2x2+1.5x―2,=3.75时,y取得最大值,当x=― 1.52×(―0.2)则最佳加工时间为3.75min.故答案为:3.75.根据二次函数的性质可得.本题主要考查二次函数的应用,利用二次函数的性质求最值问题是解题的关键.14.【答案】s≥9【解析】解:由x+y2=3,得:y2=―x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(―x+3)=x2―8x+24=(x―4)2+8,当x=3时,s=(3―4)2+8=9,∴s≥9;故答案为:s≥9.由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.此题考查了非负数的性质,用一个未知数表示另一个未知数,二次函数的最值,熟练掌握二次函数的性质是关键.15.【答案】70【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x―50)[200+(80―x)×20]=―20(x―70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】解:(1)由题意,得a+b=1.4,4a+2b=2.6.解得a=―0.1, b=1.5.∴y乙=―0.1x2+1.5x.(2)W=y甲+y乙=0.3(10―t)+(―0.1t2+1.5t)=―0.1t2+1.2t+3=―0.1(t―6)2+6.6(0≤t≤10).当t=6时,W有最大值,最大值为6.6.此时,10―t=10―6=4.故甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.【解析】【分析】本题考查了二次函数的最值、待定系数法求二次函数解析式函数,属于二次函数的应用.(1)将x,y乙的两组对应值分别代入y乙=ax2+bx,列出方程组并求解即可得到y乙与x之间的函数关系式;(2)可利用配方法求二次函数的最大利润.17.【答案】解:(1)由题意可知该函数关系为一次函数,其解析式为:y=500―20x;∴y与x之间的函数关系式为y=500―20x(0≤x≤25,且x为整数);(2)由题意得:(10+x)(500―20x)=6000,整理得:x2―15x+50=0,解得:x1=5,x2=10,∵尽可能投入少,∴x2=10舍去.答:应该增加5条生产线.(3)w=(10+x)(500―20x)=―20x2+300x+5000=―20(x―7.5)2+6125,∵a=―20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.【解析】(1)由题意可知该函数关系为一次函数,直接写出其解析式及自变量的取值范(2)生产线的条数乘以每条生产线生产的口罩数量=6000,据此列出一元二次方程,求解并根据题意作出取舍即可;(3)先根据题意写出关于x的二次函数,再将其配方,写成顶点式,然后根据二次函数的性质及x的取值范围可得答案.本题考查了一次函数、二次函数和一元二次方程在实际问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.18.【答案】解:(1)当1≤x≤5时,设一次函数的解析式为:y=kx+b(k≠0)把A(1,14)和B(5,10)代入得:k+b=145k+b=10,解得:k=―1 b=15,∴一次函数的解析式为:y=―x+15(k≠0);综上,y与x(x为整数)的函数关系式为:y=―x+15(1≤x≤5) 10(5<x≤15);(2)①当1≤x≤5时,W=py=(―x+15)(20x+180)=―20x2+120x+2700=―20(x―3)2+2880,∵x是整数,∴当x=3时,W有最大值为:2880,②当5<x≤9时,W=py=10(20x+180)=200x+1800,∵x是整数,200>0,∴当5<x≤9时,W随x的增大而增大,∴当x=9时,W有最大值为:200×9+1800=3600,③当9≤x≤15时,W=10(―60x+900)=―600x+9000,∵―600<0,∴W随x的增大而减小,∴x=9时,W有最大值为:―600×9+9000=―5400+9000=3600,综上,在这15天中,第9天销售额达到最大,最大销售额是3600元;(3)①当1≤x≤5时,W=―20(x―3)2+2880=1800,解得:x=3±36,∵7<36<8,∴10<3+36<11,∴当1≤x≤5时,每天的营业额高于1800元;②当5<x≤9时,W=200x+1800<1800,③当9≤x≤15时,W=―600x+9000<1800,x>12,综上,文具盒专柜处于亏损状态是:第13天,第14天,第15天.【解析】(1)是分段函数,利用待定系数法可得y与x的函数关系式;(2)是分段函数,根据日销售额为W(元)=销售单价y(元/个)×日销量p(个),可得W与x的函数关系式,并根据增减性确定最大值;(3)根据(2)中分类讨论的解析式,由每天的营业额低于1800元列不等式或等式可解答.本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最佳解决途径.19.【答案】解:(1)设y=kx+b(k≠0,b为常数)将点(60,140),(70,120)代入得60k+b=140 70k+b=120,解得:k=―2b=260,∴y与x的函数关系式为:y=―2x+260;解不等式组x≥50x―50≤50×70%―2x+260≥0,解得:50≤x≤85且x为整数;(2)由题意得:(x―50)(―2x+260)=3000,化简得:x2―180x+8000=0,解得:x1=80,x2=100,∵x≤50×(1+90%)=95,∴x2=100>95(不符合题意,舍去)答:销售单价为80元;(3)设每天获得的利润为w元,由题意得w=(x―50)(―2x+260)=―2x2+360x―13000=―2(x―90)2+3200∵a=―2<0,抛物线开口向下∴w有最大值,∵50≤x≤85,∴当x=85时,w最大值=3150,答:销售单价为85元时,每天获得的利润最大,最大利润是3150元.【解析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.。

新沪科版九年级数学上册同步练习: 综合与实践 获取最大利润

新沪科版九年级数学上册同步练习: 综合与实践 获取最大利润

21.6 综合与实践 获取最大利润知识要点基础练知识点1 利用一次函数性质求实际问题中的最值1.某工厂年产值为150万元,经测算每增加100万元的投资,年产值可增加250万元,设新增加的投资为x 万元,增加投资后的年产值为y 万元,则y 与x 的关系式为 y=2.5x+150 .2.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:设其中甲种商品购进x 件,商场售完这批商品的总利润为y 元.( 1 )写出y 关于x 的函数表达式;( 2 )该商场计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?解:( 1 )由题意得y=( 60-40 )x+( 120-90 )( 100-x )=-10x+3000( 0<x<100 ). ( 2 )由已知得40x+90( 100-x )≤8000,解得x ≥20,∵-10<0,∴y 随x 的增大而减小,∴当x=20时,y 有最大值,最大值为-10×20+3000=2800.答:至少应购进20件甲商品,该商场获得的最大利润为2800元.知识点2 利用二次函数性质求实际问题中的最值3.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y ( 元 )与销售单价x ( 元 )满足关系y=-x 2+70x-800,要想获得最大利润,则销售单价为( B )A .30元B .35元C .40元D .45元4.元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.( 1 )若房价定为200元时,求宾馆每天的利润;( 2 )房价定为多少时,宾馆每天的利润最大?最大利润是多少?解:( 1 )若房价定为200元时,宾馆每天的利润为( 200-20 )×( 50-2 )=8640( 元 ), 答:宾馆每天的利润为8640元.( 2 )设总利润为y 元,则y=(50-x -18010)( x-20 )=-110x 2+70x-1360=-110( x-350 )2+10890, 答:房价定为350元时,宾馆每天的利润最大,最大利润是10890元.知识点3 利用反比例函数的性质求实际问题中的最值5.一辆汽车匀速通过某段公路,所需时间t ( h )与行驶速度v ( km/h )满足函数关系:t=k v ( k ≠0 ),其图象为如图的一段曲线,若这段公路行驶速度不得超过60 km/h,则该汽车通过这段公路最少需要 23 h .6.如图所示是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y ( 微克/毫升 )随用药后的时间x ( 小时 )变化的图象( 图象由线段OA与部分双曲线AB 组成 ).并测得当y=a 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物需要多长时间达到最大浓度?解:设直线OA 的表达式为y=kx ,把( 4,a )代入,得a=4k ,解得k=a 4,即直线OA的表达式为y=a 4x.根据题意,( 9,a )在反比例函数的图象上,则反比例函数的表达式为y=9a x .当a 4x=9a x 时,解得x=±6( 负值舍去 ),故成人用药后,血液中药物需要6小时达到最大浓度. 综合能力提升练7.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y ( 件 )与销售单价x ( 元/件 )之间的函数关系式为y=-4x+440,要获得最大利润,该商品的售价应定为( C )A .60元B .70元C .80元D .90元8.某商品的销售利润与销售单价存在二次函数关系,且二次项系数a=-1,当商品单价为160元和200元时,能获得同样多的利润,要使销售商品利润最大,销售单价应定为 180 元.9.( 2019·蚌埠期末 )A 市和B 市分别有某种库存机器12台和6台,现决定支援C 村10台,D 村8台,已知从A 市调运一台机器到C 村和D 村的运费分别是400元和800元,从B 市调运一台机器到C 村和D 村的运费分别是300元和500元.( 1 )设B 市运往C 村机器x 台,求总运费W 关于x 的函数关系式;( 2 )若要求总运费不超过9200元,共有几种调运方案?( 3 )写出总运费最低的调运方案,最低总运费是多少元?解:( 1 )根据题意得W=300x+500( 6-x )+400( 10-x )+800[12-( 10-x )]=200x+8600.( 2 )∵运费不超过9200元,∴W=200x+8600≤9200,解得x ≤3.∵0≤x ≤6,∴0≤x ≤3,则x=0,1,2,3,∴有四种调运方案.( 3 )∵0≤x ≤3,且W=200x+8600,∴W 随x 的增大而增大,∴当x=0时,W 的值最小,最小值为8600元,此时的调运方案是:B 市运至C 村0台,运至D 村6台,A 市运往C 村10台,运往D 村2台,最低总运费为8600元.10.( 铁岭中考 )铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y ( 千克 )与每千克降价x ( 元 )( 0<x<20 )之间满足一次函数关系,其图象如图所示.( 1 )求y 与x 之间的函数表达式;( 2 )商贸公司要想获利2090元,则这种干果每千克应降价多少元?( 3 )该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?解:( 1 )设y 与x 之间的函数表达式为y=kx+b ,把( 2,120 )和( 4,140 )代入得,{2k +b =120,4k +b =140,解得{k =10,b =100,∴y 与x 之间的函数表达式为y=10x+100.( 2 )根据题意得( 60-40-x )( 10x+100 )=2090,解得x=1或x=9,∵为了让顾客得到更大的实惠,∴x=9.答:这种干果每千克应降价9元.( 3 )设该干果每千克降价x 元时,商贸公司获得的利润是w 元,根据题意得w=( 60-40-x )( 10x+100 )=-10x 2+100x+2000,∴w=-10( x-5 )2+2250, ∴该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.拓展探究突破练11.( 黄冈中考 )我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y ( 万件 )与月份x ( 月 )的关系为y={x +4 ( 1≤x ≤8,x 为整数 ),-x +20 ( 9≤x ≤12,x 为整数 ),每件产品的利润z ( 元 )与月份x ( 月 )的关系如下表:( 1 )请你根据表格求出每件产品利润z ( 元 )与月份x ( 月 )的关系式;( 2 )若月利润w ( 万元 )=当月销售量y ( 万件 )×当月每件产品的利润z ( 元 ),求月利润w ( 万元 )与月份x ( 月 )的关系式;( 3 )当x 为何值时,月利润w 有最大值,最大值为多少?解:( 1 )当1≤x ≤9时,设每件产品利润z ( 元 )与月份x ( 月 )的关系式为z=kx+b , {k +b =19,2k +b =18,得{k =-1,b =20,即当1≤x ≤9时,每件产品利润z ( 元 )与月份x ( 月 )的关系式为z=-x+20,当10≤x ≤12时,z=10.综上,z={-x +20 ( 1≤x ≤9,x 取整数 ),10 ( 10≤x ≤12,x 取整数 ).( 2 )当1≤x ≤8时,w=( x+4 )( -x+20 )=-x 2+16x+80,当x=9时,w=( -9+20 )×( -9+20 )=121,当10≤x ≤12时,w=( -x+20 )×10=-10x+200,综上,w={-x2+16x+80( 1≤x≤8,x取整数 ), 121( x=9 ),-10x+200( 10≤x≤12,x取整数 ).( 3 )当1≤x≤8时,w=-x2+16x+80=-( x-8 )2+144,∴当x=8时,w取得最大值,此时w=144,当x=9时,w=121,当10≤x≤12时,w=-10x+200,则当x=10时,w取得最大值,此时w=100,综上,当x为8时,月利润w有最大值,最大值为144万元.。

【初中数学】第2课时 最大利润问题 [人教版九年级上册] (练习题)

【初中数学】第2课时 最大利润问题 [人教版九年级上册] (练习题)

第2课时最大利润问题[人教版九年级上册] (2912) 1.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少?2.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.(1)求遮阳伞每天的销出量y个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售润最大?最大利润是多少元?3.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=(写出自变量的取值范围),所以每件降价元时,每日获得的最大利润为元.4.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?5.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=−x2+1000x−200000,则当0<x⩽450时的最大利润为()A.2500元B.47500元C.50000元D.250000元6.鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?7.红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.参考答案1(1)【答案】解:w=(x−30)·y=(x−30)·(−x+60)=−x2+90x−1800,∴w与x之间的函数关系式为w=−x2+90x−1800(30≤x≤60).(2)【答案】w=−x2+90x−1800=−(x−45)2+225.∵−1<0,∴当x=45时,w有最大值,w的最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润为225元.(3)【答案】当w=200时,可得方程−(x−45)2+225=200.解得x1=40,x2=50.∵50>42,∴x2=50不符合题意,应舍去.答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元/个.2(1)【答案】解:设函数关系式为y=kx+b,,由题意可得:{260=28k+b240=30k+b,解得:{k=−10b=540∴函数关系式为y=−10x+540;【解析】:设函数关系式为y=kx+b,由当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.可列方程组,即可求解;(2)【答案】由题意可得:w=(x−20)y=(x−20)(−10x+540)=−10(x−37)2+2890,∵−10<0,∴当x=37时,W有最大值为2890,答:当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.【解析】:由每天销售利润=每个遮阳伞的利润x销售量,列出函数关系式,由二次函数的性质可求解.3.【答案】:(30−x);(20+x);−x2+10x+600(0⩽x⩽30,且x为整数);5;625【解析】:根据题意用x表示出单件的利润、日销售量、日利润,进而根据二次函数的性质,求出每日获得的最大利润4(1)【答案】解:根据题意,y=300﹣10(x﹣60)=−10x+900,∴y与x的函数表达式为:y=−10x+900;【解析】:根据等量关系“利润=(售价−进价)×销量”列出函数表达式即可.(2)【答案】设利润为w,由(1)知:w=(x﹣50)(−10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件销售价为70元时,获得最大利润;最大利润为4000元.【解析】:根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.5.【答案】:B【解析】:因为抛物线的对称轴为直线x=500,在对称轴左侧,y随x的增大而增大,因此在0<x⩽450的范围内,当x=450时,函数有最大值为475006(1)【答案】解:由题意,设y关于x的函数解析式为y=kx+b,把(280,40),(290,39)代入得:{280k+b=40290k+b=39,解得:{k=−1 10b=68,∴y与x之间的函数解析式为y=−110x+68(200≤x≤320);【解析】:根据图象设y关于x的函数解析式为y=kx+b,然后用待定系数法求函数解析式即可;(2)【答案】设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(−110x+68)=−110x2+70x﹣1360=−110(x﹣350)2+10890,∵−1<0,10∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.【解析】:根据宾馆利润数=单个房间的利润×游客居住房间数,列出二次函数的关系式,再根据二次函数的性质解决问题.7(1)【答案】解:由题知,y=5−(x−50)×0.1,整理得y=10−0.1x(40≤x≤100);【解析】:根据题意写出销售量和销售单价之间的关系式即可;(2)【答案】设月销售利润为z,由题知,z=(x−40)y=(x−40)(10−0.1x)=−0.1x2+14x−400=−0.1(x−70)2+90,∴当x=70时,z有最大值为90,即当月销售单价是70元时,月销售利润最大,最大利润是90万元;【解析】:根据销售量和销售单价之间的关系列出销售利润和单价之间的关系式求最值即可;(3)【答案】由(2)知,当月销售单价是70元时,月销售利润最大,即(70−40−a)×(10−0.1×70)=78,解得a=4,∴a的值为4.【解析】:根据(2)中的函数和月销售单价不高于70元/件的取值范围,确定a值即可.。

【初中数学】人教版九年级上册第2课时 最大利润问题(练习题)

【初中数学】人教版九年级上册第2课时  最大利润问题(练习题)

人教版九年级上册第2课时最大利润问题(380) 1.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件.设每件商品的售价上涨x元,每个月的销售利润为y元.问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.2.某商店经营某种文具,已知成批购进时单价是2.5元/件.市场调查发现,销售量与销售单价满足下列关系:在一段时间内销售单价是13.5元/件时,销售量是500件,而销售单价每降低1元,就可以多售出200件,请你帮忙分析,销售单价是多少时,获利最多.设销售单价为x(x≤13.5)元/件,那么:(1)销售量可以表示为件;(2)销售额可以表示为元;(3)所获利润应怎样表示?(4)当销售单价是多少时,可以获得最大利润?最大利润是多少?3.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份的研发资金y(元)关于x的函数表达式为y=.(不要求写出自变量的取值范围)4.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30−x)件,则每件商品的利润为元,卖出商品的总利润y== .当x=时,卖出商品的总利润y有最值,是元.5.某商场购进一种每件价格为100元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数解析式;解:设y与x之间的函数解析式为y=kx+b(k≠0).由所给函数图象得方程组,解得,则函数解析式为.(2)写出每天的利润W与销售单价x之间的函数解析式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?解:利润W与销售单价x之间的函数解析式为.配方,得,则售价定为元时,利润取得最大值为元.参考答案2(1)【答案】[500+200(13.5−x)](2)【答案】x[500+200(13.5−x)](3)【答案】(x −2.5)[500+200(13.5−x)](4)【答案】设利润为W ,则W =(x −2.5)[500+200(13.5−x)]=−200x 2+3700x −8000=−200(x −9.25)2+9112.5∴当销售单价是9.25元/件时,可以获得最大利润,最大利润是9112.5元.3.【答案】:a(1+x)25(1)【答案】{130k +b =50,150k +b =30;{k =−1,b =180;y =−x +180 (2)【答案】W =(x −100)(−x +180) ;W =−(x −140)2+1600;140;1600。

九年级数学利润专题训练

九年级数学利润专题训练

九年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。

(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为y件,请写出y与x的函数关系式.(2)设平均每天获利为Q元,请写出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低10元,日均多售出20kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。

【初中数学】人教版九年级上册第2课时 最大利润问题(练习题)

【初中数学】人教版九年级上册第2课时  最大利润问题(练习题)

人教版九年级上册第2课时最大利润问题(153) 1.某企业生产并销售某种产品.假设销售量与产量相等,如图中折线ABD、线段CD分别表示该产品每千克的生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:千克)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?2.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利数与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加2株,平均单株盈利就减少0.5元,则每盆植株时能使单盆取得最大盈利;若需要单盆盈利不低于13元,则每盆需要植株.3.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为60元/件,设售价为x元/件.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件.(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?4.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入−管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?5.某地的一种特产由于运输原因,只能长期在当地销售.当地政府对该特产(x−60)2+46(万的销售投资与收益的关系为:每投入x万元,可获得利润P=−1100元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是.6.天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经试验发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数解析式(不要求写自变量的取值范围);(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?7.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数解析式(不要求写自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?8.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=−x2+1000x−200000,则当0<x⩽450时的最大利润为()A.2500元B.47500元C.50000元D.250000元9.一件工艺品进价为100元,标价135元出售时,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,每天可多售出4件.要使每天获得的利润最大,则每件需降价()A.5元B.10元C.15元D.20元10.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=(写出自变量的取值范围),所以每件降价元时,每日获得的最大利润为元.11.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200−x)件,若想获得最大利润,则x应定为()A.150元B.160元C.170元D.180元12.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()A.y=x2+aB.y=a(x−1)2C.y=a(1−x)2D.y=a(1+x)2参考答案1(1)【答案】点D 的横坐标、纵坐标的实际意义:当产量为130千克时,该产品每千克的生产成本与销售价相等,都为42元(2)【答案】设线段AB 所表示的y 1与x 之间的函数解析式为y 1=k 1x +b 1. ∵y 1=k 1x +b 1的图象过点(0,60)与(90,42),∴{b 1=60,90k 1+b 1=42,解得{k 1=−0.2,b 1=60. ∴y 1与x 之间的函数解析式为y 1=−0.2x +60(0⩽x ⩽90)(3)【答案】设y 2与x 之间的函数解析式为y 2=k 2x +b 2. ∵该直线经过点(0,120)与(130,42),∴{b 2=120,130k 2+b 2=42,解得{k 2=−0.6,b 2=120. ∴y 2与x 之间的函数解析式为y 2=−0.6x +120(0⩽x ⩽130). 设产量为x 千克时,获得的利润为W 元,①当0⩽x ⩽90时,W =x[(−0.6x +120)−(−0.2x +60)]=−0.4(x −75)2+2250, ∴当x =75时,W 的值最大,最大值为2250;②当90⩽x ⩽130时,W =x[(−0.6x +120)−42]=−0.6(x −65)2+2535, 当x =90时,W =−0.6×(90−65)2+2535=2160,由−0.6<0知,当x >65时,W 随x 的增大而减小,∴当90⩽x ⩽130时,W ⩽2160,即当x =90时,W 有最大值为2160. ∵2160<2250,∴当x =75时,W 的值最大,最大值为2250.因此,当该产品产量为75千克时,获得的利润最大,最大利润为2250元2.【答案】:7;7或9【解析】:设每盆花苗(假设原来花盆中有3株)增加a(a 为偶数)株,盈利为y 元,则根据题意,得 y =(3−0.5×a 2)(a +3)=−14(a −92)2+22516. ∵a 为偶数,∴当a =4时,y 取最大值,即单盆取得最大盈利. ∵当a =2时,y =12.5<13;当a =4时,y =(3−0.5×42)×(4+3)=14>13;当a =6时,y =(3−0.5×62)×(6+3)=13.5>13, 当a =8时,y =11<13, ∴若需要单盆盈利不低于13元,则每盆需要植7或9株3(1)【答案】(x −60);(−2x +400)【解析】:①销售该运动服每件的利润是(x −60)元. ②设月销量W 与x 的函数解析式为W =kx +b , 由题意得{100k +b =200,110k +b =180, 解得{k =−2,b =400. ∴W =−2x +400.将其余各组对应值代入上式均成立,∴W 与x 的函数解析式为W =−2x +400(2)【答案】由题意,得y =(x −60)(−2x +400)=−2x 2+520x −24000=−2(x −130)2+9800,∴售价为130元/件时,当月的利润最大,最大利润是9800元4(1)【答案】由题意知,若观光车能全部租出,则0<x ⩽100,由50x −1100>0,解得x >22.又∵x 是5的倍数,∴每辆车的日租金至少应为25元(2)【答案】设每辆车的净收入为y 元, 当0<x ⩽100时,y 1=50x −1100, ∵y 1随x 的增大而增大,∴当x =100时,y 1的最大值为50×100−1100=3900;当x >100时,y 2=(50−x−1005)x −1100 =−15x 2+70x −1100=−15(x −175)2+5025,当x =175时,y 2的最大值为5025.∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多5.【答案】:230万元(x−60)2+46,【解析】:∵P=−1100∴当x=60时,P取最大值46,∴5年所获利润的最大值=46×5=230(万元)6(1)【答案】由题意,得y=(x−8)[20−4(x−9)],化简,得y=−4x2+88x−448(2)【答案】y=−4x2+88x−448=−4(x−11)2+36,当x=11时,y最大值=36.答:每件售价定为11元,才能使一天所得的利润最大,最大利润是36元7(1)【答案】y=300+30(60−x)=−30x+2100(2)【答案】设每星期的销售利润为W元,依题意,得W=(x−40)(−30x+2100)=−30x2+3300x−84000=−30(x−55)2+6750.∵a=−30<0,∴当x=55时,W最大值=6750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6750元(3)【答案】由题意,得−30(x−55)2+6750=6480,解这个方程,得x1=52,x2=58.∵抛物线W=−30(x−55)2+6750的开口向下,∴当52⩽x⩽58时,每星期的销售利润不低于6480元.∵在y=−30x+2100中,k=−30<0,∴y随x的增大而减小,∴当x=58时,y最小值=−30×58+2100=360.答:若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件8.【答案】:B【解析】:因为抛物线的对称轴为直线x=500,在对称轴左侧,y随x的增大而增大,因此在0<x⩽450的范围内,当x=450时,函数有最大值为475009.【答案】:A10.【答案】:(30−x);(20+x);−x2+10x+600(0⩽x⩽30,且x为整数);5;625【解析】:根据题意用x表示出单件的利润、日销售量、日利润,进而根据二次函数的性质,求出每日获得的最大利润11.【答案】:A【解析】:设利润为w元,则w=(x−100)(200−x)=−x2+300x−20000=−(x−150)2+2500(100⩽x⩽200),故当x=150时,w有最大值12.【答案】:D【解析】:依题意,得y=a(1+x)2.故选:D.。

【沪科版】九年级数学上21.6综合与实践--获取最大利润同步导练(含答案)

【沪科版】九年级数学上21.6综合与实践--获取最大利润同步导练(含答案)

21. 6综合与实践一获取最大利润基础导练1.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间*(时)的关系可近似地用二次函数尸一200#+400x刻画;1. 5小时后(包括1. 5小时)y与x可近似地用反比例函数(A>0)刻画(如图所示).X(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求R的值.(2)按国家规定,车辆驾驶人员血液中的洒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20 : 00在家喝完半斤低度白洒,2.某公司营销&万两种产品,根据市场调研,发现如下信息:信息一:销售A种产品所获利润y(万元)与销售产品*(吨)之间存在二次函数关系y=a^+bx・当%=1时,y=1.4;当x=3时,y = 3.6.信息二:销售方种产品所获利润y(万元)与销售产品%(吨)之间存在正比例函数关系y=0. 3乩根据以上信息,解答下列问题:(1)求二次函数解析式;(2)该公司准备购进&方两种产品共10吨,请设计一个营销方案,使销售A.方两种产品的利润之和最大,最大利润是多少?能力提升3.某商家计划从厂家采购空调和冰箱两种电器共20台,空调采购单价口(元/台)与采购数量%1(台)满足乃=—20胫+1500(0<爸£20, X、为整数);冰箱采购单价必(元/台)与采购数量出(台)满足上=一10出+ 1300(0<zW20,疋为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的罟, 且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在仃)的条件下,问采购空调多少台时总利润最大?并求最大利润.参考答案1. 解:(1)①•・了=一200才+400%=—200(*—1)::+200,・•・喝洒后1时血液中的洒精含量达到最大值,最大值为200(毫克/百毫升). ②,••当 x=5 时,y=45,/=—(&>0),/.A=^y=45X5 x・•・第二天早上7 : 00不能驾车去上班.2. 解:(1) T 当 x=l 时,y=1.4;当 x=3 时,y=3. 6,—+方=1.4,A=_0. 1,••〔9©+3b=3.6・ 辭倚 b=1.5.・;二次函数解析式为 尸一0. lr+1. 5x ;(2)设购进力产品也吨,则购进万产品(10-ZZ?)吨,销售&方 两种产品的利润之和为倂元.根据题意,有*= —0. 1力 +1. 5加+0. 3 (10—2Z?) = —0. 1力 +1.2zz?+3=—0. 1 (刃一6)~ + 6. 6.V-0. 1<0,・••当/27=6时,用有最大值6. 6. = 225. (2)不能驾车上班.理由:•・•晚上20 : 00到第二天早上7 : 00, 一共有11小时,•:将x=ll 代入y=旦,得尸等>2。

九年级数学: 22.3实际问题与二次函数 最大利润问题练习题含答案

九年级数学: 22.3实际问题与二次函数  最大利润问题练习题含答案

人教版数学九级上册第二十二章二次函数 22.3 实际问题与二次函数最大利润问题专题练习题1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元 B.160元 C.170元 D.180元2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元 B.80元 C.90元 D.100元3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月 D.1月、11月、12月4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元.6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是.7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金收入为 元;(用含x 的代数式表示)(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?10.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为W 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?11.某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19). (1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数解析式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)答案:1---3 ACC4. (30-x) (20+x) -x 2+10x +600 5 6255. 600 24006. 205万元7. 解:设每天的销售利润为y 元,销售单价为x 元,则y =(x -50)=-5(x -80)2+4500,∵a =-5<0,50≤x ≤100,∴当x =80时,y 最大值=45008. 解:(1)y =-0.5x +160(120≤x ≤180)(2)设销售利润为W 元,则W =(x -80)(-0.5x +160)=-12(x -200)2+7200,∵a =-12<0, ∴当x<200时,y 随x 的增大而增大,∴当x =180时,W 最大=-12(180-200)2+7200=7000, 则当销售单价为180元时,销售利润最大,最大利润是7000元9. (1) 1500-50x(2)由题意可知,租赁公司的日收益为y =x(1500-50x)-6250=-50(x -15)2+5000,∵-15<0,当x =15时,租赁公司日收益最大,最大是5000元(3)由题意得-50(x -15)2+5000>0,解得5<x<25,∵x ≤20,∴5<x ≤20,即当每日租出至少6辆时,租赁公司的日收益才能盈利10. 解:(1)根据题意得y =50-x(0≤x ≤50,且x 为整数)(2)W =(120+10x -20)(50-x)=-10x 2+400x +5000=-10(x -20)2+9000,∵a =-10<0,∴当x =20时,W 最大值=9000,则当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元(3)由题意得⎩⎪⎨⎪⎧-10(x -20)2+9000≥5000,20(-x +50)≤600,解得20≤x≤40, ∵房间数y =50-x ,又∵-1<0,∴当x =40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y =2(-x +50)=20(人)11. 解:(1)设李红第x 天生产的粽子数量为260只,根据题意得20x +60=260,解得x =10,则李红第10天生产的粽子数量为260只(2)根据图象得当0≤x≤9时,p =2;当9<x≤19时,可求解析式为p =110x +1110, ①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时w 的最大值为320;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时w 的最大值为480;③当9<x≤19时,w=·(20x+60)=-2x2+52x+174=-2(x-13)2+512,x=13时w 的最大值为512.综上所述,第13天的利润最大,最大利润是512元。

人教版九年级上册:22.3.2 最大利润问题 同步练习(含答案)

人教版九年级上册:22.3.2 最大利润问题 同步练习(含答案)

22.3实际问题与二次函数同步练习第2课时最大利润问题一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是()A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是()A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为()A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是()A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为()A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=-x2+70x -800.要想获得最大利润,则销售单价应该定为元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为________元.12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t(单位:件)与每件的销售价x(单位:元)可以看成是一次函数关系:t=-3x+204.(1)商场卖这种服装每天的销售利润y(单位:元)与每件的销售价x(单位:元)之间的函数解析式为______________________;(2)商场要想每天获得最大销售利润,每件的销售价定为________元最合适,最大利润是________元.三、解答题13.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系y=-x2+20x-75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(2)当销售单价为多少元时,该种商品每天的销售利润为21元?14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数解析式.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?16.(2020·青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4 m,宽AB=3 m,抛物线的最高点E到BC的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示,求该抛物线的函数解析式.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2 m,求每个B型活动板房的成本是多少(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本).(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)参考答案一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是(D)A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是(B)A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为(D)A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为(D)A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为(D)A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是(D)A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为(A)A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800.要想获得最大利润,则销售单价应该定为 35 元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为 55 时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高 6 元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x )件,若使利润最大,则每件商品的售价应为___25_____元. 12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t (单位:件)与每件的销售价x (单位:元)可以看成是一次函数关系:t =-3x +204.(1)商场卖这种服装每天的销售利润y (单位:元)与每件的销售价x (单位:元)之间的函数解析式为_y =-3x 2+330x -8568_____________________;(2)商场要想每天获得最大销售利润,每件的销售价定为__55______元最合适,最大利润是___507_____元. 三、解答题13.某商场经调研得出某种商品每天的利润y (元)与销售单价x (元)之间满足关系y =-x 2+20x -75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元? (2)当销售单价为多少元时,该种商品每天的销售利润为21元? 解:(1)∵y =-x 2+20x -75=-(x -10)2+25, ∴当x =10时,y 最大=25,∴最大利润是25元.(2)当y =21时,得-x 2+20x -75=21,解得x 1=8,x 2=12,∴当销售单价为8元或12元时,该种商品每天的销售利润为21元.14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数解析式.解:设y =kx +b ,则⎩⎨⎧55k +b =70,60k +b =60,解得⎩⎨⎧k =-2,b =180.∴y (千克)与x (元/千克)之间的函数解析式为y =-2x +180.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?解:由题意得(x -50)(-2x +180)=600, 整理,得x 2-140x +4 800=0, 解得x 1=60,x 2=80.答:该天的销售单价应定为60元/千克或80元/千克.(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 解:设当天的销售利润为w 元,则w =(x -50)(-2x +180)=-2(x -70)2+800. ∵-2<0,∴当x =70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元. 15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;解:设y 与x 之间的函数关系式为y =kx +b (k ≠0).根据题意,得⎩⎨⎧12k +b =90,14k +b =80,解得⎩⎨⎧k =-5,b =150.∴y 与x 之间的函数关系式为y =-5x +150.(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元? 解:根据题意,得w =(x -10)(-5x +150)=-5(x -20)2+500. ∵a =-5<0,∴抛物线开口向下,w 有最大值. ∴当x <20时,w 随着x 的增大而增大. ∵10≤x ≤15且x 为整数, ∴当x =15时,w 有最大值,w最大值=-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.16.(2020·青岛)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y =kx 2+m (k ≠0)表示,求该抛物线的函数解析式.解:∵长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m ,∴OH =AB =3 m ,D (2,0).∴EO =EH -OH =4-3=1(m). ∴E (0,1). ∴该抛物线的函数解析式为y =kx 2+1, 把点D (2,0)的坐标代入,得k =-14. ∴该抛物线的函数解析式为y =-14x 2+1.(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元/m 2.已知GM =2 m ,求每个B 型活动板房的成本是多少(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本). 解:∵GM =2 m ,∴OM =OG =1 m.∴当x =1时,y =34. ∴N ⎝⎛⎭⎫1,34. ∴MN =34 m.∴S 长方形MNFG =MN ·GM =34×2=32(m 2). ∴32×50+425=500(元).答:每个B 型活动板房的成本是500元.(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少? 解:根据题意,得w =(n -500)[100+20(650-n )10] =-2(n -600)2+20 000.∵每月最多能生产160个B 型活动板房, ∴100+20(650-n )10≤160,解得n ≥620. ∵-2<0,∴当n ≥620时,w 随n 的增大而减小. ∴当n =620时,w 有最大值19 200.答:公司将销售单价定为620元时,每月销售B 型活动板房所获利润最大,最大利润是19200元.17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x 天(1≤x ≤15,且x 为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?解:(1)当x=10时,制茶成本为150+10x=250(元/千克),制茶量为40+4x=40+4×10=80(千克),该茶厂第10天的收入为(400-250)×80=12000(元).(2)根据题意得y=[400-(150+10x)]·(40+4x)=-40x2+600x+10000=-40(x-7.5)2+12250.∵a=-40<0,1≤x≤15,且x是正整数,∴x=7或8时,y取得最大值,最大值为12240.∴y与x之间的函数关系式为y=-40x2+600x+10000,该茶厂第7天和第8天的收入最高,最高为12240元.18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?解:(1)y=-20x+2600.(2)由题意得(x-50)(-20x+2600)=24000,解得x1=70,x2=110.∵要尽量给客户优惠,∴这种衬衫应定价为70元/件.(3)由题意得w=(x-50)(-20x+2600)=-20(x-90)2+32000.∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50≤x,(x-50)≤50×30%,解得50≤x≤65,∴当x=65时,w取得最大值,此时w=19500.答:售价定为65元可获得最大利润,最大利润是19500元.19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?解:(1)W=-12x2+10x+2(30-x)=-12x2+8x+60.(2)W=-12x2+8x+60=-12(x-8)2+92,∵a=-12<0,∴当x=8时,W取最大值92,此时30-x=22,∴在甲地销售8辆车,在乙地销售22辆车时W最大,W的最大值是92.(3)甲地每辆车的平均销售利润为(-12x2+10x)÷x=-12x+10,∴-12x+10≤2,解得x≥16.∵W=-12(x-8)2+92,a=-12<0,∴当x≥16时,W随x的增大而减小,∴当x=16时,W最大,此时W=-12×(16-8)2+92=60,∴可获得的最大销售利润为60万元.20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利1元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)解:(2)设直线的解析式为y1=kx+b(k≠0),把点(3,5),(6,3)代入,得{5=3k+b,3=6k+b,解得{k=−23,b=7,∴直线的解析式为y1=-23x+7.设抛物线的解析式为y2=a(x-6)2+1, 把点(3,4)代入上式得4=a(3-6)2+1,解得a=13,∴抛物线的解析式为y2=13(x-6)2+1,∴y1-y2=-23x+7-13(x-6)2-1=-13(x-5)2+73.∵-13<0,∴x=5时,函数取得最大值,∴5月销售这种“多肉植物”,单株获利最大.。

初中数学九年级下册北师大何时获得最大利润同步练习

初中数学九年级下册北师大何时获得最大利润同步练习

何时获得最大利润同步练习1、某商场经营一批进价为2元一件的小商品,在市场营销中发现 此商品的日销售单价x 元与日销售量y 件之间有如下关系: (1)在所给的直角坐标系甲中:①根据表中提供的数据描出实数对(x ,y )的对应点; ②猜测并确定日销售量y 件与日销售单价x 元之间的 函数表达式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素) 为P 元,根据日销售规律:①试求出日销售利润P 元与日销售单价x 元之间的函 数表达式,并求出日销售单价x 为多少元时,才能获 得最大日销售利润?试问日销售利润P 是否存在最小 值?若有,试求出;若无,请说明理由.②在给定的直角坐标系乙中,画出日销售利润P 元与 日销售单价x 元之间的函数图象的简图,观察图象, 写出x 与P 的取值范围.2、某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?x 35911 y18 14 62(2)每件衬衫降低多少元时,商场平均每天盈利最多?4、某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x的函数表达式;(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万Array元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?5、某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为( )元; 元元; 元6、我班某同学的父母开了一个小服装店,出售一种进价20元的服装。

九年级数学何时获得最大利润同步练习

九年级数学何时获得最大利润同步练习

2.6 何时获得最大利润同步练习1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数.(1)试求y与x之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).2.某旅社有客房120间,每间房的日租金为50元时,每天都客满,旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大?(总利润=总收入-总成本).4.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t2-t(月)之间的关系(即前七个月的利润总和与t之间的关系)为s=122t.(1)第几个月末时,公司亏损最多?为什么?(3)求第8个月公司所获利润是多少万元?5.启明公司生产某种产品,每件成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x( 万元)时,产品的年销售量是原销售量的y 倍,且y=277101010x x -++. 如果把利润看作是销售总额减去成本和广告费:(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元, 问有几种符合要求的方式?写出每种投资方式所选的项目.6.某市近年来经济发展迅速很快,根据统计,该市国内生产总值1990年为8.6 亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005 年该市国内生产总值将达到多少?答案:1.(1)设y=kx+b,则∵当x=20时,y=360;x=25时,y=210.∵3602021025k b k b =+⎧⎨=+⎩, 解得30960k b =-⎧⎨=⎩∵y=-30x+960(16≤x≤32)(2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∵当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.2.设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时, y 有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.3.商场购这1000件西服的总成本为80×1000=8000元.故y=100(1+x%)·1000(1-0.5x%)-8000即定价为150元/件时获利最大,为32500元. 4.(1)s=12(t-2)2-2.故第2个月末时公司亏损最多达2万元.(2)将s=30代入s=12t 2-2t, 得30=12t 2-2t,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元.(3)当t=7时,s=12×72-2×7=10.5, 即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16,即第8个月末公司累积利润为16万元.16-10.5=5.5万元.故第8个月公司所获利润为5.5万元. 5.(1)s=10×277101010x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7. 当x=62(1)-⨯-=3 时, S 最大=24(1)764(1)⨯-⨯-⨯-=16. ∵当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:① 取A 、B 、E 各一股,投入资金为5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元.② 取B 、D 、E 各一股,投入资金为2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元.6.可以把三组数据看成三个点:A(0,8.6),B(5,10.4),C(10,12.9).设y=ax2+bx+c.把A,B,C三点坐标代入其中,得8.62558.610.4 100108.612.9ca ba b=⎧⎪++=⎨⎪++=⎩,解得a=0.014,b=0.29,c=8.6.故y=0.014x2+0.29x+8.6.令x=15,得y=0.014×152+0.29×15+8.6≈16.1.所以可预测2005年该市国内生产总值达到16.1亿元人民币.。

九年级数学何时获得最大利润 同步练习(一)北师大版

九年级数学何时获得最大利润 同步练习(一)北师大版

何时获得最大利润同步练习(一)(卷面分1分)班级 某某得分一 填空题 (每小题6分,满分30分)1.抛物线2)2(3+-=x y 的开口向,对称轴是,顶点坐标为。

2.已知二次函数162++-=x x y ,配方后得到顶点形式=y ,其图象的对称轴是,顶点坐标是。

当时函数,最值是。

3.已知二次函数2322+-=x x y ,则=-ab2,=-a b ac 442。

所以,当时,函数有最值是。

4.某二次函数的图象如右图,则图象的对称轴是, 顶点坐标是;当时函数的最值是。

5.某商店出售一批某种商品,总毛利润y (元)与该商品的单价x (元/件) 之间的函数关系用图象表示为右图,请你根据图象回答下面问题:(1)当售价x (元/件)的X 围是时,才有赢利;(2)当销售单价为元时,利润最大;(3)若商品的进价为7元/件,则获得最大利润时,商品的销售量是件。

二.补充练习(15分)将进货单价为40元的商品按50元出售时,能卖500件。

已知该商品单价每涨1元,其销售量就减少10件。

问这种商品的定价为多少元时,商店获得的利润最大,最大利润是多少?这时应进货多少件。

解:设为了获得最大利润,该商品应在50元的基础上涨价x 元,则这时-2-6-3xyO715xyO2400每件商品的利润是元,销售量是件。

此时商品的总销售利润y(元)与涨价额x(元)之间的函数关系式为:配方后可得顶点形式所以,当x时,y的最大值是,此时商品的定价为元,销售量是件。

答:。

三.商店购进一批单价为20元的日用品,如果以单价30元出售,那么半月内可以售出400件。

根据经验,提高销售价格会导致销售量减少,即单价每提高1元,销售量就减少20件,问应如何确定售价,才能在半月内获得最大利润?(17分)四.某旅行社组团去外地旅游,30人起组团,每人单价为800元。

旅行社对超过30人的团给予优惠,既旅行团每增加1人,每人的单价就降低10元。

请你帮助计算一下,当一个团的人数是多少时,旅行社可以获得最大营业额?(17分)五.某公司试销一种成本价为500元/件的新产品,规定试销时的销售单价不低于成本价,又不高于800元/件。

精选九年级数学随堂测验何时获得最大利润

精选九年级数学随堂测验何时获得最大利润

优选九年级数学随堂测试何时获取最大利润要想让自己在考试时获得好成绩,除了上课要仔细听讲外还需要课后多做练习,接下来查词典数学网为大家介绍了优选九年级数学随堂测试,希望能给大家带来帮助。

1.假如抛物线y=-2x2+mx-3 的极点在 x 轴正半轴上,则m=______.2.二次函数 y=-2x2+x-,当x=______时,y有最______值,为______.它的图象与x 轴______交点 (填有或没有 ).3.已知二次函数y=ax2+bx+c 的图象如图 1 所示 .①这个二次函数的表达式是y=______;②当 x=______ 时, y=3; ③依据图象回答:当x______时, y0.4.某产品进货单价为 90 元,按 100 元一个售出时,能售 500 个,假如这类商品涨价 1 元,其销售额就减少 10 个,为了获取最大收益,其单价应定为A.130 元B.120 元C.110 元D.100 元5.某一抛物线张口向下,且与 x 轴无交点,则拥有这样性质的抛物线的表达式可能为 ______( 只写一个 ),此类函数都有______值(填最大最小 ).6.某商场以每件20 元的价钱购进一种商品,试销中发现,这种商品每日的销售量m(件 )与每件的销售价x( 元 )知足关系:m=140-2x.(1)写出商场卖这类商品每日的销售收益y 与每件的销售价x 间的函数关系式;(2)假如商场要想每日获取最大的销售收益,每件商品的售价定为多少最适合 ?最大销售收益为多少 ?我国古代的念书人 ,从上学之日起 ,就日诵不辍 ,一般在几年内就能识记几千个汉字 ,熟记几百篇文章 ,写出的诗文也是咬文嚼字 ,琅琅上口 ,成为博学多才的文人。

为何在现代化教课的今日 ,我们念了十几年书的高中毕业生甚至大学生 ,竟提起作文就头疼 ,写不出像样的文章呢 ?吕叔湘先生早在 1978 年就尖利地提出 : “中小学语文教课成效差 ,中学语文毕业生语文水平低 ,十几年上课总时数是9160 课时 ,语文是 2749 课时,恰巧是 30%,十年的时间 ,二千七百多课时 ,用来学本国语文,倒是大部分可是关 ,莫非咄咄怪事 ! ”刨根问底 ,其主要原由就是腹中无物。

北师大版九年级(下) 中考题同步试卷:2.6 何时获得最大利润(03)

北师大版九年级(下) 中考题同步试卷:2.6 何时获得最大利润(03)

北师大版九年级(下)中考题同步试卷:2.6 何时获得最大利润(03)一、选择题(共1小题)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米二、填空题(共3小题)2.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.3.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4﹣2014植物高度增长量l/mm4149494625科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.4.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题(共26小题)5.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?6.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.7.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.8.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.9.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?10.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)11.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?12.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.13.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?14.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?15.受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:月份x1234567成本(元/件)565860626466688至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数);8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.16.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?17.某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?18.如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?19.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.20.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?21.某商场在1月至12月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y1(元/件)与销售月份x(月)的关系大致满足如图的函数,销售成本y2(元/件)与销售月份x(月)满足y2=,月销售量y3(件)与销售月份x(月)满足y3=10x+20.(1)根据图象求出销售价格y1(元/件)与销售月份x(月)之间的函数关系式;(6≤x ≤12且x为整数)(2)求出该服装月销售利润W(元)与月份x(月)之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤x≤12且x为整数)22.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?23.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.24.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?25.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].27.为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km的圆形考察区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动,若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是s=n2﹣n+.以O 为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别为(﹣4,9)、(﹣13、﹣3).(1)求线段P1P2所在直线对应的函数关系式;(2)求冰川边界线移动到考察区域所需的最短时间.28.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?29.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.30.今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为y=﹣x+5.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x 满足一次函数关系如下表:时间x(单位:年,x为正整数)12345…单位面积租金z(单位:元/平方米)5052545658(1)求出z与x的函数关系式;(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?北师大版九年级(下)中考题同步试卷:2.6 何时获得最大利润(03)参考答案一、选择题(共1小题)1.A;二、填空题(共3小题)2.y=﹣(x+6)2+4;3.﹣1;4.25;三、解答题(共26小题)5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 何时获得最大利润同步练习
1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数.
(1)试求y与x之间的函数关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).
2.某旅社有客房120间,每间房的日租金为50元时,每天都客满,旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?
3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大?(总利润=总收入-总成本).
4.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前七个月的利润总和与t之间的关系)为t2-2t.
s=1
2
(1)第几个月末时,公司亏损最多?为什么?
(2)第几个月末时,公司累积利润可达30万元?
(3)求第8个月公司所获利润是多少万元?
5.启明公司生产某种产品,每件成本是3元,售价是4元,年销售量为
10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x( 万元)时,产品的年销售量是原销售量的y 倍,且y=277101010x x -++. 如果把利润看作是销售总额减去成本和广告费:
(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算
广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?
(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项
目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:
如果每个项目只能投一股,且要求所有投资项目的收益总额不
得低于1.6万元, 问有几种符合要求的方式?写出每种投资方式所选的项目.
6.某市近年来经济发展迅速很快,根据统计,该市国内生产总值1990年为8.6 亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.
经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005 年该市国内生产总值将达到多少?
答案:
1.(1)设y=kx+b,则
∵当x=20时,y=360;x=25时,y=210.
∴3602021025k b k b =+⎧⎨=+⎩, 解得30960
k b =-⎧⎨=⎩ ∴y=-30x+960(16≤x≤32)
(2)设每月所得总利润为w 元,
则 w=(x-16)y=(x-16)(-30x+960)
=-30(x-24)2+ 1920.
∵-30<0,∴当x=24时,w 有最大值.
即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.
2.设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会
减少6x 间,客房日租金总收入为
y=(50+5x)(120-6x)=-30(x-5)2+6750.
当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75
元. 客房总收入最高为6750元.
3.商场购这1000件西服的总成本为80×1000=8000元.
设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.
故y=100(1+x%)·1000(1-0.5x%)-8000
=-5x 2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值
32500.
即定价为150元/件时获利最大,为32500元. 4.(1)s=12
(t-2)2-2. 故第2个月末时公司亏损最多达2万元.
(2)将s=30代入s=12
t 2-2t, 得30=12
t 2-2t,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元.
(3)当t=7时,s=12
×72-2×7=10.5, 即第7个月末公司累积利润为10.5万元;当t=8时,s=12
×82-2×8 =16,
即第8个月末公司累积利润为16万元.
16-10.5=5.5万元.
故第8个月公司所获利润为5.5万元. 5.(1)s=10×2771010
10x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7. 当x=62(1)-
⨯-=3 时, S 最大=2
4(1)764(1)
⨯-⨯-⨯-=16. ∴当广告费是3万元时,公司获得的最大年利润是16万元.
(2)用于再投资的资金有
16-3=13万元.
有下列两种投资方式符合要求:
①取A、B、E各一股,投入资金为
5+2+6=13万元,
收益为0.55+0.4+0.9=1.85万元>1.6万元.
②取B、D、E各一股,投入资金为
2+4+6=12万元<13万元,
收益为0.4+0.5+0.9=1.8万元>1.6万元.
6.可以把三组数据看成三个点:
A(0,8.6),B(5,10.4),C(10,12.9).
设y=ax2+bx+c.把A,B,C三点坐标代入其中,得
8.6
2558.610.4 100108.612.9
c
a b
a b
=


++=

⎪++=

,
解得a=0.014,b=0.29,c=8.6.
故y=0.014x2+0.29x+8.6.
令x=15,得
y=0.014×152+0.29×15+8.6≈16.1.
所以可预测2005年该市国内生产总值达到16.1亿元人民币.。

相关文档
最新文档