离心率的值或范围问题

合集下载

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。

求离心率的范围问题整理分类

求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

离心率及范围计算

离心率及范围计算

离心率及范围计算离心率是一种描述椭圆形的形状和偏心程度的量,它是地球轨道力学中非常重要的一个参数。

在物理学、工程学和天体力学中都有广泛的应用。

离心率的计算公式如下:e=(r_a-r_p)/(r_a+r_p)其中,e是离心率,r_a是椭圆的远地距离,r_p是椭圆的近地距离。

离心率的取值范围在0到1之间。

当离心率为0时,代表一个圆形轨道,对应于圆心在椭圆焦点上的圆。

当离心率接近于1时,轨道是一个非常扁平的椭圆,对应于椭圆焦点之间的一个狭长的椭圆。

离心率的计算可以通过多种方法进行。

以下将介绍两种常用的计算方法。

第一种方法是使用轨道的速度和半径来计算离心率。

假设v是轨道上其中一点的速度,r是该点到轨道中心的距离。

根据机械能守恒定律,有以下公式:v^2=GM(2/r-1/a)其中,G是万有引力常数,M是中心物体的质量,a是轨道的半长轴。

通过解以上方程,可以得到a。

同时,根据质心定理,有以下公式:r_p=a(1-e)r_a=a(1+e)将这两个方程代入离心率的计算公式中,可以得到离心率e。

第二种方法是使用轨道的半长轴和半短轴来计算离心率。

假设a是轨道的半长轴,b是轨道的半短轴,则有以下公式:e = sqrt(1 - (b^2 / a^2))通过测量半长轴和半短轴的长度,可以计算出离心率e。

离心率的计算在航天工程和天体力学中具有重要的应用。

例如,在航天探测器的轨道设计中,离心率的取值会影响探测器对地面目标的覆盖范围和传输时间。

此外,离心率还可以用来描述天体运动的稳定性和周期性。

总结起来,离心率是一种重要的参数,用于描述椭圆形的形状和偏心程度。

它的计算可以通过测量轨道的速度、半径或者半长轴和半短轴来进行。

离心率的取值范围在0到1之间,对应于不同形状和偏心程度的轨道。

离心率的计算在航天工程和天体力学中具有广泛的应用。

圆锥曲线中求离心率的值与范围的问题(共28张PPT)

圆锥曲线中求离心率的值与范围的问题(共28张PPT)

分析:在椭圆内的所有焦点三角形,当顶点 P 与短轴重合时,此时面积最大 Smax b
解析:注意,凡是经过原点的直线与椭圆或双曲线相交于两点时,这两点的位置是对
的,本题目中 ABF2 和 AF1F2 是全等的,因此 SABF2 SAF1F2 故当点 A 位于短轴的交点处时,面积最大 Smax bc
这两个区域内直线斜率的取值范围。
求离心率范围问题
②过焦点的直线与双曲线交点个数问题

12:已知双曲线 x2 a2

y2 b2
1的右焦点为
F,若过点
F
且倾斜角为 60
的直线与双曲线
的右支有且只有一个交点,则此双曲线离心率的取值范围为_________.
解析:过双曲线的右焦点可能与右支的交点个数为 1 个或 2 个,取决于这条直线和右渐

2a PF2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c
所以不等关系就能找出来了,解不等式可得 2 1 e 1
离心率范围问题
(2)焦点三角形顶角的取值范围:当 P 点处于 B 位置时,顶角最大,例:

10:设
P
是椭圆
x2 a2

y2 b2
1上一点,且 F1PF2
求离心率范围问题
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有 a,b, c 或数字的形式,至于如何建立不等关系,可总结为四
种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
求离心率范围问题

7:椭圆
x2 a2

求离心率的范围问题

求离心率的范围问题

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率问题的7种题型15种方法(教师版)

离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。

圆锥曲线离心率及范围问题

圆锥曲线离心率及范围问题

因为 MH
OF2 ,所以, OF2
MH
OM
MF2 , MH
ab c
,即 M
点纵坐标为
ab c

将M
点纵坐标带入圆的方程中可得
x2
a2b2 c2
b2
,解得 x
b2 c
,M
b2
c
,
ab c

将M
b4
点坐标带入双曲线中可得
a2c2
a2 c2
1,
化简得 b4 a4 a2c2 , c2 a2 2 a4 a2c2 , c2 3a2 , e c 3 ,选 D. a
PF2 F1 60 ,则 C 的离心率为(
A.1 3 2
B. 2 3
) C. 3 1 2
D. 3 1
【答案】 3 1
【解析】设椭圆焦点在 x 轴上,则椭圆方程为
x2 a2
y2 b2
1a
0, b
0.
因为 F2PF1 90 , PF2F1 60 , F1F2 2c ,所以 PF2 c , PF1 3c
因为 MF1 3 MF2 , M 在双曲线上,所以根据双曲线性质可知 MF1 MF2 2a , 即 3 MF2 MF2 2a , MF2 a 因为圆 x2 y2 b2 的半径为 b , OM 是圆 x2 y2 b2 的半径,所以 OM b , 因为 OM b, MF2 a,OF2 c, a2 b2 c2 , 所以 OMF2 90 ,三角形 OMF2 是直角三角形,
设 F1 为椭圆右焦点, F2 为椭圆左焦点,则 PF1 PF2 2a ,所以 3 1 c 2a ,
所以 e c 2 2 3 1 3 1.故选 D. a 3 1 3 1 3 1

离心率的值及范围专题(教师)

离心率的值及范围专题(教师)

关于椭圆离心率例、设椭圆)0(12222>>=+b a by a x 的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。

第一类:利用曲线几何性质中某些量自身的有界性解法1:利用曲线中x 的范围设P (x ,y ),又知()0,1c F -,()0,2c F ,则),(),,(21y c x F y c x F -=+=,由02190=∠PF F ,得F F 21⊥,即021=⋅F F 即0)(2=+-+y c x c x )(,得222c y x =+ 将这个方程与椭圆方程联立,消去y ,可解得2222222b a b ac a x --=由椭圆范围及02190=∠PF F 得220a x <≤,即22222220a ba b a c a <--≤ 即2222222a c c a c b c <⇒-≥⇒≥,故22≥e 综上,⎪⎪⎭⎫⎢⎣⎡∈1,22e ((1)若顶角为060类,利用数量积的坐标公式与一般公式可列等量关系,从而求出点P 的坐标。

相对090运算复杂;(2)本做法也可以求[]b b y ,-∈)解法2:利用焦半径的范围由焦半径公式得ex a PF +=1,ex a PF -=2,又由2212221F F PF PF =+,则2222222422c x e cx a x e cx a =+-+++即22222c x e a =+,22222ea c x -= 又点),(y x p 在椭圆上,且a x ±≠,则知220a x <≤,即222220a e a c <-≤得⎪⎪⎭⎫⎢⎣⎡∈1,22e ((1))第二类:利用定义与基本不等式 解法3:利用基本不等式由椭圆定义知a PF PF 221=+平方后得()22212122212224PF PF PF PF PF PF a +≤++=222182c F F ==,得2122≥a c ,故⎪⎪⎭⎫⎢⎣⎡∈1,22e 第三类:几何量存在则对应方程有解解法1:利用二次方程有实根由椭圆定义知a PF PF 221=+⇒221222142a PF PF PF PF =++又由02190=∠PF F ,知222122214c F F PF PF ==+则()22212c a PF PF -=⋅ 故21PF PF 、为方程0)(22222=-+-c a au u 的两实数根,则0)(84222≥--=∆c a a 即21222≥=a c e 22≥⇒e ,故⎪⎪⎭⎫⎢⎣⎡∈1,22e 解法2:利用三角形存在则三角函数有界 设α=∠21F PF ,β=∠12F PF ,由正弦定理0212190sin sin sin F F PF PF ==αβ⇒2121sin sin F F PF PF =++βα又a PF PF 221=+,c F F 221=,则βαsin sin 1+==a c e 2cos2sin21βαβα-+=2cos21βα-=由0900<-≤βα得04520<-≤βα,12cos 22≤-<βα,故⎪⎪⎭⎫⎢⎣⎡∈1,22e 第四类:利用图形之间的相关性解法:顶角为直角,则顶点P 在圆周上由02190=∠F PF ,得点P 在以c F F 221=为直径的圆上。

求离心率的值与范围的问题

求离心率的值与范围的问题

求离心率值问题
x2 例 1: 如图, 若四边形 AF1BF2 F1 , F2 是椭圆 C1 : y 2 1 和双曲线 C2 的公共焦点, 4 为矩形,则双曲线的离心率为____________.
解析:关于共焦点的问题, c 相等,在椭圆里面 AF1 AF2 2a 4 在 RT AF1F2 中满足 AF12 +AF22 =F1F22 ,解得 AF1 =2- 2,AF2 =2+ 2 则在双曲线中 a 2, c 3 ,则 e
弦定理,所以变形一下得
c sin PF2 F1 PF1 a sin PF1F2 PF2
因为 PF 1 2a PF 2 ,所以
c sin PF2 F1 2a PF2 a sin PF1F2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c 所以不等关系就能找出来了,解不等式可得 2 1 e 1
率为____________.
解析:题目中未出现焦点三角形,则与定义无关,且 A,B 均不在双曲线上,因此 求点坐标无用,题目双曲线中唯一出现的与 a, b, c 有关系的量就只有渐近线
了,因此题目中必定用到渐近线方程,题目中还给出了垂心的概念,因此垂直 关系就很明显了。而题目中的等量关系就是垂直,例如 AF OB ,因此可采用 斜率乘积为-1 来求,但是需要求出点 B 的坐标,点 B 的坐标是渐近线方程和抛 物线的交点,因此联立即可:
解得
1 e 1 2
离心率范围问题
x2 y 2 例 8: 双曲线 2 2 1 的两个焦点分别是 F1 , F2 , 若 P 是其上的一点, 且 | PF 1 | 2 | PF 2 |, a b
则双曲线的离心率的取值范围是________.

高中数学常见题型解法归纳 - 离心率取值范围的常见求法

高中数学常见题型解法归纳 - 离心率取值范围的常见求法

高中数学常见题型解法归纳 - 离心率取值范围的常见求法高中数学常见题型解法归纳——离心率取值范围的常见求法求圆锥曲线离心率的取值范围是高考中的一个热点和难点。

对于椭圆、双曲线和抛物线,我们需要清楚它们的离心率取值范围,并且自己求出的离心率的范围必须和这个范围求交集。

求离心率的取值范围常用的方法有以下三种:方法一:利用圆锥曲线的变量的范围,建立不等关系。

先求出曲线的变量,然后利用它们的范围建立离心率的不等式,解不等式即可得到离心率的取值范围。

例如,对于椭圆的左右焦点分别为$(\pm c,0)$,如果椭圆上存在点$P(x,y)$,使得$PF_1+PF_2=2a$,其中$F_1,F_2$为焦点,$2a$为长轴长度,则求离心率的取值范围为$\frac{c}{a}<e<1$。

方法二:直接根据已知中的不等关系,建立关于离心率的不等式。

根据已知中的不等关系,得到关于离心率的不等关系,再转化为离心率的不等式,解不等式即可得到离心率的取值范围。

例如,已知双曲线的右焦点为$(c,0)$,若过点$P(2\cos\theta,\sin\theta)$且倾斜角为$\alpha$的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是$e>\sec\alpha$。

方法三:利用函数的思想分析解答。

根据题意,建立关于离心率的函数表达式,再利用函数来分析离心率函数的值域,即得离心率的取值范围。

例如,设$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>b>0$,则此双曲线的离心率的取值范围是$e>\frac{a}{b}$。

需要注意的是,对于椭圆的离心率、双曲线的离心率和抛物线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解。

离心率范围问题的求解策略

离心率范围问题的求解策略

离心率范围问题的求解策略1. 引言1.1 背景介绍离心率范围问题是指在某个特定的环境下,离心率的取值范围受到一定限制和影响,这可能会对系统的稳定性、性能和效率产生影响。

离心率本身是描述一个系统中某个物体或粒子远离轴线运动的程度的参数,通常用来描述液体或气体在旋转设备中的运动特性。

离心率的大小和范围直接关系着系统的工作状态和性能表现,因此对离心率范围问题进行深入研究和分析具有重要意义和实际价值。

在工程学、生物医学、地球科学等领域,离心技术被广泛应用于分离、浓缩、纯化等方面,而离心率范围问题则成为了工程师、科研人员以及相关领域专家关注的焦点。

了解和掌握离心率的定义、取值范围以及受到影响的因素,对于设计优化离心机、改进离心分离过程、提高实验效率等方面具有重要意义。

通过深入研究离心率范围问题的求解策略,可以为相关领域的科研工作和工程实践提供更加科学、有效的指导和支持。

1.2 问题提出离心率是描述轨道椭圆程度的一个重要参数,对于天体运动、环境工程等领域具有重要意义。

在实际应用中,我们常常面临离心率范围问题,即确定一个合适的离心率范围以满足特定的需求。

离心率范围问题在航天器设计、卫星轨道、地球环境保护等领域都具有重要意义。

在航天领域,离心率范围问题的解决直接影响着航天器的轨道设计和控制,对轨道稳定性、燃料消耗等方面都有着重要影响。

在卫星轨道设计中,确定合适的离心率范围可以提高卫星的使用寿命和性能,保证卫星能够稳定地运行和提供服务。

在地球环境保护中,离心率范围问题也是关键,例如在地球观测卫星设计中,需要合理选择离心率范围以确保卫星能够准确地观测地球的变化,为环境保护和资源管理提供支持。

研究离心率范围问题具有重要的理论意义和应用价值。

解决离心率范围问题,不仅可以提升航天器、卫星和环境保护设备的性能和稳定性,还能推动相关领域的发展和进步。

在本文中,我们将探讨离心率范围问题的定义、影响因素和求解策略,为解决实际问题提供参考和指导。

离心率的求值或取值范围问题

离心率的求值或取值范围问题

离心率的求值或取值范围问题【方法技巧】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式, 第三步 解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.【应用举例】【例题1】若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )A .34 B .23 C .12 D .14【答案】C 【解析】试题分析:根据椭圆定义,原点到两焦距之和为2a=1+2,焦距为2c=2,所以离心率为12. 考点:椭圆的定义. 【难度】较易【例题2】点P (-3,1,过点P 且方向为a =(2,-5)的光线经直线y=-2反射后通过椭圆的左焦点,则此椭圆离心率为( )【答案】A 【解析】试题分析:因为给定点P (-3,1根据光线的方向为a =(2,-5)y=-2与入射光线的斜率互为相反数可知焦点的坐标为(1,0),因此可知 A 考点:本试题考查了椭圆性质的知识点。

点评:解决该试题的关键是利用椭圆的反射原理得到直线斜率的特点,结合平面反射光线与入射光线的斜率互为相反数,得到c 的值,同时得到a,b,c 的关系式,进而得到结论,属于基础题。

2025高考数学总复习离心率的范围问题

2025高考数学总复习离心率的范围问题

由题意知 a=1,b= 1-m2,c=m,
椭圆E上存在点P满足|OP|=m,等价于以O为原点,以c为半径的圆与
椭圆有交点,得c≥b,
所以
c2≥b2=a2-c2,解得ac22≥12,所以
e=ac≥
2 2.

0<e<1,所以椭圆
E
的离心率的取值范围为
22,1.
(2)已知 P 为椭圆ax22+by22=1(a>b>0)上一点,F1,F2 为椭圆焦点,且|PF1|
题型二 利用圆锥曲线的性质求离心率的范围
例 2 (1)(2023·张掖模拟)若椭圆 E:x2+1-y2m2=1(0<m<1)上存在点 P,
满足|OP|=m(O 为坐标原点),则椭圆 E 的离心率的取值范围为
A.0,12
C.0,
2
2
B.12,1

D.
22,1
设椭圆E的长半轴长、短半轴长、半焦距分别为a,b,c,
该双曲线的右顶点,过点 F 且垂直于 x 轴的直线与双曲线交于 A,B 两点,
若△ABE 是锐角三角形,则该双曲线的离心率 e 的取值范围是
A.(1,+∞) C.(2,1+ 2)
√B.(1,2)
D.(1,1+ 2)
由题意可知|AE|=|BE|,即△ABE为等腰三角形, ∵△ABE是锐角三角形, ∴∠AEB<90°,∴∠AEF<45°, 将 x=-c 代入ax22-by22=1,可得 y=±ba2, 故在 Rt△AFE 中,|AF|=ba2,|FE|=a+c, ∵∠AEF<45°,
第八章
§8.7 离心率的范围问题
重点解读
圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知 特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘 应用也可使问题求解更简洁.

高中数学专题52 离心率及其范围问题

高中数学专题52 离心率及其范围问题

专题52离心率及其范围问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线离心率问题是热点之一,从命题的类型看,有小题,也有大题,就难度来说,小题大难度基本处于中档,而大题中则往往较为简单,小题中单纯考查椭圆、双曲线的离心率的确定较为简单,而将三种曲线结合考查,难度则大些,本文在分析研究近几年高考题及各地模拟题的基础上,重点说明离心率及其范围问题的解法与技巧.一、基础知识1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距)(1)椭圆:()0,1e ∈;(2)双曲线:()1,+e ∈∞;2、圆锥曲线中,,a b c 的几何性质及联系(1)椭圆:222a b c=+①2a :长轴长,也是同一点的焦半径的和:122PF PF a +=;②2b :短轴长;③2c :椭圆的焦距;(2)双曲线:222c b a=+①2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a -=;②2b :虚轴长;③2c :双曲线的焦距;3、求离心率的方法:求椭圆双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在等边三角形、平行四边形、圆等等特殊图形,那么可考虑寻求几何关系,进而找到,,a b c 之间的比例,从而可求解;(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解;4、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求,例如椭圆与双曲线对横坐标的范围有要求,如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口;(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可;(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率;【注】在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞.【经典例题】例1.【2016年高考浙江卷】已知椭圆1C :2221x y m +=()1m >与双曲线2C :2221x y n-=()0n >的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则()A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <例2.【2018年高考北京卷】已知椭圆()222210x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.例3.【2018年高考全国II 卷】已知1F ,2F 是椭圆()222210x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为()A.23B .12C .13D .14例4.【2019年高考全国II 卷】设F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,O 为坐标原点,以OF为直径的圆与圆222x y a +=交于,P Q 两点.若PQ OF =,则C 的离心率为()A B C .2D例5.【2019年高考全国I 卷】已知双曲线C :()222210,0x y a b a b -=>>的左,右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点,若1F A AB = ,120F B F B ⋅=,则C 的离心率为.例6.【福建省厦门市厦门外国语学校2019届高三最后一模】双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是.例7.【江苏省南通、如皋市2018-2019学年第二学期高三年级联考】已知12,F F 分别为椭圆2222:1x y E a b+=()0a b >>的左,右焦点,点,A B 分别是椭圆E 的右顶点和上顶点,若直线AB 上存在点P ,使得12PF PF ⊥,则椭圆C 的离心率e 的取值范围是.例8.【2016年高考全国III 卷】已知O 为坐标原点,F 是椭圆()2222:10x y C a b a b+=>>的左焦点,,A B分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12 C.23D.34例9.【2009年高考全国II 卷】已知双曲线2222:1x y C a b -=()0,0a b >>的右焦点为F ,过F 的直线交C 于,A B 两点,若4AF FB =,则双曲线C 的离心率为()A .65B.75C.58D.95例10.【2020届湖南省长沙市长郡中学高三下学期3月阶段性测试】如图,已知梯形ABCD 中2AB CD =,点E 在线段AC 上,且25AE AC =,双曲线过C ,D ,E 三点,以A ,B 为焦点,则双曲线离心率e 的值为()A B .C .3D【精选精练】1.【2019年高考模拟试题】设点12,A A 分别为椭圆22221x y a b+=()0a b >>的左右顶点,若在椭圆上存在异于点12,A A 的点P ,使得2PO PA ⊥,其中O 为坐标原点,则椭圆的离心率e 的取值范围是()A.10,2⎛⎫⎪⎝⎭B.0,2⎛⎫⎪⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.,12⎛⎫⎪⎪⎝⎭2.【云南省昆明市第一中学2018届新课标高三月考卷】已知双曲线()2222:1,0x y C a b a b-=>的左、右焦点分别为12,F F ,过1F 的直线与双曲线C 的左、右两支分别交于,A B 两点,若2AB AF =,27cos 8BAF ∠=,则双曲线C 的离心率为.3.【2018届四川省成都七中高考数学一诊试卷】已知12,F F 是双曲线()222210,0x y a b a b-=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N ,且M ,N 均在第一象限,当直线1MF ON 时,双曲线的离心率为e ,若函数()222f x x x x=+-,则()f e =.4.【2017届陕西省宝鸡市一模试卷】已知双曲线()22:10C mx ny mn +=<的一条渐近线与圆226290x y x y +--+=相切,则C 的离心率等于()A.53B.54 C.53或2516D.53或545.【2014年高考数学浙江卷】设直线()300x y m m -+=≠与双曲线22221x y a b-=()0,0a b >>的两条渐近线分别交于点,A B ,若点(),0P m 满足PA PB =,则该双曲线的离心率是.6.【湖南省岳阳市2019届高三第二次模拟考试】设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,O为坐标原点,若双曲线及其渐近线上各存在一点,Q P ,使得四边形OPFQ 为矩形,则其离心率为.7.【四川省成都市2019届高三第一次诊断性检测】设椭圆()2222:10x y C a b a b +=>>的左,右顶点为,A B .P 是椭圆上不同于,A B 的一点,设直线,AP BP 的斜率分别为,m n ,则当2233a b mn mn⎛⎫-+ ⎪⎝⎭()3ln ln m n ++取得最小值时,椭圆C 的离心率为()A .15B .22C .45D .328.【河北省邯郸市2018届第一次模拟考试】设双曲线Ω:()222210,0x y a b a b-=>>的左顶点与右焦点分别为A ,F ,以线段AF 为底边作一个等腰AFB △,且AF 边上的高h AF =.若AFB △的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是()A .存在唯一的e ,且3,22e ⎛⎫∈⎪⎝⎭B .存在两个不同的e ,且一个在区间31,2⎛⎫⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内C .存在唯一的e ,且31,2e ⎛⎫∈ ⎪⎝⎭D .存在两个不同的e ,且一个在区间31,2⎛⎫ ⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内9.【2014年高考湖北卷】已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C.3D.210.已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左右焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是()A.,15⎫⎪⎪⎣⎭ B.,12⎫⎪⎪⎣⎭C.0,5⎛ ⎝⎦D.0,2⎛ ⎝⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.方法综述离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①根据题意求出,,a b c 的值,再由离心率的定义椭圆2222222e ===1()c a b b a a a--、 双曲线2222222e ===1()c a b b a a a++直接求解; ②由题意列出含有,,a b c 的方程(或不等式),借助于椭圆222b a c =-、双曲线222b c a =-消去b ,构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解; ④根据圆锥曲线的统一定义求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标0a x a -≤≤等. 二.解题策略类型一 直接求出c a ,或求出a 与b 的比值,以求解e 【例1】【2019年4月28日三轮《每日一题》】已知双曲线的右焦点为抛物线的焦点,且点到双曲线的一条渐近线的距离为,若点在该双曲线上,则双曲线的离心率为( )A .B .C .D .【答案】B 【解析】 设,则,所以抛物线的方程为.因为点到双曲线的一条渐近线的距离为,不妨设这条渐近线的方程为,即,则,又点在双曲线上,所以,解得,故,即.故选B.【指点迷津】求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.【举一反三】1.【广西桂林市2019届高三4月(一模】设抛物线的焦点为,其准线与双曲线的两个交点分别是,若存在抛物线使得是等边三角形,则双曲线的离心率的取值范围是()A.B.C.D.【答案】A【解析】因为抛物线,所以,准线为,将代入得,不妨设为右支上的点,则,因为是等边三角形,则,即,所以,因此双曲线的离心率为.故选A2. 【四川省广元市2019届高三第二次高考适应】平面直角坐标系xOy中,双曲线:的两条渐近线与抛物线C:交于O,A,B三点,若的垂心为的焦点,则的离心率为A.B.C.2 D.【答案】B【解析】解:联立渐近线与抛物线方程得,,抛物线焦点为,由三角形垂心的性质,得,即,所以,所以,所以,所以的离心率为.故选:B.,的齐次式,解出e类型二构造a c【例2】【江苏省扬州中学2019届高三下学期3月月考】已知双曲线(a>0,b>0)的左、右焦点分别为F1、F2,直线MN过F2,且与双曲线右支交于M、N两点,若cos∠F1MN=cos∠F1F2M,,则双曲线的离心率等于_______.【答案】2【解析】如图,由可得,∴,,由双曲线的定义可得,,∴在中由余弦定理得在中由余弦定理得,∵,∴,整理得,∴,解得或(舍去).∴双曲线的离心率等于2.故答案为:2.【指点迷津】本题考查双曲线离心率的求法,解题的关键是把题中的信息用双曲线的基本量()来表示,然后根据余弦定理建立起间的关系式,再根据离心率的定义求解即可.对待此类型的方程常见的方法就是方程左右两边同除一个参数的最高次项即可转化成一个一元二次方程, 化简整理的运算能力是解决此题的关键.【举一反三】已知椭圆和双曲线有共同焦点12,F F , P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为12,e e ,则121e e 的最大值是( ) A.233 B. 433C. 2D. 3 【答案】A【指点迷津】本题综合性较强,难度较大,运用基本知识点结合本题椭圆和双曲线的定义给出12a a 、与1PF 、2PF 的数量关系,然后再利用余弦定理求出与c 的数量关系,最后利用基本不等式求得范围.类型三 寻找特殊图形中的不等关系或解三角形【例3】【北京市首都师范大学附属中学2019届高三一模】椭圆:的左、右焦点分别为,,为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是_____. 【答案】【解析】的最大值为由题意知故椭圆的离心率的取值范围本题正确结果:【指点迷津】(1)解决圆锥曲线问题时要注意常见结论的运用,如椭圆的通径(过椭圆的焦点且垂直于长轴的弦)长的结论.(2)图象特征的运用,本题根据题意,从的最大值为,由题意知,由此能够导出椭圆的离心率的取值范围.【举一反三】1.【2019年4月27日三轮《每日一题》】.已知,分别为双曲线(,)的左、右焦点,是双曲线右支上一点,线段与以该双曲线虚轴为直径的圆相切于点,且切点为线段的中点,则该双曲线的离心率为( )A.B.5 C.D.3【答案】A【解析】如图,由题意知=,且⊥,又为线段的中点,则||=,⊥,由双曲线的定义知||—||=,∴||=-,又+=,即,即==,即=,∴==,∴双曲线的离心率为=,故选:A.2.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》】已知是椭圆的右焦点,是椭圆短轴的一个端点,若为过的椭圆的弦的三等分点,则椭圆的离心率为( )A .B .C .D .【答案】B 【解析】 延长交椭圆于点,设椭圆右焦点为,连接.根据题意,,所以根据椭圆定义,所以在中,由余弦定理得 在中,由余弦定理得所以,解得, 所以椭圆离心率为故选B 项.【指点迷津】根据椭圆几何性质可把椭圆内每条线段的长度用表示,然后利用余弦定理,在两个三角形里分别表示同一角的余弦,得到关系,求出离心率.类型四 利用圆锥曲线性质【例4】已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,设椭圆和双曲线的离心率分别为1e ,2e ,则1e ,2e 的关系为( ) A. 1213e e =B. 2212143e e += C. 2211134e e += D. 221134e e +=【答案】C【指点迷津】解决圆锥曲线问题时要注意常见结论的运用,如椭圆的通径(过椭圆的焦点且垂直于长轴的弦)长的结论、焦点三角形的面积公式等.【举一反三】已知椭圆E : ()222210x y a b a b+=>>的短轴的两个端点分别为A ,B ,点C 为椭圆上异于A ,B 的一点,直线AC 与直线BC 的斜率之积为14-,则椭圆的离心率为( ) A.32 B. 34 C. 12D. 24 【答案】A【解析】设C (x 0,y 0),A (0,b ),B (0,-b ),则2200221x y a b+=.故()2222002a x b y b =-又k AC ·k BC =2202014y b x -=-,故a 2=4b 2,c 2=a 2-b 2=3b 2, 因此e =32,故选A. 【指点迷津】研究解几问题,一是注重几何性,利用对称性减少参数;二是巧记一些结论,简约思维、简化运算,如本题利用22,(,PA PB b k k A B a⋅=-关于原点对称,,,A B P 为椭圆上三点).类型五 利用平面几何性质【例5】【湖南省永州市2019届高三第三次模】过双曲线左焦点的直线与交于两点,且,若,则的离心率为( )A .B .C .D .【答案】B【解析】设双曲线右焦点为,取中点,连接,如下图所示:由可知:又为中点,可知为线段的垂直平分线设,由双曲线定义可知:,则,解得:在中,在中,本题正确选项:【指点迷津】注意平面几何知识的运用,对于本题中的双曲线右焦点为,取中点,连接;根据已知可知为线段的垂直平分线,得到;结合双曲线定义可以求解出,从而得到的长度,根据勾股定理构造方程,从而求得离心率.【举一反三】【湖南省永州市2019届高三三模】已知为坐标原点,是椭圆的左焦点,分别为椭圆的左、右顶点和上顶点,为上一点,且轴,过点的直线与直线交于,若直线与线段交于点,且,则椭圆的离心率为_____.【答案】【解析】由题意,作出图像如下:因为是椭圆的左焦点,所以,又轴,所以,因为分别为椭圆的左、右顶点和上顶点,直线与线段交于点,且,所以,,由题意易得,,所以,,因此,整理得,所以离心率为.故答案为【指点迷津】1.对于求离心率的题,重要的是根据几何关系,或代数关系建立关于或的等式,再进一步求出离心率.2.常构建等式的方法有:(1)利用圆锥曲线定义(2)利用几何关系(3)利用点在曲线上.3. 本题由题意作出图形,先由是椭圆的左焦点,得到的坐标,求出的长度,根据,表示出的长度,再由,表示出的长度,列出等式,求解即可得出结果.类型六利用数形结合【例6】【山东省济宁市2019届高三一模】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C.D.【答案】D【解析】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D.【指点迷津】本题首先可以通过题意画出图形并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果.【举一反三】【2019届高三第二次全国大联考】已知椭圆的右焦点为,左顶点为,上顶点为,若点在直线上,且轴,为坐标原点,且,若离心率,则的取值范围为A.B.C.D.【答案】A【解析】由题意得,直线的方程为,所以,直线的方程为,所以,故.由可得,整理得,显然函数在上单调递增,所以,即.故选A.三.强化训练1.【安徽省宣城市2019届高三第二次调研】已知,分别为椭圆的左、右焦点,点是椭圆上位于第二象限内的点,延长交椭圆于点,若,且,则椭圆的离心率为()A.B.C.D.【答案】A【解析】解:PF2⊥PQ且|PF2|=|PQ|,可得△PQF2为等腰直角三角形,设|PF2|=t,则|QF2|=,由椭圆的定义可得|PF1|=2a﹣t,则t=2(2﹣)a,在直角三角形PF1F2中,可得t2+(2a﹣t)2=4c2,4(6﹣4)a2+(12﹣8)a2=4c2,化为c2=(9﹣6)a2,可得e==.故选A.2.【新疆维吾尔自治区2019年普通高考第二次适应】椭圆的左右焦点为,,若在椭圆上存在一点,使得的内心I与重心满足,则椭圆的离心率为()A.B.C.D.【答案】D【解析】设,又,,则的重心.因为∥所以内心I的纵坐标为.即内切圆半径为.由三角形面积,,及椭圆定义得,解得,故选D.3.【2019年4月28日三轮《每日一题》】已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,点是点关于坐标原点的对称点,且以为直径的圆过点,则双曲线的离心率为( )A.B.C.D.【答案】B【解析】由题可得,,所以.所以.因为以AB为直径的圆过点F,所以.所以A(1,2)在双曲线上,所以有.因为,代入化简得,解得,.所以双曲线的离心率.故选B.4.【内蒙古2019届高三高考一模】已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A.B.C.4 D.2【答案】D【解析】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.5.【湖南省常德市2019届高三上学期检测】已知双曲线:的左焦点为,,为曲线的左、右顶点,点在曲线上,且轴,直线与轴交于点,直线与轴交于点,为坐标原点,若,则双曲线的离心率为()A.B.C.D.3【答案】B【解析】由于轴,不妨设,而.故直线的方程分别为,,令,求得,由于,故,化简得,6.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知为双曲线的右顶点,为双曲线右支上一点,若点关于双曲线中心的对称点满足,则双曲线的离心率为()A.B.C.D.【答案】B【解析】设因为,所以,因为,所以,所以a=2b,所以.故选:B7.已知双曲线:(,),过点作直线交双曲线的两条渐近线于、两点,若为的中点,且,则双曲线的离心率为( )A.B.C.D.【答案】B【解析】因为过点作直线交双曲线的两条渐近线于、两点,且为的中点,且,所以平分,根据双曲线的渐近线关于y轴对称得到和轴正半轴所成角和角相等,和的夹角为,因为和都是双曲线的渐近线,故得到轴平分角,过第一、三象限的渐近线的倾斜角为,所以,即,所以, 则双曲线的离心率为.故答案为:B.8.【安徽省毛坦厂中学2019届高三校区4月联考】已知是双曲线的左焦点,过点作垂直于轴的直线交该双曲线的一条渐近线于点,若,记该双曲线的离心率为,则A.B.C.D.【答案】A【解析】由题意得,,该双曲线的一条渐近线为,将代入得,,即,,,解得,故选:A9.【宁夏平罗中学2019届高三二模】已知,是双曲线E:的左、右焦点,点M在E上,与x轴垂直,,则双曲线E的离心率为A.B.C.2 D.3【答案】A【解析】与x轴垂直,,设,则,由双曲线的定义得,即,得,在直角三角形中,,即,即,即,则,则,故选:A.10.【湖南省常德市2019届高三上学期检测】已知双曲线的右焦点为,以为圆心,实半轴长为半径的圆与双曲线的某一条渐近线交于两点,若(其中为原点),则双曲线的离心率为()A.B.C.D.【答案】D【解析】解:设双曲线的一条渐近线方程为y x,H为PQ的中点,可得FH⊥PQ,由F(c,0)到渐近线的距离为FH=d b,∴PH=,又∴OH=即,∴故选:D二、填空题11.【黑龙江省哈尔滨市第六中学2019届高三二模】已知双曲线,其渐近线与圆相交,且渐近线被圆截得的两条弦长都为2,则双曲线的离心率为__________.【答案】【解析】双曲线的一条渐近线为,与圆相交,弦长为,则弦心距为即圆心到渐近线S的距离为,得在双曲线中,,即12.【贵州省2019届高三高考适应】已知点是双曲线的右焦点,过原点且倾斜角为的直线与的左、右两支分别交于,两点,且,则的离心率为__________..【答案】【解析】解:设F'为双曲线的左焦点,连接AF',BF',由•0,可得AF⊥BF,可得四边形AFBF'为矩形,又∠BOF=,∴∠BF'F=∵F'F=2c,∴BF=c,BF'=由双曲线定义可知:BF'- BF=2a即∴e=故答案为:13.【江苏省南通市2019届高三下学期4月阶段测试】已知椭圆上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=时,椭圆的离心率为_______.【答案】【解析】设为椭圆左焦点,连接,由椭圆对称性和可知:四边形为矩形又,由椭圆定义可知:本题正确结果:14.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.【答案】【解析】过作的垂线的方程为,与联立方程组解得,过作的垂线的方程为,与联立方程组解得,因为,所以15.【广西桂林市2019届高三4月一模】已知抛物线的焦点为,其准线与双曲线交于两点,若是等边三角形,则双曲线的离心率的取值范围是_______.【答案】【解析】设点,抛物线的焦点为,焦点到准线的距离为将准线方程代入双曲线得到根据等边三角形的性质的到双曲线的离心率为故得到离心率为.故答案为:16.【河南省许昌市、洛阳市2019届高三第三次质量检测】已知过椭圆的左顶点作直线交轴于点,交椭圆于点,若是等腰三角形,且,则椭圆的离心率为__________.【答案】【解析】因为是等腰三角形且,所以.设,因为,所以,得,,又Q在椭圆上,所以,,又,所以,,,,故答案为.21。

相关文档
最新文档