五年级(上册)数学知识点归纳

合集下载

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。

如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597 保留两位为6.60知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

四单元:可能性:用分数表示可能性的大小。

客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,“一定能”出现的现象用数据表示为“可能性是1”,当可能性是相等的时候,用数据表述是“”。

五年级数学上册知识点梳理归纳

五年级数学上册知识点梳理归纳

五年级数学上册知识点梳理归纳五年级数学上册知识点分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。

(也就是把什么平均分什么就是单位“1”。

)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

如4/5的分数单位是1/5。

4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。

真分数<1。

2、假分数:分子比分母大或分子和分母相等的分数叫假分数。

假分数≧13、带分数:带分数由整数和真分数组成的分数。

带分数>1.4、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。

如:7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。

反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。

一位小数,分母是10;两位小数,分母是100……如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.3 3/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

五年级数学上册知识点归纳总结

五年级数学上册知识点归纳总结

五年级数学上册知识点归纳总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数.0 是正数和负数的分界线,0 既不是正数也不是负数.负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示.2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数.(2)-2和2到0的距离相等.(3)正数都大于0,负数都小于0.(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形.通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高.通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h.2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大.(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小.3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形.三角形的面积等于拼成的平行四边形的一半.观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同.通过平行四边形的面积公式,可以推导出三角形的面积公式.如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2.2.两三角形之间的关系:等底等高的两三角形面积一定相等,但面积相等的两个三角形形状不一定相同;3.三角形与平行四边形之间的关系:(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形;(2)等底等高的三角形面积是平行四边形面积的一半;(3)等面积.等底(高)的三角形和平行四边形,三角形的高(底)是平行四边形的2倍;梯形的面积:1.推导公式:两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半.通过观察可以发现,拼成的平行四边形的底等于梯形的上底.下底之和,平行四边形的高等于梯形的高.根据平行四边形面积公式,可以推导出梯形的面积公式.用S 表示梯形的面积,a.b 和h 分别表示梯形的上底.下底和高,梯形的面积公式为:S=(a+b )×h÷2.2.梯形与平行四边形之间的关系:(1)一个平行四边形可以分成两个完全相同的梯形,注意两个不同的梯形也可以拼成一个平行四边形;(2)要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大.公顷和平方千米:1.公顷:1公顷就是边长100米的正方形的面积,1公顷=10000平方米.一个社区.校园的面积通常用“公顷”为单位;2.平方千米:1平方千米就是边长1000米的正方形的面积,1平方千米=100公顷=100万平方米=1000000平方米.表示一个国家.省市.地区.湖泊的面积是就要用“平方千米”作单位.3.面积单位换算进率:10010010010000100222222mm cm dm m hm km ÷÷÷÷÷−−−→−−−→−−−→−−−→−−−→【同步练习】单位换算8平方米=( )平方分米 3平方分米=( )平方厘米7平方分米=( )平方厘米 ( )平方分米=15平方米( )平方厘米=78平方分米 10平方千米=( )公顷120000平方米=( )公顷 7平方米=( )平方分米78公顷=( )平方米 55平方分米=( )平方厘米14平方米=( )平方分米 360000平方米=( )公顷3平方千米=( )平方米=( )公顷【同步练习】在括号里填上合适的单位名称.课桌的面积大约是44( ). 一枚邮票的面积大约是8( ). 教室的面积大约是48( ).我们校园的面积大约是2( ).江苏省的面积大约是10.26( ).简单组合图形的面积:1.求组合图形面积的常见方法:⑴分割法:可以把一个组合图形分成几个简单的图形,分别求出这几个简单图形的面积,再求和.⑵添补法:可以把一个组合图形看作是从一个简单图形中减去几个简单的图形,求出它们的面积差.2.计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积之和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差.【同步练习】求下面图形的面积(单位:m).你能想出几种方法.不规则图形的面积:1.要点:(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏.(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的也看成整格,数出一共有多少格.(3)有顺序地去数,做到不重复.不遗漏.2.方法:先数整格的,再数不满整格的,不满整格的除以2折算成整格,最后相加;若不规则图形为轴对称图形,可先算出一半图形的面积,再乘以2.【同步练习】图中每个小方格的面积为12m,请你估计这个池塘的面积.(三)小数的意义和性质小数的意义和读写方法:1.小数的意义:分母是10.100.1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.小数的读写:整数部分的0在每一级中间要读出来,在末尾不用读出来,而小数部分的0都要读出来(常考题)【同步练习】填空(1)506毫米=( )米; (2)23分=( )元;(3)148厘米=( )米; (4)8角5分=( )元;(5)0.023米=( )毫米 ; (6)3.09元=( )元( )分;(7)0.008= ()(); 0.621= ()(); 3.15=()(); 【同步练习】用0.0.2.6这四个数字和小数点组成小数.(1)组成最小的小数( ); (2)组成最大的小数( );(3)组成最小的两位小数( ); (4)组成最大的两位小数( );(5)组成只读一个0的两位小数( ); (6)组成一个0都不读的小数( ); 小数的计数单位和数位顺序表:【同步练习】在6.47这个数中,6在( )位上,表示( )个( );4在( )位上表示( )个( );7在( )位上,表示( )个( ).【同步练习】0.508是由( )个十分之一和( )个千分之一组成的,也可以看作是由( )个千分之一组成的.【同步练习】1里面有()个0.1,()个百分之一;50里面有()个0.01.【同步练习】1.45的计数单位是(),1.45含有()个这样的计数单位.1.450的计数单位是(),1.450含有()个这样的计数单位.【同步练习】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可能是 .小数的性质:1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变.(×)②在一个数后面添上0或者去掉0,小数的大小不变.(×)【同步练习】把下面各数改写成小数部分是两位的小数.5元6角=()元 8分=()元1分米2厘米=()米 12厘米=()米【同步练习】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3个0的数是(),只能去掉2个0的数是(),只能去掉1个0的数是(),一个0也不能去掉的数是().小数的大小比较:先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推.【同步练习】比较大小:0.76.0.067.0.706.0.076.0.67.0.607()<()<()<()<()<()【同步练习】7.□6>7.46 ,□里可填的数是().【同步练习】大于0.5而小于1的一位小数有()个.大于0.07而小于0.08的三位小数有()个;【同步练习】在□.□8的两个□里各填一个数字,使得到的小数分别符合下面的要求,(1)使这个小数尽可能大,这个小数是().(2)使这个小数尽可能小,这个小数是().(3)使这个小数尽可能接近5,这个小数是().大数值的改写1.用“万”作单位:a.从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“万”字;c.用“=”连接.2.用“亿”作单位:a.从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“亿”字;c.用“=”连接.【同步练习】把168000改写成用“万”作单位的数是();省略万位后面的尾数是();把995000000元改写成以“亿元”为单位的数是(),保留一位小数是(). 小数的近似数1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入.2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入.3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入. 【同步练习】求下面各数的近似数:1.5.064(精确到十分位)2.3.1449(精确到百分位)3.2.905(保留一位小数)4.2549880000(改写成用“亿”作单位的数,再保留两位小数)(四)小数加法和减法小数的加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减.2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减.3.用竖式计算小数加.减法时,小数点末尾的“0”不能去掉,把结果写在横式中时,小数点末尾的“0”要去掉.【同步练习】数字7在十位上比在十分位上表示的数大(),小于1的最大的三位小数比最小的两位小数大().【同步练习】3.6的计数单位是(),它有()个这样的单位,再加上()个这样的计数单位就得到4.【同步练习】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则现在的差是().小数加减法简便计算:1.加法运算律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)2.减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+ca+b-c=a-c+b a+b-c+d=a-c+b+d【类型一】8.43+2.87+0.57+0.13 【类型二】6.52–3.44–2.56【类型三】9.6+6.7–9.6+3.3 【类型四】17.84–(5.84+11.79)(五)小数乘法和除法小数乘整数:小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出几位,点上小数点.【同步练习】根据504×25=12600,直接写出下面每题的积.5.04×25= 50.4×25= 0.504×25=504×0.25= 504×2.5= 504×0.025=一个数乘10.100.1000……的计算规律1.规律:一个小数乘10.100.1000……小数点就分别向右移动一位.两位.三位……反过来.把小数的小数点向右移动一位两位.三位……就等于把这个小数乘10.100.1000 ……这就是小数点移动引起的小数大小变化规律.注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”……2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86的小数点向右移动三位.【同步练习】在括号里填上合适的数.0.04×()=4 0.978×()=978 5.08×()=50.846.5×()=4650 0.09×()=9 1.04×()=104【同步练习】单位换算.2.3米=()分米3.004升=()豪升7.07千克=( )克 21平方分米9平方厘米=( )平方厘米0.6平方米=( )平方厘米 4.3小时=( )小时( )分一个数除以整数除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数添0继续除;整数部分不够商1在个位商0.一个数除以10.100.1000……的计算规律1.规律:一个小数除以10.100.1000……小数点就分别向左移动一位.两位.三位……反过来,把一个数的小数点向左移动一位.两位.三位……就等于把这个小数除以lO.100 .1000……注意:如果当移动小数点数位不够时,可以用添“0”补足数位.整数实际上就是小数部分都是0的数,同样可以用这个规律求商.过去一个整十.整百数除似10或100,就在末尾去掉1个“0”或2个“0”……2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要把4.6的小数点向右移动一位.【同步练习】在括号里填上合适的数.139.8÷()=1.398 47.8÷()=0.478 1153÷()=1.153 8÷1000=()()÷100=7.5 ()÷10=0.01【同步练习】单位换算17分米=()米 1200毫升=()升3050米=()千米 350平方分米=()平方米710克=()千克 5030千克=()吨150分=()小时 720平方厘米=()平方分米小数乘以小数1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右边起数出几位,点上小数点.当小数位数不够时,在前面用0补足;末尾有0的要先点小数点再化简.2.积不变的规律:(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘数小于1,积就小于第一个乘数.【同步练习】根据44×21=924 ,直接写出下面几个算式的积.4.4×2.1=( ) 0.44×0.21=( )0.44×2.1=( ) 4.4×0.21=()【同步练习】在括号填入合适的数,使等式成立.5.46×24=2.4×() 4.24×0.25=()×0.4246.4×0.53=5.3×() 18×0.42=0.18×()【同步练习】比较大小0.8×1.5○0.8;0.8×1.5○1.5.积的近似值求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五人的方法得出积的近似数.结果是近似值的,要用约等号表示.【同步练习】6.9628保留整数是();保留到十分位是();保留两位小数是();保留三位小数是()【同步练习】求一个小数的近似数,如果保留三位小数,要看小数第()位. 一个数除以小数1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再按照除数是整数的除法来计算.2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被除数的小数点也要向右移动相同位数.如果位数不够,要用0补足;(3)再按除数是整数的计算方法进行计算.3.商不变的规律:(1)除数和被除数扩大相同倍数,商不变;(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于被除数.【同步练习】把下面的式子变成除数是整数的除法算式0.75÷0.25=( )÷25 0.672÷4.2 =( )÷420.24÷4.8=( )÷48 14 ÷0.56 =( )÷( )76.8÷0.5=( )÷5 0.54÷0.18 =( )÷( )【同步练习】根据1664÷13=128写出下面各题的商.16.64÷0.13 =( ) 166.4÷0.13=( )1664 ÷0.013=( ) 1.664÷1.3 =( )166.4 ÷130 =( ) 16.64÷1.3 =( )【同步练习】巧比大小.12.01÷1.02○12.01 0.36÷0.36○0.367.8×0.98○0.98 10.8÷5.4○10.81.8×1.1○18×0.11 0.99÷1.1○0.99×1.1商的近似值1.求商的近似值:保留整数要除到( )位,保留一位小数要除到( ),保留两位小数要除到( ),也就是比保留的位数多除( )位,再按( )法取近似值.2.循环小数:⎧⎨⎩有限小数(小数部分位数是有限的)小数无限小数(小数部分位数是无限的) 循环小数: 0.378378…… 1.13636……(用循环节表示) 0.378g g 1.136g g3.进一法:有时候不管余下的数是多少,都还需要分1份,就要用进一法把结果添上1,比如只要油有余下的,不管余下多少都要有1个油壶才能装完,这就要在商里添上1个.4.去尾法:有时候不管余下的数是多少,都不能再得到1个或1份时,就要用去尾法舍去余数,比如余下的钱不够再买1个足球.余下的米数不够做1件衣服,这余数就舍去.【同步练习】一间教室长8.8米,宽6.5米,如果用0.38平方米的瓷砖铺地,至少需要多少块瓷砖?(得数保留整数)【同步练习】植物油厂的每个油桶最多装油4.5千克,要装600千克的油,需要多少个油桶?【同步练习】金星服装厂有一批布料,如果做儿童服装,每套用布2.2米,正好可以做100套;如果用来做成人服装,每套用布2.5米,那么可以做多少套成人服装呢?小数四则混合运算1.运算顺序:(1)同一级符号从左往右依次计算;(2)既有加减,又有乘除,先算乘除,再算加减;(3)有小括号的,先算小括号里面的.2.简便计算类型:(1)乘法结合律a b c a c b()()⨯⨯=⨯⨯基本方法:先交换因数的位置,再计算.【同步练习】4.36×12.5×8【例2】0.95×0.25×4 (2)乘法分配律乘法分配律()±⨯=⨯±⨯a b c a c b c【同步练习】(1.25-0.125)×8【例2】(20-4)×0.25 (3)乘法分配律逆应用乘法分配律逆向定律()⨯±⨯=±a b a c a b c【同步练习】3.72×3.5+6.28×3.5【例2】 15.6×2.1-15.6×1.1(4)乘法分配律拓展应用【例1】4.8×10.1【例2】0.39×199(5)拆分因数【同步练习】1.25×2.5×32【例2】3.2×0.25×12.5(6)添加因数“1”【例1】56.5×99+56.5【例2】4.2×99+4.2(7)更改因数的小数点位置【同步练习】6.66×3.3+66.6×67【例2】4.8×7.8+78×0.52(8)除法的性质字母表示:)÷=÷÷(ca⨯bbac【同步练习】420÷2.5÷4【例2】17.8÷(1.78×4)(六)统计表和条形统计图(二)复式统计表复式统计表其实就是由几张单式统计表合成的,所以从复式统计表中,不仅可以横向比较.纵向比较,还可以从“合并”和“总计”中看出总体的比较情况.复式条形统计图复式条形统计图的结构比单式条形统计图更复杂,表达的信息也比单式条形统计图更丰富,不仅便于对同一类数据进行比较,而且便于对两类相关数据进行比较. 与复式统计表相比,复式条形统计图表示的数据则更加直观.形象.(七)解决问题的策略例举法1.例表法:例举的特点:有顺序.不重复.不遗漏【同步练习】用18根1米长的栅栏围一个长方形的羊圈,怎样围成的面积最大?在周长不变的前提下,当长方形的长和宽的数值相差越大,面积就越小,反之,长方形的长和宽的数值相差越小,面积就越大.2.例举法:【同步练习】最少订1本,最多订3本,有多少种情况?订一本:A.B.C 订二本:AB.AC.BC 订三本:ABC 得出结论:要按一定顺序列举,才能做到既不重复,又不遗漏.当情况比较复杂时要先分类,再列举.列举时可以列表,也可以用文字或符号.字母等来表示.总之要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就明白.3.画图法:【同步练习】小强.小华和小丽是好朋友,如果她们每两人之间通一次电话,一共要通多少电话?如果他们互相寄一张节日贺卡,一共要寄多少张?提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?【同步练习】一个平行四边形的面积是36平方米,它的底和高分别是多少(底.高取整米数)?请你列表看一看有几种情况.【同步练习】用36个1平方厘米的小正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?拼一拼,算出结果.【同步练习】面包房的面包有4个装和6个装两种不同的包装.妈妈要购买50个面包,一共有几种不同的选择方法?【同步练习】动物园售票规定,一人券2元一张,团体券15元一张(可供10人参观),六年级一班有58人.买门票最少要花多少元?(八)用字母表示数用字母表示数1.用含有字母的式子表示数量关系和计算公式:小结:用含有字母的式子表示数量关系和计算公式简洁.明了,让人一目了然. 字母在不同的情况下,表示数的范围不一样,有的时候可以表示任意的数,但在表示生活中的数的时候,有时会有一定的范围.【同步练习】如果用大写的C表示周长,a表示长方形的长吧,b表示长方形的宽,你能用字母表示长方形的周长公式吗?那么面积呢?解析:长方形的周长=(长+宽)×2,用字母分别代进去,为C=(a+b)×2,省略乘号为C=2(a+b)长方形的面积=长×宽,用S表示面积,则S=a×b.【同步练习】若a表示单价,b表示数量,c表示总价.(1)已知单价.数量,求总价:()(2)已知总价.单价,求数量:()(3)已知总价.数量,求单价:()【同步练习】若用m表示工作效率,t表示工作时间,n表示工作总量.(1)已知工作效率.工作时间,求工作总量:()(2)已知工作总量.工作效率,求工作时间:()(3)已知工作总量.工作时间,求工作效率:()【同步练习】你能用字母表示以前学过的运算律吗?加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c【同步练习】用含有字母的式子表示下面的数量:(1)水果店运来苹果X筐,每筐30千克.卖去50筐,还剩()千克.(2)水果店运来苹果X筐,每筐30千克.卖去50千克,还剩()千克.(3)一本书X元,买10本同样的书应付()元.(4)搭一个正方形要4根小棒,一行搭n个正方形要()根小棒.(5)一件衣服用布2米,X米布可做的件数为().(6)一个正方形花坛长5米,四周有一条a米宽的小路.小路的面积()平方米.小路外边一周长()米.2.含有字母的式子的书写(1)当字母与数字相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:a×2通常可以写成2a或2• a.(2)当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号,如:a×b写作a•b或ab;相同字母的话就写一个字母,再在字母的右上角写上2,如:ɑ×ɑ通常写成ɑ•ɑ或ɑ2,读作:ɑ的平方,表示2个ɑ相乘;(3)字母与1相乘省略1不写,只写字母本身,如:1×ɑ写做ɑ.要特别注意的是:加号.减号和除号不能用小圆点代替,也不能省略不写.【同步练习】省略乘号,写出下面各式:a×x= x×x= 5×x= x×3=y×8= x×2= y×b= 4×b×5=5x×2= 1×a= 4×m×n=3.把数代入含有字母的式子求值当给出式子中每个字母表示的数量是多少时,就可以把数字带进去算出这个式子表示的数值.注意要对应相应字母的的数值.【同步练习】煤气公司铺设一段管道,3米长的钢管用了x根,5米长的钢管用了y根.(1)用式子表示这段管道的长度.(2)当x=40根,y=30根时,这段管道长多少米?【同步练习】甲.乙两船分别从两个码头同时向下游出发,甲船每小时行a千米,乙船每小时行b千米,经10小时甲追上了乙.(1)用式子表示10小时甲.乙两船共行过的路程.(2)若a=58,b=41,求两个码头的距离.4.化简含有字母的式子化简形如“ax±bx”的式子,形如“ax±bx”的含有字母的式子,可以运用乘法分配律进行化简.【同步练习】计算下面各题:3x+5x=10y-9y=15a+10a=8b+2b=1×a=y+4y=15b-14b=15x-x=6a-a=y×y=.。

五年级上册数学各单元知识点归纳

五年级上册数学各单元知识点归纳

一、第一单元基本运算。

1、数的加减法、乘除法的基本概念及运用。

2、应用题的解题方法与技巧。

二、第二单元整数。

1、自然数、整数、正数、负数概念。

2、正负数的加减乘除运算规则,特别是乘除法。

3、正负数的加减乘除,特别是乘除法运算问题的解题方法。

三、第三单元分数。

1、分数的基本概念,分子分母的含义。

2、同分母的加减乘除运算规则,特别是乘除法。

3、分数的加减乘除,特别是乘除法运算问题的解题方法。

四、第四单元小数。

1、小数的概念和表达法。

2、小数的加减乘除运算规则,特别是乘除法。

3、小数的加减乘除,特别是乘除法运算问题的解题方法。

五、第五单元因式分解。

1、因式分解的概念。

2、乘法和除法规则及运用。

3、因式分解的解题方法及技巧。

六、第六单元乘方。

1、乘方的基本概念及运用来替代乘法的效率。

2、乘方的规则,以及乘方中的乘法规则的运用。

3、乘方问题的解题方法及技巧。

七、第七单元根式。

1、次数为整数的根式的基本概念及运用。

2、根式的乘除运算规则,特别是乘除法。

3、根式的加减乘除,特别是乘除法运算问题的解题方法。

八、第八单元百分数。

1、百分数的概念及表达法。

2、百分数加减乘除运算规则及运用。

【推荐】【五年级数学上册】35个重要知识点归纳

【推荐】【五年级数学上册】35个重要知识点归纳

五年级数学上册重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3 表示1.5 的3倍是多少或3个1.5 的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8 就是求1.5 的十分之八是多少。

1.5×1.8 就是求1.5 的1.8 倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0 除外)乘大于1的数,积比原的数大;一个数(0 除外)乘小于1的数,积比原的数小。

4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3 表示已知两个因数的积0.6 与其中的一个因数0.3,求另一个因数的运算。

小学五年级数学上册知识点

小学五年级数学上册知识点

小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:意义求几个相同加数的和的简便运算.如:1。

5 3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数:意义就是求这个数的几分之几是多少。

如:1.5 0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5 1。

8(整数部分不是0)就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:ab=ba加法结合律:(ab)c=a(bc)乘法:乘法交换律:a b=ba乘法结合律:(a b) c=a(b c)乘法分配律:(ab) c=a cb c或a cb c=(ab) c(b=1时,省略b)变式:(a-b) c=a c-bc或a c-b c=(a-b) c减法:减法性质:a-b—c=a—(bc)除法:除法性质:a b c=a(b c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排).用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

二是给出坐标中的一个点,要能用数对表示。

第三单元小数除法9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.60.3表示已知两个因数的积0。

6,一个因数是0.3,求另一个因数是多少。

五年级上册数学知识点归纳

五年级上册数学知识点归纳

五年级上册数学知识点归纳一、小数乘法1、小数乘整数意义:求几个相同加数的和的简便运算。

计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的小数位数不够,要在前面用 0 补足,再点上小数点。

2、小数乘小数意义:就是求这个数的几分之几是多少。

计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果乘得的积的小数位数不够,要在前面用 0 补足,再点上小数点。

3、积的近似数求积的近似数时,先按照小数乘法的计算方法算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”法求出结果,并用“≈”连接。

4、整数乘法运算定律推广到小数乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a + b)×c = a×c + b×c二、位置1、用数对表示位置数对是一个表示位置的概念,相当于坐标。

数对由两个数字组成,中间用逗号隔开,括号括起来。

括号里面的左边数字表示列数,右边数字表示行数。

三、小数除法1、小数除以整数按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添 0 再继续除。

2、一个数除以小数先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用 0补足);然后按照除数是整数的小数除法进行计算。

3、商的近似数计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

4、循环小数一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

5、用计算器探索规律先用计算器计算,观察发现规律,再根据规律写商。

四、可能性1、确定性事件和不确定性事件在一定条件下,有些事件的结果是可以预知的,具有确定性,确定的事件用“一定”或“不可能”来描述。

五年级数学上册总复习知识点归纳

五年级数学上册总复习知识点归纳

第一章小数乘法1,当一个数乘比1小的数,积比这个数小。

当一个数乘比1大的数,积比这个数大。

例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。

一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。

3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。

4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。

把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。

6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。

7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。

①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。

小学五年级数学上册35个重要知识点归纳

小学五年级数学上册35个重要知识点归纳

小学五年级数学上册35个重要知识点归纳五年级数学上35个重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

五年级上册数学知识点归纳

五年级上册数学知识点归纳

五年级上册数学知识点归纳小学五年级上册的数学学习,是一个承上启下的重要阶段。

为了帮助同学们更好地掌握这一学期的数学知识,下面将对五年级上册的数学知识点进行详细归纳。

一、小数乘法小数乘法是五年级上册数学的重点之一。

(一)小数乘整数计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的小数位数不够,要在前面用 0 补足,再点上小数点。

例如:35×6 = 210 , 025×4 = 100 (可以写成 1)(二)小数乘小数计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果乘得的积的小数位数不够,要在前面用 0 补足,再点上小数点。

例如:25×03 = 075 , 045×02 = 009在计算小数乘法时,要注意积的小数点位置,还要注意小数末尾的0 要去掉。

二、位置(一)用数对表示位置数对是一个表示位置的概念,由两个数组成,中间用逗号隔开,括号括起来。

数对的前一个数表示列,后一个数表示行。

例如:(3,5)表示第 3 列第 5 行。

(二)在方格纸上用数对确定物体的位置先看横向的数字,确定列数;再看纵向的数字,确定行数,从而确定物体的位置。

三、小数除法(一)小数除以整数按照整数除法的方法去除,商的小数点要和被除数的小数点对齐。

如果有余数,要添 0 再除。

例如:56÷7 = 08 , 189÷6 = 315(二)一个数除以小数先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用 0补足),然后按照除数是整数的小数除法进行计算。

例如:126÷028 = 45(三)商的近似数在实际应用中,小数除法所得的商往往按照要求用“四舍五入”法保留一定的小数位数,求出商的近似数。

(四)循环小数一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳

人教版五年级上册全册数学知识点归纳第一单元:小数乘法。

、小数乘整数------重点:理解小数乘整数的算理。

2、小数乘小数------重点:小数乘小数的计算方法。

3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。

难点:根据实际情况取近似值。

4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。

难点:引导学生理解解决问题中出现的解题思路。

、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。

第二单元:小数除法。

、小数除以整数------重点:小数除以整数的计算方法。

难点:让学生理解商的小数点是如何确定的。

2、一个数除以小数------重点:掌握除数是小数除法的计算方法。

3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。

难点:怎样判断除得的商是循环小数。

、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。

第三单元:观察物体。

观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。

观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。

第四单元:简易方程。

、用字母表示数------重点:会用字母表示数、运算定律及计算公式。

2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。

3、方程的意义------重点:初步理解方程的意义。

4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。

、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。

6、稍复杂的方程(二)------重点:分析数量关系。

难点:列方程和解方程。

7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理

五年级数学上册各单元知识梳理第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。

如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597 保留两位为6.60知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

四单元:可能性:用分数表示可能性的大小。

客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,“一定能”出现的现象用数据表示为“可能性是1”,当可能性是相等的时候,用数据表述是“”。

五年级上册数学知识点(15篇)

五年级上册数学知识点(15篇)

五年级上册数学知识点(15篇)五年级上册数学知识点1第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。

如:3.60“0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

五、简便运算整数乘法的交换律、结合律和分配律,对于小数乘法也适用计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

小学五年级上册数学知识点汇总

小学五年级上册数学知识点汇总

小学五年级上册数学知识点汇总小学五年级上册数学知识点汇总1第一单元方向与路线一、判断物体方向口诀:1、找准观测点。

例子:A在B是什么方向,以B为观测点。

2、判断方向,一般从南或北说起。

3、找角度,角的一条边在南或北。

二、描述路线要注意:方向和距离。

第二单元小数乘法(本学期重点)一、小数点位置的移动引起小数大小的变化小数点向右移动一位,两位,三位,原来的数就扩大10倍;100倍;1000倍。

小数点向左移动一位,两位,三位原来的数就缩小到原来的1/10;1/100;1/1000。

小数点向左或者向右移动,位数不够时,要用0补足位。

1、小数乘法的计算方法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、积与因数的关系:一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘小于1的数,积比原来的数小。

第三单元小数除法(本学期重点)1、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

2、一个数除以小数:除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,(位数不够的,在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

3、求商的近似值:①用四舍五入法,保留整数,除到第一位小数;保留一位小数,除到第二位小数;保留两位小数,除到第三位小数&hellip;&hellip;②根据具体情况用去尾法或进一法取近似值。

4、循环小数的表示方法有两种:例4.3232&hellip;&hellip;或4.325、商的变化规律:(十分重要)如果除数是小于1的小数,那么商大于被除数;如果除数是大于1的小数,那么商小于被除数。

如果被除数比除数小,商就小于1。

四、解决问题1、商不变的规律:被除数和除数同时扩大或者同时缩小相同的倍,商不变。

小学五年级上册数学知识点归纳

小学五年级上册数学知识点归纳

小学五年级上册数学知识点归纳第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除。

数学五年级上册知识点整理

数学五年级上册知识点整理

数学五年级上册知识点整理
一、数与代数
1. 认识亿以内的数,并能根据需要选择数。

2. 认识分数,掌握分数的加减运算。

3. 认识负数,会用负数表示一些日常生活中的问题。

4. 掌握四则运算的意义、性质和法则,会进行简单的运算。

二、空间与图形
1. 认识分数,掌握分数的加减运算。

2. 认识长方体、正方体、圆柱和球等几何图形,并能够测量或估计它们的大小。

3. 会画直线、线段,并能够画垂线、平行线。

4. 了解比例尺,会进行简单的图上计算。

三、统计与可能性
1. 认识复式条形统计图和复式折线统计图,并能够根据统计图进行简单的数据分析。

2. 会设计简单的调查表。

3. 了解可能性和可能性大小的含义,会求一些事件的可能性大小。

四、实践与综合应用
1. 探索事物的奥秘,发现事物的规律。

2. 开展有趣的数学
活动,体会数学学习的乐趣。

3. 综合运用数学知识解决实际问题,体会数学在日常生活中的应用价值。

以上是五年级上册数学知识点整理的主要内容,希望能够帮助学生们更好地理解和掌握数学知识,提高数学素养。

人教版五年级上册数学全册知识点归纳

人教版五年级上册数学全册知识点归纳

小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:与整数的乘法意义相同都是表示求几个相同加数的和的简便运算。

如:1.5×3 表示1.5 的 3 倍是多少或 3 个 1.5 的和是多少2、小数乘小数:与整数的乘法意义不相同,表示求这个数的几分之几是多少。

如:1.5×0.8 就是求1.5 的十分之八是多少。

1.5×1.8 就是求1.5 的1.8 倍是多少。

3、小数乘法的计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点,积小数部分位数不够时,要在前面用0 补足。

(注意:计算结果中,小数部分末尾的0 要去掉,把小数化简)注意:(1)计算小数加减法先把小数点对齐,再把相同数位上的数相加。

(2)计算小数乘法末尾对齐,按整数乘法法则进行计算。

(3)计算整数因数末尾有0 的小数乘法时,要把整数数位中不是0 的最右侧数字与小数因数末尾对齐。

3、规律:一个数(0 除外)乘大于1 的数,积比原来的数大;一个数(0 除外)乘小于 1 的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数:保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的:(1)只含有同一级运算的,要从左往右依次计算;(2)含有两级运算的,要先算乘除法再算加减法;(3)含有括号的运算的,要先算括号里面的再算括号外面的。

7、运算定律和性质:方法:1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。

)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。

常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。

4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。

二、小数乘小数的算理及计算方法:注意:乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。

例如:25×4=100; 250×4=1000;125×8=1000; 125×80=100003、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

用字母表示:(a+b)×c=a×c+b×c ,或者是:a×c+b×c=(a+b)×c注意:简便计算中乘法分配律及其逆运算是运用最广泛的一个,一定要掌握它和它的逆运算。

4、个数相乘,如果有接近整十、整百、整千……的数,可以将其转化成整十、整百、整千数……加(或减)一个数的形式,再用乘法分配律进行计算。

八、整数乘法运算定律在小数乘法中的应用:1.整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

2.计算连乘时可应用乘法交换律、结合律将乘积是整数的两个数先乘,再乘另一个数;计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

3.对于不符合运算定律的算式,可通过变形再进行应用。

错点警示:小数乘整数的积的末尾有0时,一定要先点积中的小数点,再去掉积中小数部分末尾的0。

规避策略:牢记计算方法和解题过程,先按整数乘法计算,再数小数位数,确定小数点的位置,最后去掉小数部分末尾的0。

第二单元《位置》一、对行和列的认识。

1、横排叫做行,竖排叫做列。

确定第几列一般是从左往右数,确定第几行一般是从前往后数。

二、对数列的认识和表示方法。

1、用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

2、用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

3、写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开。

写作:(列,行)。

4、数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

5、一组数对只能表示一个位置。

6、表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

8、表示位置有绝招,一组数据把它标。

竖线为列横为行,列先行后不可调。

一列一行一括号,逗号分隔标明了。

三、物体移动引起数对的变化。

1、在方格纸或田字格上,物体左、右移动(向左或向右平移),行数不变,列数等于减去或加上平移的格数;物体上、下移动(向上或向下平移),列数不变,行数等于加上或减去平移的格数。

第三单元《小数除法》知识框架:二、一个数除以小数1、除数是小数的除法的计算方法: (1)、先移动除数的小数点,使它变成整数。

空间 与(2)除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足。

(3)然后按照除数是整数的小数除法进行计算。

易错点:如果被除数的位数不够,在被除数的末尾用0补足。

2、除法中的变化规律:(1)商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

(2)除数不变,被除数扩大,商随着扩大。

(3)被除数不变,除数缩小,商扩大。

31231232。

33第四单元《可能性》一、事件发生的可能性有三种情况:可能、不可能和一定。

其中,在一定的条件下,一些事情的结果是可以预知或确定的,就可以用“一定”或“不可能”来描述,表示确定现象。

而在一定的条件下,一些事情的结果是不可以预知的或不可以确定的,这时就可以用“可能”来描述,表示不确定现象。

二、事件发生的可能性大小:当事件的可能性的大小与物体数量相关时,在总数或总体中物体数量越多,出现对应结果的可能性越大;物体数量越少,出现对应结果的可能性就越小。

含有未知数的等式叫做方程,(所有的方程都是等式,但等式不一定都是方程。

)如:2+3=5是等式,但不是方程。

注意:X=3此类也是方程。

四、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

五、解方程:求方程的解的过程叫做解方程。

解方程原理:天平平衡。

六、解方程需要注意什么?(每天坚持练习)(1)一定要写‘解’字。

(2)等号要对齐,同时运算前左右两边要照抄,解的未知数写在左边。

(3)两边乘、除相同数的时候,这个数一定不能为0。

七、10个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商八、用S表示面积,用C表示周长。

(1)如果用a表示正方形的边长,那么:这个正方形的周长:C =a·4=4a(省略乘号时,一般把数写在字母前面)带“*难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。

二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。

注意要“带符号移动”,增添括号时还要注意符号的变化。

数)具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。

通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。

(二)应用乘法分配律,共同因数是未知数的(一)方程两边都出现未知数的复杂情况(不作要求)难点:方程两边都有未知数,且未知数是除数(即非0),则可以同时乘以未知数(这时方程的两边都各看作一个整体,里面的每一项都要乘以未知数),再消去一边的未知数。

第六单元《多边形面积》一、长方形面积、周长关系式:1、长方形面积=长×宽字母公式:s=ab2、长方形周长=(长+宽)×2字母公式:c=(a+b)×2 (长=周长÷2-宽;宽=周长÷2-长)二、长方形中面积、周长与长和宽之间的变化关系:(1)长方形的长加宽等于长方形周长的一半。

即 a + b = c ÷ 2(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。

(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。

(4)长方形框架拉成平行四边形,周长不变,面积变小。

三、正方形面积、周长关系式:1、正方形面积=边长×边长字母公式:s= a²或者s=a×a2、正方形周长=边长×4 字母公式:c=4a 或者c= a×4四、平行四边形1、认识平行四边形和梯形①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行平行四边形长方形正方形四边形梯形②平行四边形:两组对边分别平行的四边形叫做平行四边形。

长方形和正方形是特殊的平行四边形。

正方形是特殊的长方形。

2、平行四边形的特征:平行四边形容易变形,具有不稳定性;三角形具有稳定性。

3、平行四边形面积的计算公式(1)沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者剪拼,可以将平行四边形转化成长方形。

通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。

(2)通过长方形的面积公式,长方形的面积=长×宽,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积==底×高;字母公式为:S=a×h。

4、平行四边形面积公式的应用平行四边形的面积公式:S=a×h,经过变形得到:a=S÷h,h=S÷a。

在已知平行四边形的底、高和面积中任意两个量时,可求出第三个量。

注意:等底等高的平行四边形面积相等。

五、三角形部分1. 三角形面积的计算公式(1)用两个完全相同的三角形,经过旋转、平移,可以拼成一个平行四边形。

拼成的平行四边形的面积是三角形面积的2倍,也可以说成三角形的面积等于拼成的平行四边形的一半。

观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。

(2)通过平行四边形的面积公式,可以推导出三角形的面积公式。

如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积=底×高÷2;字母公式为:S=a×h÷2。

2、三角形面积公式的应用三角形的面积公式:S=a×h÷2,经过变形得到:a=2S÷h,h=2S÷a。

在已知三角形的底、高和面积三个量中任意两个量,都可以求出第三个量。

注意:等底等高的三角形面积相等。

六、梯形1、梯形:只有一组对边平行的四边形叫做梯形。

生活中的梯形:梯子、堤坝的横截面等④平行四边形和梯形的相同点和不同点:相同点:都是四边形;都有平行的对边不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等2、平行四边形和梯形各部分名称及高的画法。

①为平行四边形和梯形各条边命名平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用虚线表示;一定要画垂足符号。

3、梯形面积的计算公式(1)梯形面积公式的推导过程:旋转、平移,将两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半。

通过观察可以发现,拼成的平行四边形的底等于梯形的上底、下底之和,平行四边形的高等于梯形的高。

(2)根据平行四边形面积公式,可以推导出梯形的面积公式。

因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2,用S表示梯形的面积,a、b和h分别表示梯形的上底、下底和高,梯形的面积公式为:S=(a+b)×h÷2。

4、梯形面积公式的应用梯形的面积公式:S=(a+b)×h÷2,经过变形得到:h=2S÷(a+b),a=2S÷h-b,b=2S÷h-a。

相关文档
最新文档