山东大学数学学院2109年抽象代数期末试题
山东大学2019-2020学年第一学期数学系《线性代数》试卷
![山东大学2019-2020学年第一学期数学系《线性代数》试卷](https://img.taocdn.com/s3/m/56f46df6964bcf84b8d57ba2.png)
♠山东大学2019-2020学年第一学期数学系《线性代数》试卷一、(24 分)填空题:1. 设n 阶方阵 A 的行列式 A = 2 ,则 A-1 2⋅ A = 122. 设 A 为n 阶可逆阵,则下列 C 恒成立。
(A) (2 A )-1= 2 A -1(C)ϒ( A -1)-1/T= ϒ( A T )-1 /-1(B ) (2 A -1 )T= (2 A T )-1 (D)ϒ( A T )T /-1= ϒ( A -1)-1/T≤'∞ƒ '≤∞ƒ≤'∞ƒ '≤ ∞ƒ3. 若向量组a 1, a 2 ,·, a r (A ) r ≤ s可由另一向量组b 1, b 2 ,·, b s 线性表示,则 C。
(B ) r ≥ s(C ) a 1, a 2 ,·, a r 的秩≤ b 1, b 2 ,·, b s 的秩(D ) a 1, a 2 ,·, a r 的秩≥ b 1, b 2 ,·, b s 的秩♣kx 1 + kx 2 + x 3 = 04. 当k 满足时,齐次线性方程组♦2x 1+ kx 2 + x 3 = 0 有非零解。
♠kx - 2x + x = 0 ♥ 1 2 35. 若齐次线性方程组的一个基础解系为ξ1, ξ2 , ξ3 ,则 D也是该其次线性方程组的基础解系。
(A) ξ1 + ξ2 , ξ2 + ξ3 , ξ3 - ξ1(C) ξ1 - ξ2 , ξ2 + ξ3 , ξ3 + ξ1(B) ξ1 + ξ2 , ξ2 - ξ3 , ξ3 + ξ1(D) ξ1 + ξ2 , ξ2 + ξ3 , ξ3 + ξ16. 设 4 阶方阵 A 的秩为 2,则其伴随阵 A * 的秩为 0。
0 0 1 7. 矩阵 A =0 1 0 的三个特征值为 1,1,-1 。
1 0 08. 二次型 f ( x , x , x ) = x 2 + 2x x1 1 0 + 3x 2的矩阵 A = 1 30 。
抽象代数期末考试试卷及答案
![抽象代数期末考试试卷及答案](https://img.taocdn.com/s3/m/c950c2990066f5335b81213b.png)
抽象代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、6阶有限群的任何子群一定不是( )。
A、2阶B、3阶C、4阶D6阶2、设G是群,6有()个兀素,则不能肯定G是交换群。
A 4个B 、5个C 、6个D 、7个3、有限布尔代数的元素的个数一定等于( )。
A、偶数B奇数C、4的倍数D、2的正整数次幕4、下列哪个偏序集构成有界格( )A、(N, ) B 、(乙)C、({2,3,4,6,12},| (整除关系)) D (P(A),)5、设S3= {(1) , (12),(13),(23),(123),(132)},那么,在S3 中可以与(123) 交换的所有元素有()A (1),(123),(132)B 、12),(13),(23)C、⑴,(123) D 、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30 分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、群的单位元是---- 的,每个元素的逆元素是-------- 的。
2、如果f是A与A间的一一映射,a是A的一个元,贝卩f1fa ----------------------- ,3、区间[1,2]上的运算a b {min a,b}的单位元是 ------- 。
4、可换群G 中|a|=6,|x|=8, 则|ax|= ------------------------------ 。
5、环Z8的零因子有 -------------- 。
&一个子群H的右、左陪集的个数 -------- 。
7、从同构的观点,每个群只能同构于他/它自己的-------- 。
8、无零因子环R中所有非零元的共同的加法阶数称为R的 -------- 。
9、设群G中元素a的阶为m,如果a n e,那么m与n存在整除关系为---- <三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5 颗珠子项链,问可做出多少种不同的项链?2、S, S是A的子环,贝U Sin s也是子环。
大三数学抽象代数精选题目
![大三数学抽象代数精选题目](https://img.taocdn.com/s3/m/4773df26cbaedd3383c4bb4cf7ec4afe05a1b16b.png)
大三数学抽象代数精选题目一、群论1. 给定一个群G,证明其单位元素是唯一的。
证明:设e和e'都是群G的单位元素,即对任意的g∈G,有eg=ge=g和e'g=ge'=g。
则有:e=g⁻¹g= (e'g⁻¹)g=e'(g⁻¹g)=e'。
因此,群G的单位元素是唯一的。
2. 设G是一个群,证明:G中任意元素的逆元素也在G中。
证明:设g∈G,由群的定义可知,存在一个元素g'∈G使得gg'=g'g=e (其中e为群G的单位元素)。
因此,g'是g的逆元素。
由此可见,G中任意元素的逆元素也在G中。
二、环论1. 证明:对于任意整数n,Zn(整数环Z中模n的剩余类)构成一个环。
证明:(1)封闭性:对于任意的a、b∈Zn,a=b(mod n),即a与b同余(mod n),那么a+b和ab与b+a(mod n)以及ab(mod n)也是模n的剩余类,因此Zn对于加法和乘法运算均封闭。
(2)结合律:由于Zn对于加法和乘法运算均封闭,结合性显然成立。
(3)加法单位元:对于任意的a∈Zn,a+0=a=0+a(mod n),其中0为模n的零元。
(4)加法逆元:对于任意的a∈Zn,存在一个元素b∈Zn使得a+b=b+a=0(mod n),即b为a的加法逆元。
(5)乘法单位元:对于任意的a∈Zn,a×1=a=1×a(mod n),其中1为模n的单位元。
(6)乘法交换律:由于Zn对于乘法运算封闭,交换律显然成立。
综上所述,Zn构成一个环。
2. 证明:交换环中存在无零因子的元素。
证明:设R是一个交换环,如果存在a、b∈R且ab=0,则可以得出结论a=0或b=0。
首先,如果a≠0,则对于任意的r∈R,有ra≠0(否则,若存在r∈R 使得ra=0,则可得ra=r(ab)=(ra)b=0,与假设矛盾),那么有ra=b(ab)=0,即b=0。
抽象代数复习题与答案
![抽象代数复习题与答案](https://img.taocdn.com/s3/m/c9683a3b657d27284b73f242336c1eb91a3733a5.png)
抽象代数复习题与答案《抽象代数》试题及答案本科⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在题⼲的括号内。
每⼩题3分) 1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2x +1,则(fg )(x)等于( B )A. 221x x ++B. 23x + C. 245x x ++ D. 23x x ++2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的( A )A. 单射B. 满射C. 双射D. 可逆映射3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。
A. 1B. 2C. 3D. 44. 在整数环Z 中,可逆元的个数是( B )。
A. 1个B. 2个C. 4个D. ⽆限个5. 剩余类环Z 10的⼦环有( B )。
A. 3个B. 4个C. 5个D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8a 的阶为( B ) A . 2 B. 3 C. 6 D. 97.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A )A. 111)(---=a b ab B. b 的阶不⼀定整除G 的阶C. G 的单位元不唯⼀D. G 中消去律不成⽴8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何⼦群都是正规⼦群 C. G 是交换群 D.G 的任何⼦群都是循环群9. 设集合 A={a,b,c}, 以下A ?A 的⼦集为等价关系的是( C )A. 1R = {(a,a),(a,b),(a,c),(b,b)}B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)}C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)}D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)}10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的( B )A. 单射B. 满射C. 双射D. 可逆映射11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。
山东大学《高等数学》2019-2020学年期末试卷
![山东大学《高等数学》2019-2020学年期末试卷](https://img.taocdn.com/s3/m/e581495215791711cc7931b765ce050876327589.png)
山东大学《高等数学上》2019-2020学年第一学期期末A 卷一、填空题 (每题6分,共30分) 1. n n n n ⎪⎭⎫ ⎝⎛−+∞→11lim = ,曲线1223+=x x y 的渐近线方程为 。
2. 设函数()y f x =由参数方程⎩⎨⎧=+=ty t x cos 12确定,则该函数表示的曲线在π=t 处的切线斜率为____,函数()y f x =在2π=t 处的微分2t dy π==____。
3. 若曲线123+++=bx ax x y 有拐点)0,1(−,则=a ,=b 。
4.长方形的长x 以s cm /2的速率增加,宽y 以s cm /3的速率增加。
则当 cm y cm x 5,12==时,长方形对角线增加的速率为 。
5. 设x x x f sin )(3=, 则)0(f ''= , )0()2013(f = 。
二、单项选择题 (每题4分,共20分)1.函数222111)(x x x x x f +−−=的无穷间断点的个数是( )(A )0 (B )1 (C )2 (D )32.221lim 2,2x x ax b x x →−−=+− 则(a , b )=( )()1,2a b =−=A ()2,3a b =−=B ()3,4a b =−=C ()4,5a b =−=D3.设函数⎩⎨⎧≥+<=0,0,)(x bx a x e x f x 在0=x 处可导,则( )(A )1,1−==b a (B )0,1==b a (C )1,1==b a (D )2,1==b a4.设函数()f x 在(,)−∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )(A )若{}n x 收敛,则{}()n f x 收敛 (B )若{}n x 单调,则{}()n f x 收敛(C )若{}()n f x 收敛,则{}n x 收敛 (D )若{}()n f x 单调,则{}n x 收敛5.设)(x f 在a x =可导,则函数|)(|x f 在a x =不可导的充分条件是( )(A)0)(>a f 且0)('>a f (B)0)(<a f 且0)('<a f(C) 0)(=a f 且0)('≠a f(D)0)(=a f 且0)('=a f 三.(10分)求]1)3cos 2[(sin 1lim 30−+→x x xx四、(10分)设⎪⎩⎪⎨⎧=≠−=0,0,sin )()(x a x x x x g x f ,其中)(x g 具有二阶连续导数,2)0(,1)0(,0)0(=''='=g g g ,(1)求a 的值使)(x f 连续;(2)求)(x f '。
最新抽象代数期末考试试卷及答案
![最新抽象代数期末考试试卷及答案](https://img.taocdn.com/s3/m/473702af51e79b8968022672.png)
抽象代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、6阶有限群的任何子群一定不是()。
A、2阶B、3 阶C、4 阶D、 6 阶2、设G是群,G有()个元素,则不能肯定G是交换群。
A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数一定等于()。
A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,≤)B、(Z,≥)C、({2,3,4,6,12},|(整除关系))D、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f是A与A间的一一映射,a是A的一个元,则()[]=-aff1----------。
3、区间[1,2]上的运算},{min baba=的单位元是-------。
4、可换群G中|a|=6,|x|=8,则|ax|=——————————。
5、环Z8的零因子有 -----------------------。
6、一个子群H的右、左陪集的个数----------。
7、从同构的观点,每个群只能同构于他/它自己的---------。
8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。
9、设群G中元素a的阶为m,如果ea n=,那么m与n存在整除关系为--------。
三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。
山东大学数学学院2109年泛函分析期末试题
![山东大学数学学院2109年泛函分析期末试题](https://img.taocdn.com/s3/m/fd529812b90d6c85ec3ac662.png)
16级泛函分析
出题人:张晓燕编辑:胡不归
一、 1.叙述开映射定理和闭图像定理,并证明闭图像定理.
2.M是Banach空间X中的有界闭凸集,A:M→M满足对任意x,y∈M,
||Ax−Ay|| ||x−y||
求证:对任意ε>0,存在xε∈M,使得
||Axε−xε|| ε
3.叙述自然嵌入的定义,并证明自然嵌入映射是范数的.
二、 1.叙述Riesz引理,并利用它证明:若赋范线性空间E中任意有界集都是列紧集,则E是有限维的.
2.求(R n,||·||)的共轭空间,其中||x||=max
1 i n |ξi|,x=(ξi)n
i=1
.
3.叙述Hilbert空间中的Riesz表示定理,并用它证明:f是Hilbert空间H的子空间H0上的有界线性泛
函,则f在H上存在唯一的保范延拓.
三、 1.T是Banach空间X上的幂等算子,即T∈B(X),且T2=T.求证:σ(T)={0,1}.
2.X,Y是赋范线性空间,若X={0},B(X,Y)是Banach空间,则Y是Banach空间.
3.X,Y是赋范线性空间,A:X→Y是全连续线性算子.求证:A将X中的弱收敛序列映为Y中收敛列.。
近世代数期末考试题库
![近世代数期末考试题库](https://img.taocdn.com/s3/m/619bf138c1c708a1294a44e8.png)
晚世代数摹拟试题一之袁州冬雪创作一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( )A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那末,A 与B 的积集合A ×B 中含有( )个元素.A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来讲A 、不是唯一B 、唯一的C 、纷歧定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( )A 、不相等B 、0C 、相等D 、纷歧定相等.5、n 阶有限群G 的子群H 的阶必须是n 的( )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------.2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------.3、环的乘法一般不交换.如果环R 的乘法交换,则称R 是一个------.4、偶数环是---------的子环.5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------.6、每个有限群都有与一个置换群--------.7、全体不等于0的有理数对于普通乘法来讲作成一个群,则这个群的单位元是---,元a 的逆元是-------.8、设I 和S 是环R 的抱负且R S I ⊆⊆,如果I 是R 的最大抱负,那末---------.9、一个除环的中心是一个-------.三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,断定σ和τ的奇偶性,并把σ和τ写成对换的乘积.2、证明:任何方阵都可唯一地暗示成一个对称矩阵与一个反对称矩阵之和.3、设集合)1}(,1,,2,1,0{ m m m M m -⋯⋯=,定义m M 中运算“m +”为a m +b=(a+b)(modm),则(m M ,m +)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群.证明:如果对任意的G x ∈,有e x =2,则G 是交换群.2、假定R 是一个有两个以上的元的环,F 是一个包含R 的域,那末F 包含R 的一个商域.晚世代数摹拟试题二一、单项选择题二、1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群.A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪类运算是可连系的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( ).A 、不成能是群B 、纷歧定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、凯莱定理说:任一个子群都同一个----------同构.2、一个有单位元的无零因子-----称为整环.3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------.4、a 的阶若是一个有限整数n ,那末G 与-------同构.5、A={1.2.3} B={2.5.6} 那末A ∩B=-----.6、若映射ϕ既是单射又是满射,则称ϕ为-----------------.7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα .8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------.9、有限群的另外一定义:一个有乘法的有限非空集合G 作成一个群,如果知足G 对于乘法封闭;连系律成立、---------.10、一个环R 对于加法来作成一个循环群,则P 是----------.三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A={1,2,3}G 是A 上的置换群,H 是G 的子群,H={I,(1 2)},写出H 的所有陪集.2、设E 是所有偶数做成的集合,“•”是数的乘法,则“•”是E 中的运算,(E ,•)是一个代数系统,问(E ,•)是不是群,为什么?3、a=493, b=391, 求(a,b), [a,b] 和p, q.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若<G ,*>是群,则对于任意的a 、b ∈G ,必有惟一的x ∈G 使得a*x =b.2、设m 是一个正整数,操纵m 定义整数集Z 上的二元关系:a 〜b 当且仅当m ︱a –b.晚世代数摹拟试题三一、单项选择题1、6阶有限群的任何子群一定不是( ).A 、2阶B 、3 阶C 、4 阶D 、 6 阶2、设G 是群,G 有( )个元素,则不克不及必定G 是交换群.A 、4个B 、5个C 、6个D 、7个3、有限布尔代数的元素的个数一定等于( ).A 、偶数B 、奇数C 、4的倍数D 、2的正整数次幂4、下列哪一个偏序集构成有界格( )A 、(N,≤)B 、(Z,≥)C 、({2,3,4,6,12},|(整除关系))D 、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那末,在S3中可以与(123)交换的所有元素有( )A 、(1),(123),(132)B 、12),(13),(23)C 、(1),(123)D 、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、群的单位元是--------的,每个元素的逆元素是--------的.2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1----------.3、区间[1,2]上的运算},{min b a b a = 的单位元是-------.4、可换群G 中|a|=6,|x|=8,则|ax|=——————————.5、环Z 8的零因子有-----------------------.6、一个子群H 的右、左陪集的个数----------.7、从同构的观点,每个群只能同构于他/它自己的---------.8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------.9、设群G 中元素a 的阶为m ,如果e a n =,那末m 与n 存在整除关系为--------.三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种分歧的项链?2、S 1,S 2是A 的子环,则S 1∩S 2也是子环.S 1+S 2也是子环吗?3、设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ.1.求στ和στ-1;τ-1的奇偶性.2.确定置换στ和σ四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、一个除环R只有两个抱负就是零抱负和单位抱负.2、M为含幺半群,证明b=a-1的充分需要条件是aba=a和ab2a=e.晚世代数摹拟试题四一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1.设集合A中含有5个元素,集合B中含有2个元素,那末,A与B的积集合A×B中含有()个元素.A.2B.52.设A=B=R(实数集),如果A到B的映射ϕ:x→x+2,∀x∈R,则ϕ是从A到B的()3={(1),(12),(13),(23),(123),(132)},那末,在S3中可以与(123)交换的所有元素有()A.(1),(123),(132)B.(12),(13),(23)3中的所有元素15是以15为模的剩余类加群,那末,Z15的子群共有()个.5.下列集合关于所给的运算不作成环的是()A.整系数多项式全体Z[x]关于多项式的加法与乘法n(Q)关于矩阵的加法与乘法“ ”:∀m, n∈Z, m n=0“ ”:∀m, n∈Z, m n=1二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.“~”是集合A的一个关系,如果“~”知足___________,则称“~”是A 的一个等价关系.7.设(G,·)是一个群,那末,对于∀a,b∈G,则ab∈G也是G中的可逆元,而且(ab)-1=___________.σ=(23)(35),τ=(1243)(235)∈S5,那末στ=___________(暗示成若干个没有公共数字的循环置换之积).9.如果G是一个含有15个元素的群,那末,根据Lagrange定理知,对于∀a ∈G,则元素a的阶只能够是___________.3中,设H ={(1),(123),(132)}是S 3的一个不变子群,则商群G/H 中的元素(12)H =___________.6={[0],[1],[2],[3],[4],[5]}是以6为模的剩余类环,则Z 6中的所有零因子是___________.12.设R 是一个无零因子的环,其特征n 是一个有限数,那末,n 是___________.13.设Z [x ]是整系数多项式环,(x)是由多项式x 生成的主抱负,则(x)=________________________.14.设高斯整数环Z [i ]={a +bi|a ,b ∈Z},其中i 2=-1,则Z [i ]中的所有单位是______________________. 2+3在Q 上的极小多项式是___________.三、解答题(本大题共3小题,每小题10分,共30分)16.设Z 为整数加群,Z m 为以m 为模的剩余类加群,ϕ是Z 到Z m 的一个映射,其中ϕ:k →[k ],∀k ∈Z ,验证:ϕ是Z 到Z m 的一个同态满射,并求ϕ的同态核Ker ϕ.6={[0],[1],[2],[3],[4],[5]}的所有子环,并说明这些子环都是Z 6的抱负.18.试说明唯一分解环、主抱负环、欧氏环三者之间的关系,并举例说明唯一分解环未必是主抱负环.四、证明题(本大题共3小题,第19、20小题各10分,第21小题5分,共25分)19.设G ={a ,b ,c},G 的代数运算“ ”由右边的运算表给出,证明:(G , )作成一个群.已知R 关于矩阵的加法和乘法作成一个环.证明:I 是R 的一个子环,但不是抱负. 21.设(R ,+,·)是一个环,如果(R ,+)是一个循环群,证明:R 是一个交换环. 晚世代数摹拟试题一 参考答案一、单项选择题.1、C ;2、D ;3、B ;4、C ;5、D ;二、填空题(本大题共10小题,每空3分,共30分).1、()()()()()(){}1,2,0,2,1,21,1,0,1,1,1--;2、单位元;3、交换环;4、整数环;5、变换群;6、同构;7、零、-a ;8、S=I 或S=R ;9、域;三、解答题(本大题共3小题,每小题10分,共30分) a b c a a b c b b c a c c a b1、解:把σ和τ写成不相杂轮换的乘积:可知σ为奇置换,τ为偶置换. σ和τ可以写成如下对换的乘积:2、解:设A 是任意方阵,令)(21A A B '+=,)(21A A C '-=,则B 是对称矩阵,而C 是反对称矩阵,且C B A +=.若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是双方必须都等于0,即:1B B =,1C C =,所以,暗示法唯一.3、答:(m M ,m +)不是群,因为m M 中有两个分歧的单位元素0和m.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x ).2、证明在F 里有意义,作F的子集)0,,(≠∈⎭⎬⎫⎩⎨⎧=-b R b a b a Q 所有 -Q 显然是R 的一个商域 证毕.晚世代数摹拟试题二 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分).1、C ;2、D ;3、B ;4、B ;5、A ;二、填空题(本大题共10小题,每空3分,共30分).1、变换群;2、交换环;3、25;4、模n 乘余类加群;5、{2};6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H 的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )}H 的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )}2、答:(E ,•)不是群,因为(E ,•)中无单位元.3、解方法一、辗转相除法.列以下算式:a=b+102b=3×102+85102=1×85+17由此得到 (a,b)=17, [a,b]=a ×b/17=11339.然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b. 所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明 设e 是群<G ,*>的幺元.令x =a -1*b ,则a*x =a*(a -1*b)=(a*a -1)*b =e*b =b.所以,x =a -1*b 是a*x =b 的解.若x ∈G 也是a*x =b 的解,则x =e*x =(a -1*a)*x =a -1*(a*x )=a -1*b =x.所以,x =a -1*b 是a*x =b 的惟一解.2、容易证明这样的关系是Z 上的一个等价关系,把这样定义的等价类集合Z 记为Zm ,每个整数a 所在的等价类记为[a]={x ∈Z ;m ︱x –a }或者也可记为a ,称之为模m 剩余类.若m ︱a –b 也记为a ≡b(m).当m=2时,Z2仅含2个元:[0]与[1].晚世代数摹拟试题三 参考答案一、单项选择题1、C ;2、C ;3、D ;4、D ;5、A ;二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、唯一、唯一;2、a ;3、2;4、24;5、;6、相等;7、商群;8、特征;9、n m ;三、解答题(本大题共3小题,每小题10分,共30分)1、解 在学群论前我们没有一般的方法,只能用列举法.用笔在纸上画一下,用黑白两种珠子,分类停止计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种.2、证由上题子环的充分需要条件,要证对任意a,b ∈S1∩S2 有a-b, ab ∈S1∩S2:因为S1,S2是A 的子环,故a-b, ab ∈S1和a-b, ab ∈S2 ,因而a-b, ab ∈S1∩S2 ,所以S1∩S2是子环.S1+S2纷歧定是子环.在矩阵环中很容易找到反例:3、解: 1.)56)(1243(=στ,)16524(1=στ-; 2.两个都是偶置换.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明:假定μ是R 的一个抱负而μ不是零抱负,那末a 0≠∈μ,由抱负的定义μ∈=-11a a ,因而R 的任意元μ∈•=1b b这就是说μ=R ,证毕.2、证需要性:将b 代入即可得.充分性:操纵连系律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e ,ba=(ab2a)ba=ab2 (aba)=ab2a=e ,所以b=a-1.近 世 代 数 试 卷一、断定题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那末{}B A x x B A ∈∈=⋃x 且. ( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算.()3、只要f 是A 到A 的一一映射,那末必有唯一的逆映射1-f . ( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构. ( )5、如果群G 的子群H 是循环群,那末G 也是循环群. ( )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,. ( )7、如果环R 的阶2≥,那末R 的单位元01≠. ( )8、若环R 知足左消去律,那末R 必定没有右零因子. ( )9、)(x F 中知足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式. ( )10、若域E 的特征是无限大,那末E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主抱负. ( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内.答案选错或未作选择者,该题无分.每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那末( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不克不及调换;③n A A A ⨯⨯⨯ 21中分歧的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一.2、指出下列那些运算是二元运算( )①在整数集Z 上,abb a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= .3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那末 在Z 中( )①不适合交换律;②不适合连系律;③存在单位元;④每个元都有逆元.4、设() ,G 为群,其中G 是实数集,而乘法k b a b a ++= :,这里k 为G 中固定的常数.那末群() ,G 中的单位元e 和元x 的逆元分别是( )①0和x -; ②1和0; ③k 和k x 2-; ④k -和)2(k x +-.5、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那末=x ( ) ①11--a bc ; ②11--a c ; ③11--bc a ; ④ca b 1-.6、设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,.如果6,那末G 的阶=G ( )①6; ②24; ③10; ④12.7、设21:G G f →是一个群同态映射,那末下列错误的命题是( )①f 的同态核是1G 的不变子群; ②2G 的不变子群的逆象是1G 的不变子群;③1G 的子群的象是2G 的子群; ④1G 的不变子群的象是2G 的不变子群.8、设21:R R f →是环同态满射,b a f =)(,那末下列错误的结论为( ) ①若a 是零元,则b 是零元; ②若a 是单位元,则b 是单位元; ③若a 不是零因子,则b 不是零因子;④若2R 是不交换的,则1R 不交换.9、下列正确的命题是( )①欧氏环一定是唯一分解环; ②主抱负环必是欧氏环;③唯一分解环必是主抱负环; ④唯一分解环必是欧氏环.10、若I 是域F 的有限扩域,E 是I 的有限扩域,那末( )①()()()F I I E I E :::=; ②()()()I E F I E F :::=;③()()()I F F E F I :::=; ④()()()F I I E F E :::=.三、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分.每空1分,共10分)1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B .2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1.3、设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那末=j i A A .4、设群G 中元素a 的阶为m ,如果e a n =,那末m 与n 存在整除关系为.5、凯莱定理说:任一个子群都同一个同构.6、给出一个5-循环置换)31425(=π,那末=-1π. 7、若I 是有单位元的环R 的由a 生成的主抱负,那末I 中的元素可以表达为.8、若R 是一个有单位元的交换环,I 是R 的一个抱负,那末I R 是一个域当且仅当I 是.9、整环I 的一个元p 叫做一个素元,如果.10、若域F 的一个扩域E 叫做F 的一个代数扩域,如果.四、改错题(请在下列命题中你认为错误的地方划线,并将正确的内容写在预备的横线上面.指出错误1分,更正错误2分.每小题3分,共15分)1、如果一个集合A 的代数运算 同时适合消去律和分配律,那末在n a a a 21里,元的次序可以掉换.2、有限群的另外一定义:一个有乘法的有限非空集合G 作成一个群,如果知足G 对于乘法封闭;连系律成立、交换律成立.3、设I 和S 是环R 的抱负且R S I ⊆⊆,如果I 是R 的最大抱负,那末0≠S .4、唯一分解环I 的两个元a 和b 纷歧定会有最大公因子,若d 和'd 都是a 和b 的最大公因子,那末必有'd d =.5、α叫做域F 的一个代数元,如果存在F 的都不等于零的元n a a a ,,,10 使得010=+++n n a a a αα .五、计算题(共15分,每小题分标在小题后)1、给出下列四个四元置换组成的群G ,试写出G 的乘法表,而且求出G 的单位元及14131211,,,----ππππ和G 的所有子群.2、设[][][][][][]{}5,4,3,2,1,06=Z 是模6的剩余类环,且[]x Z x g x f 6)(),(∈.如果[][][]253)(3++=x x x f 、[][][]354)(2++=x x x g ,计算)()(x g x f +、)()(x g x f -和)()(x g x f 以及它们的次数.六、证明题(每小题10分,共40分)1、设a 和b 是一个群G 的两个元且ba ab =,又设a 的阶m a =,b 的阶n b =,而且1),(=n m ,证明:ab 的阶mn ab =.2、设R 为实数集,0,,≠∈∀a R b a ,令R x b ax x R R f b a ∈∀+→,,:),( ,将R 的所有这样的变换构成一个集合{}0,,),(≠∈∀=a R b a f G b a ,试证明:对于变换普通的乘法,G 作成一个群.3、设1I 和2I 为环R 的两个抱负,试证21I I 和{}2121,I b I a b a I I ∈∈+=+都是R 的抱负.4、设R 是有限可交换的环且含有单位元1,证明:R 中的非零元不是可逆元就是零因子.晚世代数试卷参考解答一、断定题 1 2 3 4 5 6 7 8 9 10××√√×√√√××二、单项选择题 1 2 3 4 5 6 7 8 9 10 ②④③④①②④③①④三、填空题1、()()()()()(){}1,2,0,2,1,21,1,0,1,1,1--.2、a .3、φ.4、n m .5、变换群.6、()13524. 7、R y x ay x i i i i ∈∑,,. 8、一个最大抱负. 9、p 既不是零元,也不是单位,且q 只有平凡因子.10、E 的每个元都是F 上的一个代数元.四、改错题1、如果一个集合A 的代数运算 同时适合消去律和分配律,那末在n a a a 21里,元的次序可以掉换.连系律与交换律2、有限群的另外一定义:一个有乘法的有限非空集合G 作成一个群,如果知足G 对于乘法封闭;连系律成立、交换律成立.消去律成立3、设I 和S 是环R 的抱负且R S I ⊆⊆,如果I 是R 的最大抱负,那末0≠S .S=I 或S=R4、唯一分解环I 的两个元a 和b 纷歧定会有最大公因子,若d 和'd 都是a 和b 的最大公因子,那末必有d=d ′.一定有最大公因子;d 和d ′只能差一个单位因子5、α叫做域F 的一个代数元,如果存在F 的都不等于零的元n a a a ,,,10 使得010=+++n n a a a αα .不都等于零的元检验题三、填空题(42分)1、设集合M 与M 分别有代数运算 与 ,且M M ~,则当 时, 也知足连系律;当 时, 也知足交换律.2、对群中任意元素1)(,,-ab b a 有=;3、设群G 中元素a 的阶是n ,n|m 则m a =;4、设a 是任意一个循环群,若∞=||a ,则a 与同构;若n a =||, 则a 与同构;5、设G=a 为6阶循环群,则G 的生成元有;子群有;6、n 次对称群n S 的阶是;置换)24)(1378(=τ的阶是;7、设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2314432114324321βα,,则=αβ; 8、设)25)(136()235)(14(==τσ,,则=-1στσ;9、设H 是有限群G 的一个子群,则|G|=;10、任意一个群都同一个同构.二、证明题(24)1、 设G 为n 阶有限群,证明:G 中每个元素都知足方程e x n =.2、 叙述群G 的一个非空子集H 作成子群的充要条件,并证明群G 的任意两个子群H 与K 的交K H 仍然是G 的一个子群.3、 证明:如果群G 中每个元素都知足方程e x =2,则G 必为交换群.三、解答题(34)1、 叙述群的定义并按群的定义验证整数集Z 对运算4++=b a b a 作成群.2、写出三次对称群3S 的所有子群并写出3S 关于子群H={(1),(23)}的所有左陪集和所有右陪集.基础测试参考答案:一、 填空题1、知足连系律; 知足交换律;2、11--a b ;3、e ;4、整数加群;n 次单位根群;5、5,a a ;{}{}{}{}5432423,,,,,,,,,,,a a a a a e a a e a e e ;6、n!;47、⎪⎪⎭⎫ ⎝⎛23144321 8、(456)(32)9、|H|:(G:H)10、(双射)变换群;二、证明题1、已知||n G =,|a|=k,则k|n令n=kq,则e a a a q k kq n ===)(即G 中每个元素都知足方程e x n =2、充要条件:H a H a H ab H b a ∈⇒∈∈⇒∈-1;,,;证明:已知H 、K 为G 的子群,令Q 为H 与K 的交 设H b a ∈,,则K b a H b a ∈∈,,,H 是G 的子群,有H ab ∈K 是G 的子群,有K ab ∈综上所述,H 也是G 的子群.3、证:G 是交换群.三、解答题1、解:设G 是一个非空集合, 是它的一个代数运算,如果知足以下条件:(1)连系律成立,即对G 中任意元素)()(,,c b a c b a c b a =,有(2)G 中有元素e ,它对G 中每个元素a a e a = ,都有(3)对G 中每个元素e a a a G a =-- 11,,使中有元素在则G 对代数运算 作成一个群.对任意整数a,b ,显然a+b+4由a,b 唯一确定,故 为G 的代数运算. (a b ) c=(a+b+4) c=(a+b+4)+c+4=a+b+c+8a (b c)=a+b+c+8即(a b ) c= a (b c)知足连系律∀a 均有(-4) a=-4+a+4=a故-4为G 的左单位元.(-8-a ) a=-8-a+a+4=-4故-8-a 是a 的左逆元.2、解:6||3=S 其子群的阶数只能是1,2,3,61阶子群{(1)}2阶子群{(1)(12)}{(1)(13)}{(1)(23)} 3阶子群{(1)(123)(132)}6阶子群3S左陪集:(1)H={(1)(23)}=(23)H(12)H={(12)(123)}=(123)H(13)H={(13)(132)}=(132)H右陪集:H (1)={(1)(23)}=H (23)H(13)={(13)(23)}=H(123)H(12)={(12)(132)}=H(132)。
抽象代数期末考试试卷及答案
![抽象代数期末考试试卷及答案](https://img.taocdn.com/s3/m/3240ba35b307e87101f696d4.png)
抽象代数期末考试试卷及答案近世代数模拟试题三 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、C ;2、C ;3、D ;4、D ;5、A ;二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、唯一、唯一;2、a ;3、2;4、24;5、;6、相等;7、商群;8、特征;9、n m ;三、解答题(本大题共3小题,每小题10分,共30分)1、解 在学群论前我们没有一般的方法,只能用枚举法。
用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。
2、证 由上题子环的充分必要条件,要证对任意a,b ∈S1∩S2 有a-b, ab ∈S1∩S2:因为S1,S2是A 的子环,故a-b, ab ∈S1和a-b, ab ∈S2 ,因而a-b, ab ∈S1∩S2 ,所以S1∩S2是子环。
S1+S2不一定是子环。
在矩阵环中很容易找到反例:3、解: 1.)56)(1243(=στ,)16524(1=στ-;2.两个都是偶置换。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明:假定μ是R 的一个理想而μ不是零理想,那么a 0≠∈μ,由理想的定义μ∈=-11a a ,因而R 的任意元μ∈∙=1b b这就是说μ=R ,证毕。
2、证 必要性:将b 代入即可得。
充分性:利用结合律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e ,ba=(ab2a)ba=ab2 (aba)=ab2a=e ,所以b=a-1。
——————————————————————————————————————一.判断题(每小题2分,共20分)1. 实数集R 关于数的乘法成群. ( )2. 若H 是群G 的一个非空有限子集,且,a b H ∀∈都有ab H ∈成立,则H 是G 的一个子群. ( )3. 循环群一定是交换群. ( )4. 素数阶循环群是单群. ( )5. 设G 是有限群,a G ∈,n 是a 的阶,若k a e =,则|n k . ( )6. 设f 是群G 到群G 的同态映射,H 是G 的子群,则()f H 是G 的子群. ( )7. 交换群的子群是正规子群. ( )8. 设G 是有限群,H 是G 的子群,则||||G G HH =. ( )9. 有限域的特征是合数. ( )10. 整数环Z 的全部理想为形如nZ 的理想. ( )二.选择题(每小题3分,共15分)11. 下面的代数系统(),G *中,( )不是群.A. G 为整数集合,*为加法;B. G 为偶数集合,*为加法;C. G 为有理数集合,*为加法;D. G 为整数集合,*为乘法.12. 设H 是G 的子群,且G 有左陪集分类{},,,H aH bH cH . 如果H 的阶为6,那么G 的阶G =( )A. 6;B.24;C.10;D.12.13. 设()()()()()(){}31,12,13,23,123,132,S =,则3S 中与元()123不能交换的元的个数是A. 1;B. 2;C. 3;D.4.14. 从同构的观点看,循环群有且只有两种,分别是( ) A. G=(a )与G 的子群; B. 整数加法群与模n 的剩余类的加法群;C. 变换群与置换群;D. 有理数加法群与模n 的剩余类的加法群.15. 整数环Z 中,可逆元的个数是( )。
最新抽象代数期末考试试卷及答案
![最新抽象代数期末考试试卷及答案](https://img.taocdn.com/s3/m/473702af51e79b8968022672.png)
抽象代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、6阶有限群的任何子群一定不是()。
A、2阶B、3 阶C、4 阶D、 6 阶2、设G是群,G有()个元素,则不能肯定G是交换群。
A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数一定等于()。
A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,≤)B、(Z,≥)C、({2,3,4,6,12},|(整除关系))D、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f是A与A间的一一映射,a是A的一个元,则()[]=-aff1----------。
3、区间[1,2]上的运算},{min baba=的单位元是-------。
4、可换群G中|a|=6,|x|=8,则|ax|=——————————。
5、环Z8的零因子有 -----------------------。
6、一个子群H的右、左陪集的个数----------。
7、从同构的观点,每个群只能同构于他/它自己的---------。
8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。
9、设群G中元素a的阶为m,如果ea n=,那么m与n存在整除关系为--------。
三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。
抽象代数的基本概念测试题
![抽象代数的基本概念测试题](https://img.taocdn.com/s3/m/4b3e9aecdc3383c4bb4cf7ec4afe04a1b071b0ce.png)
抽象代数的基本概念测试题一、选择题:选择正确答案,并将其字母编号写在括号内。
1. 下列哪个不是群的必要条件?(A) 封闭性 (B) 结合性 (C) 幂等性 (D) 存在逆元素2. 以下哪种运算不满足交换律?(A) 加法 (B) 减法 (C) 乘法 (D) 除法3. 设G为群,e为其单位元素,则对于任意x∈G,下列哪个成立?(A) x·e = x (B) x−1 = e (C) x·x−1 = e (D) e·e = x4. 设G为群,n为正整数,下列哪个命题成立?(A) (xy)n = xn · yn (B) (xy)n = xn + yn (C) (xy)n = xn · yn−1 (D) (xy)n = xn + yn−15. 下列哪个是环的性质?(A) 封闭性 (B) 结合性 (C) 幂等性 (D) 可逆性二、填空题:根据题意填写正确的答案。
1. 设H为群G的子群,若H=G,则称H为________。
2. 若a为群G中元素x的逆元素,则a满足________关系。
3. 设f: G → H是群G到群H的同态映射,若f是双射,则称f为________。
4. 设G为有限群,其元素个数记为|G|,则对于任意x∈G,有________。
5. 若G为交换群,设a,b∈G,则(a·b)n = ________。
三、简答题:1. 请简述群的定义和群的四个基本性质。
2. 什么是子群?请举例说明。
3. 什么是同态映射?请说明同态映射的基本性质。
4. 请简述环的定义和环的基本性质。
5. 什么是有限群和无限群?请举例说明。
6. 请简述交换群的定义以及交换群与群的区别。
四、证明题:证明:设G为非空集合,定义二元运算·,若对于任意a,b∈G,有a·b=b·a,则G构成一个交换群。
(证明略)五、计算题:计算以下运算,并给出结果。
1. 设集合G = {1, 2, 3, 4, 5},运算为模6的加法,即a + b ≡ (a + b) mod 6,计算3 · 4。
抽象代数期末考试复习题
![抽象代数期末考试复习题](https://img.taocdn.com/s3/m/31abced1ed3a87c24028915f804d2b160b4e86aa.png)
抽象代数期末考试复习题一、基本概念1. 定义与性质- 定义什么是群,并给出群的四个基本性质。
- 解释子群、正规子群、商群的概念,并举例说明。
- 描述群的同态和同构,以及它们的区别。
2. 特殊群- 列举并解释阿贝尔群、循环群、置换群的特点。
- 描述什么是自由群,并给出一个具体的例子。
3. 群的运算- 说明如何构造一个群的凯莱表。
- 解释群的阶的概念,并给出如何计算一个群的阶。
二、环和域1. 基本概念- 定义环,并列出环的基本性质。
- 描述什么是域,并给出域与环的区别。
2. 特殊环和域- 解释整环、域、素域和特征环的特点。
- 举例说明什么是多项式环。
3. 环的运算- 描述理想的概念,并解释如何构造一个环的理想。
- 解释商环的概念,并说明如何通过一个环和它的理想构造商环。
三、线性代数与向量空间1. 向量空间- 定义向量空间,并给出向量空间的八个基本性质。
- 解释基、维数、子空间的概念。
2. 线性变换- 描述线性变换的定义,并给出如何确定一个线性变换的矩阵表示。
- 解释线性变换的核和像的概念。
3. 特征值和特征向量- 定义特征值和特征向量,并解释它们在矩阵理论中的作用。
四、模和张量1. 模的概念- 定义模,并解释模与向量空间的相似之处和不同之处。
2. 张量代数- 描述张量的概念,并解释张量积的运算规则。
五、群论的应用1. 对称性分析- 解释群论在分析物理系统对称性中的应用。
2. 密码学- 简述群论在现代密码学中的应用。
六、附加题目1. 证明题- 证明如果一个群G的所有元素的阶都是有限的,则G是一个有限群。
2. 计算题- 给定一个具体的群G,计算它的凯莱表,并确定它的阶。
3. 应用题- 描述如何使用群论来解决一个实际问题,例如晶体结构的分类。
结束语本复习题旨在帮助学生系统地回顾抽象代数的核心概念和理论,并通过练习题加深理解。
希望同学们能够通过这些题目,巩固知识,提高解题能力,为期末考试做好充分准备。
近世代数期末考试试卷与答案
![近世代数期末考试试卷与答案](https://img.taocdn.com/s3/m/0dec7ba7804d2b160a4ec0b8.png)
.....一、单项选择题 (本大题共 5 小题,每题 3 分,共 15 分)在每题列出的四个备选项中只有一个是切合题目要求的,请将其代码填写在题后的括号内。
错选、多项选择或未选均无分。
1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。
A、aB、 a, eC、 e,a 3D、 e, a, a32、下边的代数系统( G,* )中,()不是群A、G 为整数会合, *为加法B、 G 为偶数会合,*为加法C、G 为有理数会合,*为加法D、G 为有理数会合,*为乘法3、在自然数集 N 上,以下哪一种运算是可联合的?()A、a*b=a-bB、a*b=max{a,b}C、 a*b=a+2b D 、a*b=|a-b|4、设 1 、 2 、3是三个置换,此中1 = (12 )( 23)( 13),2 = (24)( 14),3=(1324),则3 =()A、 2B、12C、 2D、 2 11 25、随意一个拥有 2 个或以上元的半群,它()。
A、不行能是群B、不必定是群C、必定是群D、是互换群二、填空题 (本大题共 10 小题,每空 3 分,共 30 分 )请在每题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个 ----------同构。
2、一个有单位元的无零因子----- 称为整环。
3、已知群G中的元素a的阶等于 50,则a4的阶等于 ------ 。
.....4、a 的阶假如一个有限整数 n,那么 G 与------- 同构。
5、A={1.2.3} B={2.5.6} 那么 A∩B=----- 。
6、若映照既是单射又是满射,则称为-----------------。
7 、叫做域 F 的一个代数元,假如存在 F 的----- a, a1,,an使得n0 。
a0 a1 a n8 、a是代数系统( A,0)的元素,对任何 x A 均成立x a x ,则称 a 为--------- 。
抽象代数习题
![抽象代数习题](https://img.taocdn.com/s3/m/07e65a363b3567ec112d8a12.png)
1. 〈{1,2,3,4},·5〉和〈{0,1,2,3},+4〉是否同构?2. 代数结构〈I ,+〉与〈N ,·〉是否同构?3. 设X 为集合,证明〈P (X ),∩〉与〈P (X ),∪〉是同构的。
4. 求出〈N 6,+6〉的所有自同态。
1. 给定代数结构〈I ,+,·〉,定义I 上的二元关系R 为:i R j 当且仅当 | i | = | j | ,关于加法运算 +,R 是否具有代换性质?对于乘法运算·呢?2. 设R 是N 3上的等价关系。
若R 关于 +3具有代换性质,则R 关于·3也一定具有代换性质。
求出N 3上的一个等价关系S ,使其关于·3具有代换性质,但关于 +3不具有代换性质。
3. 试确定I 上的下述关系R 是否为〈I ,+〉上的同余关系: a) x R y 当且仅当 (x <0∧y <0=∨(x ≥0∧y ≥0); b) x R y 当且仅当 | x ·y |<10;c) x R y 当且仅当 (x = 0∧y = 0)∨(x ≠0∧y ≠0); d) x R y 当且仅当 x ≥ y 。
第二章2. 在以下给出的N 上的关系R 中,哪些是么半群〈N ,+〉上的同余关系?对于同余关系求出相应的商么半群。
a ) aRb 当且仅当 a -b 是偶数。
b ) aR b 当且仅当 a >b 。
c ) aR b 当且仅当 存在r ∈I 使a = 2 r ·b 。
d ) aR b 当且仅当 10整除a -b 。
3. 设〈S ,*〉是半群,a ∈S ,在S 上定义二元运算·如下:x ·y = x * a * y , x ,y ∈S证明〈S ,·〉也是半群。
4. 设〈M ,*〉是么半群且#M ≥2。
证明M 中不存在有左逆元的左零元。
5. 设⎭⎬⎫⎩⎨⎧∈⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧∈⎥⎦⎤⎢⎣⎡=R a a T R b a b a S |000,,|00,·为矩阵的乘法运算。