同底数幂的乘法试题精选(一)附答案

合集下载

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

0.5 10x 211 = =a 5m +115. (1)a • a 3 • a 5 =(2)(3a)(3a)= (3) x m x m1 x m , 同底数幕的乘法-练习一、填空题1. ___________________________ 同底数幕相乘,底数 , 指数 。

2. A ) • a 4=a 20.(在括号内填数)3. 若 102 • 1O m =1O 2003,则 m=.4. 23 • 83=2n ,则 n= ________ .5. -a 3 • (-a ) 5= __________ ; x • x 2 • x 3y= ________________ .6. a 5 • a n +a 3 • a n 2 — a • a n 4+a 2 • a n 3= __________ .7. (a-b ) 3 • (a-b ) 5= ______________; (x+y ) • (x+y ) 4 = ______________m 1n45.10 X10 = ___________________ , -6 x(—6) = __. _9. x 2x 3+xx 4=_ (x + y)2(x + y)5 =_ _.10. 103汉100汉10+100汉100><100 —10000汉10汉10 =11. 若 a m = a 3a 4,贝U m= __________若 x 4x a = x 16,贝U a= ____________ 12. 若 a m =2,a n =5,则 a m J _______________ .13. -32X 33= ______________ ; - (- a)2 = ___________ ; (-x)2 • (-x)3= _______________ ; (a + b) • (a + b)4(4)(x+5) 3 • (x+5) 2=(5)3a2 • a 4+5a • a 5= _________23458(6)4(m+n) • (m+n) -7(m+n)(m+n) +5(m+n) = ___________4 3 914. a ________= a ________= a、选择题1.下面计算正确的是()A . b3b? = b6; B . x3• x3= x6; C . a4a^ a6; D . mm5二m62.81 X 27 可记为()A. 93 B. 37 C. 36 D. 3123.若x = y,则下面多项式不成立的是()A. (y-x)2=(x-y)2B. (-x)3= -x3C. (-y)2二y2D. (x y)2=x2y24.下列各式正确的是( )A. 3a2• 5a3=15a6B.-3x4• (-2x2) =-6x6C. 3x3• 2x4=6x12D. (-b) 3• (-b) 5=b85.设a m=8,a n=16,则a mn=( )A .24 B.32C.64D.1286.若x2• x4• ( ) =x16,则括号内应填x的代数式为( )A. x10B. x8C. x4 D. x27.若a m= 2,a n= 3,贝S a m+= ( ).A.5 B.6 C.8 D.98.下列计算题正确的是()A.a m a2= a2m B.x3 x2 x = x5 C.x4 x 4=2x4 D.y a+1 y a-1= y2a9.在等式a3 a2( )= a11中,括号里面的代数式应当是()A.a7B.a8 C.sfc.a510.x3m+3可写成(丄A.3x m+1 B.x3m+x3 C.x3 x m+1 D.x3m x311:①(-a)3 (-a)2 (-a)=a6;②(-a)2 (-a) (-a)4=a7;③(-a)2 (-a)3 (-a2)=-a7;④(-a2) (-a3) (-a)3=-a8.其中正确的算式是()A. ①和②B.②和③C.①和④D.③和④12 一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-bB.x a+b13. 计算a -2 • a 4的结果是()A . a -2 14. 若X M y ,则下面各式不能成立的是 A . (x- y)2 = (y- x)2C . (x + y)(x-y) = (x + y)(y-x)15. a 16可以写成()A . a 8 + a 8 B . a 8 •16. 下列计算中正确的是() C.x a+b-1 D.x a-b+2B . a 2C . a 8D . a 8()B . (x- y)3 = - (y- x)3D . (x + y)2= (-x- y)2 a 2C . a 8 • a 8D . a4 • a 4C . t 3 +13= 2t 6D . 347X • x • X = x三•判断下面的计算是否正确(正确打“"”3 2 5 1.(3x+2y) - (3x+2y) = (3x+2y)(3. t m. (-t 2n)=严n()5. m3- m3= 2m3( )7. a2- a3= a6( )49. (- m)41 - m3= - m7( )四、解答题 1.计算(1)(-2)323(-2)2n+1 n-1 4-3n (3)x x x2、计算题(1) 2 3x x x (2)⑶ 2 3(-x) x-2x3(-X)2-x x4⑷(5)(丄) 4-(丄)3;10 10(7) a m「a3-2a m- a4-3a2- a m2.,错误打“X” ))2 . -p2. (-P) 4- (-p) 3= (-P) 9()4 4 16.P - P= P ()6 . m2+ m2= m4( )8 . x2- x3= x5( )(2)81 X(4)4 g+2-2 X n+12 3(a - b) (a - b) (a - b)m 4 2 m -2 3 m -3x x x x - 3 x x 。

专题1.1同底数幂的乘法

专题1.1同底数幂的乘法

专题1.1同底数幂的乘法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•绿园区期末)计算x2•x3的结果正确的是()A.x5B.x6C.x8D.5【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.【解析】x2•x3=x2+3=x5.故选:A.2.(2020秋•长春期末)若a•2•23=28,则a等于()A.4B.8C.16D.32【分析】根据同底数幂的乘法法则求解.【解析】∵a•2•23=28,∴a=28÷24=24=16.故选:C.3.(2020秋•路南区期中)若2m•2n=32,则m+n的值为()A.6B.5C.4D.3【分析】同底数幂相乘,底数不变,指数相加,据此解答即可.【解析】∵2m•2n=2m+n=32=25,∴m+n=5,故选:B.4.(2020秋•湖里区校级期中)若3m+1=243,则3m+2的值为()A.243B.245C.729D.2187【分析】同底数幂相乘,底数不变,指数相加,据此解答即可.【解析】∵3m+1=243,∴3m+2=3m+1×3=243×3=729.故选:C .5.(2020秋•兴宁区校级期中)若a m =4,a n =2,则a m +n 等于( )A .2B .6C .8D .16【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解析】∵a m =4,a n =2,∴a m +n =a m •a n =4×2=8.故选:C .6.(2020春•锦江区期末)如果x m =2,x n =14,那么x m +n 的值为( )A .2B .8C .12D .214 【分析】根据同底数幂的乘法进行运算即可.【解析】如果x m =2,x n =14,那么x m +n =x m ×x n =2×14=12. 故选:C .7.(2020•河南)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1GB =210MB ,1MB =210KB ,1KB =210B .某视频文件的大小约为1GB ,1GB 等于( )A .230B B .830BC .8×1010BD .2×1030B 【分析】列出算式,进行计算即可.【解析】由题意得:1GB =210×210×210B =210+10+10B =230B ,故选:A .8.(2019秋•九龙坡区校级期末)若3a =2,3b =5,则3a +b +1的值为( )A .30B .10C .6D .38【分析】根据同底数幂的乘法法则计算即可.【解析】∵3a =2,3b =5,∴3a +b +1=3a •3b •3=2×5×3=30.故选:A .9.(2020春•相城区期中)在等式a 4•a 2•( )=a 10中,括号里面的式子应当是( )A .a 6B .a 5C .a 4D .a 3【分析】根据同底数幂的乘法法则进行计算即可.故选:C.10.(2020•邯山区一模)若2n+2n+2n+2n=26,则n=()A.2B.3C.4D.5【分析】根据乘法原理以及同底数幂的乘法法则解答即可.【解析】∵2n+2n+2n+2n=4×2n=22×2n=22+n=26,∴2+n=6,解得n=4.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•朝阳区期末)计算:x•x2=x3.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.【解析】原式=x3,故答案为:x3.12.(2020秋•朝阳区期中)a x=5,a y=3,则a x+y=15.【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.【解析】因为a x=5,a y=3,所以a x+y=a x•a y=5×3=15.故答案为:15.13.(2020秋•洮北区期末)如果10m=12,10n=3,那么10m+n=36.【分析】根据幂的乘方和积的乘方的运算法则求解.【解析】10m+n=10m•10n=12×3=36.故答案为:36.14.(2020秋•鼓楼区校级期中)已知x m=5,x n=3,则x m+n的值为15.【分析】同底数幂相乘,底数不变,指数相加;据此解答即可.∴x m+n=x m•x n=5×3=15.故答案为:15.15.(2020秋•南岗区校级月考)若a4•a2m﹣1=a9,则m=3.【分析】利用同底数幂的乘法法则进行计算即可.【解析】∵a4•a2m﹣1=a4+2m﹣1=a9,∴4+2m﹣1=9,解得:m=3,故答案为:3.16.(2020春•兴化市月考)已知a2×a3=a m,则m的值为5.【分析】同底数幂相乘,底数不变,指数相加.【解析】∵a2×a3=a2+3=a5=a m.∴m=5.故答案为:5.17.(2020春•沙坪坝区校级月考)规定a*b=2a×2b,若2*(x+1)=16,则x=1.【分析】根据规定a*b=2a×2b,可得2*(x+1)=22×2x+1=16,再根据同底数幂的乘法法则解答即可.【解析】由题意得:2*(x+1)=22×2x+1=16,即22+x+1=24,∴2+x+1=4,解得x=1.故答案为:1.18.(2020春•赫山区期末)若9×32m×33m=322,则m的值为4.【分析】根据有理数的乘方以及同底数幂的乘法法则解答即可.【解析】∵9×32m×33m=32×32m×33m=32+2m+3m=32+5m=322,∴2+5m=22,解得m=4.故答案为:4.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•沙坪坝区校级月考)(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.【分析】根据同底数幂的乘法法则以及合并同类项法则计算即可.【解析】(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.20.计算:(1)a3•(﹣a)5•a12;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数);(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数);(4)(x﹣y)5•(y﹣x)3•(x﹣y).【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解析】(1)a3•(﹣a)5•a12=﹣a20;(2)y2n+1•y n﹣1•y3n+2(n为大于1的整数)=y6n+2;(3)(﹣2)n×(﹣2)n+1×2n+2(n为正整数)=﹣23n+3;(4)(x﹣y)5•(y﹣x)3•(x﹣y)=﹣(x﹣y)5•(x﹣y)3•(x﹣y)=﹣(x﹣y)9.21.(2020春•广陵区校级期中)规定a*b=2a×2b,求:(1)求1*3;(2)若2*(2x+1)=64,求x的值.【分析】(1)根据定义以及同底数幂的乘法法则计算即可;(2)把64写成底数是2的幂,再根据定义以及同底数幂的乘法法则可得关于x的一元一次方程,再解方程即可.【解析】(1)由题意得:1*3=2×23=16;(2)∵2*(2x+1)=64,∴22×22x+1=26,∴22+2x+1=26,∴2x+3=6,∴x=3 2.22.(2020春•兴化市期中)我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.【分析】(1)12☆3=1012×103=1015;4☆8=104×108(1分)=1012;(2)因为(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,)(a+b)☆c与a☆(b+c)相等.【解析】(1)12☆3=1012×103=1015;4☆8=104×108=1012;(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).23.(2020•浙江自主招生)对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(I)解方程:log x4=2;(Ⅱ)求值:log48;(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.【分析】(I)根据题中的新定义化简为:x2=4,解方程即可得到结果;(II)解法一:利用对数的公式:log a(M•N)=log a M+log a N,把8=4×2代入公式,即可得到结果;解法二:设log48=x,根据对数的定义得4x=8,化为底数为2的式子,可得结果;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018(III)知道lg2+1g5=1g10=1,提公因式后利用已知的新定义化简即可得到结果.【解析】(I)log x4=2;∴x2=4,∵x>0,∴x=2;(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,x=3 2,即log48=3 2;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018,=lg2+1g5﹣2018,=1g10﹣2018,=1﹣2018,=﹣2017.24.(2020春•相城区期中)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=3,(4,1)=0(2,0.25)=﹣2;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a=5,3b=6,3c=30,求出3a×3b=30,即可得出答案.【解析】(1)(3,27)=3,(4,1)=0,(2,0.25)=﹣2,故答案为:3,0,﹣2;(2)证明:∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=30,∴3a×3b=3c,∴a+b=c.。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

5.1同底数幂的乘法(1)

5.1同底数幂的乘法(1)
m个5
(
a a a a ) ×( a a a ) = a a a a a a a = a( 7 ) = a4+3
n个5
(m、n都是正整数)
= 5×5×…×5 =5
(m n)个5
mn
)
猜想: a m a n (m、n都是正整数) 思考:观察上面各题左右两边,底数、指数有什么关系?
指数为1的情况;
代表一个数、字 母、式子等
运算结果的底数一般应为正数.
若底数互为相反数,先化为相同,后运用 法则.
想一想
2 2 2 =
4 3 2
?
p m n p
a a a =a ?
m n
2. 计算: (1)x10 · x (2)10×102×104
(3) x5 · ·3 x x (4)y4·3·2· y y y 解: (1)x10 · = x10+1= x11 x (2)10×102×104 =101+2+4 =107 (3)x5 · ·3 = x5+1+3 = x9 x x (4)y4 ·3 ·2 · y4+3+2+1= y10 y y y=
2.在下列各小题的横线上,填上适当的正负号. (1)(-a)3=__a3 (2)(-a)4=__a4

(5)(b-a)3=__(a-b)3 (6)(a-b)2=__(b-a)2
问题: 2002年9月,一个国际空间站研究小组发 现了太阳系以外的第100颗行星,距离地球约100光 年.1光年是指光经过一年所行的距离,光的速度大 约是3×105 千米/秒. 一年以3×107 秒计算,第 100颗行星与地球之间的距 离约为多少千米?

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习一、填空题1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数) 3.若102·10m =102003,则m= . 4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A.326+=;D.56a a a=mm m=;B.336+=;C.426b b bx x x2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y≠,则下面多项式不成立的是( )A.22-= D.222()y yx y x y+=+()()()y x x y-=- B.33()x x-=- C.224.下列各式正确的是()A.3a2·5a3=15a6 B.-3x4·(-2x2)=-6x6C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8 5.设a m=8,a n=16,则a n m+=()A.24 B.32 C.64 D.1286.若x2·x4·()=x16,则括号内应填x的代数式为()A.x10B. x8C. x4D. x2 7.若a m=2,a n=3,则a m+n=( ).A.5 B.6 C.8 D.98.下列计算题正确的是( )A.a m·a2=a2m B.x3·x2·x=x5 C.x4·x4=2x4 D.y a+1·y a-1=y2a 9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )A.a7B.a8 C.a6D.a5 10.x3m+3可写成( ).A.3x m+1 B.x3m+x3 C.x3·x m+1 D.x3m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+213.计算a-2·a4的结果是( )A.a-2 B.a2C.a-8 D.a814.若x≠y,则下面各式不能成立的是( )A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a 16可以写成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8 D .a 4·a4 16.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 7 17.下列题中不能用同底数幂的乘法法则化简的是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科学记数法表示(4×102)×(15×105)的计算结果应是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

整式乘法练习1:同底数幂乘法精选练习5套(含答案)

整式乘法练习1:同底数幂乘法精选练习5套(含答案)

同底数幂的乘法精选练习5套(含答案)(一)一、选择题(每小题5分,共30分) 1、计算a 2·a 3的结果是( )A.a 5B. a 6C. a 8D. a 92、下列各式中,计算过程正确的是( )A. x 3+x 3=x 3+3=x 6B.x 3·x 3=2x 3=x 6C. x ·x 3·x 5=x0+3+5=x 8 D. x ·(-x)3= -x 2+3= -x 53、计算(-2)100+(-2)101的结果是( )A. -2B.2C.-2100D. 21004、x ·x 6·( )x 12,括号内填( )A.x 6B. x 2C. x 5D. x5、若5260m n x x x -⋅-=,则m 、n 的关系是( ) A. m-n=6 B.2m+n=5 C.m+2n=11 D.m-2n=76、若1221253()()m n n m ab a b a b ++-⋅⋅⋅=,则m+n 的结果是( )A.1B.2C.3D.-3 二、填空题(每小题5分,共30分)7、计算37a a ⋅=_______,23x x -⋅=______,222248⋅⋅=______ 8、当m=_____时,239m m x x x -+⋅=成立.9、计算3()()x x -⋅-=_______;22()b b -⋅=_______;23()()()x y y x x y -⋅-⋅-=_____. 10、若10x a =,10y b =,则10x y +=_______. 11、若2336x +=,则32x=______.12、345x n +⨯=,则用含n 的代数式表示5x 为_________. 三、解答题(每题10分,共40分) 13、计算:⑴32210101010⨯+⨯;⑵23324x x x x x x-⋅-+⋅---⋅-()3()4()()14、已知一块长方形空地,长100000m,宽10000m,求长方形的面积(用科学计数法表示)15、比较1810⨯的大小。

同底数幂的乘法计算题20道

同底数幂的乘法计算题20道

同底数幂的乘法计算题20道嘿,同学们,今天咱们就来好好练练同底数幂的乘法计算题。

下面就是20 道题目啦。

第一题:2 的 3 次方乘以 2 的 4 次方。

这道题呀,底数都是 2,指数相加就可以啦,3 加 4 等于 7,所以结果就是 2 的 7 次方。

再看第二题:5 的 2 次方乘以 5 的 3 次方,同样的道理,底数 5 不变,指数 2 和 3 相加得 5,结果就是 5 的 5 次方。

第三题:3 的 4 次方乘以 3 的 2 次方,还是底数 3 不变,指数相加,4 加 2 等于 6,就是 3 的 6 次方。

第四题:10 的 3 次方乘以 10 的 5 次方,那就是 10 的 8 次方。

第五题:(-2)的 3 次方乘以 (-2)的 4 次方,这里注意负数的奇次幂是负数,偶次幂是正数,所以结果是 (-2)的 7 次方。

第六题:4 的 5 次方乘以 4 的 2 次方,答案是 4 的 7 次方。

第七题:7 的 3 次方乘以 7 的 4 次方,等于 7 的 7 次方。

第八题:(-3)的 2 次方乘以 (-3)的 3 次方,就是 (-3)的 5 次方。

第九题:6 的 4 次方乘以 6 的 3 次方,得到 6 的 7 次方。

第十题:2 的 5 次方乘以 2 的 6 次方,是 2 的 11 次方。

第十一题:5 的 4 次方乘以 5 的,这里 5 可以看成 5 的 1 次方,所以结果是 5 的 5 次方。

第十二题:3 的 3 次方乘以 3 的 3 次方,那就是 3 的 6 次方。

第十三题:10 的 2 次方乘以 10 的 4 次方,答案是 10 的 6 次方。

第十四题:(-4)的 3 次方乘以 (-4)的 2 次方,就是 (-4)的 5 次方。

第十五题:8 的 3 次方乘以 8 的 2 次方,等于 8 的 5 次方。

第十六题:(-7)的 3 次方乘以 (-7)的 4 次方,是 (-7)的 7 次方。

第十七题:9 的 5 次方乘以 9 的 2 次方,得出 9 的 7 次方。

初二数学同底数幂相乘练习题

初二数学同底数幂相乘练习题

初二数学同底数幂相乘练习题在初中数学中,我们学习了幂的概念,即相同的底数与不同的指数进行乘法运算。

同底数幂相乘是我们接下来要重点讨论的内容。

在本文中,我们将通过一些练习题来帮助同学们更好地理解和掌握这一概念。

1. 计算下列同底数幂相乘。

题目1:3² × 3⁵ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加。

所以,3² × 3⁵ = 3^(2+5) = 3⁷。

答案:3² × 3⁵ = 3⁷。

题目2:(-2)³ × (-2)⁴ = ?解析:同样地,(-2)³ × (-2)⁴ = (-2)^(3+4) = (-2)⁷。

答案:(-2)³ × (-2)⁴ = (-2)⁷。

2. 计算下列同底数幂相乘的值。

题目1:5⁶ × 5³ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加,即5⁶× 5³ = 5^(6+3) = 5⁹。

答案:5⁶ × 5³ = 5⁹。

题目2:(-4)⁵ × (-4)² = ?解析:同样地,(-4)⁵ × (-4)² = (-4)^(5+2) = (-4)⁷。

答案:(-4)⁵ × (-4)² = (-4)⁷。

3. 请用幂的运算法则计算下列同底数幂相乘。

题目1:(2⁴) × (2²) × (2⁶) = ?解析:根据幂的乘法法则,相同的底数相乘,指数相加。

所以,(2⁴) × (2²) × (2⁶) = 2^(4+2+6) = 2¹²。

答案:(2⁴) × (2²) × (2⁶) = 2¹²。

题目2:(-3⁷) × (-3³) × (-3²) = ?解析:同样地,(-3⁷) × (-3³) × (-3²) = (-3)^(7+3+2) = (-3)¹²。

初一数学同底数幂的乘法试题

初一数学同底数幂的乘法试题

初一数学同底数幂的乘法试题1.计算下列各式,结果用幂的形式表示:(1)(107)3;(2)(a4)8;(3)[(-x)6]3;(4)(x3)4·(x2)5.【答案】(1)1021;(2)a32;(3)x18;(4)x22.【解析】幂的乘方法则:幂的乘方,底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.(1)(107)3=107×3=1021;(2)(a4)8=a4×8=a32;(3)[(-x)6]3=(-x)6×3=(-x)18=x18;(4)(x3)4·(x2)5=x3×4·x2×5=x12·x10=x22.【考点】本题考查的是幂的乘方,同底数幂的乘法点评:(1)当底数为负数时,先用幂的乘方法则运算,最后确定结果的正负;(2)同底数幂的乘方与乘法混合运算,一定要按运算顺序进行,以使计算简便.2.科学家们测出天鹅座第61颗暗星发射的光线到达地球需3.4×108秒,已知光的速度为3×105千米/秒,求路程。

【答案】1.02×1014千米【解析】根据路程=速度×时间,即可列式求解。

3.4×108×3×105=(3.4×3)×(108×105)=10.2×1013=1.02×1014(千米)答:该暗星距离地球有1.02×1014千米.【考点】本题考查的是同底数幂的乘法点评:用科学记数法表示的数相乘时,可以把前面的数看成是系数,而把后面的数看作是字母,用同底数幂的乘法运算法则进行计算.3.幂的乘方法则是(a m)n=a mn,即幂的乘方,底数________,指数________.【答案】不变相乘【解析】直接根据幂的乘方法则填空即可。

幂的乘方法则是(a m)n=a mn,即幂的乘方,底数不变,指数相乘.【考点】本题考查的是幂的乘方点评:解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘.当底数为负数时,先用幂的乘方法则运算,最后确定结果的正负.4.计算:(1)(a2)3=________;(2)(a3)2=________;(3)(-52)3=_______;(4)(-53)2=_________;(5)[(-5)2]3=______;(6)[(-5)3]2=________.【答案】(1)a6;(2)a6;(3)-56;(4)56;(5)56;(6)56【解析】直接根据幂的乘方法则填空即可。

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。

(完整版)同底数幂的乘法练习题与答案

(完整版)同底数幂的乘法练习题与答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法试题精选(一)附答案

同底数幂的乘法试题精选(一)附答案

同底数幂的乘法试题精选(一)一.选择题(共30小题)1.(2014•河北区三模)下列各式中,正确的是()A.a4•a2=a8B.a4•a2=a6C.a4•a2=a16D.a4•a2=a22.(2013•玄武区一模)下列计算中正确的是()A.a2+a3=2a5B.a2•a3=a5C.a2•a3=a6D.a2+a3=a5 3.(2012•南通)计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x6 4.(2011•泉州)a2•a3等于()A.3a2B.a5C.a6D.a85.(2012•赣州模拟)化简(﹣a)•(﹣a)2的结果是()A.a2B.﹣a2C.﹣a3D.a36.(2010•邵阳)(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a67.(2008•西宁)计算:﹣m2•m3的结果是()A.﹣m6B.m5C.m6D.﹣m58.(2006•佛山)计算(﹣x)3•x2的结果是()A.x5B.x6C.﹣x5D.﹣x69.已知a m=3,a n=2,那么a m+n+2的值为()A. 8 B.7 C.6a2D.6+a210.在等式x2•x5•()=x11中,括号里的代数式应为()A.x2B.x3C.x4D.x511.已知a m=3,a n=5,则a m+n等于()A.15 B.8 C.0。

6 D.12512.已知x+y﹣3=0,则2y•2x的值是()A. 6 B.﹣6 C.D.813.计算a5•(﹣a)3﹣a8的结果等于()A. 0 B.﹣2a8C.﹣a16D.﹣2a1614.计算:a5•a2的结果正确的是()A.a7B.a10C.a25D.2a715.已知:24×8n=213,那么n的值是()A. 2 B.3 C.5 D. 816.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)417.计算a2•a3+2a5的结果为()A.a5B.3a5C.a10D.3a1018.下列计算中,正确的个数有()①102×103=106;②5×54=54 ;③a2•a2=2a2;④c•c4=c5;⑤b+b3=b4 ;⑥b5+b5=2b5;(7)33+23=53;(8)x5•x5=x25.A. 1 B.2 C.3 D. 419.若a3•a4•a n=a9,则n=()A.1 B. 2 C. 3 D.420.下列各项中的两个幂,其中是同底数幂的是()A.﹣a与(﹣a)B.a与(﹣a) C.﹣a与a D.(a﹣b)与(b﹣a)21.(a﹣b)3(b﹣a)4的计算结果是()A.﹣(a﹣b)12B.﹣(a﹣b)7C.(b﹣a)7D.(a﹣b)722.(﹣a)3(﹣a)2(﹣a5)=()A.a10B.﹣a10C.a30D.﹣a3023.若x,y为正整数,且2x•2y=25,则x,y的值有()A.4对B.3对C.2对D.1对24.a7=()A.(﹣a)2(﹣a)5B.(﹣a)2(﹣a5)C.(﹣a2)(﹣a)5D. (﹣a)(﹣a)625.(4•2n)(4•2n)等于()A.4•2n B.8•2n C.4•4n D.22n+426.(m+n﹣p)(p﹣m﹣n)(m﹣p﹣n)4(p+n﹣m)2等于()A.﹣(m+n﹣p)2(p+n﹣m)6B.(m+n﹣p)2(m﹣n﹣p)6C.(﹣m+n+p)8D.﹣(m+n+p)827.a•a3x可以写成()A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+128.m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对29.下列各式中,不能用同底数幂的乘法法则化简的是()A.(x﹣y)(x﹣y)2B.(x+y)(x﹣y)2C.(x﹣y)(y﹣x)2D. (x﹣y)(y﹣x)2(x﹣y)230.若x>1,y>0,且满足,则x+y的值为()A.1 B.2 C.D.同底数幂的乘法试题精选(一)参考答案与试题解析一.选择题(共30小题)1.(2014•河北区三模)下列各式中,正确的是()A.a4•a2=a8B.a4•a2=a6C.a4•a2=a16D.a4•a2=a2考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:a4•a2=a4+2=a6,故选:B.点评:本题考查了同底数幂的乘法,同底数幂的乘法,底数不变指数相加.2.(2013•玄武区一模)下列计算中正确的是()A.a2+a3=2a5B.a2•a3=a5C.a2•a3=a6D.a2+a3=a5考点:同底数幂的乘法;合并同类项.分析:根据同底数幂相乘,底数不变指数相加的性质,合并同类项的法则对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为a2•a3=a5,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选B.点评:本题主要考查同底数幂的乘法的性质;合并同类项的法则,不是同类项的不能合并.3.(2012•南通)计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x6考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,计算后直接选取答案.解答:解:(﹣x2)•x3=﹣x2+3=﹣x5.故选B.点评:本题主要考查同底数幂的乘法运算法则:底数不变,指数相加.熟练掌握运算法则是解题的关键.4.(2011•泉州)a2•a3等于()A.3a2B.a5C.a6D.a8考点: 同底数幂的乘法.专题:探究型.分析:根据同底数幂的乘法法则进行计算即可.解答:解:原式=a2•a3=a2+3=a5.故选B.点评:本题考查的是同底数幂的乘法,即同底数的幂相乘,底数不变,指数相加.5.(2012•赣州模拟)化简(﹣a)•(﹣a)2的结果是()A.a2B.﹣a2C.﹣a3D.a3考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n,计算后直接选取答案.解答:解:(﹣a)•(﹣a)2=(﹣a)2+1=﹣a3.故选C.点评:本题主要考查同底数幂的乘法的性质,要注意底数是﹣a,而不是a,运算时一定要注意.6.(2010•邵阳)(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a6考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加解答,即a m•a n=a m+n.解答:解:(﹣a)2•a3=a2•a3=a2+3=a5.故选B.点评:本题主要考查同底数幂的乘法的性质,本题需要注意(﹣a)2=a2.7.(2008•西宁)计算:﹣m2•m3的结果是()A.﹣m6B.m5C.m6D.﹣m5考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,计算后直接选取答案.解答:解:﹣m2•m3=﹣m2+3=﹣m5.故选D.点评:熟练掌握同底数幂乘法的运算性质是解题的关键.8.(2006•佛山)计算(﹣x)3•x2的结果是()A.x5B.x6C.﹣x5D.﹣x6考点: 同底数幂的乘法.分析:根据同底数幂乘法的运算性质,运算后直接选取答案.解答:解:(﹣x)3•x2=﹣x3•x2=﹣x5.故选C.点评:本题主要考查同底数幂的乘法,底数不变,指数相加的性质,熟练掌握性质是解题的关键.9.已知a m=3,a n=2,那么a m+n+2的值为()A.8B.7C.6a2D.6+a2考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加的性质的逆用解答即可.解答:解:a m+n+2=a m•a n•a2=3×2×a2=6a2.故选C.点评:本题主要考查同底数幂的乘法,熟练掌握性质并灵活运用是解题的关键.10.在等式x2•x5•()=x11中,括号里的代数式应为()A.x2B.x3C.x4D.x5考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:设括号里的是x n,x2+5+n=x11,n=4,x n=x4,故选:C.点评:本题考察了同底数幂的乘法,底数不变指数相加.11.已知a m=3,a n=5,则a m+n等于()A.15 B.8C.0.6 D.125考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:a m+n=a m•a n=3×5=15,故选:A.点评:本题考查了同底数幂的乘法,底数不变指数相加,是解题关键.12.已知x+y﹣3=0,则2y•2x的值是()A.6B.﹣6 C.D.8考点:同底数幂的乘法.分析:根据同底数幂的乘法求解即可.解答:解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.点评:此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x化为2x+y.13.计算a5•(﹣a)3﹣a8的结果等于()A.0B.﹣2a8C.﹣a16D.﹣2a16考点: 同底数幂的乘法;合并同类项.分析:先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.解答:解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选B.点评:同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.14.计算:a5•a2的结果正确的是()A.a7B.a10C.a25D.2a7考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n解答即可.解答:解:a5•a2=a5+2=a7.故选A.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.15.已知:24×8n=213,那么n的值是()A.2B.3C.5D.8考点:同底数幂的乘法.分析:将等式左边化为以2为底的幂的形式,再根据指数相等列方程求解.解答:解:由24×8n=213,得24×23n=213,∴4+3n=13,解得n=3.故选B.点评:本题考查了同底数幂的乘法的性质,熟练掌握性质是解题的关键.16.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)4考点:同底数幂的乘法.专题: 整体思想.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算.解答:解:(x﹣y)3•(y﹣x)=﹣(x﹣y)3•(x﹣y)=﹣(x﹣y)3+1=﹣(x﹣y)4;故选C.点评:本题主要考查同底数幂的乘法的性质.解题时,要先转化为同底数的幂后,再相乘.17.计算a2•a3+2a5的结果为()A.a5B.3a5C.a10D.3a10考点:同底数幂的乘法;合并同类项.分析:根据同底数幂的乘法,可得a2•a3,根据整式加法,可得a2•a3+2a5的结果.解答:解:a2•a3+2a5=a5+2a5=3a5,故选:B.点评:本题考查了同底数幂的乘法,先计算同底数幂的乘法,再合并同类项.18.下列计算中,正确的个数有()①102×103=106;②5×54=54 ;③a2•a2=2a2;④c•c4=c5;⑤b+b3=b4 ;⑥b5+b5=2b5;(7)33+23=53;(8)x5•x5=x25.A.1B.2C.3D.4考点:同底数幂的乘法;合并同类项.专题:计算题.分析:根据同底数的幂的法则和合并同类项法则进行计算即可.解答:解:①102×103=105,∴①错误;②②5×54=55∴②错误;③a2•a2=a4∴③错误;④c•c4=c5∴④正确;⑤b+b3不能合并同类项∴⑤错误;⑥b5+b5=2b5,∴⑥正确;(7)33+23,不能合并同类项,∴(7)错误;(8)x5•x5=x10,∴(8)错误.正确的有2个.故选B.点评:本题主要考查对同底数的幂的法则和合并同类项法则等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.19.若a3•a4•a n=a9,则n=()A.1B.2C.3D.4考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加计算,然后再根据指数相等列出方程求解即可.解答:解:∵a3•a4•a n=a3+4+n,∴3+4+n=9解得n=2.故选B.点评:本题考查同底数幂乘法法则:底数不变,指数相加的性质,熟练掌握性质是解题的关键.20.下列各项中的两个幂,其中是同底数幂的是()A.﹣a与(﹣a)B.a与(﹣a) C.﹣a与a D.(a﹣b)与(b﹣a)考点:同底数幂的乘法;有理数的乘方.分析:根据带有负号的数的乘方的书写规范,对各选项分析判断后利用排除法求解.解答:解:A、﹣a的底数是a,(﹣a)的底数是﹣a,故不是同底数幂;B、a的底数是a,(﹣a)的底数是﹣a,故不是同底数幂;C、﹣a的底数是a,a的底数是a,故是同底数幂D、(a﹣b)与(b﹣a)底数互为相反数,故不是同底数幂.故选C.点评:本题主要考查带有负号的数的乘方的书写规范,良好的书写习惯对学好数学大有帮助.21.(a﹣b)3(b﹣a)4的计算结果是()A.﹣(a﹣b)12B.﹣(a﹣b)7C.(b﹣a)7D.(a﹣b)7考点:同底数幂的乘法.专题:计算题.分析:把原式的第二个因式中的b﹣a,提取﹣1变形,然后根据﹣1的偶次幂为1化简,最后根据同底数幂的乘法运算法则:底数不变,指数相加即可得到运算结果.解答:解:(a﹣b)3(b﹣a)4=(a﹣b)3([﹣(a﹣b)])4=(a﹣b)3(a﹣b)4=(a﹣b)3+4=(a﹣b)7.故选D.点评:此题考查了同底数幂的乘法运算,把两因式的底数化为相同的底数再利用法则计算是解本题的关键,同时要求学生掌握同底数幂的乘法法则,理清指数的变化.22.(﹣a)3(﹣a)2(﹣a5)=()A.a10B.﹣a10C.a30D.﹣a30考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加求解即可.解答:解:(﹣a)3(﹣a)2(﹣a5)=(﹣a3)•a2(﹣a5)=a3+2+5=a10.故选A.点评:本题主要利用同底数幂的乘法的性质求解,符号的运算是容易出错的地方.23.若x,y为正整数,且2x•2y=25,则x,y的值有()A.4对B.3对C.2对D.1对考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,再根据指数相等即可求解.解答:解:∵2x•2y=2x+y,∴x+y=5,∵x,y为正整数,∴x,y的值有x=1,y=4;x=2,y=3;x=3,y=2;x=4,y=1.共4对.故选A.点评:灵活运用同底数幂的乘法法则是解决本题的关键.24.a7=()A.(﹣a)2(﹣a)5B.(﹣a)2(﹣a5)C.(﹣a2)(﹣a)5D.(﹣a)(﹣a)6考点: 同底数幂的乘法.分析:根据同底数幂的乘法,底数不变,指数相加,计算后利用排除法求解.解答:解:A、(﹣a)2(﹣a)5=a2(﹣a5)=﹣a7,错误;B、(﹣a)2(﹣a5)=﹣a7,错误;C、(﹣a2)(﹣a)5=a7,正确;D、(﹣a) (﹣a)6=﹣a•a6=﹣a7,错误.故选C.点评:负数的偶次幂是正数,负数的奇次幂是负数,结合同底数幂的乘法,底数不变,指数相加可解决此类问题.25.(4•2n)(4•2n)等于()A.4•2n B.8•2n C.4•4n D.22n+4考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加,计算后直接选取答案.解答:解:(4•2n)(4•2n)=22+n•22+n=22n+4.故选D.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质并灵活运用是解题的关键.26.(m+n﹣p)(p﹣m﹣n)(m﹣p﹣n)4(p+n﹣m)2等于()A.﹣(m+n﹣p)2(p+n﹣m)6B.(m+n﹣p)2(m﹣n﹣p)6C.(﹣m+n+p)8D.﹣(m+n+p)8考点:同底数幂的乘法.分析:根据实数偶次幂的性质和相反数的定义,再利用同底数相乘,底数不变指数相加计算.解答:解:由于p﹣m﹣n和(m+n﹣p)互为相反数,∴p﹣m﹣n=﹣(m+n﹣p);p+n﹣m和m﹣p﹣n互为相反数,(p+n﹣m)2=(m﹣p﹣n)2,∴原式=﹣(m+n﹣p)(m+n﹣p)(p+n﹣m)4(p+n﹣m)2=﹣(m+n﹣p)2(p+n﹣m)6.故选A.点评:本题考查了同底数幂的乘法,要熟悉相反数的定义和实数偶次幂的性质.27.a•a3x可以写成()A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+1考点: 同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n解答.解答:解:a•a3x=a1+3x.故选C.点评:本题主要利用同底数幂的乘法的性质求解,是基础题.28.m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,求解即可.解答:解:因为m为偶数,(a﹣b)m=(b﹣a)m,所以(a﹣b)m•(b﹣a)n=(b﹣a)m•(b﹣a)n=(b﹣a)m+n.故选A.点评:熟练掌握互为相反数的两数的偶数次方相等是解本题的关键.29.下列各式中,不能用同底数幂的乘法法则化简的是()A.(x﹣y)(x﹣y)2B.(x+y)(x﹣y)2C.(x﹣y)(y﹣x)2D.(x﹣y)(y﹣x)2(x﹣y)2考点:同底数幂的乘法.分析:根据能用同底数幂的乘法法则,底数一定相同,或互为相反数,对各选项分析判断后利用排除法求解.解答:解:底数不相同的是(x+y)(x﹣y)2.故选B.点评:本题特别要注意的是:互为相反数的两个式子可以通过符号的变化化成同一式子,以及整体思想的运用.30.若x>1,y>0,且满足,则x+y的值为()A.1B.2C.D.考点:同底数幂的乘法.专题:计算题.分析:首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.解答:解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1.故,从而x=4.于是.故选C.点评:此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同.。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习一、填空题1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数) 3.若102·10m =102003,则m= . 4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.设a m =8,a n =16,则a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,则a m+n =( ).A.5 B.6 C.8 D.9 8.下列计算题正确的是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可写成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.计算a -2·a 4的结果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,则下面各式不能成立的是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以写成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列题中不能用同底数幂的乘法法则化简的是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科学记数法表示(4×102)×(15×105)的计算结果应是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法(含标准答案

同底数幂的乘法(含标准答案

同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x3=x3+3=x6 B.x3•x3=X2x3C.x•x3•x5=x0+3+5=x8D.x2•(-x)3=-x2+3=-x52.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010 3.当a<0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018 D.8.5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求xm+n.(1)一变:已知xm=3,xn=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4.2×106个,•问一个健康的成年女子体内的红细胞一般不低于多少个?(结果用科。

(完整版)同底数幂的乘法(含答案

(完整版)同底数幂的乘法(含答案

同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x 3=x3+3=x6B.x3•x3=X2x3C.x•x3•x5= x0+3+5=x8D.x2•(-x)3=-x2+3=-x5 2.计算(-2)2009+(-2)2010的结果是()A.22019B.22009C.-2 D.-22010 3.当a<0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018 D.8.5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3 ×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求x m+n.(1)一变:已知x m=3,x n=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4.2×106个, 问一个健康的成年女子体内的红细胞一般不低于多少个?(结果用科学记数法表示)三、实际应用题5.我国自行设计制造的“神舟六号”飞船进入圆形轨道后的飞行速度为7.9 ×103米/秒,它绕地球一周需5.4×103秒,问该圆形轨道的一周有多少米?(结果用科学记数法表示)四、经典中考题6.计算:-m2•m3的结果是()A.-m6B.m5C.m6D.-m57.计算:a•a2=______.C卷:课标新型题1.(规律探究题)a3表示3个a相乘,(a3)4表示4个_____相乘, 因此(a3)4 = ____=____,由此推得(a m)n=______,其中m,n都是正整数,并利用你发现的规律计算:(1)(a4)5;(2)[(a+b)4] 5.2.(条件开放题)若a m•a n=a11,其中m,n都是正整数,请写出三组符合条件的m,n的值.参考答案A卷1.D 点拨:x3+x3=2x3,所以A错误;x3•X3=x3+3=x6,所以B错误;x•x3•x5=x1+3+5=x9,所以C错误;2.B 点拨:(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B,注意逆用同底数幂的乘法法则.3.A 点拨:(-a)5•(-a)2n=(-a)2n+5,因为a<0,所以-a>0,所以(-a)2n+5>0,故选A.4.A 点拨:长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米),因为用a×10n表示一个大于10的数时,1≤a<10,n是正整数,故选A.二、5.-32 点拨:(-2)3•(-2)2=(-2)5=-25=-32.6.a 点拨:a7•(-a)6=a7•a6=a 7+6=a13.7.-(x+y)5点拨:(x+y)2•(-x-y)3=(x+y)2•[-(x+y)] 3=(x+y)2•[-(x+y)3]=-[(x+y)2• (x+y)3]=-(x+y)5.8.1.2×1013点拨:(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013.三、9.解:x m•x m+x2•x2m-2=x m+m+x2+2m-2=x2m+x2m=2x2m.10.解:3×107×5×104=15×1011=1.5×1012(m2).答:该农场的面积是1.5×1012m2.B卷一、1.解法一:因为m为正整数,所以2m为正偶数,则(b-a)2m=(a-b)2m,(a-b)2m-1•(b-a)2m•(a-b)2m+1 =(a-b)2m-1•(a-b)2m•(a-b)2m+1=(a-b)2m-1+2m+2m+1=(a-b)6m.解法二:因为m为正整数,所以2m-1,2m+1都是正奇数,则(a-b)2m-1=-(b-a)2m-1,(a-b)2m+1=-(b-a)2m+1,(a-b)2m-1•(b-a)2m•(a-b)2m+1=[-(b-a)2m-1] •(b-a)2m•[-(b-a)2m+1]=(b-a)2m-1+2m+2m+1=(b-a)2m.点拨:在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题.2.解:因为x m=3,x n=5,所以x m+n=x m•x n=3×5=15.(1)因为x m=3,x n=5,所以x2m+n=x2m•x n=x m•x m•x n=3×3×5=45.(2)因为x m+n=x m•x n=15,把x m=3代入得3•X n=15,所以x n=5.二、3.解:由(x-y)•(x-y)3•(x-y)m=(x-y)1+3+ m= (x-y)4+m=(x-y)12,得4+m=12,m=8.(4m2+2m+1)-2(2m2-m-5)=4m2+2m+1-4m2+2m+10=4m+11,当m=8时,原式=4×8+11=32+11=43.点拨:先根据同底数幂的乘法法则求出m的值,再化简多项式,最后代入求值.4.解:4×103×4.2×106=16.8×109=1.68×1010(个).答:一个健康的成年女子体内的红细胞一般不低于1.68×1010个.三、5.解:7.9×103×5.4×103=42.66×106=4.266×107(米).答:该圆形轨道的一周有4.266×107米.四、6.D .7.a 点拨:a•a2=a1+2=a3,注意a的指数为1,不要遗漏.C卷1.解:a3;a3•a3•a3•a3;a12;a mn(1)(a4)5=a 4×5=a20,(2)[(a+b)4] 5=(a+b)4×5=(a+b)20.2.解:m=1,n=10;m =2,n=9;m=3,n=8.点拨:本题答案不唯一,只要写出三组符合条件的m,n的值即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档