用于摇瓶高密度培养的自诱导培养基

合集下载

自诱导培养基(lac启动子)说明书

自诱导培养基(lac启动子)说明书

自诱导培养基(lac启动子)说明书产品及特点本产品是本产品是在pET专用生长培养基的基础上开发而成的,它利用E.coli自身对培养基中不同碳源的调控利用机制,实现外源蛋白在细菌达到饱和生长期后的自动诱发。

本产品具有下列特点:1.本产品自动诱导表达,不需要添加任何IPTG或相关诱导物,节约成本。

2.免去了密切监控菌液密度的过程,尤其适合大规模筛选。

3.极大将细菌的生长密度OD600从2左右提高20以上。

4.极大提高外源蛋白的表达量,最高可占细菌总蛋白的45%。

5.与各种细胞培养容器(如培养瓶、培养罐、深孔管、发酵罐等)兼容。

6.本产品即开即用,非常方便。

7.适用于T7RNA聚合酶基因由lac启动子控制的任何表达系统,如pET系列。

8.不适用于lacZ或lacY突变的宿主菌。

规格及成分成份200mL塑料瓶包装成份A200mL成份B 1.25mL使用手册1份运输及保存常温运输及保存,有效期两年。

自备试剂蒸馏水使用方法一:培养基的配制1.配制自诱导培养基:将1.25mL溶液B全部加入到200mL的溶液A中即得自诱导培养基。

注意:必须严格无菌操作,否则自诱导培养基非常容易长细菌。

2.贴好标签待用。

如果长期时间不用,可以冻存在-20℃。

二:培养基的使用1.将构建好的质粒转化入细菌,如BL21(DE3),涂于自备的、含有1%葡萄糖的LB培养基中(需要加入适当浓度的抗菌素),37℃培养过夜。

2.挑取单个细菌接种到自备的、含适当浓度抗菌素的液体LB培养基中,37℃培养直到菌液浑浊但不饱和(一般需要6-8小时)。

3.将所得菌液按千分之一的体积比例加入自诱导培养基中(如果自诱导培养基体积是100mL,则加入100uL菌液),同时加入适当的抗菌素。

注意:在自诱导培养基中,如果使用卡拉霉素,其终浓度比一般的培养基高,需要100ug/mL。

由于本方法所得菌液密度大,故需要大量氧气,因此培养基的体积不能超过三角瓶的五分之一。

自诱导培养基

自诱导培养基

New Studier media for auto-induction and other applications Reference: F.W. Studier (2005) Protein production by auto-induction in high-density shaking cultures. Prot. Exp. Pur. 41, 207-234.ZYM-5052 medium for auto-inductionIt is recommended to use this medium for auto-induction. The amount of kanamycin (when appropriate) used should be 100 µg/ml.958 ml ZY tryptone1%yeast extract0.5%20 ml50 x M Na2HPO425 mMKH2PO425 mMNH4Cl50 mMNa2SO45 mM20 ml50 x 5052glycerol0.5%glucose0.05%-lactose0.2%2 ml 1 M MgSO4MgSO42 mM0.2 ml1000 x trace elements trace elements0.2 xZYP-5052 medium for auto-inductionThis medium should be used when stronger buffering is needed. The amount of kanamycin (when appropriate) used should be at least 200µg/ml. Better even would be 400 µg/ml.928 ml ZY tryptone1%yeast extract0.5%50 ml20 x P (formerly NPS)Na2HPO450 mMKH2PO450 mM(NH4)2SO425 mM20 ml50 x 5052glycerol0.5%glucose0.05%-lactose0.2%2 ml 1 M MgSO4MgSO42 mM0.2 ml1000 x trace elements trace elements0.2 xZYM-505 medium for plasmid preparationThis medium is used to grow high-density cultures for plasmid preparations.968 ml ZY tryptone1%yeast extract0.5%20 ml50 x M Na2HPO425 mMKH2PO425 mMNH4Cl50 mMNa2SO45 mM10 ml100 x 505glycerol0.5%glucose0.05%2 ml 1 M MgSO4MgSO42 mM0.2 ml1000 x trace elements trace elements0.2 xMDG non-inducing mediumThis medium is used for growing working cultures (such as overnight pre-cultures) and freezer cultures (glycerol stocks).955 ml sterile water20 ml50 x M Na2HPO425 mMKH2PO425 mMNH4Cl50 mMNa2SO45 mM12.5 ml40% glucose glucose0.5% 10 ml25% aspartate aspartate0.25%2 ml 1 M MgSO4MgSO42 mM0.2 ml1000 x trace elements trace elements0.2 xStock solutionsZY1% tryptone10 g/L0.5% yeast extract 5 g/LDissolve tryptone and yeast extract in the necessary amount of water to make up 1 L of total medium (e.g. 958 ml for ZYM-5052).50 x M 1.25 M Na2HPO4-7H2O335 g/L1.25 M KH2PO4170 g/L2.5 M NH4Cl134 g/L0.25 M Na2SO435.5 g/LAdd in sequence to 700 ml water and stir until all salts have been dissolved. Occasionally crystals appear but they can be re-dissolved in the microwave. The pH of a 20-fold dilution in water should be ~6.75.20 x P 1.0 M Na2HPO4-7H2O268 g/L1.0 M KH2PO4136 g/L0.5 M (NH4)2SO466 g/LAdd in sequence to 770 ml water and stir until all salts have been dissolved. The pH of a 20-fold dilution in water should be ~6.75.100 x 50550% glycerol500 g/L5% glucose50 g/L Add in sequence to 570 ml water and stir until all components have been dissolved.50 x 505225% glycerol250 g/L2.5% glucose25 g/L10% -lactose100 g/L Add in sequence to 730 ml water and stir until all components have been dissolved.Lactose is slow to dissolve. It may take two hours or more at room temperature.The process can be sped up by heating in microwave.500 x MgSO41 M MgSO4-7H2O24.65 g/100 mlFor 100 ml stock solution dissolve 24.65 g MgSO4in 87 ml water.Stock solutions (cont.)80 x G40% glucose40 g/100 mlTo make 100 ml stock solution add 40 g glucose to 74 ml water and stir until all glucose has been dissolved. It may take 45 min or more at room temperature. The process can be sped up by heating in microwave.100 x D25% aspartate25 g/100 mlFor 100 ml stock solution dissolve 25 g aspartic acid in 84 ml water and neutralize with 8 g NaOH (pH ~7).1000x trace elements50 mM FeCl 320 mM CaCl 210 mM MnCl 210 mM ZnSO 42 mM CoCl 22 mM CuCl 22 mM NiCl 22 mM Na 2MoO 42 mM Na 2SeO 32 mM H 3BO 3Preparation of 100 ml 1000x trace elements stock solution (in ~60 mM HCl).Prepare stock solutions of the salts (except FeCl 3) as mentioned in the table below.Dissolve 0.1 M FeCl 3 in 50 ml of 100x diluted concentrated HCl.Add to 36 ml sterile water:50 ml 0.1 M FeCl 3-6H 2O 2.70 g/100 ml 2 ml 1.0 M CaCl 2-2H 2O 15.8 g/100 ml 1 ml 1.0 M MnCl 2-4H 2O 19.8 g/100 ml 1 ml 1.0 M ZnSO 4-7H 2O 28.8 g/100 ml 1 ml 0.2 M CoCl 2-6H 2O 4.76 g/100 ml 2 ml 0.1 M CuCl 2-2H 2O 1.70 g/100 ml 1 ml 0.2 M NiCl 2-6H 2O 4.76 g/100 ml 2 ml 0.1 M Na 2MoO 4-2H 2O 2.42 g/100 ml 2 ml 0.1 M Na 2SeO 3 1.73 g/100 ml 2 ml0.1 M H 3BO 30.62 g/100 mlChemicalsCompound mol. weight company order number tryptone Sigma T-9410 yeast extract Sigma Y-1000 glycerol92.10Roth3783.1 glucose180.16Roth X997.2-lactose-H2O360.32Roth6868.2Na2HPO4-7H2O268.07Sigma S-9390KH2PO4136.09Sigma P-5379NH4Cl53.49Merck1145.1000Na2SO4142.0Sigma S-6264(NH4)2SO4132.1OLS2701316MgSO4-7H2O246.48Roth P072.2aspartic acid133.1Sigma A-8949FeCl3-6H2O270.30Sigma F-2877CaCl2-2H2O158.2Sigma C-3881MnCl2-4H2O197.91Sigma M-3634ZnSO4-7H2O287.56Sigma Z-4750CoCl2-6H2O237.95Sigma C-8661CuCl2-2H2O170.48Sigma C-6641NiCl2-6H2O237.72Sigma N-5756Na2MoO4-2H2O241.9Sigma M-1003Na2SeO3172.9Sigma S-5261H3BO361.83Merck165.1000Arie Geerlof 6 February 2007。

大肠杆菌自动诱导培养基配方及操作方法

大肠杆菌自动诱导培养基配方及操作方法

大肠杆菌自动诱导培养基配方及操作方法大肠杆菌(Escherichia coli)是一种常见的肠道细菌,也是实验室中常用的菌种之一、下面是大肠杆菌自动诱导培养基的配方及操作方法。

一、自动诱导培养基配方:1.碳源:-葡萄糖(10g/L):作为主要的碳源供给菌体能量。

-乳糖(5g/L):用于诱导乳糖酶的表达。

2.氮源:-酵母粉(5g/L):提供菌体生长所需的氮源。

3.盐类:-氯化钠(5g/L):维持培养基的渗透压和离子平衡。

4.调节剂:-草酸二钠(1.36g/L):调节培养基的pH值,保持适宜的生长环境。

5.其他添加剂:-磷酸二氢钾(5g/L):提供磷酸盐的源,促进菌体生长。

-氯化钾(0.25g/L):提供钾盐的源,满足菌体对钾的需求。

-氯化镁(0.5g/L):提供镁盐的源,满足菌体对镁的需求。

配方中的所有化学品都可以在实验室常见试剂供应商处购买得到。

二、自动诱导培养基操作方法:1.准备培养基:a.根据配方将所需的化学品称量并溶解在适量的去离子水中。

b.用自动滤器(pH7.0)滤过溶液以去除可能存在的微生物污染。

c.调节培养基的pH至7.0,再用去离子水补足总体积至所需浓度。

2.灭菌:a.将调好pH的培养基倒入适量的培养瓶中。

b.放入高压灭菌锅中,进行高压灭菌。

3.菌种接种:a.选取一株适宜的大肠杆菌菌株,用无菌技术将其接种至培养基中。

b. 将接种好的培养基培养瓶放入恒温摇床中,以28°C恒温、200 rpm的条件下培养。

4.观察生长:a.在培养过程中,定期取一部分培养基进行测量分析。

b.测量菌液的光密度(OD值),以评估菌体生长情况。

5.收获细胞:a.在菌液达到一定浓度后,用无菌操作将菌液转移到离心管中。

c.将沉淀用缓冲液重悬。

6.文库构建:a.从收获的菌体中提取DNA,并使用合适的方法构建文库。

以上即为大肠杆菌自动诱导培养基的配方及操作方法。

在实验过程中,要注意使用无菌技术,尽量避免微生物污染。

重组人抗血栓蛋白在大肠杆菌中的自诱导表达及纯化

重组人抗血栓蛋白在大肠杆菌中的自诱导表达及纯化

重组人抗血栓蛋白在大肠杆菌中的自诱导表达及纯化龚志飞;杨翔;颜法宝;陈强;孙小强;华子春【摘要】旨在优化重组人抗血栓蛋白(rHAP)工程菌的自诱导培养基,以提高菌体产量及可溶性的重组rHAP蛋白含量.选取蛋白胨、酵母提取物、甘油、葡萄糖为因素,各取4个水平,采用正交表L16(45)进行试验设计,时影响菌体生长和可溶性rHAP表达水平的乳糖浓度进行了优化.结果表明自诱导培养基碳氮源的最优配比:2%蛋白胨,1.5%酵母,0.5%甘油,0.03%葡萄糖,0.2%乳糖.此时表达菌密度OD600和可溶性rHAP目标蛋白表达量分别是未优化前的2.04倍和2.85倍.在20 L发酵表达时,rHAP工程菌OD600值高迭93,菌体温量为1 620 g/20L.利用Q-Sepharose和SP-Sepharose纯化,Western blotting结果表明表达蛋白为目的融合蛋白.【期刊名称】《生物技术通报》【年(卷),期】2011(000)012【总页数】7页(P192-198)【关键词】抗血栓蛋白;优化培养;发酵;纯化;鉴定【作者】龚志飞;杨翔;颜法宝;陈强;孙小强;华子春【作者单位】常州大学石油化工学院,常州213164;常州靶标生物医药研究所有限公司,常州213164;南京大学常州高新技术研究院,常州213164;常州靶标生物医药研究所有限公司,常州213164;南京大学常州高新技术研究院,常州213164;常州靶标生物医药研究所有限公司,常州213164;南京大学常州高新技术研究院,常州213164;常州大学石油化工学院,常州213164;南京大学常州高新技术研究院,常州213164【正文语种】中文重组人抗血栓蛋白(rHAP)[1]正是利用蛋白质工程和基因工程技术,将人胎盘抗凝蛋白与水蛭素C端结构域结合在一起的一种新的抗凝蛋白,分子量大小约为38 kD。

初步研究表明,重组人胎盘抗凝蛋白变体保留了Annexin V和血小板结合的性质,同时又具有明显的凝血酶抑制活性,而且其凝血酶抑制活性具有明显的剂量依赖关系[2]。

Sc-U诱导培养基[合集]

Sc-U诱导培养基[合集]

Sc-U诱导培养基[合集]第一篇:Sc-U诱导培养基Sc-U诱导培养基SC Minimal Medium and PlatesSC is synthetic minimal defined medium for yeast.0.67% yeast nitrogen base(without amino acids)2% carbon source(i.e.glucose or raffinose棉子糖)0.01%(adenine, arginine, cysteine, leuine, lysine, threonine, tryptophan, uracil)0.005%(aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine)2% agar(for plates)1.Dissolve the following reagents in 900 ml deionized water(800 ml if preparing medium containing raffinose).Note: We make medium and plates as we need them and weighout each amino acid.Many researchers prepare 100X solutions of each amino acid that they need.Reminder: Omit uracil to make selective plates for growing pYES2 transformants.6.7 g Yeast Nitrogen Base0.1 g each 0.05 g eachadenine aspartic acidarginine histidinecysteine isoleucineleucine methioninelysine phenylalaninethreonine prolinetryptophan serineuracil(U)tyrosinevaline2.If you are making plates, add the agar after dissolving the reagents above.3.Autoclave at 15 psi, 121°C for 20 minutes.4.Cool to 50°C and add 100 ml of filter-sterilized 20% glucose or 200 ml of filtersterilized10% raffinose.5.Pour plates and allow to harden.Invert the plates and store at +4°C.Plates are stable for 6 months.Induction MediumIf you are making induction medium, follow Steps 1-3 above except dissolve the reagents in 800 ml of deionized water.Cool the medium to 50°C and add 100 ml of filter-sterilized 20% galactose and 100 ml of filter-sterilized 10% raffinose to the medium.第二篇:scu(范文模版)四川大学2012年暑期社会实践报告关于成都环卫工人的调研报告***背景:环卫工人被人亲切的称着“城市的美容师”,承担着城市的垃圾的清扫和运输,如果将一个城市比着一个巨大无比的生物,那么环卫工人就相当于排泄系统。

大肠杆菌工程菌高密度发酵生产L-抗坏血酸-2-葡糖苷酶

大肠杆菌工程菌高密度发酵生产L-抗坏血酸-2-葡糖苷酶

大肠杆菌工程菌高密度发酵生产L-抗坏血酸-2-葡糖苷酶余玉奎;桂馨;李平;李敏【摘要】为提高大肠杆菌基因工程菌E.coli-pET21a高密度培养生产L-抗坏血酸-2-葡糖苷酶产量,采用摇瓶培养的方法,通过考察培养液菌体量和酶产量,筛选适用于E.coli-pET21a液体深层发酵的培养基.50 L发酵罐采用适用于工业化大生产的搅拌、供氧、pH控制和过程补料方式,进行液体深层发酵放大培养,大幅度提高酶产量.通过优化发酵过程控制pH和诱导温度,发酵液酶活提高至88 U/mL,达到摇瓶培养的10.1倍.研究结果对大肠杆菌基因工程菌高密度培养,高效表达生物酶有重要的参考价值.【期刊名称】《工业微生物》【年(卷),期】2018(048)002【总页数】6页(P29-34)【关键词】L-抗坏血酸-2-葡糖苷;维生素C;大肠杆菌;液体深层发酵;诱导剂【作者】余玉奎;桂馨;李平;李敏【作者单位】同济大学生命科学与技术学院,上海200092;同济大学生命科学与技术学院,上海200092;同济大学生命科学与技术学院,上海200092;同济大学生命科学与技术学院,上海200092【正文语种】中文维生素C(英语:Vitamin C,又称L-抗坏血酸)作为酸性药剂、还原剂、抗氧化剂、漂白剂以及化学反应物、食品和饮料中的稳定剂[1],广泛应用于化妆、保健、医药、食品行业。

在医疗卫生方面,维生素C参与许多新陈代谢过程,具有提高人体免疫力、抗衰老、预防心血管、增加对感冒抵抗力、促进胶原蛋白的合成[2]、抑制癌细胞增殖[3],防治坏血病和传染病、促进创伤愈合等作用,是辅助治疗的保健药品[4]。

在化妆品中,维生素C可作为还原剂、紫外线吸收剂和黑色素形成抑制剂来使用[2]。

具有美白皮肤、预防色斑、抗氧化功效。

由于人体内缺乏古洛糖酸内酯氧化酶,不能自身合成维生素C,必须靠体外摄取[5]。

因此,维生素C被列为人体的必需营养元素,在保护人类健康和生长过程中起到不可替代的重要作用[1]。

重组大肠杆菌产耐热α-L-鼠李糖苷酶高密度发酵条件的优化

重组大肠杆菌产耐热α-L-鼠李糖苷酶高密度发酵条件的优化

α-L-鼠李糖苷酶(α-L-rhamnosidase ,EC 3.2.1.40)广泛存在于自然界中,如哺乳动物组织、植物、真菌、细菌等[1-4]。

该酶是一种应用广泛的糖苷水解酶,它能高效水解多种末端含有非还原性鼠李糖残基的天然化合物,如水解芦丁为异槲皮苷[3],水解淫羊藿苷C 为淫羊藿苷[5],水解柚皮苷为普鲁宁等[4]。

此外,少数α-L-鼠李糖苷酶还能以L-鼠李糖为供体,通过逆水解反应催化合成鼠李糖苷,如甘露醇鼠李糖基化、酚类化合物鼠李糖基化等[6,7]。

迄今为止,根据CAZy 数据库,α-L-鼠李糖苷酶分属于三大糖苷水解酶家族,即GH13家族、GH78家族和GH106家族[8],其中大部分属于GH78家族。

此外,α-L-鼠李糖苷酶是一种重要的酶,在食品和制药工业中有着广泛的应用。

然而,目前报道的α-L-鼠李糖苷酶普遍产量不高,到目前为止,全球还没有商品化的α-L-鼠李糖苷酶产品,这极大限制了该酶在工业上的应用。

大肠杆菌是遗传背景最清楚的菌株,其具有培养成本低、抗污染能力强、生长周期短、蛋白表达量高等优势,已经成为最常用的外源蛋白表达系统。

采用高密度发酵技术,能显著提高所培养的菌体密度,最终增加单位体积单位时间内目的产物的比生产率,缩减生产周期,提升经济效益,已经在工业中有很广泛的应用[9]。

在大肠杆菌高密度发酵中,大多采用补料分批发酵方式,以实现高密度的大肠杆菌和所需的蛋白质生产[10]。

这种补料方式一方面可以避免因某些营养成分初始浓度过高而出现底物抑制现象,另一方面又能够防止因限制性营养成分被耗尽而影响细胞的生长和产物的形成。

重组大肠杆菌高密度发酵是一个复杂的过程,需要对其生长的发酵参数进行优化,如葡萄糖进料速率、诱导温度、诱导pH 等。

葡萄糖是一种便宜且速效碳源,在大肠杆菌发酵生产中优于其他碳源。

但是,在有氧条件下,过多的葡萄糖会导致大肠杆菌代谢副产物的产生。

最常见的副产物是乙酸,它是由磷酸转乙酰酶(PTA )/乙酸激酶(ACKA )和丙酮酸氧化酶(POXB )两种途径产生的[11],主要原因是加入中央代谢系统的碳与细胞呼吸或三羧酸循环的有限能力之间不平衡[12]。

应用自动诱导表达体系提高原核表达效率

应用自动诱导表达体系提高原核表达效率

农业生物技术学报Journal of Agricultural Biotechnology2009,17(1):138~143*基金项目:国家高技术研究与发展计划(863)项目(No.2004AA213072)资助。

**通讯作者。

Author for correspondence.教授,主要从事克隆技术与转基因动物的研究。

E-mail:<Zhy1956@>.收稿日期:2008-01-07接受日期:2008-02-10·研究论文·应用自动诱导表达体系提高原核表达效率*彭树英1,2,吕宁1,贾淑玲1,孙健红1,张涌1**(1.西北农林科技大学生物工程研究所,杨凌712100;2.淮北煤炭师范学院生物系,淮北235000)摘要:自动诱导表达体系是依据T7表达菌株对于培养基中的碳源和能源的利用机制建立起来的,用于生产各种异源蛋白更加高效、便捷和经济。

为提高重组蛋白在原核细胞中的表达效率,构建了以S基因抗原位点区作为目的基因的原核表达重组质粒pET-S1,并将其转化入大肠杆菌(Escherichia coli)BL21(DE3)菌株。

用IPTG诱导表达系统和自动诱导表达系统分别对目的蛋白进行表达。

结果表明,目的蛋白最高表达量分别占菌体总蛋白的25.9%和45.1%,表明自动诱导表达系统可明显提高表达效率。

关键词:原核表达;pET-28a;IPTG;自动诱导中图分类号:S188文献标识码:A文章编号:1006-1304(2009)01-0138-06Higher Prokaryotic Expression Efficiency Achieved byAuto-induction Expression SystemPENG Shu-ying1,2,LV Ning1,JIA Shu-ling1,SUN Jian-hong1,ZHANG Yong1**(1.Institute of Biotechnology,Northwest Agriculture and Forestrty University,Yangling712100,China;2.Biology of Development,Huaibei Coal Industry Teachers College,Huaibei23500,China)Abstract:To obtain the higher expression efficiency of producing recombinant protein in Escherichia coli,the prokaryotic ex-pressing vector pET-S1,which contained whole antigenic sites of S gene from swine transmissible gastroenteritis coronavirus(TGEV), was constructed and transformed into E.coli strain BL21(DE3).The target protein was expressed by the IPTG inducing expression system and auto-induction expression system,respectively.The highest amount of target protein accounted for25.9%and45.1%of to-tal bacteria protein,respectively,indicating that the expression efficiency was significantly improved by auto-induction expression system.Key words:prokaryotic expression;pET-28a;IPTG;auto-inductionpET系统是一种能在大肠杆菌(Escherichia col-i)中表达重组蛋白的表达系统。

抗狂犬病毒糖蛋白单链抗体scFV98H的制备及应用研究

抗狂犬病毒糖蛋白单链抗体scFV98H的制备及应用研究

抗狂犬病毒糖蛋白单链抗体scFV98H的制备及应用研究狂犬病是由狂犬病毒引起的人兽共患全球性传染疾病,人和动物一旦发病,几乎100%死亡。

WHO推荐,对于狂犬病暴露,尤其严重暴露者应全程注射狂犬疫苗与抗狂犬病抗体。

抗血清对预防狂犬病起着至关重要作用,由于马免疫血清(ERIG)副反应较大,而人源狂犬病免疫球蛋白(HRIG)来源有限,且存在潜在的病原污染与批次间差异等缺点。

因此,急需开发治疗用人源抗狂犬病单克隆抗体或者人源化基因工程抗体。

同时无论是狂犬疫苗生产过程中的滴度检测,还是疫苗免疫后的抗狂犬病中和抗体检测都需要相应的检测抗体。

经研究证明,由几株能够中和狂犬病毒的人源化单克隆抗体组成的鸡尾酒混合抗体,有可能取代HRIG或ERIG用于狂犬病的暴露后预防。

完整单克隆抗体必须在真核系统中进行表达,表达量小,成本高,而基因工程单链抗体可以在原核系统中高效表达。

大肠杆菌是目前基因工程药物广泛使用的原核表达系统,表达产物常以包涵体的形式存在。

因此,这种表达产物的复性与纯化工艺将成为基因工程下游技术的关键和难点。

本论文主要研究了大规模制备抗狂犬病单链抗体scFV98H的发酵、复性和纯化工艺,并探索作为诊断制剂和治疗制剂的可行性。

本文主要研究内容和结果如下:1.检测方法的建立与验证针对蛋白浓度测定方法(BCA法)进行了验证,在8M尿素、3M尿素、0.1M尿素、10%甘油、5%蔗糖体系中对线性、准确性、精密度、检测下限和定量下限进行了测定,在10%甘油、5%蔗糖体系检测的线性范围变窄,但是在各自的线性范围内,准确性与精密度的CV&lt;20%,符合可接受标准。

针对测定大肠杆菌宿主DNA的方法(PicoGreen法)进行了验证,在8M尿素体系、3M尿素体系、0.1M尿素体系中对线性、准确性、精密度、检测下限和定量下限等指标进行了测定;3M尿素体系、0.1M尿素体系中准确性与精密度的CV&lt;20%,线性关系良好,符合可接受标准,8M尿素体系的样品需要稀释到3M以下进行检测。

大肠杆菌自动诱导培养基配方及操作方法

大肠杆菌自动诱导培养基配方及操作方法

很多企业或科研院所工作的朋友在做大肠杆菌表达某个蛋白时,常会发现某些有毒性的蛋白在普通的LB培养基中增殖速度缓慢或不能增殖。

如口蹄疫O型病毒3ABC,3个基因合在一起重组入PET系列表达载体时,在诱导前扩菌阶段细菌增殖缓慢。

这时很多人会认为出现这种情况的原因是遭到了噬菌体感染。

很多朋友也会遇到这样的问题,费了很大功夫将要表达的目的基因进行了密码子优化,然而最终结果还是不能表达所需蛋白。

了解自动诱导方法增加一种成功表达目的蛋白的机会!若你所要表达的目的蛋白不能表达,所有的条件(不同的诱导温度、不同的诱导时间、不同的诱导剂浓度)都进行了试验还是没有有所突破,这时你可以试一试采用大肠杆菌自诱导的方法。

我们知道很多蛋白在不加诱导剂的情况下有微量的表达,但是这微量表达的蛋白反而会对目的蛋白的大量表达产生抑制!还有不同抗性的表达质粒在长时间培养抗性消失时会发生不同情况的质粒丢失!特别是氨苄抗性的质粒!此时你也可以考虑采用联合自动诱导的方法。

本研究配方减少了传统的ITPG诱导过程,将扩菌过程和诱导过程相结合,利用培养基的不同组分被分别代谢用来促进细胞生长到高密度和自动诱导lac启动子驱动蛋白表达。

表达过程更便利,同时增加蛋白的可溶性及表达量,提高蛋白的表达效率。

减少IPTG对细菌的毒害作用!自动诱导培养基配方如下:胰蛋白胨20g酵母提取物10g丁二酸钠 5.4g二水柠檬酸钠0.3g甘油25ml葡萄糖0.5gAlpha-乳糖2gNa2HPO4 2.55gKH2PO4 3.4gNH4CL 2.68gNa2SO4 0.71gMgSO4.7H2O 0.493gFeCL3.6H2O 0.03g以上组分定容与1L蒸馏水中。

自动诱导操作步骤:1、10微升菌液加入10毫升培养基中,复苏过夜。

2、将复苏好的菌液接种入250毫升自动诱导培养基中。

3、220rpm 37度培养14-16h。

4、收集菌体,检测目的蛋白表达情况,并进行蛋白的纯化!。

自诱导培养基原理

自诱导培养基原理

自诱导培养基原理
嘿,朋友们!今天咱就来聊聊自诱导培养基原理。

这玩意儿啊,就像是一个神奇的魔法盒子,能变出我们想要的东西呢!
你看啊,自诱导培养基就像是一个超级大厨,它知道怎么把各种食材搭配得恰到好处,让微生物们吃得开心,长得壮壮的。

它里面有各种各样的营养成分,就像我们吃饭要有肉、有菜、有主食一样。

这些营养成分就是为微生物们准备的大餐呀!
微生物们在自诱导培养基里那叫一个舒服,就像我们在温暖的家里一样。

它们可以尽情地吸收营养,然后快快长大。

这就好比我们小孩子,吃得好才能长得高嘛!
而且哦,自诱导培养基还有个厉害的地方,它能自己调节,让微生物们在最适合的环境里生长。

这多牛啊!就好像有一双无形的手,时刻照顾着微生物们,冷了给它们加被子,热了给它们开空调。

咱再想想,要是没有自诱导培养基,那微生物们得多可怜呀,就像没饭吃的孩子一样。

那我们想研究它们、利用它们可就难喽!
自诱导培养基不就是为我们打开微生物世界大门的钥匙吗?有了它,我们才能更好地了解微生物,让它们为我们服务呀!
你说,这自诱导培养基是不是很神奇?它就像是一个默默奉献的幕后英雄,虽然我们平时不太注意到它,但它却在为我们的科学研究和生产做出巨大的贡献呢!我们真应该好好感谢它呀!它让我们的科学变得更加丰富多彩,让我们的生活变得更加美好。

所以啊,可别小看了这自诱导培养基哦!它的作用可大着呢!。

Fibrolase表达菌自诱导摇瓶发酵研究

Fibrolase表达菌自诱导摇瓶发酵研究

h bi s c v of f o i 【 ocui ]nem h f oi co a o v h r e fe e epes no Fboa n n e ete teov ul ati f b nlt .Cn ls n 1 e t do at n ut ncnrsle tepolmo l k xrsi f irl eadi r s h o y i t i i yc y o o u d i e d b ad o s ca
mak dy ices db x rsin tru h a t n u t n,te r c iv erma i llv latra t n u t na 4h,a d p rf d Fboaeh s re l n rae ye pe so ho g uo id ci o h yweea he e t i d h xma e e fe uo id ci t1 o n uie irls a i
张守 郭蔼光 (郑 大 生 工 系河 郑 40;西 农 科 大 农 分 生 学 西 重 实 室陕 杨 7l 涛, 2 1 州 学 物 程 ,南 州 5o2 北 林 技 学 业 子 物 陕 省 点 验 ,西 凌 l o . ol. 2) 0
摘要 『 目的] 解决 n ma 表达 时的渗 漏问题 , b le s 实现 高 密度 发酵 。[ 法]先在 培养基 中培养 F ma 方 i le大肠杆 菌胞 内可溶表 达 工程 茵 , b s 再按 l %的接种 量接 种到 zM- 5 培 养基 中培 养 , 时取 样 , 究可溶表 达工 程 茵表 达 量 、 Y 52 0 定 研 茵体 量 与培 养 时间的 关 系, 行 纯化和 活性 进 分析 。 [ 结果 ]自 导表 达能明显提 高 茵体 收获量和 目的蛋 白表 达量 , 培 养 1 诱 在 4h时表达 量和 茵体 量达 到 最大值 , 纯化 的重 组 F ma i le b s 具有 明显的 纤溶活性 。[ 结论 ] 方法能 有效抑制表 达渗 漏 问题 , 该 实现 高密度 发 酵。 关键 词 F r a ; i o e 自诱导 ; 酵 bl s 发

毕赤酵母培养基大全

毕赤酵母培养基大全

毕赤酵母表达的培养基配制2.1 LB(Luria-Bertani)培养基:Trypton l%Yeast Extract 0.5%NaCl l%PH 7.0制作平板时加入2%琼脂粉。

121℃高压灭菌20min。

可于室温保存。

用于培养pPICZαA原核宿主菌TOP10F’时可加入Zeocin 25ug / ml。

2.2 LLB(Low Salt LB)培养基:Trypton l%Yeast Extract 0.5%NaCl 0.5%PH 7.0制作平板时加入2%琼脂粉。

121℃高压灭菌20min。

可于室温保存数月。

用于培养pPICZαA原核宿主菌TOP10F’时,加入Zeocin 25ug / ml,可以4℃条件下保存1~2周。

2.3 YPD (又称YEPD)Yeast Extract Peptone Dextrose Medium,(Yeast Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基) Trypton 2%dextrose (glucose) 2%+agar 2%+Zeocin 100 μg/ml液体YPD培养基可常温保存;琼脂YPD平板在4℃可保存几个月。

加入Zeocin 100ug / ml,成为YPDZ培养基,可以4℃条件下保存1~2周。

2.4 YPDS + Zeocin 培养基(Yeast Extract Peptone Dextrose Medium):yeast extract 1%peptone 2%dextrose (glucose) 2%sorbitol (山梨醇)1 M+agar 2%+ Zeocin 100 μg/ml不管是液体YPDS培养基,还是YPDS + Zeocin 培养基,都必须存放4℃条件下,有效期1~2周。

2.5 MGYMinimal Glycerol Medium (最小甘油培养基)(34%YNB;1%甘油;4*10-5%生物素)。

细胞培养常用培养基及基本特性

细胞培养常用培养基及基本特性

细胞培养常用培养基及基本特性The Standardization Office was revised on the afternoon of December 13, 2020常用培养基及基本特性1、RPMI-1640 MediumRPMI-1640广泛应用于哺乳动物、特殊造血细胞、正常或恶性增生的白细胞,杂交瘤细胞的培养,是目前应用十分广泛的培养基。

主要用于悬浮细胞培养。

其它像K-562、HL-60、Jurkat、Daudi、IM-9等成淋巴细胞、T细胞淋巴瘤细胞以及HCT-15上皮细胞等均可参考使用。

2、Minimum Essential Medium(MEM)也称最低必需培养基,它仅含有12种必需氨基酸、谷氨酰胺和8种维生素。

成分简单,可广泛适应各种已建成细胞系和不同地方的哺乳动物细胞类型的培养。

MEM-Alpha一般用于培养一些难培养细胞类型,而其它没有特殊之处的细胞株则几乎均可采用MEM来培养。

3、DMEM-高糖(标准型)是一种应用十分广泛的培养基,可用于许多哺乳动物细胞培养,更适合高密度悬浮细胞培养。

适用于附着性较差,但又不希望它脱离原来生长点的克隆培养,也可用于杂交瘤中骨髓瘤细胞和DNA转染的转化细胞的培养。

4、DMEM-低糖(标准型)是一种应用十分广泛的培养基,可用于许多哺乳动物细胞培养。

低糖适于依赖性贴壁细胞培养,特别适用于生长速度快、附着性较差的肿瘤细胞培养。

5、DMEM/F12DMEM/F12培养基适于克隆密度的培养。

F12培养基成分复杂,含有多种微量元素,和DMEM以1:1结合,称为DMEM/F12培养基(DME/F12medium),作为开发无血清配方的基础,以利用F12含有较丰富的成分和DMEM含有较高浓度的营养成分为优点。

该培养基适用于血清含量较低条件下哺乳动物细胞培养。

为了增强该培养基的缓冲能力,改良之一是在DMEM/F12(1:1)中加入15mMHEPES缓冲液。

高密度发酵产酪氨酸酚裂解酶及催化合成L-DOPA

高密度发酵产酪氨酸酚裂解酶及催化合成L-DOPA

摘要为了提高酪氨酸酚裂解酶(tyrosine phenol-lyase , TPL)的表达量和酶活,使之更高效地催化合成左旋多
巴(3 ,4-2-dihydroxylphenylalanine ,L-DOPA),在摇瓶优化的基础上,研究了溶氧控制策略、补料策略、诱导溫度和 诱导策略对菌体生长、TPL酶活和L-DOPA产量的影' °结果表明,在5 L发酵罐中25 '诱导条件下,采用DOstat补料策略控制罐内溶氧的体积分数为20%,菌体浓度、TPL酶活和催化合成L-DOPA产量较分批培养分别提 高了 17.9% ,57.7%和27.8%。诱导后控制溶氧体积分数在40%相比于20%更利于TPL的表达,酶活相比于

化在
日 之素公司已
成L-DOPA的 :
化应用%

中的TPL酶活较低,

者利用基因工程
重组菌株,使TPL基因异
源高效表达%国内 % 2001 年,李华
成L-DOPA的研究起步
[15]

C freun-
dH的TPL基因导入到大肠杆菌(Escherichia coU ),进
行异 达,并培养基进行优化,TPL酶活 始
1.2实验器材
T&J Atypo 5 L发酵罐,上海迪必尔生物工程有
限公司&ZQZY-80AS 培养箱,上海知楚仪器公司;
DOI:10. 13995/j. cnkt. 11 -1802/ts. 019724
研究报告
高密度发酵产酪氨酸酚裂解酶及催化合成0-DOPA
徐冰冰1!,雷庆子1,2,曾伟主1,未雅楠3,黄科峰3,周景文1,2*
1 (粮食发酵工艺与技术国家工程实验室(江南大学),江苏无锡,214122) 2 (江南大学生物工程学院,江苏无锡,214122) 3 (山东新华制药股份有限公司,山东淄博,255005)

GST-SUMO-MT融合蛋白在大肠杆菌中的自诱导表达

GST-SUMO-MT融合蛋白在大肠杆菌中的自诱导表达

GST-SUMO-MT融合蛋白在大肠杆菌中的自诱导表达彭冬;杨威;王昭;王席;柳忠玉【摘要】旨在考察在大肠杆菌中自诱导表达GST-SUMO-MT融合蛋白的可行性,并对自诱导培养条件及培养基成分进行优化,以提高蛋白产量.采用摇瓶培养,利用单因素和正交实验对工程菌自诱导的培养条件(诱导时间、诱导温度)和培养基组分(蛋白胨、酵母粉、甘油、葡萄糖、乳糖)进行优化,检测菌体浓度、可溶性目的蛋白的表达量.结果表明,自诱导培养基碳氮源的最优配比为:2%蛋白胨、2%酵母粉、0.3%甘油、0.05%葡萄糖和0.3%乳糖.重组菌自诱导表达最优发酵条件为:采用两阶段温度控制,37℃培养3h,25℃继续培养13 h.此时可溶性目的蛋白的表达量和菌体浓度分别为LB培养基(IPTG诱导)的2.2倍和2.3倍.【期刊名称】《生物技术通报》【年(卷),期】2016(032)002【总页数】6页(P219-224)【关键词】金属硫蛋白;融合蛋白;可溶性表达;自诱导【作者】彭冬;杨威;王昭;王席;柳忠玉【作者单位】长江大学生命科学学院,荆州434025;长江大学生命科学学院,荆州434025;长江大学生命科学学院,荆州434025;长江大学生命科学学院,荆州434025;长江大学生命科学学院,荆州434025【正文语种】中文金属硫蛋白(Metallothionein,MT)是一类普遍存在于生物体内的富含半胱氨酸、相对分子质量较低的金属结合蛋白,具有高诱导特性和多种生物学功能。

目前比较明确的是MT具有清除体内自由基、参与体内微量元素代谢、解除重金属的毒性、增强机体各种不良状态的适应能力、调控机体生长发育和细胞代谢等功能,MT还参与纤维化疾病、神经退行性疾病及肿瘤的发生发展[1]。

采用基因工程方法规模化生产制备金属硫蛋白,对其应用开发和作用机理的研究具有重要的意义。

目前,不同来源MT基因先后被克隆入不同的表达载体,在大肠杆菌中进行表达[2-4]。

自诱导系统在酶促合成2’-脱氧胞苷中的应用

自诱导系统在酶促合成2’-脱氧胞苷中的应用

自诱导系统在酶促合成2’-脱氧胞苷中的应用王玺;段胜林;熊舒莉;郑桂兰;张贵友;王洪钟【摘要】This experiment was carried out in order to synthesize 2’-deoxycytidine(dCyd)more efficiently. DCyd is a significant intermediate for many antiviral and anticancer drugs such as Gemcitabine(dFdC), Dideoxycytidine(ddC), etc. A convenient and efficient bioprocess was reported here to synthesize dCyd byE.coli BL21(DE3)containing gene of N-deoxyribosyltransferaseⅡ(NDT)over-expressed using ZYM-Fe-5052 auto-induction system. The results showed that auto-induction system could make the addition of inducer during cultivation unnecessary and obtain a higher cell density. The recombinant cells from auto-induction systemwere as efficient as that from LB system on the conversion yields of dCyd. When the ratio o f 2’-deoxythymidine(dThd)and cytosine was 1∶3, the conversion yield could be 86.5%. The substrates ratio of 2’-deoxythymidine (dThd) and cytosine as 1∶1.5 and 1 mg/mL recombinant cells which were dissolved in phosphate buffer of pH6.5, then cultured at 30℃ for 1 h were selected as the suitable reaction conditions,and the conversion yield could be 71.9%. This method also has potential for the preparation of other nucleoside analogues.%旨在高效合成2’-脱氧胞苷(dCyd)。

酵母表达的注意事项

酵母表达的注意事项

1、菌株用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。

2、温度:在28度和室温下诱导表达,表达水平可能都不低。

3、pH手册上用6.0,pH提高到6.8,不表达的蛋白可能就表达出来。

BMMY的pH7.0-7.5比较合适。

国内外做的最好的rHSA,最适pH大概5-6左右。

pH3的时候yeast和peptone好像会沉淀的,可以用磷酸和磷酸二氢钾调,具体比例自己去试试。

4、偏爱密码子codonbias一般不是主要的问题,你要表达的蛋白特性才是主要问题,酵母对分子量大(30KD 以上),结构复杂(如一些蛋白酶),二硫键含量多的蛋白往往不能有效表达,尤其是分泌表达。

密码子改造对一些较小的而且结构简单的蛋白表达量的提高可能有一些作用。

比如一位战友用Pichia酵母表达一个单链抗体,29KD,含有2对二硫键,表达量约几毫克每升,选用酵母偏好密码子全基因合成后,表达量没有什么提高。

5、表达时间与空质粒转化对照诱导时间长了以后,是会有很多蛋白分泌出来的,时间越长杂蛋白就越多,且分子量都比较大。

最好做一个空质粒转化的对照,这样就会比较肯定到底是不是自身的蛋白分泌的结果。

6、污染每个样品从G418板上挑10个左右单克隆于2ml BMGY摇菌(30ml玻璃管,比LB管大一点),纱布一般用8层,一天左右看着比较浑离心,留样1ml,余1ml换2ml BMMY诱导表达,3,4层纱布足够了。

污染一般都是跟瓶口覆盖有关的原因造成的,只盖纱布肯定会污染。

加盖报纸后,就再没遇到过污染。

如果只用6层纱布,污染的可能当然很大,100ml三角瓶,装量10ml培养液,用橡筋把8层纱布和2层报纸拴紧封口,空气浴摇床。

7、不表达蛋白有没有表达就要看你的运气了,一般重复2-3次实验都没有表达菌株,这个蛋白就放弃表达了。

8、表达量30KD,10mg/L表达量已经很高,最直接的方法是发酵,一般提高5-10倍。

大肠杆菌一样出现大团的超表达蛋白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12/20/07 Recipes and stock solutions described in Protein Expression and Purification 41: 207-234 (2005)Protein Production by Auto-Induction in High-Density Shaking CulturesF. William StudierBiology Department, Brookhaven National Laboratory, Upton, NY 11973studier@Abstract. Inducible expression systems in which T7 RNA polymerase transcribescoding sequences cloned under control of a T7lac promoter efficiently produce a wide variety ofproteins in Escherichia coli. Investigation of factors that affect stability, growth and induction ofT7 expression strains in shaking vessels led to the recognition that sporadic, unintendedinduction of expression in complex media, previously reported by others, is almost certainlycaused by small amounts of lactose. Glucose prevents induction by lactose by well-studiedmechanisms. Amino acids also inhibit induction by lactose during log-phase growth, and highrates of aeration inhibit induction at low lactose concentrations. These observations, andmetabolic balancing of pH, allowed development of reliable non-inducing and auto-inducingmedia in which batch cultures grow to high densities. Expression strains grown to saturation innon-inducing media retain plasmids and remain fully viable for weeks in the refrigerator, makingit easy to prepare many freezer stocks in parallel and use working stocks for an extended period.Auto-induction allows efficient screening of many clones in parallel for expression andsolubility, as cultures have only to be inoculated and grown to saturation, and yields of targetprotein are typically several-fold higher than obtained by conventional IPTG induction. Auto-inducing media have been developed for labeling proteins with selenomethionine, 15N or 13C,and for production of target proteins by arabinose induction of T7 RNA polymerase from thepBAD promoter in BL21-AI. Selenomethionine labeling was equally efficient in the commonlyused methionine auxotroph B834(DE3) (found to be metE) or the prototroph BL21(DE3).overview 2-5GeneralNon-inducing agar plates and stabs for expression strains 6Non-inducing media currently used routinely for growing stocks 7Auto-inducing media currently used routinely 8Media with arabinose for auto-induction from T7lac in BL21-AI 812,9,14minimalmediaAuto-inducingMedium for rapid growth of high-density cultures to prepare plasmids 9Auto-inducing media for labeling with SeMet 10Auto-inducing media for labeling with 15N and 13C 11Low-phosphate (25 mM) non-inducing and auto-inducing media 12High-phosphate (100 mM) non-inducing and auto-inducing media 13-14solutions 15-20StockGrowth media have been developed to control the expression of target genes in E. coli strains such as BL21(DE3), in which T7 RNA polymerase expressed from the inducible lacUV5 promoter in the chromosome directs the expression of target protein from the T7lac promoter in multi-copy pET expression vectors (Studier et al., Methods in Enzymology 185: 60-89 (1990)). These media should also be applicable to other strains where expression is controlled by promoters inducible by lactose or IPTG. Media are also described for auto-induction of promoters inducible by arabinose.Non-inducing media. Fully defined non-inducing media give reliable growth without detectable induction of target protein all the way to saturation. They also support growth to higher cell densities than typical of complex media such as LB (10 g tryptone, 5 g yeast extract, 5 g NaCl per liter) and produce cultures that remain highly viable for weeks in the refrigerator. Even strains expressing target proteins highly toxic to the host remained stable in these non-inducing media, grew sub-cultures with little lag and were fully competent to express target protein. In contrast, unintended spontaneous induction can occur in typical complex media (Grossman et al., Gene 209: 95-103 (1998)), which can stress or kill productive cells and favor poorly expressing derivatives. The common practice of using cultures grown to saturation in LB or other complex media to produce seed cultures for production of target protein may be responsible for many cases of poor expression in IPTG-inducible expression systems. Although addition of glucose can prevent such induction, finding a glucose concentration that reliably prevents induction in complex media without cultures becoming very acidic at saturation proved difficult or impossible.Unintended induction is almost certainly due to small amounts of lactose present in enzymatic digests of casein, such as tryptone or N-Z-amine, in commonly used media such as LB. Casein comes from milk, which contains lactose, and different lots of purified casein used to make growth media may well contain different levels of residual lactose. The high concentrations of amino acids in such media suppress induction by lactose during log-phase growth, but less than 0.001% lactose can cause induction upon approach to saturation in cultures grown at moderate levels of aeration. Such inducing activity appears to be relatively common in commercial growth media made from enzymatic digests of casein. Therefore, isolation of expression strains, growth of freezer stocks for long-term storage, and growth of seed stocks for protein production should all be done in reliable non-inducing media such as MDG or MDAG.Auto-inducing media. Media such as ZYM-5052 and MDA-5052 have been formulated to grow IPTG-inducible expression strains, initially without induction, and then to induce production of target protein automatically, usually near saturation at high cell density. A limited concentration of glucose is metabolized preferentially during growth, which prevents uptake of lactose until the glucose is depleted, usually in mid to late log phase. As the glucose is depleted, lactose can be taken up and converted by β-galactosidase to the inducer allolactose. Allolactose causes release of lac repressor from its specific binding sites in the DNA and thereby induces expression of T7 RNA polymerase from the lacUV5 promoter and unblocks T7lac promoters, allowing expression of target proteins by T7 RNA polymerase. Depletable glucose can also allow auto-induction of arabinose-inducible promoters by arabinose in the medium, and the method could also be applied to promoters regulated by other metabolites subject to catabolite repression or inducer exclusion. Even strains that produce target proteins highly toxic to the host cell can grow normally and express their protein by auto-induction. Strains defective in lacZ(β-galactosidase) or lacY (lactose permease) are not likely to be suitable for auto-induction by lactose because they will be unable to import lactose or convert it to allolactose.Lactose itself is not a particularly good carbon and energy source to support continued target protein production after auto-induction, because production of target protein competes so successfully for resources that proteins of the lactose operon may not accumulate to levels that provide efficient use of lactose. Glycerol is a good carbon and energy source that does not interfere with induction and allows growth to much higher culture densities. As with glucose, metabolism of glycerol generates acid, but very high densities of auto-induced cultures can be achieved with sufficient aeration and maintenance of a pH near neutral.Growth conditions. Reasonably good aeration is important for maintaining pH near neutral and obtaining growth to high culture densities. We typically grow cultures in an incubator shaker at 20°C or 37°C and 300-350 rpm, using vessels and volumes of culture that give approximately equivalent levels of aeration. For auto-induction of many cultures in parallel to test expression and solubility, we grow 0.5 ml of culture in 13x100 mm glass culture tubes. Usually only a few microliters of such cultures is sufficient for all needed analyses by gel electrophoresis. Up to 2.5 ml of culture in non-inducing media is grown in 18x150 mm glass culture tubes to make freezer stocks, plasmid preps or seed stocks for moderate-scale auto-induction, although 1.5 ml is probably preferable. Seed stocks for larger-scale auto-induction can be grown in Erlenmeyer flasks, the culture occupying approximately 5-10 % of the flask volume. Moderate-scale auto-induction can use 400-500 ml of culture in 1.8-liter baffled Fernbach flasks (Bellco).Trace metals. Growth to high density in fully defined media requires the addition of trace metals. A concentration of 0.2x trace metals (recipe for 1000x stock solution on page 19) is sufficient but, if a mixture of trace metals is not available, 100 µM FeCl3 will increase saturation density about as well. Growth in media containing ZY has not been limited by lack of trace metals but, given the variability of complex media components, it seems prudent to add 0.2x trace metals, if available. For target proteins of unknown metal content, 1x trace metals provides nine different metals in amounts sufficient to saturate substantial production of target protein, and 5x can be tolerated with little effect on growth. Individual metals can be supplied for production of target proteins known to bind specific metals. Trace metal mix at 1x concentration or FeCl3 at concentrations higher than about 10 µM tend to precipitate slowly in growth media. Such precipitation does not seem to inhibit growth but might decrease availability to metal-binding target proteins. The presence of 1 mM citrate seems to reduce or prevent such precipitation.Additives. Fully defined media must be appropriately supplemented for growth of strains with nutritional requirements: at least 150 µg/ml of methionine is needed to support growth ofB834(DE3) to saturation in MDG , and 1 µM thiamine (vitamin B1) is 10-fold more than needed to support high-density growth of XL1Blue-MR, an F-recA1 strain we use as an initial recipient for expression plasmids. I also found that growth of cultures in most batches of complex media such as LB, 2xYT or terrific broth is limited by lack of magnesium. Simply adding 2 mM MgSO4 typically increased saturation densities by 50% to 5-fold.Kanamycin resistance. Although BL21(DE3) is unable to grow in LB containing as little as 10 µg of kanamycin per ml, it grows well even at ten-fold higher levels of kanamycin in the comparably rich auto-inducing medium ZYP-5052, which contains 100 mM phosphate. However, kanamycin at 100 µg/ml does prevent growth in media reformulated to contain only 50 mM phosphate (or less), such as the auto-inducing medium ZYM-5052 we use currently.Freezer stocks for long-term storage of expression strains are made by adding 0.1 ml of 100% w/v (80% v/v) glycerol to 1 ml of culture that was grown to saturation in a non-inducing medium such as MDG or MDAG-135, mixing well and placing in a -70°C freezer. Reasonably well aerated cultures in MDG or MDAG at 37°C typically saturate at an OD600 around 7-10. Working stocks are grown from freezer stocks by scraping up a small amount of frozen culture with a sterile plastic pipettor tip and inoculating non-inducing medium. The stability, viability and reliability of protein expression from cultures grown in non-inducing media makes it possible to work with many strains in parallel. Re-transformation or streaking out cultures to obtain a "fresh" single colony each time a protein is to be produced, an unfortunate and tedious practice in some labs, is not necessary for reliable expression of target protein.Auto-induction works well over the entire range of temperatures suitable for growth. Auto-inducing cultures are typically inoculated with one-thousandth volume of an MDG or MDAG seed culture and grown to saturation overnight at 37°C. In general, increasing the rate of aeration increases the density at which the culture auto-induces and saturates, and also increases the minimum concentration of lactose needed for good auto-induction. Routine auto-inducing media contain 0.2% lactose, a concentration chosen to be well in excess of that needed for good auto-induction over the range of conditions we use.Cultures grown at 20°C usually auto-induce and saturate at higher culture densities at than at 37°C (probably due to the higher solubility of oxygen at lower temperature). Higher saturation densities combined with slower growth at low temperature means that cultures may become quite dense after overnight incubation but may not yet be induced, so care must be taken not to collect low-temperature cultures before they have saturated. The time needed for auto-induction at low temperatures can be shortened by incubating a few hours at 37°C, until cultures become lightly turbid (probably OD600 less than 1), and then transferring to the lower temperature.Incubation for several hours at saturation after auto-induction usually has little effect on accumulation or solubility of target protein. Auto-induced cultures typically saturate at an OD600 around 7-10 at 37°C under the conditions we use but can reach 20-30 in favorable cases. Culture densities greater than OD600 ~50 have been attained by using higher concentrations of glycerol, metabolic balancing of pH with aspartate or succinate, and higher levels of aeration. Auto-inducing media should be capable of producing even higher densities in batch culture in fermenters, where high levels of aeration can be maintained for large culture volumes. When the target protein is sufficiently toxic to the host, expression of even small amounts as auto-induction begins may prevent much further increase in density, and such cultures may not achieve densities much higher than OD600 of 1-2. Because the OD600 is due to light scattering rather than absorption, an accurate reading requires dilution of the culture (in water) to a concentration that gives a reading between about 0.030 and 0.200, typically a 100-fold dilution.Parallel growth of many non-induced or auto-induced cultures is feasible because cultures are simply inoculated and grown to saturation. This is a great convenience and simplifies manual or automated induction and analysis of multiple clones compared to conventional IPTG induction, which requires monitoring growth of each culture and adding inducer at the proper stage of growth. Others have been successful using these recipes in the multi-well plates commonly used in automated systems, but it was important to keep volumes low enough that reasonably good mixing and aeration was obtained.Stock solutions were designed for convenience and flexibility in assembling different media, and to avoid combining components that are incompatible upon autoclaving. Media are usually assembled from autoclaved or filter-sterilized stock solutions immediately before use, but most appear to be stable for extended periods in the refrigerator if contamination by mold spores is avoided. Stock solutions are stored at room temperature, except as noted in the recipes.Fully defined, non-inducing media we currently use routinely: pages 6-7MDAG-11 is a fully defined, non-inducing medium for agar plates and stabs to select, titer and distribute expression strains, and for liquid suspension of colonies to be retained temporarily as standing cultures at room temperature when purifying strains. MDG and MDAG-135 are fully defined, non-inducing media for growing shaking cultures of expression strains for freezer stocks, working stocks (which remain highly viable for weeks in the refrigerator), and for preparing plasmids from BL21(DE3) or other host strains susceptible to unintended induction.Cultures that grow slowly because they are stressed by basal expression of a highly toxic target protein should be grown in MDAG-135 rather than MDG. Such cultures are likely to contain a mixture of newly-divided growing cells that have not yet produced a transcript of the toxic gene and cells that are dead or dying because they have produced a burst of toxic target protein, perhaps as little as that generated from a single transcript. The faster rate of division in MDAG-135 should increase the fraction live cells in the population and may allow the production of cultures where essentially all of the live cells are capable of producing target protein rather than consisting primarily of poorly expressing mutants that have overgrown the culture.Auto-inducing media we currently use routinely: page 8ZYM-5052 is a complex auto-inducing medium and MDA-5052 is a fully defined auto-inducing medium, both of which can support growth to relatively high densities and produce substantial amounts of a wide range of target proteins. Addition of arabinose to ZYM-5052 or MDA-5052 at a final concentration of 0.05% produces media for auto-induction of target genes in BL21-AI (Invitrogen), where production of T7 RNA polymerase is under control of the pBAD promoter and the target gene is expressed from the T7lac promoter.Complex medium we currently use for rapid growth of high-density cultures: page 9ZYM-505 is a complex medium that produces dense cultures of commonly used lab strains, satisfies complex nutritional requirements, and is useful for rapid growth of high-density cultures for preparing plasmids. The possibility of unintended induction may make ZYM-505 poorly suited for growing some expression strains.Auto-inducing media for labeling target proteins with SeMet, 15N or 13C: pages 10-11Low-phosphate (25 mM) non-inducing and auto-inducing minimal media: page 12High-phosphate (100 mM) non-inducing and auto-inducing media used earlier: page 13-14Stock solutions: pages 15-20Non-inducing medium for agar plates and soft agar stabsMDAG-11 plates (50 mM phosphate) non-inducing minimal medium +aaMDAG-11 plates plus appropriate antibiotic(s) and any requirednutritional supplement(s) are used to isolate transformants and to titer cells carrying expression plasmids. Colonies grow almost as well onfully defined MDAG-11 plates as on TBY plates, and at least some strains that express proteins toxic to the host make colonies on MDAG-11 but not on TBY plates. Stabs in MDAG soft agar (0.7%) are used for distributing expression strains.To make 500 ml of 1% agar (~20 ml per plate yields ~25 plates)5 g agar~475 ml H2Oautoclave 15 min, mix well, let cool ~10 min on benchAddcompositionFinal1 ml 1 M MgSO4 25Na2HPO4mM100 µl 1000x metals 25 mM KH2PO41.25 ml 40% glucose 50 mM NH4Cl2 ml 25% aspartate 5 mM Na2SO410 ml 50xM 2 mM MgSO414 ml 18aa (7.14 mg/ml each) 0.2x metals = 10 µM Fe + 90.1% glucose = 5.6 mM=mM7.50.1%aspartate200µg/ml each of 18 aa (no C,Y) Add other required nutrients or selective antibioticsMix well, pour ~20 ml per plate (slowly pouring into each standard plate usually gives about the right amount per plate)MDAG-11+B1+K plates (for routine use with kanamycin-resistant strains) This recipe contains thiamine (B1), required for growth of XL1Blue-MR, and kanamycin for selection of expression plasmids. B1 is not needed by BL21(DE3).Follow above MDAG-11 recipe; add the following after autoclavingthe agar and before mixing to pour the platesAddcompositionFinal50 µl 10 mM thiamine (B1) 1 µM thiamine (B1)2 ml kanamycin (25 mg/ml) 100 µg/ml kanamycinNon-inducing media used routinely for isolating expression strains and growing freezer stocks and seed cultures for auto-induction MDAG-11 (50 mM phosphate) non-inducing for suspending colonies, dilutionTo make 10 mlFinal composition9.43 ml H 2O25 mM Na 2HPO 4 20 µl 1M MgSO 4 25 mM KH 2PO 42 µl 1000x metals 50 mM NH 4Cl25 µl 40% glucose 5 mM Na 2SO 440 µl 25% aspartate 2 mM MgSO 4200 µl 50xM 0.2x metals = 10 µM Fe + 9 280 µl 18aa (7.14 mg/ml each) 0.1% glucose = 5.6 mM0.1% aspartate = 7.5 mM200 µg/ml each of 18aa (no C,Y)MDG (50 mM phosphate) non-inducing minimal medium for shaking culturesTo make 10 mlFinal composition9.55 ml H 2O25 mM Na 2HPO 4 20 µl 1M MgSO 4 25 mM KH 2PO 42 µl 1000x metals 50 mM NH 4Cl125 µl 40% glucose 5 mM Na 2SO 4100 µl 25% aspartate 2 mM MgSO 4200 µl 50xM 0.2x metals = 10 µM Fe + 9 0.5% glucose = 27.8 mM0.25% aspartate = 18.8 mMMDAG-135 (50 mM phosphate) non-inducing minimal +aa for shaking culturesTo make 10 mlFinal composition9.37 ml H 2O25 mM Na 2HPO 4 20 µl 1M MgSO 4 25 mM KH 2PO 42 µl 1000x metals 50 mM NH 4Cl87.5 µl 40% glucose 5 mM Na 2SO 440 µl 25% aspartate 2 mM MgSO 4200 µl 50xM 0.2x metals = 10 µM Fe + 9 280 µl 18aa(7.14 mg/ml each) 0.35% glucose = 19.4 mM0.1% aspartate = 7.5 mM200 µg/ml each of 18aa (no C,Y)Optional additions (per 10 ml):1 µl 10 mM thiamine (B1) 1 µM thiamine (B1)40 µl kanamycin (25 mg/ml) 100 µg/ml kanamycinAuto-inducing media currently used routinelyZYM-5052 (50 mM phosphate) auto-inducing complex mediumTo make 10 mlFinal composition9.57 ml ZY 1 % N-Z-amine AS20 µl 1M MgSO 4 0.5% yeast extract2 µl 1000x metals (optional) 25 mM Na 2HPO 4200 µl 50x5052 25 mM KH 2PO 4200 µl 50xM 50 mM NH 4Cl5 mM Na 2SO 42 mM MgSO4 0.2x metals (optional) 0.5% glycerol = 54 mM 0.05% glucose = 2.8 mM0.2% α-lactose = 5.6 mM MDA-5052 ( 50 mM phosphate) auto-inducing minimal medium +aaRecipe differs from that given in the publication and previous handouts; it contains 0.1% aspartate instead of 0.25%, for better control of pHTo make 10 mlFinal composition9.26 ml H 2O25 mM Na 2HPO 4 20 µl 1M MgSO 4 25 mM KH 2PO 42 µl 1000x metals 50 mM NH 4Cl200 µl 50x5052 5 mM Na 2SO 440 µl 25% aspartate 2 mM MgSO 4200 µl 50xM 0.2x metals = 10 µM Fe + 9 280 µl 18aa (7.14 mg/ml each) 0.5 % glycerol = 54 mM0.05% glucose = 2.8 mM0.2 % α-lactose = 5.6 mM0.1% aspartate = 18.8 mM200 µg/ml each of 18aa (no C,Y)Optional additions (per 10 ml):1 µl 10 mM thiamine (B1) 1 µM B140 µl kanamycin (25 mg/ml) 100 µg/ml kanamycin20 µl 1000x metals 1x metals = 50 µM Fe + 9individual metal salts for known metal-binding target proteinsMedia with arabinose for auto-induction from T7lac in BL21-AIAdd arabinose to the any of the auto-inducing media to give afinal concentration of 0.05% arabinoseAuto-inducing minimal mediumMD-5052 (50 mM phosphate) auto-inducing minimal mediumTo make 10 mlFinal composition9.48 ml H 2O25 mM Na 2HPO 4 20 µl 1M MgSO 4 25 mM KH 2PO 42 µl 1000x metals 50 mM NH 4Cl200 µl 50x5052 5 mM Na 2SO 4100 µl 25% aspartate 2 mM MgSO 4200 µl 50xM 0.2x metals = 10 µM Fe + 9 0.5 % glycerol = 54 mM0.05% glucose = 2.8 mM0.2 % α-lactose = 5.6 mM0.25% aspartate = 18.8 mMComplex medium for rapid growth of high-density culturesZYM-505 (50 mM phosphate) complex medium, possible unintended inductionThis medium is used for rapid growth of high-density cultures forpreparing plasmids from strains that do not supply T7 RNA polymerase, and sometimes for growing strains that express innocuous targetproteins. However, the possibility of unintended induction may make this medium poorly suited for growing some expression strains,particularly those in which the target protein may stress the host. Plasmids from T7 expression strains are usually isolated from cultures grown on fully defined non-inducing media such as MDG or MDAG.To make 10 mlFinal composition 9.68 ml ZY 1 % N-Z-amine AS20 µl 1M MgSO 4 0.5%yeast extract 2 µl 1000x metals (optional) 25 mM Na 2HPO 4100 µl 100x505 25 mM KH 2PO 4200 µl 50xM 50 mM NH 4Cl5 mM Na 2SO 42 mM MgSO 40.2x metals (optional) 0.5% glycerol = 54 mM 0.05% glucose = 2.8 mMadd appropriate selective antibiotic(s)Auto-inducing medium for labeling with SeMetGreater than 90% replacement of methionines by SeMet in target proteins auto-induced in this medium was found whether using the prototroph BL21(DE3) or the methionine auxotroph, B834 (metE),apparently because the presence of Met/SeMet in the medium represses the methionine-synthesis pathway. Yields of SeMet-labeled target protein in PASM-5052 have been comparable to yields obtained by auto-induction in the absence of SeMet. In PASM-5052, unlabeled methionine at 10 µg/ml facilitates growth and auto-induction in 125 µg/ml of SeMet, which would otherwise be too toxic to allow high-density growth and auto-induction. Vitamin B12 stimulates the E. coli metH enzyme to catalyze regenerationof SeMet from the selenohomocysteine generated in methylation reactions. Growth at 37°C from a thousand-fold dilution typically reachessaturation in 14-16 hr. Growth at 20°C is much slower and a culture can take 3 days or longer to become induced and reach saturation. PASM-5052 contains 100 mM phosphate and was based on PA-5052 (page 14) before development of lower phosphate auto-inducing media; it could presumably be reformulated as MDASM-5052, containing 50 mM total phosphate and 0.1% aspartate, based on MDA-5052 (page 8).PASM-5052 (100 mM phosphate) auto-inducing minimal medium +aa To make 10 mlcompositionFinal9.01 ml H2O 50mMNa2HPO4KH2PO420 µl 1M MgSO4 50mM2 µl 1000x metals 25 mM (NH4)2SO4200 µl 50x5052 2 mM MgSO4500 µl 20xP 0.2x metals = 10 µM Fe + 9 200 µl 17aa(10 mg/ml each) 0.5 % glycerol = 54 mM4 µl Met (25 mg/ml) 0.05% glucose = 2.8 mM50 µl SeMet (25 mg/ml) 0.2 % α-lactose = 5.6 mM10 µl 100 µM vitamin B12 200 µg/ml each of 17aa (no C,Y,M)10 µg/ml Metµg/ml SeMet125vitaminB12nM100To make 800 ml725 ml H2O1.6 ml 1M MgSO4160 µl 1000x metals16 ml 50x505240 ml 20xP16 ml 17aa(10 mg/ml each)320 µl Met (25 mg/ml)100 mg bottle of SeMet800 µl 100 µM vitamin B12Auto-inducing minimal media for labeling with 15N and 13CTarget proteins may be labeled in auto-inducing media in which the sole nitrogen source is 15NH4Cl (LS-5052, page 12, or N-5052, below) or (15NH4)2SO4 (P-5052, page 14). The 50 mM 15NH4 in these media supports growth to high density, and high levels of expression make efficient use of the label. Reducing ammonium concentration below ~25 mM may significantly limit target protein expression in these media.N-5052 (100 mM phosphate) auto-inducing minimal medium for 15N labelingcompositionFinal50 mM Na2HPO450 mM KH2PO450 mM 15NH4Cl5 mM Na2SO42 mM MgSO40.2x metals = 10 µM Fe + 90.5 % glycerol = 54 mM0.05% glucose = 2.8 mM0.2 % α-lactose = 5.6 mMTarget proteins may be labeled with 13C-glycerol by auto-induction in C-750501 medium. The glycerol concentration has been increased to0.75% and the lactose concentration decreased to 0.01% to minimize the flow of carbon from lactose into target protein (glucose is depleted before target protein is induced). The 0.01% lactose will give good induction if aeration is not too high. This medium is an initial formulation aiming for maximum incorporation, and a systematic analysis may find that satisfactory labeling can be achieved at lower concentrations of 13C-glycerol, higher concentrations of lactose and higher rates of aeration. The small amount of glucose could also be labeled with 13C relatively inexpensively.C-750501(100 mM phosphate) auto-inducing minimal medium for 13C labelingcompositionFinal50 mM Na2HPO450 mM KH2PO450 mM NH4Cl5 mM Na2SO42 mM MgSO40.2x metals = 10 µM Fe + 90.75 % 13C-glycerol = 81 mM0.05% glucose = 2.8 mM0.01 % α-lactose = 0.28 mM。

相关文档
最新文档