平面与平面平行的判定教案

合集下载

教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质一、教学目标1. 知识与技能:(1)理解平面与平面平行的定义及其判定方法;(2)掌握平面与平面平行的性质;(3)能够运用平面与平面平行的知识解决实际问题。

2. 过程与方法:通过观察、思考、交流、归纳等方法,引导学生掌握平面与平面平行的判定和性质。

3. 情感态度与价值观:培养学生的空间想象力,提高对几何图形的认识,激发学生学习几何的兴趣。

二、教学重点与难点1. 教学重点:(1)平面与平面平行的定义及其判定方法;(2)平面与平面平行的性质。

2. 教学难点:(1)平面与平面平行的判定方法的运用;(2)平面与平面平行的性质在实际问题中的应用。

三、教学过程1. 导入:通过复习已学过的平面几何知识,如点、线、面的基本概念,引导学生进入本节课的学习。

2. 新课讲解:(1)平面与平面平行的定义:两个平面在空间中不存在公共点,则称这两个平面平行。

(2)平面与平面平行的判定方法:①如果一个平面过另一个平面的垂线,则这两个平面平行;②如果两个平面分别过第三条交线,且这两条交线互相平行,则这两个平面平行。

(3)平面与平面平行的性质:①平行平面之间的距离相等;②平行平面上的线段在另一个平面上的投影互相平行;③平行平面上的角相等。

3. 案例分析:通过展示一些实际问题,引导学生运用平面与平面平行的知识解决问题。

4. 课堂练习:布置一些有关平面与平面平行的练习题,让学生独立完成,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生进一步学习平面几何的兴趣。

四、课后作业1. 完成教材上的相关练习题;2. 查找一些有关平面与平面平行的实际问题,加以解决。

五、教学评价1. 知识与技能:学生能熟练掌握平面与平面平行的定义、判定方法和性质;2. 过程与方法:学生能够运用所学知识解决实际问题,提高空间想象力;六、教学策略与方法1. 采用问题驱动法,引导学生主动探究平面与平面平行的判定和性质;2. 利用多媒体课件,展示平面与平面平行的图形,增强学生的空间想象力;3. 结合实例,让学生直观地理解平面与平面平行的判定和性质;4. 组织小组讨论,培养学生的合作意识和团队精神;5. 运用归纳总结法,引导学生自主总结平面与平面平行的判定和性质。

高中立体几何教案5篇

高中立体几何教案5篇

高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

平面与平面之间的位置关系教案

平面与平面之间的位置关系教案

平面与平面之间的位置关系教案一、教学目标1. 让学生理解平面与平面之间的位置关系,包括平行和相交两种情况。

2. 让学生掌握如何判断两个平面是否平行或相交,并能够运用这个知识解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 平面与平面平行的判定与性质2. 平面与平面相交的判定与性质3. 实际问题中的应用三、教学重点与难点1. 教学重点:平面与平面平行的判定与性质,平面与平面相交的判定与性质。

2. 教学难点:如何判断两个平面是否平行或相交,以及如何在实际问题中运用这个知识。

四、教学方法1. 采用讲授法,讲解平面与平面之间的位置关系的定义、判定和性质。

2. 利用多媒体展示实例,帮助学生直观理解平面与平面之间的位置关系。

3. 引导学生进行实践操作,培养学生的动手能力。

4. 设计具有针对性的练习题,巩固所学知识。

五、教学过程1. 导入:通过生活实例引入平面与平面之间的位置关系,激发学生的学习兴趣。

2. 新课导入:讲解平面与平面平行的判定与性质。

3. 实例分析:利用多媒体展示实例,让学生直观理解平面与平面平行的判定与性质。

4. 课堂练习:设计具有针对性的练习题,让学生巩固所学知识。

5. 新课导入:讲解平面与平面相交的判定与性质。

6. 实例分析:利用多媒体展示实例,让学生直观理解平面与平面相交的判定与性质。

7. 课堂练习:设计具有针对性的练习题,让学生巩固所学知识。

8. 总结与拓展:总结本节课所学内容,引导学生思考平面与平面之间的位置关系在实际问题中的应用。

9. 课后作业:布置适量作业,让学生进一步巩固所学知识。

10. 教学反思:对课堂教学进行总结,针对学生的掌握情况,调整教学策略。

六、教学评价1. 评价内容:学生对平面与平面之间位置关系的理解,包括平行和相交的判定与性质。

2. 评价方法:通过课堂练习、课后作业和课堂讨论等方式进行评价。

3. 评价指标:a. 学生能够准确判断平面与平面的位置关系;b. 学生能够运用所学知识解决实际问题;七、教学反馈1. 收集学生作业、练习和测试成绩,分析学生对平面与平面之间位置关系的掌握情况。

高中数学平面与平面平行的判定教案

高中数学平面与平面平行的判定教案

平面与平面平行的判定一、教学任务分析本课三维目标制定如下:1、知识与技能目标:使学生通过直观感知、操作确认,归纳出平面与平面平行的判定定理。

2、过程与方法目标:使学生了解、感受平面与平面平行的判定定理的探究过程、方法。

3、情感态度价值观:培养学生大胆探索勇于创新的精神。

教学重点:使学生通过直观感知、操作确认,归纳出平面与平面平行的判定定理。

教学难点:平面与平面平行的判定定理的探究。

二、教学基本流程由平面与平面平行的定义引入课题↓平面与平面平行的判定定理的探索↓平面与平面平行的判定定理的证明↓平面与平面平行的判定定理的应用↓课堂小结与作业三、教学情境设计教学环节教学过程设计意图(一)复习引入首先,先让学生回忆空间两个平面有几种位置关系?如何来定义两个平面相交和平行?(师生一起画出两个相交平面的以下位置图)与水平平面斜交两个竖直平面相交两个卧式平面其次,讨论:问题1:如果两个平面平行,那么在其中一个平面内的任意一条直线与另一个平面的位置关系怎样?问题2:如果一个平面内的所有直线都与另一个平面平行,那么这两个平面的位置关系怎样?小结:两平面平行问题可以转化为一个平面内的直线与另一个平面平行的问题。

即:线面平行 面面平行从学生新知识形成的最近发展区出发,复习旧知。

通过这两个问题,引发学生的思维,使旧知识得到深化提高。

对问题1、2进行小结,点出了“转化”的思想方法,对学生的思维起到导向的作用,为新课的教学做好了思想方法上的准备。

(二)定理的探索首先,思考1:如果一个平面内有一条直线平行于另一平面,那么这两个平面是否一定平行?(此题学生较容易找到周围的实物模型或摆出模型,说明结论。

)2:如果一个平面内有两条直线都平行于另一个平面,那么这两个平面是否一定平行?(要求学生搜索实际模型或动手摆模型,通过实践得出结论。

)然后,我再请若干名学生分别举出平行和相交的例子,并引导学生概括这些例子,得出代表图形并投αβαβaaαβ影出来:再要求学生结合图形思考以下两个问题:①、如果一个平面内有两条平行直线都平行于另一个平面,那么它们的位置关系怎样?②、如果一个平面内有两条相交直线都平行于另一个平面,那么它们的位置关系怎样?再次要求学生动手摆模型,相信学生通过实践操作后都会猜想:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 对定理的出现,若直接给出,学生定会感到突然。

教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质

平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。

通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。

第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。

2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。

3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。

第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。

2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。

3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。

第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。

(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。

(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。

(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。

判断这两个平面是否平行,并说明理由。

5. 应用题:给定一个平面P和一条直线L。

已知平面P的法向量为向量A,直线L的方向向量为向量B。

判断直线L是否与平面P平行,并说明理由。

第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。

高中数学必修2《平面与平面平行的判定》教学案

高中数学必修2《平面与平面平行的判定》教学案
结论 2:
②平面 内有两条相交直线与平面 平行,情况又如何呢?
结论 3: (四)归纳总结,形成定理: 平面与平面平行的判定定理:
教师板书定理.
同学小组讨论分 析
4. 同 学 展 示 对 定 进 一 步 加 深
理的理解.
对定理的理解.
5.小组讨论,交
流认识,归纳总
结,展示成果.
巩固定理,加
深理解.
6. 教 师 板 书 写
出证明过程.组织
讨论、交流、纠正,
强化步骤的规范
过程.
学生作答,给出 总 结 出 具 体 的
答案.
解题思路.
符号表示: 你能画出定理的图形表示吗? 定理细究: 判断下列命题是否正确,若不正确,请说明理由
(1)若 a ,b ,则 / / (2)若 内有无数条直线都平行于 ,则 / /
选做:学案第 114 页 B 组第 6 题
评价目的
评价方法
小组讨论总结 让学生练习对
面面平行的判 知识的总结提 小组评价
定定理
炼,抓准里面
评价工具 评价表
4
课堂检测
的要点精华 更好的掌握所
测试评价 学知识
当堂检测
一、判定定理:
2.2.2 平面与平面平行的判定
二、典型例题:
三、练习过程.
通过实验探
D1 C1
A1 B1
究,逐步接过判 定定理的真实 面目.
D C
A
B
探究(1):平面 内有一条直线与平面 平行吗?请举例说明.
结论 1:
探究(2): 平面 内有两条直线与平面 平行吗?请举例说明.
思考: 你会选择什么样的两条直线?
①如果这两条直线平行,平面 与平面 平行吗?

平面与平面平行的判定定理的教案北师大版

平面与平面平行的判定定理的教案北师大版

教案一、教学目标1.知识与能力目标:掌握平面与平面平行的判定定理,能够准确判断两个平面是否平行。

2.过程与方法目标:培养学生观察能力和逻辑思维能力,通过实际问题引导学生运用平行平面的判定定理解决实际问题。

3.情感态度价值观培养目标:培养学生对数学知识的兴趣和好奇心,了解数学在实际生活中的应用,并培养学生对数学思维的认可和信心。

二、教学内容1.知识内容:平面与平面平行的判定定理。

2.能力要求:能够判断两个平面是否平行。

三、教学方法1.情境导入法:通过引入一个实际的问题,激发学生的学习兴趣。

例如,把两个车道看作是两个平面,引出两个平面平行的概念。

2.归纳法:通过观察多个例子,引导学生总结平行平面的特点和判断方法,培养学生的归纳总结能力。

3.组织合作学习:通过小组讨论、合作探究等方式,激发学生的思维活跃性,培养学生的团队合作能力。

4.解决问题法:通过解决实际问题,引导学生运用平行平面的判定定理,培养学生的应用能力。

四、教学过程1.导入(5分钟):教师用一个实际生活中的例子引入平面与平面平行的概念,例如两个车道是平行的,从而引发学生对平行平面的思考。

2.探究与讨论(15分钟):教师通过展示两个平面的示意图,引导学生观察图象,对比两个平面的特点,探究两个平面平行的判定条件。

学生以小组为单位,展开合作讨论,归纳总结判定条件。

3.知识讲解与引申(20分钟):教师根据学生的讨论结果,讲解平面与平面平行的判定定理,并引申到更多实际问题中,如建筑设计、交通规划等。

4.实例演练(20分钟):教师提供一些平面与平面平行的实例,要求学生根据判定定理判断两个平面是否平行,并给予解释。

学生以小组为单位,共同完成实例演练。

5.拓展应用(20分钟):教师提供一些拓展应用的问题,引导学生运用平行平面的判定定理解决问题。

学生可以在小组内讨论、合作解决,并向全班汇报解决思路和过程。

6.归纳总结(10分钟):教师引导学生总结平面与平面平行的判定定理,以及应用方法,并与学生一同完成相关知识点的总结归纳。

统编人教A版高中必修第二册数学《8.5 空间直线、平面的平行》平面与平面平行的判定 教案教学设计

统编人教A版高中必修第二册数学《8.5 空间直线、平面的平行》平面与平面平行的判定 教案教学设计

8.5.3 平面与平面平行第1课时平面与平面平行的判定本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第八章《立体几何初步》,本节课主要学习平面与平面平行的判定定理及其应用。

本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多。

而且是空间问题平面化的典范空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法。

本节课是在前面已经学习空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知操作确认(合情推理),归纳出平面与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。

1.教学重点:空间平面与平面平行的判定定理;2.教学难点:应用平面与平面平行的判定定理解决问题。

多媒体一、复习回顾,温故知新1. 到现在为止,我们一共学习过几种判断直线与平面平行的方法呢? 【答案】(1)定义法;(2)直线与平面平行的判定定理2. 平面与平面有几种位置关系?分别是什么? 【答案】相交、平行3.怎样判断两平面平行? 二、探索新知1.思考:若平面α∥β,则α中所有直线都平行β吗?反之,若α中所有直线都平行β ,则α∥β吗? 【答案】平行,平行探究:如图8.5-11(1),a 和b 分别是矩形硬纸片的两条对边所在直线,它们都和桌面平行,那么都和桌面平行,那么硬纸片和桌面平行吗?如图8.5-11(2),c 和d 分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗? 【答案】硬纸片与桌面可能相交,如图,三角尺与桌面平行,如图,平面与平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 .符号表示:βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂b a P b a b a通过复习以前所学,引入本节新课。

面面平行判定定理教案

面面平行判定定理教案

面面平行判定定理教案教学目标:1. 理解面面平行的概念及其判定定理。

2. 学会运用判定定理判断空间中两个平面是否平行。

3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:一、面面平行的定义1. 引导学生回顾平面的定义,理解平面是由无数条直线组成的二维图形。

2. 引入面面平行的概念,即两个平面在空间中没有公共点,且它们的法向量相同或相反。

二、面面平行的判定定理1. 讲解判定定理一:若两个平面的法向量相同,则这两个平面平行。

2. 讲解判定定理二:若两个平面的法向量相反,则这两个平面平行。

3. 讲解判定定理三:若两个平面相交于一条直线,且这条直线的方向向量与其中一个平面的法向量相同,则这两个平面平行。

三、判定定理的应用1. 引导学生运用判定定理判断空间中两个平面是否平行。

2. 给出实例,让学生学会如何找到法向量和方向向量进行判断。

四、练习与巩固1. 布置一些判断面面平行的题目,让学生独立完成。

2. 引导学生总结判断面面平行的方法和技巧。

五、课堂小结1. 回顾本节课所学的内容,让学生掌握面面平行的定义和判定定理。

2. 强调面面平行在实际问题中的应用,激发学生的学习兴趣。

教学评价:通过课堂讲解、练习和巩固,评价学生对面面平行定义和判定定理的理解程度,以及运用判定定理判断空间中两个平面是否平行的能力。

六、面面平行的性质定理1. 引入性质定理:若两个平面平行,则它们之间的距离相等。

2. 解释性质定理的证明过程,引导学生理解并掌握。

七、性质定理的应用1. 讲解如何利用性质定理计算两个平行平面之间的距离。

2. 提供实际问题,让学生学会将性质定理应用于实际问题中。

八、面面平行的判定与性质的综合应用1. 引导学生理解面面平行的判定定理与性质定理之间的关系。

2. 通过实例,讲解如何综合运用判定定理和性质定理解决复杂问题。

九、课堂练习与讨论1. 布置一些有关面面平行的判定与性质的应用题目,让学生独立完成。

2. 组织学生进行小组讨论,分享解题心得和方法。

平面与平面平行的判定定理教案

平面与平面平行的判定定理教案

2.2.2 平面与平面平行的判定一、教学目标1、知识与技能目标:理解并掌握平面与平面平行的判定定理,进一步培养学生观察、发现的能力和空间想象能力。

2、过程与方法目标:学生通过观察图形,借助已有知识,归纳平面与平面平行的判定定理。

3、情感态度与价值观目标:让学生在发现中学习,培养空间问题平面化(降维)的思想,增强学习的积极性。

二、教学重、难点难点:平面与平面平行的判定定理及应用。

难点:判定定理的应用,例题的证明。

三、学法指导学生借助实例,通过观察、类比、思考、探讨,教师予以启发,得出平面与平面的位置关系,平面与平面平行的判定。

四、教学过程1 复习与引入:平面与平面的位置关系(1)两个平面平行——没有公共点,记作:βα//;(2)两个平面相交——有且只有一条公共直线,记作:l =βα 。

观察:三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,情况又如何呢?2 新课探究:探究:(1)平面β内有一条直线与平面α平行,α、β平行吗?(2)平面β内有两条直线与平面α平行,α、β平行吗?(3)平面β内有两条相交直线与平面α平行,α、β平行吗?通过长方体模型,引导学生观察、思考、交流,得出结论。

归纳:若一个平面内的所有直线都与另一个平面平行,那么这两个平面一定平行。

定理 (两个平面平行的判定定理):一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号语言:βαααββ////,//,,,⇒=⊂⊂b a P b a b a 。

作用:线面平行,则面面平行。

推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行.平面平行的传递性:如果平面α // 平面β,平面β // 平面γ,则平面α // 平面γ。

3 例题分析例1 给定下列条件 ①两个平面不相交 ②两个平面没有公共点 ③一个平面内所有直线都平行于另一个平面④一个平面内有一条直线平行于另一个平面⑤一个平面内有两条直线平行于另一个平面以上条件能判断两个平面平行的有 ①②③例2 已知正方体ABCD —A 1B 1C 1D 1,求证:平面AB 1D 1//平面C 1BD 。

平面与平面平行的判定教案

平面与平面平行的判定教案

平面与平面平行的判定教案第一章:引言1.1 教学目标:让学生了解平面的基本概念。

引导学生掌握平面与平面平行的概念。

1.2 教学内容:平面定义:平面是由无数个点构成的二维图形,没有边界。

平面与平面平行的定义:两个平面在三维空间中没有公共点,它们被称为平行平面。

1.3 教学方法:采用讲授法,讲解平面的定义和平面与平面平行的概念。

利用图形和实物模型进行演示,帮助学生直观理解。

1.4 教学活动:教师讲解平面的定义,引导学生理解平面的基本特性。

教师展示实物模型,如桌面、墙面等,让学生观察并描述它们所在的平面。

教师讲解平面与平面平行的概念,引导学生通过观察实物模型来理解平行平面的概念。

第二章:判定平面与平面平行的条件2.1 教学目标:让学生掌握判定平面与平面平行的条件。

培养学生运用判定条件解决问题的能力。

2.2 教学内容:判定条件一:如果一条直线与一个平面平行,它与该平面的任意一条直线都平行。

判定条件二:如果两个平面相交于一条直线,它们不平行。

2.3 教学方法:采用讲授法,讲解判定平面与平面平行的条件。

利用图形和实物模型进行演示,帮助学生直观理解。

2.4 教学活动:教师讲解判定条件一,引导学生理解并能够运用该条件判断平面与平面是否平行。

教师讲解判定条件二,引导学生理解并能够运用该条件判断平面与平面是否平行。

教师提供一些图形和实物模型,让学生练习运用判定条件判断平面与平面是否平行。

第三章:判定平面与平面平行的方法3.1 教学目标:让学生掌握判定平面与平面平行的方法。

培养学生运用判定方法解决问题的能力。

3.2 教学内容:方法一:使用平行线段法。

方法二:使用平行直线法。

3.3 教学方法:采用讲授法,讲解判定平面与平面平行的方法。

利用图形和实物模型进行演示,帮助学生直观理解。

3.4 教学活动:教师讲解平行线段法,引导学生理解并能够运用该方法判断平面与平面是否平行。

教师讲解平行直线法,引导学生理解并能够运用该方法判断平面与平面是否平行。

第三节 直线、平面平行的判定与性质 教案

第三节 直线、平面平行的判定与性质 教案

第三节直线、平面平行的判定与性质核心素养立意下的命题导向1.结合立体几何的定义、公理,会推导直线和平面平行、平面和平面平行的判定定理和性质定理,凸显逻辑推理的核心素养.2.常与求几何体的体积计算相结合,会应用直线和平面平行、平面和平面平行的判定定理、性质定理证明空间的线、面平行关系,凸显直观想象、逻辑推理的核心素养.[理清主干知识]1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b3.谨记两个结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.[澄清盲点误点]一、关键点练明1.(直线与平面平行的定义)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.(面面平行的判定定理)设α,β是两个不同的平面,m是一条直线且m⊂α,“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.(平行关系的判定)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.m∥α,n∥α,则m∥n B.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析:选C A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D不正确.4.(面面平行的性质定理)设α,β,γ是三个不同的平面,a,b是两条不同的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③二、易错点练清1.(忽视面面平行的条件)下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解析:选D由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.故可知D符合.2.(对空间平行关系相互转化的条件理解不到位)设m,l表示两条不同的直线,α表示平面,若m⊂α,则“l∥α”是“l∥m”的________条件.解析:由m⊂α,l∥α不能推出l∥m;由m⊂α,l∥m也不能推出l∥α,所以是既不充分也不必要条件.答案:既不充分也不必要3.(忽视线面平行的条件)(1)若直线a与平面α内无数条直线平行,则a与α的位置关系是______________.(2)已知直线a,b和平面α,β,若a⊂α,b⊂α,a∥β,b∥β,则α,β的位置关系是______________.(3)若α∥β,直线a∥α,则a与β的位置关系是___________________________________.解析:(1)由直线与平面平行的判定定理知,a可能平行于α,也可能在α内.(2)当a,b相交时,α∥β;当a,b平行时,α,β平行或相交.(3)当a在β外时,a∥β;当a在β内时,a∥α也成立.答案:(1)a∥α或a⊂α(2)平行或相交(3)a∥β或a⊂β考点一直线与平面平行的判定与性质考法(一)线面平行的判定[例1]如图所示,在空间几何体ABCDFE中,四边形ADFE是梯形,且EF∥AD,P,Q分别为棱BE,DF的中点.求证:PQ∥平面ABCD.[证明]法一:如图,取AE的中点G,连接PG,QG.在△ABE中,PB=PE,AG=GE,所以PG∥BA,又PG⊄平面ABCD,BA⊂平面ABCD,所以PG∥平面ABCD.在梯形ADFE中,DQ=QF,AG=GE,所以GQ∥AD,又GQ⊄平面ABCD,AD⊂平面ABCD,所以GQ∥平面ABCD.因为PG∩GQ=G,PG⊂平面PQG,GQ⊂平面PQG,所以平面PQG∥平面ABCD.又PQ⊂平面PQG,所以PQ∥平面ABCD.法二:如图,连接EQ并延长,与AD的延长线交于点H,连接BH.因为EF∥DH,所以∠EFQ=∠HDQ,又FQ=QD,∠EQF=∠DQH,所以△EFQ≌△HDQ,所以EQ=QH.在△BEH中,BP=PE,EQ=QH,所以PQ∥BH.又PQ⊄平面ABCD,BH⊂平面ABCD,所以PQ∥平面ABCD.考法(二)线面平行的性质定理的应用[例2]如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.[证明]如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴AP∥MO.又MO⊂平面BMD,AP⊄平面BMD,∴AP∥平面BMD.∵平面PAHG∩平面BMD=GH,且AP⊂平面PAHG,∴AP∥GH.[方法技巧]线面平行问题的解题关键(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.(2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.[针对训练]如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO⊂平面EOC,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)如图,取AB的中点N,连接DN,MN.因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,MN⊂平面DMN,DN⊂平面DMN,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.[证明](1)∵在△A1B1C1中,G,H分别是A1B1,A1C1的中点,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴GH与BC确定一个平面α,∴G,H,B,C∈α,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.易证A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,且A1E⊂平面EFA1,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.[方法技巧]1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.[提醒]利用面面平行的判定定理证明两平面平行,需要说明在一个平面内的两条直线是相交直线.[针对训练]1.如图是长方体被一平面截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:∵平面ABFE∥平面DCGH,平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理,EH∥FG,∴四边形EFGH 是平行四边形. 答案:平行四边形2.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,AB =AD ,PA ⊥PD ,AD ⊥CD ,∠BAD =60°,M ,N 分别为AD ,PA 的中点.(1)证明:平面BMN ∥平面PCD ; (2)若AD =6,求三棱锥P -BMN 的体积. 解:(1)证明:如图,连接BD . ∵AB =AD ,∠BAD =60°, ∴△ABD 为正三角形. ∵M 为AD 的中点,∴BM ⊥AD .∵AD ⊥CD ,CD ⊂平面ABCD ,BM ⊂平面ABCD , ∴BM ∥CD .又BM ⊄平面PCD ,CD ⊂平面PCD , ∴BM ∥平面PCD .∵M ,N 分别为AD ,PA 的中点,∴MN ∥PD . 又MN ⊄平面PCD ,PD ⊂平面PCD , ∴MN ∥平面PCD .又BM ⊂平面BMN ,MN ⊂平面BMN ,BM ∩MN =M , ∴平面BMN ∥平面PCD . (2)在(1)中已证BM ⊥AD . ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BM ⊂平面ABCD , ∴BM ⊥平面PAD .又AD =6,∠BAD =60°,∴BM =3 3. ∵M ,N 分别为AD ,PA 的中点,PA =PD =22AD =32, ∴S △PMN =14S △PAD =14×12×(32)2=94.∴V P -BMN =V B -PMN =13S △PMN ·BM =13×94×33=934.考点三 平行关系的综合[典例] 如图所示,平面α∥平面β,点A ∈α,点C ∈α,点B ∈β,点D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD . (1)求证:EF ∥平面β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长.[解] (1)证明:①当AB ,CD 在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD 知,AC ∥BD . ∵AE ∶EB =CF ∶FD ,∴EF ∥BD . 又EF ⊄β,BD ⊂β,∴EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=HD , 且HD =AC , ∵平面α∥平面β, 平面α∩平面ACDH =AC , ∴AC ∥HD ,∴四边形ACDH 是平行四边形.在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .∵AE ∶EB =CF ∶FD =AG ∶GH , ∴GF ∥HD ,EG ∥BH .又EG ∩GF =G ,BH ∩HD =H , ∴平面EFG ∥平面β.又EF ⊂平面EFG ,∴EF ∥平面β. 综合①②可知,EF ∥平面β.(2)如图所示,连接AD ,取AD 的中点M ,连接ME ,MF . ∵E ,F 分别是AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19. [方法技巧]利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.[针对训练] 如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是矩形,E ,F ,G 分别是棱BC ,AD ,PA 的中点. (1)求证:PE ∥平面BFG ;(2)若PD =AD =1,AB =2,求点C 到平面BFG 的距离. 解:(1)证明:如图,连接DE .∵在矩形ABCD 中,E ,F 分别是棱BC ,AD 的中点, ∴DF =BE ,DF ∥BE ,∴四边形BEDF 是平行四边形,∴DE ∥BF . ∵G 是PA 的中点,∴FG ∥PD .∵PD ⊄平面BFG ,DE ⊄平面BFG ,FG ⊂平面BFG , BF ⊂平面BFG ,∴PD ∥平面BFG ,DE ∥平面BFG . 又PD ∩DE =D ,∴平面PDE ∥平面BFG . ∵PE ⊂平面PDE ,∴PE ∥平面BFG .(2)法一:∵PD ⊥平面ABCD ,FG ∥PD ,∴FG ⊥平面ABCD . 过点C 在平面ABCD 内,作CM ⊥BF ,垂足为M ,则FG ⊥CM . ∵FG ∩BF =F ,∴CM ⊥平面BFG , ∴线段CM 的长是点C 到平面BFG 的距离.在矩形ABCD 中,∵F 是AD 的中点,AD =1,AB =2,△BCM ∽△FBA , ∴CM BA =BC FB. ∵FB =AB 2+AF 2=172,BC =AD =1, ∴CM =41717,即点C 到平面BFG 的距离为41717.法二:设点C 到平面BFG 的距离为d . 在矩形ABCD 中,AF =12AD =12,AB =2,∴BF =14+4=172. ∵PD ⊥平面ABCD ,BF ⊂平面ABCD ,∴PD ⊥BF .∵FG ∥PD ,∴FG ⊥BF ,又FG =12PD =12,∴△BFG 的面积为12BF ·FG =178.∵△BCF 的面积为12BC ·AB =1,V C -BFG =V G -BCF , ∴13×178d =13×1×12,解得d =41717, 即点C 到平面BFG 的距离为41717.创新考查方式——领悟高考新动向1.如图,已知底面边长为3且高为1的正三棱柱ABC -A 1B 1C 1,过顶点A 作平面α与侧面BCC 1B 1交于EF ,且EF ∥BC ,若∠FAB =x ⎝⎛⎭⎫0<x ≤π6,四边形BCEF 的面积为y ,则函数y =f (x )的图象大致是( )解析:选C 由题意得,在Rt △ABF 中,BF =AB tan x ,所以y =f (x )=BC ·BF =BC ·AB tan x =3tan x ⎝⎛⎭⎫0<x ≤π6.由正切函数的图象及性质,可得C 正确.2.(多选)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 是线段B 1D 1上的两个动点,且EF =22,以下结论正确的为( ) A .AC ⊥BFB .三棱锥A -BEF 的体积为定值C .EF ∥平面ABCDD .异面直线AE ,BF 所成的角为定值解析:选ABC 对于A ,∵ABCD -A 1B 1C 1D 1为正方体,易得AC ⊥平面BDD 1B 1, ∵BF ⊂平面BDD 1B 1,∴AC ⊥BF ,故A 正确;对于B ,∵E ,F ,B 在平面BDD 1B 1上,∴A 到平面BEF 的距离为定值,∵EF =22,又B 到直线EF 的距离为1,∴△BEF 的面积为定值,∴三棱锥A -BEF 的体积为定值,故B 正确; 对于C ,∵EF ∥BD ,BD ⊂平面ABCD ,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;对于D,设上底面中心为O,当F与B1重合时,E与O重合,易知两异面直线所成的角是∠A1AO;当E与D1重合时,F与O重合,连接BC1,易知两异面直线所成的角是∠OBC1,可知,这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误.3.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:如图,连接HN,FH,FN,则FH∥D1D,HN∥BD,∵FH∩HN=H,D1D∩BD=D,∴平面FNH∥平面B1BDD1,若M∈FH,则MN⊂平面FNH,∴MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)4.(2021·福建漳州适应性测试)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q所形成的轨迹的长为________.解析:由于QB∥平面D1NT,所以点Q在过B且与平面D1NT平行的平面上,如图,取DC的中点E1,取线段AA1上一点G,使A1G=1,易证平面BGE1∥平面D1NT.延长BE1,AD,交于点E,连接EG,交DD1于点I,显然,平面BGE∩正方形D1DAA1=GI,所以点Q的轨迹是线段GI,易求得GI=10.答案:105.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.解析:如图,过点G作EF∥AC,分别交PA,PC于点E,F,过E,F分别作EN∥PB,FM∥PB,分别交AB,BC于点N,M,连接MN,则四边形EFMN是平行四边形(面EFMN为所求截面),且EF=MN=23AC=2,FM=EN=13PB=2,所以截面的周长为2×4=8.答案:8[课时跟踪检测]1.(多选)已知直线a,b,l,平面α,β,则下列命题中错误的选项为() A.若α⊥β,l⊥α,则l∥βB.若a⊥l,b⊥l,则a∥b C.若α⊥β,l⊂α,则l⊥βD.若l⊥α,l⊥β,则α∥β解析:选ABC对于A,由α⊥β,l⊥α,可知l⊂β或l∥β,故A错误;对于B,当a⊥l,b⊥l时,直线a与b可能平行,也可能相交,还可能异面,故B错误;对于C,当α⊥β,l⊂α时,l可能与平面β平行,也可能斜交,故C错误;对于D,垂直于同一条直线的两个平面互相平行,故D正确.2.(多选)已知α,β,γ是三个不重合的平面,l是直线.给出下列命题,其中正确的命题是()A.若l上两点到α的距离相等,则l∥αB.若l⊥α,l∥β,则α⊥βC.若α∥β,l⊄β,且l∥α,则l∥βD.若m⊥α,n⊥β,且α⊥β,则m∥n解析:选BC对于A,若直线l在平面α内,l上有两点到α的距离为0,相等,此时l不与α平行,所以A错误;对于B,因为l∥β,所以存在直线m⊂β使得l∥m,因为l⊥α,所以m⊥α,又m⊂β,所以β⊥α,所以B正确;对于C,l∥α,故存在m⊂α使得l∥m,因为α∥β,所以m∥β,因为l∥m,l⊄β,所以l∥β,C正确;对于D,因为m⊥α,n⊥β,α⊥β,所以m⊥n,所以D错误,故选B、C.3.(2021·潍坊期中)m,n是平面α外的两条直线,在m∥α的前提下,m∥n是n∥α的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由已知条件m∥α,结合线面平行的性质定理可得,过直线m作一平面β交α于直线l,则m∥l,从而存在l⊂α有m∥l,再由m∥n可得n∥l,从而有n∥α.反之,不一定成立,m,n可能相交、平行或异面.所以m∥n是n∥α的充分不必要条件,故选A. 4.若平面β截三棱锥所得的截面为平行四边形,则该三棱锥的所有棱中与平面β平行的棱有()A.0条B.1条C.2条D.1条或2条解析:选C如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD,又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.同理,AB∥平面EFGH.故有2条棱与平面EFGH平行.因此选C. 5.设m,n是两条不同的直线,α,β是两个不重合的平面,有以下四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n.其中真命题的序号是()A.②③B.③④C.①④D.①②解析:选A对于命题①,直线m,n可以相交、平行或异面,故是错误的;易知②③正确;对于命题④,直线m,n可以相交、平行或异面,故是错误的.故选A.6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β解析:选D m∥α,m∥β,则有m∥l,又AB∥l,所以AB∥m,所以A成立;由于m∥l,l⊥AC,所以m⊥AC,所以B成立;AB∥l,且A∈α,A∉l,α∩β=l,所以AB∥β,所以C成立;C点可以在平面β内,AC与直线l异面垂直,如图所示,此时AC⊥β不成立,所以D不一定成立.7.如图所示,三棱柱ABC-A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:如图,设BC1∩B1C=O,连接OD.∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1=1.答案:18.(2021·苏州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填序号).解析:①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.答案:②9.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.解析:①中,易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B ,可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP . 在②③中不能判定AB ∥平面MNP . 答案:①④10.(2021·武汉模拟)如图,已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点. (1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.解:(1)证明:在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O (图略),则O 是AC 的中点.又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC ∥EO ,又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S四边形ABCD×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3. 11.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证: (1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG . 证明:(1)如图,连接AE , 则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF , MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG .又M 为AB 的中点, 所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.如图,在四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,E ,F 分别在BC ,AD 上,EF ∥AB .现将四边形ABCD 沿EF 折起,使平面ABEF ⊥平面EFDC .若BE =1,在折叠后的线段AD 上是否存在一点P ,且AP =λPD ,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,请说明理由.解:AD 上存在一点P ,使得CP ∥平面ABEF ,此时λ=32.理由如下:当λ=32时,AP =32PD ,可知AP AD =35,如图,过点P 作MP ∥FD 交AF 于点M ,连接EM ,PC , 则有MP FD =AP AD =35,又BE =1,可得FD =5, 故MP =3,又EC =3,MP ∥FD ∥EC ,故有MP 綊EC , 故四边形MPCE 为平行四边形,所以CP ∥ME , 又ME ⊂平面ABEF ,CP ⊄平面ABEF , 故有CP ∥平面ABEF .。

平面与平面平行的判定教案

平面与平面平行的判定教案

平面与平面平行的判定教案一、教学目标1.知识目标:了解平面与平面平行的概念,掌握判定平面与平面平行的方法。

2.能力目标:培养学生观察、判断和分析问题的能力,以及解决问题的能力。

3.情感目标:培养学生合作学习和独立思考的意识,增强学生对数学学习的兴趣和自信心。

二、教学内容1.平面与平面的定义与性质。

2.判定平面与平面平行的方法。

三、教学重难点1.教学重点:判定平面与平面平行的方法。

2.教学难点:运用判定方法解决实际问题。

四、教学过程第一步:导入新知(10分钟)1.利用实物或图片,引导学生了解平面的定义。

2.回顾前面学习的知识,复习直线与平面的关系。

第二步:了解平面与平面的性质(15分钟)1.引导学生观察两个平面的例子,让学生发现平面既有相似之处又有不同之处。

2.引导学生提出平面与平面平行的问题。

3.通过讨论,引导学生总结平面与平面平行的定义。

第三步:判定平面与平面平行的方法(35分钟)1.按照文章的文字或草图,向学生介绍三种判定平面与平面平行的方法。

2.使用示例向学生讲解每种方法的步骤和原理。

3.让学生进行小组合作练习,巩固每种方法的具体应用。

4.引导学生讨论判定方法的优缺点,加深对方法的理解。

第四步:解决实际问题(25分钟)1.引导学生从生活中找出与平面平行相关的问题。

2.将学生分成小组,每个小组选择一个问题进行解答。

3.学生展示解决方案,并进行讨论和评价。

第五步:课堂总结(5分钟)1.归纳本节课学习的主要内容。

2.引导学生总结判定平面与平面平行的方法。

3.鼓励学生提出问题并解答。

五、教学反思本节课通过引导学生观察、思考和讨论,让学生建立起平面与平面平行的概念。

判定平面与平面平行的方法通过示例和练习,让学生在实践中掌握,培养了他们的解决问题的能力。

同时,通过小组合作和课堂讨论,培养了学生的团队合作和交流能力。

然而,本节课的时间规划可能略有不足,需要根据实际情况进行调整,确保学生有足够的时间理解和掌握知识。

面面平行的判定教案

面面平行的判定教案

平面与平面平行的判定(教案)一教材分析本节课是平面与平面位置关系的第一课时,主要内容是两个平面平行的判定定理及其应用,它是在学生学习了空间两直线位置关系、空间直线和平面位置关系之后,又一种图形直角的位置关系的研究,为后面学习两个平面平行的性质以及将来研究多面体奠定了基础。

本节把面面位置关系与线面位置关系类比,把面面平行的判定与线面平行的判定类比,渗透类比的数学方法。

定理的证明和应用体现了线线平行、线面平行到面面平行的转化,体现了转化的数学思想。

二教学目标1、知识与技能:理解平面与平面平行的判定定理,并会初步运用。

转化与化归思想在解决问题中的运用。

通过问题解决,进一步培养学生观察、发现的能力和空间想像能力。

2、过程与方法启发式。

以实际情景(三角板实验),启发、引导学生逐步经历定理的直观感知过程。

指导学生进行合情推理。

对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用。

3、情感态度与价值观让学生在发现中学习,增强学习的积极性;培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣,从而培养学生勤于动手、勤于思考的良好习惯。

三学生分析立体几何的学习,学生已初步入门,上一届线面平行的判定为学生学习本节的内容打下良好的基础。

高一学生已经有了自己的判断,合作,交流的能力,但是课堂的活动性不强,基于此现象,老师应充分利用自己的教学智慧和课堂组织能力积极调动学生的积极性,让学生积极参与到课堂的教学中来。

基于以上情况,本人选择了自主探究,合作交流,让学生通过自己的实践和思考去发现问题,解决问题。

四教学重难点【教学重点】平面与平面平行的判定定理及应用【教学难点】平面与平面平行的判定定理的探究发现及其应用五教学过程【教学过程】一、知识回顾1、判定直线与平面平行的方法有哪些?①根据定义,即直线与平面没有公共点。

②根据判定定理,即:若线线平行,则线面平行。

直线、平面平行的判定及性质教案

直线、平面平行的判定及性质教案

直线、平面平行的判定及性质适用学科 数学 适用年级高二适用区域 新课标 课时时长(分钟)60 知识点线面平行的判定 面面平行的判定 线面平行的性质 面面平行的性质 平行关系的综合应用教学目标1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题.教学重点 线与面、面与面平行关系的判定与性质定理 教学难点线与面、面与面平行关系的判定与性质定理教学过程一、复习预习 教师引导学生复习上节内容,并引入本节课程内容二、知识讲解考点/易错点1 直线与平面平行的判定定理文字语言 图形语言符号语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行þïýïüa ⊄αb ⊂αb ∥a ⇒a ∥α考点/易错点2 直线与平面平行的性质定理文字语言 图形语言符号语言符号语言性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行þïýïüa ∥αa ⊂βα∩β=b ⇒a ∥b考点/易错点3 平面与平面平行的判定定理文字语言图形语言符号语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行þïýïüa ⊂αb ⊂αa ∩b =P a ∥βb ∥β⇒α∥β考点/易错点4 平面与平面平行的性质定理文字语言 图形语言符号语言符号语言性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行þïýïüα∥βα∩γ=a β∩γ=b ⇒a ∥b三、例题精析【例题1】【题干】(1)已知直线l ∥平面α,P ∈α,那么过点P 且平行于直线l 的直线( ) A .只有一条,不在平面α内 B .有无数条,不一定在平面α内 C .只有一条,且在平面α内 D .有无数条,一定在平面α内(2)已知m ,n ,l1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2【答案】 (1) C (2)D 【解析】(1) 由直线l 与点P 可确定一个平面β,且平面α,β有公共点,有公共点,因此因此它们有一条公共直线,设该公共直线为m ,因为l ∥α,所以l ∥m ,故过点P 且平行于直线l 的直线只有一条,且在平面α内(2) 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么【解析】(1)因为MB∥NC,MB⊄平面DNC,NC⊂平面DNC,所以MB∥平面DNC. 又因为四边形AMND为矩形,所以MA∥DN. 又MA⊄平面DNC,DN⊂平面DNC. 所以MA∥平面DNC. 又MA∩MB=M,且MA,MB⊂平面AMB,所以平面AMB∥平面DNC. (2)因为四边形AMND是矩形,所以AM⊥MN. 因为平面AMND⊥平面MBCN,且平面AMND∩平面MBCN=MN,所以AM⊥平面MBCN. 因为BC⊂平面MBCN,所以AM⊥BC. 因为MC⊥BC,MC∩AM=M,所以BC⊥平面AMC. 因为AC⊂平面AMC,所以BC⊥AC.四、课堂运用【基础】1.已知直线m⊥平面α,直线n⊂平面β,则下列命题正确的是() A.若n∥α,则α∥β B.若α⊥β,则m∥nC.若m⊥n,则α∥βD.若α∥β,则m⊥n 解析:选D由m⊥α,α∥β,n⊂β⇒m⊥n. 2.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,的中点, 在平面ADD1A1内且与平面D1EF平行的直线() A.不存在.不存在 B.有1条C.有2条D.有无数条.有无数条解析:选D由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与平面D1EF 平行.平行.3.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC,CD的中点,则() A.BD∥平面EFGH,且四边形EFGH是矩形是矩形B.EF∥平面BCD,且四边形EFGH是梯形是梯形C.HG∥平面ABD,且四边形EFGH是菱形是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形是平行四边形解析:选B由AE∶EB=AF∶FD=1∶4知EF綊15BD,∴EF∥面BCD.又H,G分别为BC,CD的中点,的中点,∴HG綊12BD,∴EF∥HG且EF≠HG. ∴四边形EFGH是梯形.是梯形.4.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,a⊥β,则α∥β;③若a∥α,b∥α,则a∥b;④若a⊥α,b⊥α,则a∥b. 上述命题中,所有真命题的序号是________.解析:①错误.因为α与β可能相交;③错误.因为直线a与b还可能异面、相交.答案:②④②④5.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________.(写出所有符合要求的图形序号) 解析:对于①,注意到该正方体的经过直线AB的侧面与平面MNP平行,注意到直线AB和过点A的一个与平面对于②,注意到直线因此直线AB平行于平面MNP;对于②,MNP平行的平面相交,因此直线AB与平面MNP相交;对于③,注意到直线AB 与MP平行,且直线AB位于平面MNP外,因此直线AB与平面MNP平行;对于④,易知此时AB与平面MNP相交.综上所述,能得出直线AB平行于平面MNP的图形的序号是①③. 答案:①③①③【巩固】1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内与过B点的所有直线中() A.不一定存在与a平行的直线平行的直线B.只有两条与a平行的直线平行的直线C.存在无数条与a平行的直线平行的直线D.存在唯一与a平行的直线平行的直线解析:选A当直线a在平面β内且经过B点时,可使a∥平面α,但这时在平面β内过B点的所有直线中,不存在与a平行的直线,而在其他情况下,都可以存在与a平行的直线.平行的直线.2.如图,FD垂直于矩形ABCD所在平面,CE∥DF,∠DEF=90°90°. . (1)求证:BE∥平面ADF;(2)若矩形ABCD的一边AB=3,EF=23,则另一边BC的长为何值时,三棱锥F-BDE的体积为3?解:(1)证明:过点E作CD的平行线交DF于点M,连接AM. 因为CE∥DF,所以四边形CEMD是平行四边形.可得EM=CD且EM∥CD,于是四边形BEMA也是平行四边形,所以有BE∥AM. 而AM⊂平面ADF,BE⊄平面ADF,所以BE∥平面ADF. (2)由EF=23,EM=AB=3,得FM=3且∠MFE=30°30°. . 由∠DEF=90°可得FD=4,从而得DE=2. 因为BC⊥CD,BC⊥FD,所以BC⊥平面CDFE. 所以,V F-BDE=V B-DEF=13S△DEF×BC. 因为S△DEF =12DE×EF=23,V F-BDE=3,所以BC=3 2. 综上当BC=32时,三棱锥F-BDE的体积为 3. 【拔高】1.已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是() A.α∥β,m⊂α,n⊂β⇒m∥n B.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β解析:选D对于选项A,m,n平行或异面;对于选项B,可能出现l⊂α这种情形;对于选项C,可能出现n⊂α这种情形.这种情形.2.如图,三棱柱ABC-A1B1C1,底面为正三角形,侧棱A1A⊥底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB. 当点M在何位置时,BM∥平面AEF?解:法一:如图,取AE的中点O,连接OF,过点O作OM⊥AC于点M. ∵侧棱A1A⊥底面ABC,∴侧面A 1ACC 1⊥底面ABC , ∴OM ⊥底面ABC . 又∵EC =2FB ,∴OM 綊FB 綊12EC . ∴四边形OMBF 为矩形. ∴BM ∥OF . 又∵OF ⊂面AEF ,BM ⊄面AEF . 故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ ,∴PQ ∥AE .∵EC =2FB , ∴PE 綊BF ,PB ∥EF ,∴PQ ∥平面AEF ,PB ∥平面AEF . 又PQ ∩PB =P , ∴平面PBQ ∥平面AEF ,又∵BQ ⊂面PQB ,∴BQ ∥平面AEF . 故点Q 即为所求的点M ,此时点M 为AC 的中点.课程小结1.1.平行问题的转化关系:平行问题的转化关系:平行问题的转化关系: 线∥线判定判定性质线∥面――→判定性质面∥面性质性质 2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,化,即从“线线平行”到“线面平行”,即从“线线平行”到“线面平行”,即从“线线平行”到“线面平行”,再到“面面平行”;再到“面面平行”;再到“面面平行”;而在性质定理的应而在性质定理的应用中,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.决不可过于“模式化”.3.辅助线.辅助线((面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有关平行性质的应用.及相似中有关平行性质的应用.课后作业【基础】1.平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,a ∥α,a ∥β,故排除A.若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B.若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则α∥β,b ∥α,故排除C. 2.(2012·浙江模拟)已知α,β,γ是三个不重合的平面,a ,b 是两条不重合的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是( ) A .①或②.①或②B .②或③.②或③C .①或③.①或③D .只有②.只有②解析:选C 由定理“一条直线与一个平面平行,由定理“一条直线与一个平面平行,则过这条直线的任一平面则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C. 3.在空间内,设l ,m ,n 是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是( ) A .α⊥γ,β⊥γ,α∩β=l ,则l ⊥γB .l ∥α,l ∥β,α∩β=m ,则l ∥mC .α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥m ,则l ∥nD .α⊥γ,β⊥γ,则α⊥β或α∥β解析:选D 对于A ,∵如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,∴该命题是真命题;对于B ,∵如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,∴该命题是真命题;对于C ,∵如果三个平面两两相交,如果三个平面两两相交,有三条交线,有三条交线,有三条交线,那么这三条交线交于一点或相互平行,那么这三条交线交于一点或相互平行,那么这三条交线交于一点或相互平行,∴∴该命题是真命题;该命题是真命题;对于对于D ,当两个平面同时垂直于第三个平面时,这两个平面可能不垂直也不平行,∴D 不正确.不正确.4.已知平面α∥β,P ∉α且P ∉β,过点P 的直线m 与α,β分别交于A .C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8则BD 的长为________.解析:如图1,∵AC ∩BD =P ,∴经过直线AC 与BD 可确定平面PCD . ∵α∥β,α∩平面PCD =AB ,β∩平面PCD =CD , ∴AB ∥CD . ∴P A AC =PB BD ,即69=8-BD BD . ∴BD =245. 如图2,同理可证AB ∥CD . ∴P A PC =PBPD ,即63=BD -88. ∴BD =24. 综上所述,BD =245或24. 答案:245或24 【巩固】1.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,重合为一点,且该点为且该点为CD 的中点E ,由EMMA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 答案:平面ABC ,平面ABD2.如图,在直四棱柱ABCD -A1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.置;若不存在,请说明理由.解:存在这样的点F ,使平面C 1CF ∥平面ADD 1A 1,此时点F 为AB 的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF 綊CD ,∴四边形AFCD 是平行四边形, ∴AD ∥CF . 又AD ⊂平面ADD 1A 1,CF ⊄平面ADD 1A 1. ∴CF ∥平面ADD 1A 1. 又CC 1∥DD 1,CC 1⊄平面ADD 1A 1, DD 1⊂平面ADD 1A 1, ∴CC 1∥平面ADD 1A 1,又CC 1,CF ⊂平面C 1CF ,CC 1∩CF =C , ∴平面C 1CF ∥平面ADD 1A 1. 3.如图,点C 是以AB 为直径的圆上一点,直角梯形BCDE 所在平面与圆O 所在平面垂直,且DE ∥BC ,DC ⊥BC ,DE =12BC =2,AC =CD =3. (1)证明:EO ∥平面ACD ; (2)证明:平面ACD ⊥平面BCDE ; (3)求三棱锥E -ABD 的体积.的体积.解:(1)证明:如图,取BC 的中点M ,连接OM ,ME . 在△ABC 中,O 为AB 的中点,M 为BC 的中点, ∴OM ∥AC . 在直角梯形BCDE 中,DE ∥BC ,且DE =12BC =CM , ∴四边形MCDE 为平行四边形.∴EM ∥DC . ∴平面EMO ∥平面ACD , 又∵EO ⊂平面EMO , ∴EO ∥平面ACD . (2)证明:∵C 在以AB 为直径的圆上,∴AC ⊥BC . 又∵平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC . ∴AC ⊥平面BCDE . 又∵AC⊂平面ACD,∴平面ACD⊥平面BCDE. (3)由(2)知AC⊥平面BCDE. 又∵S△BDE =12×DE×CD=12×2×3=3,∴V E-ABD=V A-BDE=13×S△BDE×AC=13×3×3=3.【拔高】1.一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.上的一动点.(1)求该多面体的体积与表面积;求该多面体的体积与表面积;(2)求证:GN⊥AC;(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.明.解:(1)由题中图可知该多面体为直三棱柱,在△ADF中,AD⊥DF,DF=AD=DC=a,所以该多面体的体积为12a 3. 表面积为12a2×2+2a2+a2+a2=(3+2)a2. (2)连接DB,FN,由四边形ABCD为正方形,且N为AC的中点知B,N,D三点共线,且AC⊥DN. 又∵FD⊥AD,FD⊥CD,AD∩CD=D,∴FD⊥平面ABCD. ∵AC⊂平面ABCD,∴FD⊥AC. 又DN∩FD=D,∴AC⊥平面FDN. 又GN⊂平面FDN,∴GN⊥AC. (3)点P与点A重合时,GP∥平面FMC. 取FC的中点H,连接GH,GA,MH. ∵G是DF的中点,∴GH綊12CD. 又M是AB的中点,∴AM綊12CD. ∴GH∥AM且GH=AM. ∴四边形GHMA是平行四边形.∴GA∥MH. ∵MH⊂平面FMC,GA⊄平面FMC,∴GA∥平面FMC,即当点P与点A重合时,GP∥平面FMC. 2.如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的角平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B -DEG的体积.的体积.解:(1)证明:∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°60°. . ∵CD为∠ACB的角平分线,∴∠BCD=∠ACD=30°30°. . 3. .. 3211×131 313×3×3232. 。

面面平行的判定教案

面面平行的判定教案

平面与平面平行的判定一、教材分析1.1教材所处地位与作用本节课是人教版数学必修(2)第二章第二节第2课内容——平面与平面平行的判定。

本节课是在学生学习了线线、线面关系后,已具有一定的空间几何知识和一定的数学能力和方法的基础上进行的。

两个平面平行的判定定理是立体几何中的一个重要定理。

它揭示了线线平行,线面平行,面面平行的内在联系,体现了转化的思想。

通过本课的学习不仅能进一步培养学生的空间想象能力,逻辑推理能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习平面与平面的垂直打下基础。

1.2教学重点、难点1.2.1教学重点平面与平面平行的判定定理的理解1.2.2教学难点平面与平面平行的判定定理的应用(新教材将线面平行的性质安排在面面平行的判定之后,使得定理无法用理论推理来完成。

因此,我采用观察感知,操作发现的研究方法来解决这一难点。

通过讨论加深印象,设计更多的例子练习直线与直线的平行。

)根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:1.3目标分析1.3.1知识技能目标1、了解面面平行判定定理的发现过程。

2、理解证明过程必须的三个条件。

3、运用定理进行证明和解决生活中有关的实际问题。

1.3.2过程与方法1、学生通过观察、探究、思考,得出两平面平行的判定定理,体验如何把语言文字描述为数学符号。

2、通过问题的提出与解决,培养学生探究问题、解决问题的能力。

通过对例题的推证,培养学生观察、归纳、猜想、论证的能力。

进一步增强学生空间想象能力、空间问题平面化的思想。

1.3.3情感态度价值观1、通过主动参与探究活动,体验在科学发现中获得成功的喜悦,体验生活中的数学美,激发学习兴趣,养成勇于开拓和创新的科学态度。

2、在师生对图形分析的过程中,培养学生积极进行教学交流,乐于探索创新的科学精神。

3、通过同学之间讨论、互动,培养互帮互助的合作精神。

平面与平面平行的判定教案

平面与平面平行的判定教案

平面与平面平行的判定教案一、教学目标:1. 让学生理解平面与平面平行的概念。

2. 让学生掌握平面与平面平行的判定方法。

3. 培养学生的空间想象能力和思维能力。

二、教学内容:1. 平面与平面平行的定义。

2. 平面与平面平行的判定方法。

3. 判定平面与平面平行的条件。

三、教学重点与难点:1. 教学重点:平面与平面平行的判定方法。

2. 教学难点:判定平面与平面平行的条件。

四、教学方法:1. 采用讲解法,让学生理解平面与平面平行的概念和判定方法。

2. 采用案例分析法,分析判定平面与平面平行的条件。

3. 采用小组讨论法,培养学生合作学习和思考问题的能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考平面与平面之间的关系。

2. 讲解平面与平面平行的定义,让学生理解平面与平面平行的概念。

3. 讲解平面与平面平行的判定方法,让学生掌握判定平面与平面平行的方法。

4. 分析判定平面与平面平行的条件,通过案例让学生学会运用判定方法。

5. 课堂练习:让学生运用所学知识,判断给定的平面是否平行。

7. 布置作业:让学生课后巩固所学知识,提高解题能力。

六、教学评价:1. 通过课堂讲解和练习,评价学生对平面与平面平行概念的理解程度。

2. 通过案例分析和小组讨论,评价学生对平面与平面平行判定方法的掌握情况。

3. 通过课后作业和练习题,评价学生对判定平面与平面平行条件的应用能力。

七、教学资源:1. 教学PPT:包含平面与平面平行的定义、判定方法及案例分析。

2. 实物模型:用于直观展示平面与平面之间的关系。

3. 练习题库:包括不同难度的题目,用于巩固所学知识。

八、教学进度安排:1. 第一课时:介绍平面与平面平行的概念及判定方法。

2. 第二课时:分析判定平面与平面平行的条件,进行案例分析。

3. 第三课时:课堂练习,巩固所学知识。

九、教学反思:1. 课后收集学生作业,分析学生对知识的掌握情况。

2. 反思教学方法是否适合学生,如有需要,调整教学策略。

最新中职数学(高教版)基础模块教学设计:直线与直线、直线与平面、平面与平面平行的判定与性质

最新中职数学(高教版)基础模块教学设计:直线与直线、直线与平面、平面与平面平行的判定与性质

【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.2 直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境 兴趣导入观察图9−13所示的正方体,可以发现:棱11A B 与AD 所在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?介绍质疑引导 分析了解 思考启发 学生思考0 2 *动脑思考 探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B 与直线AD 就是两条异面直线.这样,空间两条直线就有三种位置关系:平行、相交、异面.将两支铅笔平放到桌面上(如图9−14),抬起一支铅笔的一端(如D 端),发现此时两支铅笔所在的直线异面.图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).讲解 说明 引领 分析思考 理解带领 学生 分析桌子 BA C D两支铅笔(1) (2) 图9−15 利用铅笔和书本,演示图9−15(2)的异面直线位置关系.仔细 分析关键语句 记忆5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢? 观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑引导 分析思考启发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 10 *创设情境 兴趣导入将平面 内的四边形ABCD 的两条边AD 与DC ,沿着对角线AC 向上折起,将点D 折叠到1D 的位置(如图9−17).此时A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑 引领 分析思考带领 学生 分析13图9−16图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?1为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形CC 1,又因为CC 1在平面图9−28(请画出实物图)*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .讲解 说明 引领 分析思考 理解 带领 学生 分析75 *运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况80 *理论升华 整体建构 思考并回答下面的问题:异面直线的定义?质疑回答及时了解学生ba第2题图βαMACD B 桌子 书图9−29【教师教学后记】图9-28你处理一下页脚没了内容太多了时间没分我觉得你得分两个教案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面与平面平行的判定教案文昌中学数学组曾叶教学目标1.使学生理解和掌握两个平面平行的判定定理及应用;2.加深学生对转化的思想方法的理解及应用.教学重点和难点重点:两个平面平行的判定定理;难点:两个平面平行的判定定理的证明.教学设计过程一、复习提问师:上节课我们研究了两个平面的位置关系,请同学们回忆一下,两个平面平行的意义是什么?生:两个平面没有公共点.师:对,如果两个平面平行,那么在其中一个平面内的直线与另一个平面具有怎样的位置关系呢?生:平行.师:为什么?生:用反证法,假设不平行,则这些线中至少有一条和另一个平面有公共点或在另一个面内,而此两种情况都说明这两个平面有公共点,与两个面平行矛盾.师:证得很好.反过来,如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.由以上结论,就可以把两个平面平行的问题转化为一个平面内的直线和另一个平面平行的问题.但要注意:两个平面平行,虽然一个平面内的所有直线都平行于另一个平面,但这两个平面内的所有直线并不一定互相平行,它们可能是平行直线也可能是异面直线,但不可能是相交直线.〔对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫〕二、新课师:接下来,我们共同对两个平面平行作定性研究,先来研究两个平面平行的判定——具有什么条件的两个平面是平行的呢?生:根据两个平面平行的定义,只要能证明一个平面内的任意一条直线与另一个平面平行,就可得出两个平面平行.师:很好,实质就是由线面平行来得到面面平行.而实际上,判定两个平面平行,并不需要一个平面内的所有直线都平行于另一个平面.下面我们共同研究判定两个平面平行的其它方法,请大家思考以下几个命题.(1)平面α内有一条直线与平面β平行,则α∥β,对吗?(2)平面α内有两条直线与平面β平行,则α∥β,对吗?〔学生讨论回答,并举出反例,得(1),(2)不对,教师接着问〕(3)平面α内有无数条直线与平面β平行,则α∥β,对吗?〔教师对学生的回答,作出适当评述〕师:以上三个命题均为假命题,那么,怎样修改一下命题的条件,就可得出正确结论? 〔学生讨论后,教师请一名同学回答〕生:把条件改为:一个平面内有两条相交直线都平行于另一个平面.师:说说你的想法.生:我想,两条相交直线确定一个平面,若它们分别与另一个平面平行,则所确定的平面也一定与这个平面平行.[此是学生的猜想,教师给予肯定,并引导学生进行严格论证]师:下面我们来证明.先把命题完整的表述出来.生:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.[教师板书,画图,并请一位学生写出已知,求证]已知:在平面β内,有两条相交直线a,b和平面α平行.求证:α∥β.师:欲证α∥β,而我们只知两个平面平行的定义,显然,若直接用定义证明,不很方便,大家看怎么办?生:用反证法.〔学生并未证明,只提出方法.教师先复习反证法的步骤:(1)否定结论,(2)推出矛盾,(3)得出结论.然后提出问题,让学生讨论,以引导学生用反证法得出结论〕师:问,(1)如果平面α与平面β不平行,那么它们的位置关系怎样.(2)如果平面α与平面β相交,那么交线与平行于平面α的直线a和b有什么关系?(3)相交直线a和b都与交线平行合理吗?错误结论是如何产生的?[教师根据学生回答,依次提出问题,同时板书该命题的证明过程]证明:假设α∩β=c.因为a∥α,a β,所以a∥c,同理b∥c,所以a∥b.这与题设a与b是相交直线矛盾.故α∥β.师:以上我们用反证法证明了命题的正确性.我们就把这一命题作为两个平面平行的判定定理之一.该定理是用来判定两个平面平行的,应用时关键是在一个平面内寻找两条相交直线,并证明与另外一个平面平行.也就是说:欲证面面平行,要先转化为线面平行.而转化的思想方法是数学思维的重要方法之一,也是立体几何中,解决问题常用的方法.[教师在该命题前写上:两个平面平行的判定定理,以强调本节课的重点]师:在现实生活中,该定理应用比较广泛,比如:木工师傅为了检查一个平面是否水平时,往往用水准器在这个平面上交叉放两次,水准器的气泡如果两次都是居中的,就可以判定这个平面是水平的,否则就不是水平的.其理论根据就是这一判定定理.[通过实例,证明定理在现实生活中的具体应用,贴近学生生活,更激发了学生探求知识的积极性,活跃思]师:大家还能发现哪些判定两个平面平行的定理呢?(教师巡视,找一名学生回答)生:我想,如果两个平面都垂直同一条直线,那么这两个平面一定是平行的.师:想法很好,能否谈一谈如何得出的?生:在学习平面几何时,曾有一个定理:垂直于同一条直线的两条直线平行.我就想,若把其中的两条直线改为两个平面,那么这两个平面会不会是平行的.师:这位同学用到了一个重要的研究数学问题的方法——类比.就是从已经学过的定理出发,对其中的某些条件作修改,得出一个新的命题.当然,这只是一种猜想,正确与否,还要大家进一步证明.这位同学的猜想简单的说就是:垂直于同一条直线的两个平面平行.下面我们就来证明这一命题.已知:AA′⊥平面α于A,AA′⊥平面β于A′.求α∥β.师:本题要证的是两个平面平行,有哪些工具呢?生:两个面平行的判定定理.师:应用该定理的条件是什么?生:是其中一面中心须有两条相交直线与另一面平行.师:显然,题目中并不具备这一条件,我们是否改用其它方法?[学生激烈讨论]生甲:直接在平面β内作直线a∩b=O,如图2(教师画图,使O与A′不重合,突出矛盾) 生乙:这样做不好,没有充分利用题目的已知条件,不妨直接在平面α内作直线a∩b=A.而直线a与AA′确定一平面γ,设γ∩β=a′.能证:a′∥a,则a∥β,得出线面平行.同理也可证b∥β.所以α∥β.师:不错.能够充分的利用题目中的条件,为解决问题带来大的方便.下面我们把作辅助线的方法,稍作改进,写出证明.证明:设经过直线AA′的两个平面γ,δ分别与平面α,β交于直线a,a′和b,b′.因为 AA′⊥α,AA′⊥β,所以 AA′⊥a,AA′⊥a′,故 a∥a′.则a′∥α.同理 b′∥α,又因为a′∩b′=A,所以α∥β.师:通过类比的方法,证明得到了两平面平行的又一个判定定理,它是在上一个判定定理的基础上得到的.要注意的是,为了得到两条相交直线,并未直接在一个面内作,而是过AA′作两个相交平面δ,γ,它们分别与α,β相交,得到相交直线.由线线平行,得线面平行,最后证明面面平行.这一证明方法是转化的思想方法的又一体现.生:在上题的证明过程中,我发现:“如果一个平面内两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行.”这样就可直接由线线平行证面面平行,不知对不对?师与生:对.[在授课过程中,学生往往能根据所研究问题,思考得到自己的想法,这是学生深入课堂,积极思维的一种体现,也是课堂上的一种反馈,教师应抓住机会,热情鼓励,同时给出肯定或否定的答复]师:想法很好,大家能证明吗?(学生议论)对,用第一个判定定理很快就能证明.但此命题不易作为判定定理直接应用.不过这一命题为我们今后判定两个平面平行提供了一条思路.三、例题分析[通过例题分析,复习巩固本节课的主要内容]师:前面我们得到了两个平面平行的判定定理,为方便,把前者叫判定定理,后者叫判定定理二.下面通过例题来分析如何使用判定定理.例已知正方体ABCD-A1B1C1D1.求证:平面AB1D1∥平面C1BD.师:欲证面面平行,由两个判定定理,必须有线面平行或是线面垂直.而题目所给的是正方体及体内的截面,隐含较多的线面平行的位置关系.我们先来考虑应用判定定理一.生:因为ABCD-A1B1C1D1为正方体,所以 D1C1∥=A1B1,AB∥=A1B1,所以 D1C1∥=AB,所以 D1C1BA为平行四边形,所以 D1A∥C1B,因为 C1B 平面C1BD,故 D1A∥平面C1BD.同理 D1B1∥平面C1BD.又 D1A∩D1B1=D1,所以平面AB1D1∥平面C1BD.师:大家再思考,能否用判定定理二来证明呢?[学生有的思考,有的议论]师:若要用判定定理二,遇到的问题是什么?生:条件中没有直接与面AB1D1和面BC1D垂直的直线.师:能解决吗?生:作辅助线.连结A1C,证明它与两个面都平行.师:要证线面垂直,要先转化为线线垂直.证明线线垂直的一个重要方法是什么? 生:三垂线定理及其逆定理.连结AC.可证A1C⊥BD.[至此,在教师的启发引导下,已基本解决问题,把证明过程规范化]证明:连结A1C,AC,因为 ABCD-A1B1C1D1为正方体,所以 A1A⊥平面ABCD.所以 AC为A1C在面ABCD上的射影.又因为 BD⊥AC,且BD 面ABCD,所以 A1C⊥BD.同理: A1C⊥BC1.又因为 BD∩BC1=B,所以 A1C⊥面C1BD.同理:A1C⊥平面AB1D1,所以平面AB1D1∥平面C1BD.[通过一题多解,训练学生思维的灵活性]小结1.由学生用文字语言和符号语言两种形式表述面面平行的两个判定定理.教师指出,两个判定定理是判定面面平行的两个基本的理论工具.2.空间两条直线平行,直线与平面平行,以及两个平面平行,三类平行关系的联系十分密切,它们相互依赖,相互转化.在实际运用中,我们可以通过线线平行,或线面平行来推论平面与平面平行.3.转化的思想方法,是数学思维的重要方法.解决数学问题的过程实质就是一个转化的过程,同学们要认真掌握.布置作业课本p.38习题五1,3.课堂教学设计说明1.指导思想这节课本着“教师为主导,学生为主体,课本为主线”的原则进行设计.教师的主导作用,在于激发学生的求知欲,通过教师在课堂上的精心设计,以启发式教学为主,引导学生步入问题情境,同时发挥学生的主观能动性,师生共同推进课堂教学活动,使学生有一个积极的态度接受新知识.学生是课堂教学的主体.教师就是要引导学生讨论、学生发言,使得学生参加到数学教学活动中,使得学生兴趣盎然,思维活跃,这样有利于培养学生独立思考问题的习惯,发展学生的创造性思维能力,教师要注重学生的活动,同时给于肯定及鼓励.2.教学实施(1)复习提问,不仅是旧知识的复习,而是有所深入、提高,同时在思维方法明确转化的思想方法.(2)在讲解两个平面平行的判定定理一时,教师不要急于得出结论,而是设计三个问题,逐步深入,引导学生自己发现结论,提高了学生解决问题的兴趣.又考虑到:反证法是高一立体几何中的一个重要而又难掌握的方法,虽然前几节课有所接触,然而对于同学而言仍属难点,为了分解难点,在学生提出用反证法之后,仍根据反证法的步骤,依次提出三个问题,引导学生证明,使证明方法容易接受.对于定理二,突出类比方法在解决问题中的应用及证明过程中的转化思想.(3)在选择例题时,讲求不要多,而要精,精心选择例题,使它确实能够起到复习、巩固本节课所学知识的作用.本节课所选的例题,比较简单.特别是两种证明方法中,第一种容易想到.但在引导学生得出第一种证明方法后,不能满足,而应启发学生,运用其它知识想更多的方法进行证明.当然,第二种方法比较难,特别是辅助线不易想到,教师在讲解时要慢慢启发.一题多解,是训练学生思维的一个较好的方式.。

相关文档
最新文档