(完整版)椭圆知识点及经典例题汇总,推荐文档
椭圆总结(全)
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
椭圆知识点总结及练习
椭圆知识点总结及典型方法知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记ac a c e ==22。
知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系知识点五: 椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆。
椭圆知识点以及题型总结
椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。
其中的定点F1和F2称为焦点,常数2a称为长轴的长度。
椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。
椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。
1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。
其中(h,k)是椭圆的中心坐标。
2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。
而椭圆的半短轴的长度等于b。
3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。
即PF1+PF2=2a。
4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。
离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。
5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。
其中θ的取值范围一般为0≤θ≤2π。
二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。
解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。
2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。
解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。
3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。
(完整版)椭圆知识点及经典例题汇总,推荐文档
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
x2
②椭圆
y2
1 (a b 0) 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为
a2 b2
A1 (a,0) , A2 (a,0) , B1 (0,b) , B2 (0,b)
③线段 A1 A2 , B1B2 分别叫做椭圆的长轴和短轴, A1 A2 2a , B1B2 2b 。 a 和 b 分
( BF1 BF2 a) ; ( OF1 OF2 c) ; A1B A2 B a 2 b2 ;
(3) A1F1 A2 F2 a c ; A1F2 A2 F1 a c ; a c PF1 a c ;
知识点四:椭圆第二定义
一动点到定点的距离和它到一条定直线的距离的比是一个 (0,1) 内常数 e ,那么这个点的轨
若 ( PF1 PF2 F1F2 ) ,则动点 P 的轨迹无图形.
知识点二:椭圆的标准方程
1.当焦点在 x 轴上时,椭圆的标准方程: x 2 y 2 1 (a b 0) ,其中 c 2 a 2 b2 a2 b2
2.当焦点在 y 轴上时,椭圆的标准方程: y 2 x 2 1 (a b 0) ,其中 c 2 a 2 b2 ; a2 b2
3.椭圆的参数方程
x
y
a b
cos sin
(为参数)
注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆
的标准ቤተ መጻሕፍቲ ባይዱ程;
2.在椭圆的两种标准方程中,都有 (a b 0) 和 c 2 a 2 b2 ;
3.椭圆的焦点总在长轴上.
当焦点在 x 轴上时,椭圆的焦点坐标为 (c,0) , (c,0) ;
(完整word版)椭圆总结(全),推荐文档
椭圆一.知识清单1.椭圆的两种定义:①平面内与两定点F1,F2的距离的和等于定长2a 2a F1 F2的动点P 的轨迹,即点集M={P||PF|+|PF |=2a , 2a> |F F |} ;(2a F1 F2时为线段 F1F2,2a F1F2无轨迹)。
此中两定1212点 F1, F2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和必定直线的距离的比是小于 1 的正常数的点的轨迹,即点集M={P|PF e, 0< e< 1 的常数。
( e1为抛物线; e1为双曲线)d(利用第二定义 , 能够实现椭圆上的动点到焦点的距离与到相应准线的距离相互转变,定点为焦点,定直线为准线) .2 标准方程:( 1)焦点在 x 轴上,中心在原点:x2y 21 (a>b>0);a2 b 2焦点 F (- c, 0), F( c,0)。
此中c a2b2(一个 Rt 三角形)12( 2)焦点在 y 轴上,中心在原点:y 2x 21(a>b>0);a2b2焦点 F1( 0,- c), F2( 0, c)。
此中c a 2 b 2注意:①在两种标准方程中,总有a> b> 0,c a 2b2而且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax2+By2=1 (A> 0,B> 0,A≠ B),当 A< B 时,椭圆的焦点在 x 轴上, A> B 时焦点在 y 轴上。
3 参数方程:焦点在 x 轴,x a cos(为参数)y b sin4 一般方程:Ax2By 21( A0,B 0)5. 性质:对于焦点在 x 轴上,中心在原点:x2y21( a> b> 0)有以下性质:a2b2坐标系下的性质:①范围: |x|≤a, |y|≤b;② 对称性:对称轴方程为x=0, y=0,对称中心为O(0, 0);③极点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b;( a 半长轴长,b半短轴长);④ 椭圆的准线方程:对于 x2y 21,左准线 l 1 : x a 2;右准线 l 2 : x a2a 2b 2c c对于 y 2x 21,下准线 l1 : y a 2;上准线 l 2 : y a 2a 2b 2c c焦点到准线的距离 pa 2 a 2 c 2b 2 cc(焦参数)cc椭圆的准线方程有两条,这两条准线在椭圆外面,与短轴平行,且对于短轴对称⑤ 焦半径公式: P ( x 0,y 0)为椭圆上任一点。
椭圆基本知识点与题型总结
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的简单几何性质标准方程12222=+by a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点、焦距)0,(1c F -,)0,(2c F ,cF F 221=),0(1c F -,),0(2c F cF F 221=范围a x ≤,b y ≤b x ≤,ay ≤顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±对称性关于x 轴、y 轴,轴对称,关于原点中心对称轴长长轴长=a 2,短轴长=b2离心率()10122<<-==e ab ac e e 越小,椭圆越圆;e 越大,椭圆越扁通径过焦点且垂直于长轴的弦,其长ab 22(通径为最短的焦点弦)准线方程ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=(见右图)2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且3.椭圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数)4.椭圆焦点三角形问题(1)焦点三角形周长:ca 22+(2)在21F PF ∆中,有余弦定理:()θcos 2P P 22122212PF PF F F c -+=经常变形为:()()θcos 22-PF 221212212PF PF PF PF PF c -+=即:()()θcos 22-22212122PF PF PF PF a c -=(3)焦点三角形面积2tan cos 1sin sin 21S 2221P 21θθθθb b PF PF y c p F F =+=⋅=⋅=∆,其中21PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
专题60:椭圆知识点和典型例题(解析版)
专题60:椭圆知识点和典型例题(解析版)1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c =∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, ⎪⎭⎫ ⎝⎛-2325,得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <.又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足, 设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆3C 3. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||32b cF F MN c MN a===由已知得3c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=. 设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由已知得()()222244440m k k m∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
(完整word)椭圆知识点总结,推荐文档
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab22焦点弦:椭圆过焦点的弦。
3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
(完整版)高三复习椭圆知识点总结及基础测试,推荐文档
a2 b2
b2 c2
所有的成就在开始时都不过只是一个想法,坚持到底才是成为一个卓越的成功者的途径。
4
线称作“果园”(其中 a2 b2 c2, a b c 0 ).如图,设点 F0, F1, F2 是 相应椭圆的焦点 A1, A2 和 B1, B2 是“果园”与 x, y 轴的交点,若 F0F1F2 是边长为 1 的等边三角形,则 a,b 的值分别为_________.
分别为 4 5 和 2 5 ,过 P 作长轴的垂线恰好过椭圆的一个焦点;
3
3
(2)经过两点 A(0, 2) 和 B(1 , 3) .
2
2、求满足下列各条件的椭圆的标准方程:
(1)长轴长是短轴长的 2 倍,且经过点 A(2, 6);
(2)在 x 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为
6. 3、已知椭圆 x2 y2 1(a b 0) 的长轴,短轴端点分别为 A, B ,从椭
所有的成就在开始时都不过只是一个想法,坚持到底才是成为一个卓越的成功者的途径。
4
(2)求证: F1PF2 的面积只与椭圆的短轴长有关. 5、已知椭圆 C 的中心在坐标原点,焦点在 x 轴上,椭圆 C 上的点到
焦点距离的最大值为 3,最小值为 1.
(1)求椭圆 C 的标准方程;(2)若直线 l : y kx m 与椭圆 C 相交于
不同的 A, B 两点( A, B 不是左,右顶点),且以 AB 为直径的圆过椭圆
C. 5 或 3
D.8
4、椭圆 x2 y2 1的焦点坐标为_________.
49
5、如果方程 x2 ky2 2 表示焦点在 y 轴上的椭圆,那么实数 k 的取值
范围是_________.
(完整)高中数学椭圆知识点与例题,推荐文档
2知识点一:椭圆的定义第一定义:平面内一个动点 P 到两个定点F i 、F 2的距离之和为定值焦点的距离叫作椭圆的焦距知识点二:椭圆的标准方程椭圆的焦点总在长轴上题型一、椭圆的定义 1、方程.x 22 y 2x 2 2 y 2 10化简的结果是2、若 ABC 的两个顶点 A 4,0 ,B 4,0 , ABC 的周长为18,则顶点C 的轨迹方程是2 2椭圆(PF i2aF 1F 2),这个动点P 的轨迹叫椭圆•这两个定点叫椭圆的焦点,两注意:若(PRPF 2F i F 2 ),则动点 P 的轨迹为线段F i F 2 ;若(PF iF 1F 2),则动点P 的轨迹不存在.1 .当焦点在x2X~2a 2厂(a b 0),其中 c 2a 2b 22.当焦点在y 轴上时,椭圆的标准方程:2 ya2X d 21(a b 0),b 2其中a 2b 2.注意: 只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;在椭圆的两种标准方程中,都有(b 0)和c 2a 2b 2 ;当焦点在X 轴上时,椭圆的焦点坐标为(c,0) , ( c,0); 当焦点在y 轴上时,椭圆的焦点坐标为 (0,c) , (0, c)3、椭圆—L 1上的点M到焦点F1的距离为2, N为MF_!的中点,贝y ON (O为坐25 9标原点)的值为()A. 4B. 2C. 83 D.—X y24、椭圆———1两焦点为Fp F2, A 3,1 ,点P在椭圆上,贝U PR PA的最大值25 16为____ ,最小值为____题型二、椭圆的标准方程5、方程Ax2+By2=C表示椭圆的条件是(A) A, B同号且A M B ( B) A, B同号且C与异号(C) A, B, C同号且A M B ( D)不可能表示椭圆2 26、若方程—- 1 ,5 k k 3(1)表示圆,则实数k的取值是_____________ . __________(2) ______________________________________________________ 表示焦点在x轴上的椭圆,则实数k的取值范围是 _______________________________________ . __________(3) ______________________________________________________ 表示焦点在y型上的椭圆,则实数k的取值范围是 _______________________________________ . __________(4)表示椭圆,则实数k的取值范围是______________ . _________227、椭圆—y_1的焦距为2,贝U m =4m8、已知椭圆 2 mx3y2 6m0的一个焦点为(0, 2)求m的值9、已知椭圆的中心在原点,且经过点P 3,0 , a 3b,求椭圆的标准方程.2 210、求与椭圆4x 9y 36共焦点,且过点(3, 2)的椭圆方程。
椭圆总结整版(非常好)
椭 圆题型一:利用椭圆的定义解题 知识总结:〔1〕椭圆的定义:12122(2PF PF a a F F +=>〔2〕椭圆的标准方程:焦点在x 轴:12222=+b y a x 〔a >b >0〕;焦点在y 轴:12222=+bx a y 〔a >b >0〕;〔3〕椭圆的标准方程判别方法:看分母的大小,即: 如果2x 项的分母大于2y 项的分母,则焦点在x 轴上; 如果2y 项的分母大于2x 项的分母,则焦点在y 轴上; (4)字母,,a b c 的关系:222b c a += (5)焦距:122F F c =例题分析1、写出椭圆221(1)mx y m +=>的焦点坐标;变式:已知方程221(0)mx y m +=≥,对不同范围内的m值分别指出方程所代表的曲线类型;2、椭圆2215x y m +=的焦距为2,则m = ; 椭圆2215x y m+=的焦距为6,则m = ;变式:已知椭圆22sin cos 1(02)x y αααπ-=≤<的焦点在y 轴上,则α的取值范围是3、已知P 为椭圆221259x y +=上一点,12,F F 为椭圆两焦点,1P F =4,求2P F 的长;变式1:已知P 为椭圆221259x y +=上一点,12,F F 为椭圆两焦点,求12P F P F •的最大值;变式2:,已知P 为椭圆221259x y +=上一点,12,F F 为椭圆两焦点,线段1PF 的中点M 在y 轴上,求12P F P F 的值;变式3:已知(B -为椭圆221259x y +=内一点,2(4,0)F 是椭圆的右焦点,M 是椭圆上的动点, 求2M F M B -变式4:已知(B -点,2(4,0)F 是椭圆的右焦点,M 是椭圆上的动点, 求2M F M B +题型二:椭圆的简单几何性质焦点在x 轴上椭圆方程为12222=+by a x 〔a >b >0〕.〔1〕范围:a x a -<<;b y b -<<〔2〕对称性:分别关于x 轴、y 轴成轴对称; 关于原点中心对称;〔3〕顶点:1(,0)A a -、2(,0)A a 、1(0,)B b -、2(0,)B b 长轴:122A A a = 短轴:122B B b = 长半轴长:a 短半轴长:b 〔4〕离心率:ace =意义:表示椭圆的扁平程度 离心率取值范围:01e <<离心率大小对扁平程度的影响:如果e 越接近于1,则c 越大,b 越小,椭圆越扁; 如果e 越接近于0,则c 越大,b 越小,椭圆越圆; 题型分析:1、根据条件求椭圆的标准方程〔1〕已知10a b +=,25b =时,求椭圆的标准方程;〔2〕长轴长为短轴长的2倍,且椭圆过点(2,4)--;〔3〕已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程;〔4〕求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程;〔设方程122=+ny mx 〕〔5〕一短轴的一个顶点B 与焦点12,F F 组成三角形周长为423+且21BF F ∠=32π,求椭圆方程;2、焦点三角形问题〔面积问题〕方法原理:①余弦定理②椭圆定义③C ab S sin 21=∆ 〔1〕已知椭圆方程()012222>>=+b a b y a x ,焦点为1F ,2F ,P 是椭圆上一点,α=∠21PF F . 求:21PF F ∆的面积〔用a 、b 、α表示〕; 分析:由余弦定理知:221F F 2221PF PF +=12PF -·224cos c PF =α ①由椭圆定义知: a PF PF 221=+ ②则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ 212sin b α=⨯2tan b α=.1、假设P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求△21PF F 的面积 ;2、已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭21||||2121=⋅PF PF ,求△21PF F 的面积;3、已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 假设P 、1F 、2F 是一个直角三角形的三个顶点,求点P 到x 轴的距离;练习:1、椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为〔 〕 A. 20 B. 22 C. 28 D. 242、椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为〔 〕 A. 0 B. 1 C. 3 D. 63、椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为〔 〕 A. 0 B. 2 C. 4 D.2-4、已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒90,△21PF F 的面积是20,离心率为35,求椭圆的方程;5、点P 为椭圆)(=+0b a 116y 25x 22>>上一点,21F ,F 是左右焦点;〔1〕求||||21PF PF ⋅的最大值〔2〕假设21PF PF ⊥,求21F PF ∆的面积 〔3〕假设60PF F 21=∠,求21F PF ∆的面积3、离心率:c e=〔1〕已知椭圆的长轴是短轴长的2倍,求椭圆的离心率;〔2〕假设椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,求椭圆的离心率;〔3〕已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当11PF F A ⊥,PO ∥AB〔O 为椭圆中心〕时,求椭圆的离心率;〕〔4〕已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,假设75,151221=∠=∠F PF F PF , 求椭圆的离心率; 〕 〔提示:正玄定理、积化和差公式〕 〔二〕解齐次方程求ca的值 〔1〕点P 是椭圆22a x +22by =1〔0a b >>〕上一点,21F F 、是椭圆的左右焦点,已知,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 求椭圆的离心率;〔答案:13-〕〔2〕椭圆的四个顶点为A 、B 、C 、D ,假设四边形ABCD 的内切圆恰好过焦点,求椭圆的离心率;〔答案:215-〕〔3〕已知直线L 过椭圆12222=+by a x 〔0a b >>〕的顶点A (,0)a 、B (0,)b ,如果坐标原点到直线L 的距离为2a ,求椭圆的离心率;〕〔4〕以椭圆12222=+by a x 的右焦点2F 为圆心作圆,使该圆过椭圆的中心且与椭圆交于,M N 两点,椭圆左焦点为1F ,直线1MF 与圆相切,求椭圆的离心率;〔答案:13-〕〔5〕以椭圆12222=+by a x 的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于N M 、两点,如果MO MF =,求椭圆的离心率;〔答案:13-〕〔6〕在ABC △中,AB BC =,7cos 18B =-.假设以A B ,为焦点的椭圆经过点C ,求椭圆的离心率e =38.〔7〕设椭圆12222=+by a x 的两个焦点分别为21F F 、,过点2F 作椭圆长轴的垂线交椭圆于点P ,假设12F PF ∆为等腰直角三角形,求椭圆的离心率;1〕〔8〕已知21F F 、是椭圆12222=+b y a x 的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,假设2ABF ∆ 是正三角形,求椭圆的离心率;〔答案:33〕 〔三〕解齐次不等式求ca的范围 〔1〕已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,求离心率的范围;答案〔2〕已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且9021=∠PF F ,求离心率e 的范围;答案:⎪⎪⎭⎫⎢⎣⎡1,22〔3〕已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且6021=∠PF F ,求椭圆离心率范围;答案:⎪⎭⎫⎢⎣⎡1,21(4)设椭圆12222=+by a x 的两焦点为21F F 、,假设椭圆上存在一点Q ,使021120=∠QF F ,求离心率范围;〔参考答案136<≤e 〕题型三:直线与椭圆的位置关系※联立222210y x a b Ax By C ⎧-=⎪⎨⎪++=⎩得到一元二次方程:则①①当0∆>⇒两个焦点⇒相交;②当0∆=⇒一个焦点⇒相切; ③当0∆<⇒没有焦点⇒相离;1、直线x =2与椭圆13422=+y x 的交点个数为〔 〕 (A )0个 (B )1个 (C ) 2个 (D ) 3个 2、直线1+=mx y 与椭圆1422=+y x 有且只有一个交点,则2m 的值为〔 〕 (A )21 (B )32 (C ) 43 (D ) 543、椭圆13422=+yx 的长轴端点为N M 、,不同于N M 、的点P 在椭圆上,则PN PM 、的斜率之积为〔 〕 (A )-43 (B )-34 (C ) 43 (D ) 34 4、假设直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围;题型四:直线与椭圆相交的弦长公式①AB =②]4)[()1(1212212122x x x x k x x k AB -+•+=-⋅+=③21AB y y =-=通径:过焦点坐标且垂直于焦点所在轴的线段长度①222bAF BF a==②22b AB a=1、判断直线01=+-y x 与椭圆141622=+y x 的位置关系,如果相交,求相交弦的弦长;2、已知椭圆11222=+y x 的左右焦点分别为21F F 、,假设过点)2,0(-P 及1F 的直线交椭圆于B A 、两点,求AB ;3、已知21,F F 分别是椭圆2212x y +=的左右焦点,过1F 作倾斜角为4π的直线与椭圆交于Q P 、两点,则PQ F 2∆的面积;4、已知椭圆1422=+y x 及直线m x y +=. 〔1〕当m 为何值时,直线与椭圆有公共点? 〔2〕假设直线被椭圆截得的弦长为5102,求直线的方程;5、已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线1+=x y 与该椭圆交于P 和Q ,且OQ OP ⊥,210=PQ ,求椭圆方程;题型五:直线与椭圆的距离问题1、点P 椭圆141622=+y x 上的一点,求点P 到直线022=-+y x 的最大、最小距离;2、已知椭圆195222=+y x , 直线:45400l x y -+=,椭圆上是否存在一点P ,它到直线的距离最小?最小距离是多少?题型六:中点弦问题〔韦达定理法与点差法〕1、已知椭圆1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于B A ,两点,求弦AB 的中点坐标及弦长;2、椭圆E :141622=+y x 内有一点P 〔2,1〕,求经过P 并且以P 为中点的弦所在直线方程;3、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程;变式1:已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标;变式2:已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程;变式3:〔2013新课标〔理〕〕已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.假设AB 的中点坐标为(1,1)-,则E 的方程为〔 〕A .2214536x y += B .2213627x y +=C .2212718x y += D .221189x y +=题型七:最值问题1、 设椭圆方程为18422=+y x ,过原点且倾斜角为θ和)20(πθθπ<<-的两条直线分别交椭圆于C A 、和D B 、两点;〔1〕用θ表示四边形ABCD 的面积; 〔2〕当)4,0(πθ∈时,求S 的最大值;题型八:对称问题1、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称;。
(完整版)椭圆知识点与性质大全,推荐文档
椭圆与方程【知识梳理】1、椭圆的定义平面内,到两定点、的距离之和为定长的点的轨迹称为椭圆,其中两定点、称为椭1F 2F ()1222,0a F F a a <>1F 2F 圆的焦点,定长称为椭圆的长轴长,线段的长称为椭圆的焦距.此定义为椭圆的第一定义.2a 12F F 2、椭圆的简单性质标准方程()222210x y a b a b +=>>()222210y x a b a b +=>>顶点坐标、(),0A a ±()0,B b ±、(),0A b ±()0,B a ±焦点坐标左焦点,右焦点()1,0F c -()2,0F c 上焦点,下焦点()10,F c ()20,F c -长轴与短轴长轴长、短轴长2a 2b长轴长、短轴长2a 2b有界性,a x a -≤≤b y b -≤≤,,a y a -≤≤b x b -≤≤对称性关于轴对称,关于轴对称,同时也关于原点对称.x y cb a 、、之间关系222c b a +=3、焦半径椭圆上任意一点到椭圆焦点的距离称为焦半径,且,特别地,若为椭圆P F [],PF a c a c ∈-+00(,)P x y 上的任意一点,,为椭圆的左右焦点,则,,其()222210x y a b a b +=>>1(,0)F c -2(,0)F c 10||PF a ex =+20||PF a ex =-中.c e a=4、通径过椭圆焦点作垂直于长轴的直线,交椭圆于、两点,称线段为椭圆的通径,且()222210x y a b a b +=>>F A B AB .22b AB a=5、焦点三角形为椭圆上的任意一点,,为椭圆的左右焦点,称为椭圆的焦点三角P ()222210x y a b a b+=>>1(,0)F c -2(,0)F c 12PF F ∆形,其周长为:,若,则焦点三角形的面积为:.1222F PF C a c ∆=+12F PF θ∠=122tan 2F PF S b θ∆=6、过焦点三角形直线过椭圆的左焦点,与椭圆交于、两点,称为椭圆的过焦点l ()222210x y a b a b+=>>1F 11(,)A x y 22(,)B x y 2ABF ∆三角形,其周长为:,面积为.24ABF C a ∆=212y y c S ABF -=∆7、点与椭圆的位置关系为平面内的任意一点,椭圆方程为:若,则在椭圆上;若,()00,P x y 22221(0)x y a b a b +=>>2200221x y a b +=P 2200221x y a b +>则在椭圆外;若,则在椭圆内.P 2200221x y a b+<P 8、直线与椭圆的位置关系直线,椭圆:,则:0l Ax By C ++=Γ22221(0)x y a b a b+=>>与相交;l Γ22222a A b B C ⇔+>与相切;l Γ22222a A b B C ⇔+=与相离.l Γ22222a A b B C ⇔+<9、焦点三角形外角平分线的性质(*)点是椭圆上的动点,是椭圆的焦点, 是的外角平分线上一点,且(,)P x y 22221(0)x y a b a b+=>>12,F F M 12F PF ∠,则,即动点的点的轨迹为.20F M MP ⋅=OM a =M ()222x y a x a +=≠±10、椭圆上任意两点的坐标性质【推广2】设直线交椭圆于两点,交直线于点.若()110l y k x m m =+≠、()222210x y a b a b +=>>C D 、22l y k x =、E 为的中点,则.E CD 2122b k k a=-11、中点弦的斜率为椭圆内的一点,直线过与椭圆交于两点,且,则()()000,0M x y y ≠()222210x y a b a b+=>>l M ,A B AM BM =直线的斜率.l 2020ABb x k a y =-12、相互垂直的半径倒数的平方和为定值若、为椭圆:上的两个动点,为坐标原点,且.则定值A B C ()222210x y a b a b +=>>O OA OB ⊥2211||||OA OB +=.2211a b+【典型例题】例1、直线与椭圆恒有公共点,则的取值范围是__________.1y kx =+2215x y m +=m 【变式1】已知方程表示椭圆,则的取值范围__________.13522-=-+-k y k x k 【变式2】椭圆的两个焦点坐标分别为__________.12222=-++m x m y 例2、已知圆,圆内一定点,圆过点且与圆内切,求圆心的轨迹方程.()1003:22=++y x A A ()3,0B P B A P【变式1】已知圆,圆,动圆分别与圆相外切,与圆相内切.()11:221=++y x O ()91:222=+-y x O M 1O 2O 求动圆圆心所在的曲线的方程.M 【变式2】已知的两个顶点坐标为,的周长为18,则顶点的轨迹方程为ABC ∆(4,0),(4,0)A B -ABC ∆C __________.【变式3】已知动圆过定点,且在定圆的内部与其相内切,求动圆的圆心的轨P ()03,-A ()64322=+-y x B :P 迹方程.例3、若是椭圆上的点,和是焦点,则P 13422=+y x 1F 2F (1)的取值范围为__________.21PF PF ⋅(2)的取值范围为__________.12PF PF ⋅(3)的取值范围为__________.2212PF PF + 【变式1】点是椭圆上的一点,是椭圆的焦点,是的中点,且,为(,)P x y 22194x y +=12,F F M 1PF 12PF =O 坐标原点,则_______.OM =【变式2】点是椭圆上的动点,是椭圆的焦点,是的外角平分线(,)P x y 22221(0)x y a b a b+=>>12,F F M 12F PF ∠上一点,且,则动点的轨迹方程为________.20F M MP ⋅=M 例4、已知椭圆内有一点,为椭圆的左焦点,是椭圆上动点,求的最大值与2212516x y +=()2,1A F P PA PF +最小值__________.【变式】若椭圆的左、右两个焦点分别为、,过点的直线与椭圆相交于、两点,则171622=+y x 1F 2F 1F l A B 的周长为__________.B AF 2∆例5、是椭圆的焦点,点为其上动点,且,则的面积是__________.12,F F 2214xy +=P 1260F PF ∠=︒12F PF ∆【变式】焦点在轴上的椭圆方程为,、是椭圆的两个焦点,若椭圆上存在点,使得x 2221(0)x y a a +=>1F 2F B ,那么实数的取值范围是________.122F BF π∠=a 例6、已知椭圆,2212x y +=(1)求过点且被平分的弦所在的直线的方程;1122P ⎛⎫⎪⎝⎭,P (2)求斜率为的平行弦的中点轨迹方程;2(3)过引椭圆的割线,求截得的弦的中点的轨迹方程.(21)A 、(4)椭圆上有两点、,为原点,且有直线、斜率满足,P Q O OP OQ 21-=⋅OQ OP k k 求线段中点的轨迹方程.PQ M例7、已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关13422=+y x C :m m x y l +=4:C 于该直线对称.例8、已知椭圆及直线.1422=+y x m x y +=(1)当为何值时,直线与椭圆有公共点?m (2)若直线被椭圆截得的弦长为,求直线的方程.5102例9、已知定点,动点是圆(为圆心)上一点,线段的垂直平分线交()2,0A -B 64)2(:22=+-y x F F AB 于.BF P (1)求动点的轨迹方程;P (2)直线交点的轨迹于两点,若点的轨迹上存在点,使求实数13+=x y P ,M N P C ,OC m ON OM ⋅=+的值;m例10、已知椭圆(),过点,的直线倾斜角为,原点到该直线的距离为12222=+by a x 0>>b a (),0A a -()0,B b 6π.23(1)求椭圆的方程;(2)斜率大于零的直线过与椭圆交于,两点,若,求直线 的方程;()1,0D -E F DF ED 2=EF (3)是否存在实数,直线交椭圆于,两点,以为直径的圆过点?若存在,求出k 2+=kx y P Q PQ (1,0)D -的值;若不存在,请说明理由.k例11、若是经过椭圆中心的一条弦点,分别为椭圆的左、右焦点,求的面积的最大AB 2212516x y +=12,F F 1F AB ∆值.【变式1】已知直线与椭圆交于两点,坐标原点到直线,求的面积的l 2213x y +=A B 、O l AOB ∆最大值.【变式3】已知定点和椭圆上的动点)0,(a A 8222=+y x ),(y x P (1)若且,计算点的坐标;2=a 223||=PA P (2)若且的最小值为1,求实数的值.30<<a ||PA a 【变式4】如图,椭圆的中心在原点,是它的两个顶点,直线交线段于点,()()2,0,0,1A B (0)y kx k =>AB D 交椭圆于两点.,E F (1)若,求直线的斜率;6ED DF = k(2)求四边形的面积的最大值.AFBE S 【变式5】椭圆的一个焦点是()222104x y b b +=>()1,0F -(1)求椭圆的方程;(2)已知点是椭圆上的任意一点,定点为轴正半轴上的一点,若的最小值为,求定点的坐标;P M x PM 85M (3)若过原点作互相垂直两条直线,交椭圆分别于与两点,求四边形 面积的取值范围.O ,A C ,B D ABCD【变式6】在平面直角坐标系中,动点到定点的距离之和为4,设点的轨迹为曲线,xOy P (),P C 直线过点,且与曲线交于两点.l (1,0)E -C ,A B (1)求曲线的方程;C (2)以为直径的圆能否通过坐标原点?若能通过,求此时直线的方程,若不能,说明理由.AB l (3)的面积是否存在最大值?若存在,求出面积的最大值,以及此时的直线方程,若不存在,请说明理由.AOB ∆例12、已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.2222(0)x y a a +=>(1)求椭圆的方程;C (2)已知直线与椭圆交于、两点,试问,是否存在轴上的点,使得对任意的)1(-=x k y C A B x (),0M m ,为定值,若存在,求出点的坐标,若不存在,说明理由.k R ∈MA MB ⋅ M 【变式1】过椭圆长轴上某一点(不含端点)作直线(不与轴重合)交椭圆于两点,22182x y +=(),0S s l x ,M N 若点满足:,求证:.(),0T t 8OS OT ⋅= MTS NTS ∠=∠【变式2】已知椭圆的中心在原点,焦点在轴上,长轴长为4,且点在椭圆上.C x ⎛ ⎝C (1)求椭圆的方程;C (2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆于、两点,求证:P C P ()2,1d = l C A B 为定值.22PA PB +【变式3】如图,为椭圆上的一个动点,弦分别过椭圆的的左右交点.当A ()2222+10x y a b a b=>>,AB AC 12,F F 轴时,恰好AC x ⊥123AF AF =(1)求的值ca (2)若,,试判断是否为定值?若是,求出定值;若不是,说明理由.111AF F B λ= 222AF F C λ= 12λλ+【变式4】线段分别在轴,轴上滑动,且,为线段上的一点,且,随,A B x y 3AB =M AB 1AM =M 的滑动而运动,A B (1)求动点的轨迹方程;M E(2)过的直线交曲线于两点,交轴于,,,试判断是否N E ,C D y P 1PC CN λ= 2PD DN λ= 12λλ+为定值?若是,求出定值;若不是,说明理由.【变式5】如图,已知椭圆:,其左右焦点为及,过点的直线交椭圆于C 22221x y a b+=()11,0F -()21,0F 1F C 两点,线段的中点为,的中垂线与轴和轴分别交于两点,且、、构成,A B AB G AB x y ,D E 1AF 12F F 2AF 等差数列.(1)求椭圆的方程;C (2)记△的面积为,△(为原点)的面积为.1GF D 1S OED O 2S 试问:是否存在直线,使得?说明理由.AB 12S S =【变式6】已知椭圆的方程为,其焦点在轴上,点为椭圆上一点.C 22212x y a +=(0)a >x Q(1)求该椭圆的标准方程;(2)设动点满足,其中、是椭圆上的点,直线与P 00(,)x y 2OP OM ON =+ M N C OM ON的斜率之积为,求证:为定值;12-22002x y +(3)在(2)的条件下探究:是否存在两个定点,使得为定值?,A B PA PB +若存在,给出证明;若不存在,请说明理由.例13、椭圆的一个顶点,焦点在轴上,右焦点到直线的距离为3.(0,1)A -x 0x y -+=(1)求椭圆的方程;(2)设椭圆与直线相交于不同两点,当时,求实数 的取值范围.(0)y kx m k =+≠,M N AM AN =m【变式1】已知、、是椭圆上的三点,其中,过椭圆的中心,且A B C ()222210x y a b a b+=>>()A BC ,.0AC BC ⋅= 2BC AC = (1)求椭圆的方程;(2)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆与轴负半轴的交点,且.求()0,M t l ,P Q D y DP DQ = 实数的取值范围.t。
椭圆知识点与题型总结
椭圆知识点与题型总结一、椭圆的定义和基本概念1. 椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴的长度。
与椭圆的长轴垂直的轴称为短轴,其长度为常数2b。
2. 椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴长度的一半,b为短轴长度的一半。
3. 椭圆的离心率:椭圆的离心率e的定义为e=c/a,其中c为焦距的一半,a为长轴长度的一半。
离心率描述了椭圆形状的“圆”的程度,离心率越接近于0,椭圆越接近于圆。
4. 椭圆的几何性质:椭圆有关于焦点、直径、切线等方面的许多重要性质和定理,例如:椭圆的焦点到椭圆上任意一点的距离之和等于常数2a、椭圆的切线与法线的交点、椭圆的对称性等等。
二、椭圆的常见题型及解题方法1. 椭圆的参数方程题型:求椭圆的参数方程,求参数方程表示的椭圆的离心率、焦点、中心等。
解题方法包括利用椭圆的定义,代入标准方程解参数等。
2. 椭圆的焦点、离心率题型:根据给定的椭圆的标准方程或参数方程,求椭圆的焦点坐标、离心率,或者给定椭圆的离心率和一个焦点,求椭圆的方程。
解题方法包括根据离心率的定义求解,利用椭圆的参数方程计算焦点坐标等。
3. 椭圆的性质题型:求椭圆的长轴、短轴长度,椭圆的离心角、焦点、直径,椭圆的法线、切线方程等。
解题方法包括利用椭圆的定义、性质和以直径为坐标系的轴来简化计算等。
4. 椭圆的切线、法线题型:求椭圆在给定的一点上的切线、法线方程,或者求椭圆上一点的切线、法线方向角。
解题方法包括利用椭圆的参数方程求导数,利用椭圆的切线、法线的定义求解等。
5. 椭圆的面积题型:求椭圆的面积,求椭圆内切矩形的最大面积等。
解题方法包括利用椭圆的定义和参数方程求解,利用微积分求解等。
总之,椭圆是重要的数学对象,涉及到许多重要的数学定理和公式,解椭圆相关的数学题目需要运用代数、几何和微积分等多种知识和技巧。
椭圆 知识点+例题 分类全面
点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________________.答案 (1)y 220+x 24=1 (2)x 2+32y 2=1解析 (1)方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =3-02+-5+42+3-02+-5-42,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.(2)设点B 的坐标为(x 0,y 0). ∵x 2+y 2b 2=1, ∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.题型二:椭圆的几何性质[例] (2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上, 所以169a 2+19b2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=bc 2-a 2a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b c 2-a 2a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性, 可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b a 2-c 2a 2+c 2. 因为直线F 1C 的斜率为ba 2-c 2a 2+c 2-02a 2c a 2+c 2--c =b a 2-c 23a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b a 2-c 23a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15,因此e =55.[巩固](1)已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是_______.(2)(2013·辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 (1)2 (2)57解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C.(2)如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′, 由对称性,得|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14. ∴a =7,因此离心率e =c a =57.题型三:直线与椭圆位置关系的相关问题[例]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦MN 的长.(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0), 由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得x 1+x 2x 1-x 220+y 1+y 2y 1-y 216=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.[巩固](2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 解 (1)根据c =a 2-b 2及题设知M (c ,b 2a),b 2a 2c =34,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28,故a =7,b =27.1.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 若x 2m -2+y 26-m=1表示椭圆.夯实基础训练则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为__________.解析 将原方程变形为x 2+y 21m=1. 由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 3.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是_______.解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为_______.解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |, 即4c 2=a 2-c 2,a 2=5c 2, 所以e 2=15,所以e =55.5.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F点的直线l 与圆M 相切,则a 的值为__________.解析 圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), ∴m =-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x =-c ,又∵直线l 与圆M 相切,∴c =1,∴a 2-3=1,∴a =2.6.(2013·福建)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°,MF 1⊥MF 2,所以|MF 1|=c ,|MF 2|=3c ,所以|MF 1|+|MF 2|=c +3c =2a .即e =c a=3-1. 7.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.8.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.答案 (-263,263) 解析 设椭圆上一点P 的坐标为(x ,y ),则F 1P →=(x +3,y ),F 2P →=(x -3,y ).∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0,即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0, 34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263). 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0). (1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c =2,a 2=b 2+c 2.解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1. (2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧ x 28+y 24=1,y =x +m .消去y 得,3x 2+4mx +2m 2-8=0, Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m 3, ∵点M (x 0,y 0)在圆x 2+y 2=1上,∴(-2m 3)2+(m 3)2=1,∴m =±355. 10.(2014·大纲全国)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为_______________.解析 ∵△AF 1B 的周长为43,∴4a =43,∴a =3,∵离心率为33,∴c =1, ∴b =a 2-c 2=2,∴椭圆C 的方程为x 23+y 22=1. 11.(2013·四川)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是___________.解析 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a,由于OP ∥AB , ∴-y 0c =-b a ,y 0=bc a, 把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝⎛⎭⎫bc a 2b 2=1,而⎝⎛⎭⎫c a 2=12,∴e =c a =22. 12.已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.答案 33 解析 在三角形PF 1F 2中,由正弦定理得sin ∠PF 2F 1=1,即∠PF 2F 1=π2. 设|PF 2|=1,则|PF 1|=2,|F 2F 1|= 3.∴离心率e =2c 2a =33. 能力提升训练13.点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________.答案 83解析 |PF 1|+|PF 2|=10,|F 1F 2|=6,S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·1=8 =12|F 1F 2|·y P =3y P .所以y P =83. 14.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.15.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32). (1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,满足P A →·PB →=PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 由题意得⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1. (2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k 1(x -2)+1,代入椭圆C 的方程得,(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.因为直线l 1与椭圆C 相交于不同的两点A ,B ,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)·(16k 21-16k 1-8)=32(6k 1+3)>0,所以k 1>-12.又x 1+x 2=8k 12k 1-13+4k 21,x 1x 2=16k 21-16k 1-83+4k 21, 因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54, 所以(x 1-2)(x 2-2)(1+k 21)=PM →2=54. 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以[16k 21-16k 1-83+4k 21-2·8k 12k 1-13+4k 21+4]·(1+k 21) =4+4k 213+4k 21=54,解得k 1=±12. 因为k 1>-12,所以k 1=12. 于是存在直线l 1满足条件,其方程为y =12x .。
椭圆知识点归纳汇总和经典例题
椭圆知识点归纳汇总和经典例题————————————————————————————————作者:————————————————————————————————日期:椭圆的基本知识1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M (x , y ),点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是一个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2.7.椭圆的几何性质:a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc cxF 2F 1O y Mc cy xPO P 'M椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。
椭圆 知识点+例题+练习
教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。
椭圆知识点总结加例题
椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。
1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。
(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。
(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。
(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。
(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。
1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。
通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。
1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。
椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。
二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。
2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。
椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。
2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。
高中数学:椭圆知识点归纳总结及经典例题
椭 圆1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆轨迹叫做椭圆..这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距((设为2c).2.2.椭圆的标准方程:椭圆的标准方程:椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+b x a y (a >b >0)焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2+ny 2=1(m>0=1(m>0,,n>0)n>0)不必考虑焦点位置,求出方程不必考虑焦点位置,求出方程不必考虑焦点位置,求出方程3.3.求轨迹方程的方法求轨迹方程的方法求轨迹方程的方法: : 定义法、待定系数法、相关点法、直接法定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ¢¢解:(:(相关点法相关点法相关点法))设点M(x, y),点P(x 0, y 0),则x =x 0, y =20y 得x 0=x , y 0=2y.∵x 02+y 02=4, 得x 2+(2y)2=4,即.142=+y x 所以点M 的轨迹是一个椭圆的轨迹是一个椭圆..4.范围范围范围. x . x 2≤a 2,y 2≤b 2,∴,∴|x||x||x|≤≤a ,|y||y|≤≤b .椭圆位于直线x =±=±a a 和y =±=±b b 围成的矩形里.围成的矩形里.5.5.椭圆的对称性椭圆的对称性椭圆的对称性 椭圆是关于y 轴、轴、x x 轴、原点都是对称的.坐标轴是椭圆的对称轴.轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.6.顶点顶点顶点 只须令x =0,得y =±=±b b ,点B 1(0,(0,--b)b)、、B 2(0, b)b)是椭圆和是椭圆和y 轴的两个交点;令y =0,得x =±=±a a ,点A 1(-a,0)a,0)、、A 2(a,0)(a,0)是椭圆和是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)b)、、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点..椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴分别叫做椭圆的长轴和短轴. . 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的叫做椭圆的 长半轴长.长半轴长.b b 叫做椭圆的短半轴长.叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt Rt△△OB 2F 2中,中,|OF |OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2.a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc c xF 2F 1O y MccyxPO P ¢M)的离心率为(轴分成三等份,则椭圆若椭圆的连个焦点把长 .1无法确定 D.32C. 31 B. 61 A..7),0()0,()0,()0(1 .2112222=-->>=+e bAB F b B a A c F b a by a x ,则椭圆的离心率的距离为到直线如果是两个顶点,、,的左焦点为椭圆.1612)2,1( .322的标准方程有相同的离心率的椭圆,且与椭圆求经过点=+y x M越小,因此椭圆越扁;,从而越接近时,越接近当221)1(c a b a c e -=因此椭圆越接近于圆;,越接近,从而越接近时,越接近当a b c e 00)2( .0)3(222a y x c b a =+==为圆,方程成为,两焦点重合,图形变时,当且仅当.)2(; )1(12045.222121221点坐标求求,为左右焦点,,上的点,为椭圆已知P S PF PF F F y x P F PF D ^=+yO x椭圆典型例题椭圆典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(的一个焦点为(00,2)求m 的值.的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222222c b a +=可求出m 的值.的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以22262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.,求椭圆的标准方程.分析:分析:因椭圆的中心在原点,故其标准方程有两种情况.因椭圆的中心在原点,故其标准方程有两种情况.因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数根据题设条件,运用待定系数法,法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.)的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a b y a x .由椭圆过点()03,P ,知10922=+ba .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x .当焦点在y 轴上时,设其方程为()012222>>=+b a b x a y .由椭圆过点()03,P ,知10922=+b a .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 ABC D 的底边16=BC ,AC 和AB 两边上中线长之和为3030,,求此三角形重心G 的轨迹和顶点A 的轨迹.的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022¹=+y y x .(2)设()y x A ,,()y x G ¢¢,,则()013610022¹¢=¢+¢y y x . ① 由题意有ïïîïïíì=¢=¢33y y x x,代入①,得A 的轨迹方程为()0132490022¹=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt D 中,21s i n1221==ÐPF PF F PF ,可求出621p=ÐF PF ,3526cos 21=×=pPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x . 例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,q =Ð21PA A ,a=Ð21PF F .求:21PF F D 的面积(用a 、b 、a 表示).分析:求面积要结合余弦定理及定义求角a 的两邻边,从而利用C ab S sin 21=D求面积.解:如图,如图,设设()y x P ,,由椭圆的对称性,由椭圆的对称性,不妨设不妨设()y x P ,,由椭圆的对称性,由椭圆的对称性,不妨设不妨设P 在第一象限.由余弦定理知:第一象限.由余弦定理知:221F F 2221PF PF +=12PF -·224cos c PF =a .①.① 由椭圆定义知:由椭圆定义知: a PFPF221=+②,则-①②2得 acos 12221+=×b PF PF .故a sin 212121PF PF S PF F ×=D a asin cos 12212+=b 2tan 2a b =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径,距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x .说明:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.程.这是求轨迹方程的一种重要思想方法. 例7 已知椭圆1222=+y x(1)求过点÷øöçèæ2121,P 且被P 平分的弦所在直线的方程;平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=×OQ OP k k ,求线段PQ 中点M 的轨迹方程.的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则,则ïïîïïíì=+=+=+=+④,③,②,①,y y y x x x y x y x222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ¹,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y y x .⑤.⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,416436>´´-=D 符合题意,0342=-+y x 为所求.为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为:代入⑤得所求轨迹方程为:04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为:代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)部分)(4)由①+②得)由①+②得: ()2222212221=+++y y x x ,⑦,⑦,⑦, 将③④平方并整理得将③④平方并整理得 212222124x x x x x -=+, ⑧,⑧, 212222124y y y y y -=+,⑨ 将⑧⑨代入⑦得:将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩再将212121x x y y -=代入⑩式得:代入⑩式得: 221242212212=÷øöçèæ--+-x x y x x x , 即12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程.,求直线的方程.解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*******22³+-=-´´-=D m m m ,解得2525££-m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得根据弦长公式得 :51025145211222=-´-÷øöçèæ-×+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.有所区别.这里解决直线与椭圆的交点问题,这里解决直线与椭圆的交点问题,一般考虑判别式一般考虑判别式D ;解决弦长问题,一般应用弦长公式.公式.用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.,可大大简化运算过程. 例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.应在何处?并求出此时的椭圆方程. 分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-的坐标为(-99,6),直线2FF 的方程为032=-+y x .解方程组îíì=+-=-+09032y x y x 得交点M 的坐标为(-的坐标为(-55,4).此时21MF MF +最小.最小. 所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为136452222=+y x .例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.的取值范围.解:由ïîïíì-¹-<-<-,35,03,05k k k k 得53<<k ,且4¹k .∴满足条件的k 的取值范围是53<<k ,且4¹k .说明:本题易出现如下错解:由îíì<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.椭圆.例11 已知1cos sin 22=-a a y x )0(p a ££表示焦点在y 轴上的椭圆,求a 的取值范围.围.分析:依据已知条件确定a 的三角函数的大小关系.再根据三角函数的单调性,求出a 的取值范围.取值范围.解:方程可化为1cos 1sin 122=+aa y x .因为焦点在y 轴上,所以0sin 1cos 1>>-aa . 因此0sin >a 且1tan -<a 从而)43,2(p p a Î.说明:说明:(1)(1)(1)由椭圆的标准方程知由椭圆的标准方程知0sin 1>a ,0cos 1>-a,这是容易忽视的地方.,这是容易忽视的地方. (2)(2)由焦点在由焦点在y 轴上,知a cos 12-=a ,asin 12=b . (3)求a 的取值范围时,应注意题目中的条件p a <£0.例12 12 求中心在原点,对称轴为坐标轴,且经过求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得在椭圆上可得îïíì=×+-×=-×+×,11)32(,1)2()3(2222n m n m 即îíì=+=+,112,143n m n m所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例13 已知长轴为1212,,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3p的直线交椭圆于A ,B 两点,求弦AB 的长.的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:解:((法1)1)利用直线与椭圆相交的弦长公式求解.利用直线与椭圆相交的弦长公式求解.利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b,所以33=c .因为焦点在x 轴上,轴上, 所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y .由直线方程与椭圆方程联立得:0836372132=´++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621´=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)2)利用椭圆的定义及余弦定理求解.利用椭圆的定义及余弦定理求解.利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,nBF -=122.在21F AF D 中,3cos22112212122pF F AF F F AF AF -+=,即21362336)12(22×××-×+=-m m m ; 所以346-=m .同理在21F BF D 中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)3)利用焦半径求解.利用焦半径求解.利用焦半径求解.先根据直线与椭圆联立的方程0836372132=´++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例14 14 椭圆椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 4 B .2 2 C .8 8D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF , 又因为ON 为21F MF D 的中位线,所以4212==MF ON ,故答案为A .说明:说明:(1)(1)(1)椭圆定义:平面内与两定点的距离之和等于常数(大于椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.椭圆.(2)(2)椭圆上的点必定适合椭圆的这一定义,即椭圆上的点必定适合椭圆的这一定义,即aMFMF221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.圆上的点与焦点的有关距离.例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:对称,则已知条件等价于:(1)(1)(1)直线直线l AB ^;(2)弦AB 的中点M 在l 上.上.利用上述条件建立m 的不等式即可求得m 的取值范围.的取值范围.解:解:((法1)1)设椭圆上设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组ïïîïïíì=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当焦点在 y 轴上时,椭圆的焦点坐标为 (0, c) , (0,c)
知识点三:椭圆的简单几何性质
x2
椭圆:
y2
1 (a b 0) 的简单几何性质
a2 b2
x2
(1)对称性:对于椭圆标准方程
y2
1 (a b 0) :说明:把 x 换成 x 、或把 y 换成
a2 b2
y 、或把 x 、 y 同时换成 x 、
(右焦半径) r2 a ex0
焦点在 y 轴上的椭圆的焦半径公式:
MF1 MF2
a ey0 a ey0
F , F ( 其中 1
分别是椭圆的下上焦点) 2
新疆 王新敞
奎屯
其中 e 是离心率新疆 王新敞 奎屯
知识点六:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1 ), B(x2 , y2 ) 则 弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
知识点四:椭圆第二定义
一动点到定点的距离和它到一条定直线的距离的比是一个 (0,1) 内常数 e ,那么这个点的轨
迹叫做椭圆 新疆 王新敞
其中定点叫做焦点,定直线叫做准线,常数
e
就是离心率Βιβλιοθήκη 新疆 王新敞奎屯奎屯
左准线
l1
:
x
a2 c
右准线 l2
:
x
a2 c
知识点五:椭圆的焦半径公式:
(左焦半径) r1 a ex0
x2 y2 a 。
2
x2
注意: 椭圆
y2
1的图像中线段的几何特征(如下图):
a2 b2
(1) ( PF1 PF2
2a) ; PF1 PM 1
PF2 PM 2
e;
( PM1
PM 2
2a2 ) ; c
( BF1 BF2 a) ; ( OF1 OF2 c) ; A1B A2 B a 2 b2 ; (3) A1F1 A2 F2 a c ; A1F2 A2 F1 a c ; a c PF1 a c ;
若 ( PF1 PF2 F1F2 ) ,则动点 P 的轨迹无图形.
知识点二:椭圆的标准方程
1.当焦点在 x 轴上时,椭圆的标准方程: x 2 y 2 1 (a b 0) ,其中 c 2 a 2 b2 a2 b2
2.当焦点在 y 轴上时,椭圆的标准方程: y 2 x 2 1 (a b 0) ,其中 c 2 a 2 b2 ; a2 b2
别叫做椭圆的长半轴长和短半轴长。
(4)离心率:
①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用 e 表示,记作 e 2c c 。 2a a
②因为 (a c 0) ,所以 e 的取值范围是 (0 e 1) 。 e 越接近 1,则 c 就越接近 a ,从而
b a 2 c 2 越小,因此椭圆越扁;反之, e 越接近于 0, c 就越接近 0,从而 b 越接近于 a ,这 时椭圆就越接近于圆。 当且仅当 a b 时, c 0 ,这时两个焦点重合,图形变为圆,方程为
F1 (0,c) , F2 (0, c)
焦距
F1F2 2c
F1F2 2c
范围
对称性
性质
顶点 轴长
离心率
x a, y b 关于 x 轴、 y 轴和原点对称 (a,0) , (0,b) 长轴长= 2a ,短轴长= 2b e c (0 e 1)
a
x b, y a (0,a) , (b,0)
准线方程
1 k 2 (x1 x2 )2 4x1x2
x2
知识点七:椭圆
y2
1
与
y2 x2 1
(a b 0) 的区别和联系
a2 b2
a2 b2
3
标准方程
x 2 y 2 1 (a b 0) a2 b2
y 2 x 2 1 (a b 0) a2 b2
图形
焦点
F1 (c,0) , F2 (c,0)
x2 y 、原方程都不变,所以椭圆 a 2
y2 b2
1是以 x 轴、 y 轴为
1
对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:
椭圆上所有的点都位于直线 x a 和 y b 所围成的矩形内,所以椭圆上点的坐标满足 x a ,
y b。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
焦点坐标也不相同。
规律方法:
1.如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是
4
坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。
3.椭圆的参数方程
x
y
a b
cos sin
(为参数)
注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆
的标准方程;
2.在椭圆的两种标准方程中,都有 (a b 0) 和 c 2 a 2 b2 ;
3.椭圆的焦点总在长轴上.
当焦点在 x 轴上时,椭圆的焦点坐标为 (c,0) , (c,0) ;
椭圆知识点
知识要点小结: 知识点一:椭圆的定义
平面内一个动点 P 到两个定点 F1 、 F2 的距离之和等于常 ( PF1 PF2 2a F1F2 ) ,这个动
点 P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若 ( PF1 PF2 F1F2 ) ,则动点 P 的轨迹为线段 F1F2 ;
x2
②椭圆
y2
1 (a b 0) 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为
a2 b2
A1 (a,0) , A2 (a,0) , B1 (0,b) , B2 (0,b)
③线段 A1 A2 , B1B2 分别叫做椭圆的长轴和短轴, A1 A2 2a , B1B2 2b 。 a 和 b 分
x a2 c
y a2 c
焦半径
PF1 a ex0 , PF2 a ex0
PF1 a ey0 , PF2 a ey0
x2
注意:椭圆
y2
1,
y2
x2
1 (a b 0) 的相同点:形状、大小都相同;参数间的关
a2 b2
a2 b2
系都有 (a b 0) 和 e c (0 e 1) , a 2 b2 c 2 ;不同点:两种椭圆的位置不同;它们的 a