高二数学下学期第一次月考试题文
安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题(含答案解析)
安徽省安庆市第一中学2022-2023学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设()*211111N 123n a n n n n n n=++∈+++,则2a 等于()A .14B .1123+C .111234++D .11112345+++2.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .23.若命题()()*A n n N ∈在()*n k k N =∈时命题成立,则有1n k =+时命题成立,现知命题对()*00n n n N=∈时命题成立,则有().A .命题对所有正整数都成立B .命题对小于0n 的正整数不成立,对大于或等于0n 的正整数都成立C .命题对小于0n 的正整数成立与否不能确定,对大于或等于0n 的正整数都成立D .以上说法都不正确4.我国古代著作《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭.”其含义是:一尺长的木棍,每天截去它的一半,永远也截不完.在这个问题中,记第n 天后剩余木棍的长度为n a ,数列{}n a 的前n 项和为n S ,则使得不等式6164n S >成立的正整数n 的最小值为().A .6B .5C .4D .35.已知正项等比数列{an }满足6856846832a a a =+,若存在两项m a ,n a ,12a =,则14m n+的最小值为()A .9B .73C .94D .1336.已知数列{}n a 的前n 项和122n n S +=-,若*n ∀∈N ,24n n a S λ≤+恒成立,则实数λ的最大值是()A .3B .4C .5D .67.等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =A .17B .18C .19D .208.“提丢斯数列”,是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,…,容易发现,从第3项开始,每一项是前一项的2倍;将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,…;再将每一项除以10后得到:“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中,正确的是()A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9832410⋅+C .“提丢斯数列”前31项和为30321012110⋅+D .“提丢斯数列”中,不超过20的有9项二、多选题9.(多选题)已知三角形的三边构成等比数列,它们的公比为q ,则q 可能的一个值是()A .52B .32C .34D .1210.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则()A .45n a n =-B .23n a n =+C .223n S n n=-D .24n S n n=+11.(多选题)已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有()A .9100a a ⋅<B .910a a >C .100b >D .910b b >12.设{}n a 是无穷数列,若存在正整数k ,使得对任意*N n ∈,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是()A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列C .已知2(1)nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22022n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<三、填空题13,…,则________项.14.已知数列{}n a 的前n 项和23nn S =-,则数列{}n a 的通项公式是______.15.如图,第n 个图形是由正2n +边形扩展而来的,则第2n -个图形中共有______个顶点.16.设等差数列{}n a 的前n 项和为n S ,若376,28S S ==,则14nn a a S ++的最大值是__四、解答题17.在数列{}n a 中,11a =,13n n a a +=.(1)求{}n a 的通项公式;(2)数列{}n b 是等差数列,n S 为{}n b 前n 项和,若1123b a a a =++,33b a =,求n S .18.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.19.已知数列{}n a 的前n 项和为n S ,且()22n n S a n N *=-∈(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .20.已知函数()f x 满足()()()f x y f x f y +=⋅且1(1)2f =.(1)当*n N ∈时,求()f n 的表达式;(2)设*()n a n f n n N =⋅∈,,求证:1232n a a a a +++⋯+<;21.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <.22.习近平总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.山东某新能源公司年初购入一批新能源汽车充电桩,每台12800元,第一年每台设备的维修保养费用为1000元,以后每年增加400元,每台充电桩每年可给公司收益6400元.(15.7≈)(2)每台充电桩在第几年时,年平均利润最大.参考答案:1.C【分析】由已知通项公式,令2n =写出2a 即可.【详解】()*211111N 123n a n n n n n n=++++⋯+∈+++ ,2111234a ∴=++.故选:C.2.C【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{an }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.C【详解】由已知可得00(*)n n n =∈N 时命题成立,则有01n n =+时命题成立,在01n n =+时命题成立的前提下,可推得0(1)1n n =++时命题也成立,以此类推可知命题对大于或等于0n 的正整数都成立,但命题对小于0n 的正整数成立与否不能确定.本题选择C 选项.4.B【解析】将问题转化为等比数列求和问题,利用等比数列求和公式求得n S ,解不等式求得结果.【详解】由题意可知:数列{}n a 是以12为首项,12为公比的等比数列,11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,若6164n S >,则1611264n ->,即31642n >,6423n ∴>,又n N *∈,4642163=<,5642323=>,∴使得不等式6164n S >成立的正整数n 的最小值为5.故选:B.5.B【分析】利用等比数列的通项公式求出公比q 及m 与n 的关系式4m n +=,由于*,N m n ∈,所以采取逐一代入法求解最值即可.【详解】依题意,正项等比数列{an }满足6856846832a a a =+,所以6846836821112a qa q a q =+,即220q q --=,解得q =2或q =-1.因为数列{an }是正项等比数列,所以2q =,所以11·2n n a a -=.12a =,所以4m n +=,且*,N m n ∈,当m =1,n =3时,1473m n +=,当m =n =2时,1452m n +=,当m =3,n =1时,14133m n +=,则14m n +的最小值为73.故选:B .6.C【解析】先由n S 求出n a ,根据24n n a S λ≤+得到24n nS a λ+≤,求出24nn S a +的最小值,即可得出结果.【详解】因为数列{}n a 的前n 项和122n n S +=-,当2n ≥时,()()1122222n n nn n n a S S +-=-=---=;当1n =时,211222a S ==-=满足上式,所以2n n a =()*n N ∈,又*n ∀∈N ,24n n a S λ≤+恒成立,所以*n ∀∈N ,24nnS a λ+≤恒成立;令22121142222222224n n n n n n n n nS b a ++++-+====++,则211112212220222n n n n n n n n b b +++++⎛⎫⎛⎫-=+-+=-> ⎪⎝⎭⎝⎭对任意*n ∈N ,显然都成立,所以1222n n n b +=+单调递增,因此()21min 2252n b b ==+=,即24n n S a +的最小值为5,所以5λ≤,即实数λ的最大值是5.故选:C【点睛】思路点睛:根据数列不等式恒成立求参数时,一般需要分离参数,构造新数列,根据新数列的通项公式,判断其单调性,求出最值,即可求出参数范围(或最值).7.C【解析】根据已知条件求得1,a d 的关系,由此求得n b 的表达式,根据判断n b 的符号,由此求得数列{}n b 的前n 项和n S 取最大值时n 的值.【详解】设等差数列{}n a 的公差为d ,依题意10a >,31047a a =,则()()114279a d a d +=+,即1550,03a d d =-><.所以数列{}n a 的通项公式为()()155581133n a a n d d n d dn d =+-=-+-⋅=-.所以12n n n n b a a a ++=585552333dn d dn d dn d ⎛⎫⎛⎫⎛⎫=-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3585552333d n n n ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于30d <,所以当117n ≤≤时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当33185855528181818033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,331958555210191919033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=-⋅> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当20n ≥时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于318192027b b d +=->,所以当19n =时,n S 取得最大值.故选:C【点睛】本小题主要考查等差数列通项公式的基本量计算,考查分析、思考与解决问题的能力,属于中档题.8.C【分析】根据已知定义,结合等比数列的通项公式、前n 项和公式进行判断即可.【详解】记“提丢斯数列”为数列{}n a ,则当3n ≥时,310462n n a --=⋅,解得232410n n a -⋅+=,当2n =时,20.7a =,符合该式,当1n =时,10.550.4a =≠,故20.4,1324,2,10n n n a n n N -*=⎧⎪=⎨⋅+≥∈⎪⎩,故A 错误,而979932410a ⋅+=,故B 错误;“提丢斯数列”前31项和为()3002923232121223051051010⋅++⋅⋅⋅++⨯=+,故C 正确;令23242010n -⋅+≤,则219623n -≤,故2,3,4,5,6,7,8n =,而120a <,故不超过20的有8项,故D 错误,故选:C 9.BC【分析】由题意可设三角形的三边分别为aq,a ,aq (aq ≠0),再对q 分类讨论,解不等式即得解.【详解】解:由题意可设三角形的三边分别为aq,a ,aq (aq ≠0).因为三角形的两边之和大于第三边,①当q >1时,a q +a >aq ,即q 2-q -1<0,解得1<q;②当0<q <1时,a +aq >a q ,即q 2+q -1>0,解得12-+<q <1.综上,q 的取值范围是1(2-+∪,则可能的值是32与34.故选:BC 10.AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=,所以()4445n a a n d n =+-=-,()2451232n n nS n n --==-.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.11.AD【分析】根据等比数列{}n a 的公比203q =-<,可知9100a a ⋅<,A 正确;由于不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系;根据题意可知等差数列{}nb 的公差为负,所以可判断出C 不正确,D 正确.【详解】对A , 等比数列{}n a 的公比23q =-,9a ∴和10a 异号,9100a a ∴<,故A 正确;对B ,因为不确定9a 和10a 的正负,所以不能确定9a 和10a 的大小关系,故B 不正确;对C D ,9a 和10a 异号,且99a b >且1010a b >,9b ∴和10b 中至少有一个数是负数,又1120b => ,0d ∴<910b b ∴>,故D 正确,10b ∴一定是负数,即100b <,故C 不正确.故选:AD.12.BCD【分析】设等比数列{}n a 的公比为(1)q q >,则11(1)n kn k n a a a q q -+-=-,当10a <时,n k n a a +<,可判断A ;24()n kn n kn a a k n k n++--=⋅+,令24()f n n kn =+-,利用其单调性可判断B ;]21()[(1)1n k n k n a a k +-=-⋅+--,分n 为奇数、偶数两种情况讨论可判断C ;若{}n a 是间隔递增数列且最小间隔数是3,则22)0(n k n a a k n t k +-=+->,*N n ∈成立,问题转化为对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立,求解可判断D .【详解】设等比数列{}n a 的公比为(1)q q >,则111111()1n k n n k n k n a a a qa q a q q +---+-=-=-.因为1q >,所以当10a <时,n k n a a +<,故A 错误;244441()()n kn n kn a a n k n kk n k n n k n n k n +⎛⎫+-⎛⎫-=++-+=-=⋅⎪ ⎪+++⎝⎭⎝⎭,令24()f n n kn =+-,则()y f n =在*N n ∈上单调递增,令0(1)14f k =+->,解得3k >,此时0())1(f n f ≥>,n k n a a +>,故B 正确;()()[()]21212111]()[()n k n n k n k n a a n k n k ++-=++--+-⋅-=+--,当n 为奇数时,2()11kn k n a a k +-=--+,存在1k ≥,使0n k n a a +->成立;当n 为偶数时,2()11kn k n a a k +-=+--,存在2k ≥,使0n k n a a +->成立.综上{}n a 是间隔递增数列且最小间隔数是2,故C 正确;若{}n a 是间隔递增数列且最小间隔数是3,则2222()202202220()()()n k n a a n k t n k n tn k n t k +-=+-++--+=+->,*N n ∈成立,则对于22)2(2()0k n t k k t k +-≥+->,存在3k ≥使之成立,且对于20()2k t k +-≤,存在2k ≤使之成立.即对于(2)0k t +->,存在3k ≥使之成立,且对于0()2k t +-≤,存在2k ≤使之成立,所以23t -<,且22t -≥,解得45t ≤<,故D 正确.故选:BCD.13.7【分析】根据题中所给的数据,推出数列的通项公式,即可得出答案.【详解】解:∵1a =2a =3a =4a =n a =.=3n -1=20⇒n =7,∴7项.故答案为:7.14.1112,2n n n a n --=⎧=⎨≥⎩,【分析】根据21n n S =-求出首项、第二项,从而得出公比,从而求出数列{}n a 的通项公式.【详解】解:当1n =时,111231a S ==-=-,所以11a =-,当2n =时,2212231a a S +==-=,即得到22a =,因为23n n S =-①,所以当2n ≥时,1123n n S --=-②,①-②得()()11123232n n n n n n a S S ---=-=---=,当1n =时,11121a -==不满足11a =-,所以1112,2n n n a n --=⎧=⎨≥⎩,,故答案为:1112,2n n n a n --=⎧=⎨≥⎩,.【点睛】本题考查由数列的前n 项和求数列的通项公式,注意验证1n =的情况,属于中档题.15.()1n n +【分析】由n 边形有n 个顶点及图形的生成规律确定.【详解】由题意第2n -个图形是由n 边形的每边中间向外扩展n 边形得到,顶点数为2(1)n n n n +=+.故答案为:(1)n n +.16.17【分析】根据题意求得n a n =及4(4)(5)2n n n S +++=,化简14212(1)71n n a a S n n ++=++++,结合基本不等式,即可求解.【详解】设等差数列{}n a 的公差为d ,因为376,28S S ==,可得1133672128a d a d +=⎧⎨+=⎩,解得11,1a d ==,所以n a n =,所以4(4)(14)(4)(5)22n n n n n S ++++++==,则141221(4)(5)12127(1)747214n n a a n n n S n n +++==≤=++++++++,当且仅当3n =时,等号成立,所以14n n a a S ++的最大值是17.故答案为:17.17.(1)13n n a -=;(2)214n n -+.【分析】(1)由等比数列的定义可知数列{}n a 是首项为1,公比为3的等比数列,则{}n a 的通项公式易求;(2)由(1)得:1313,19b b ==,由此求得公差d ,代入等差数列前n 公式计算即可.【详解】(1)因为111,3n na a a +==所以数列{}n a 是首项为1,公比为3的等比数列,所以13n n a -=.(2)由(1)得:1123313913,19b a a a b =++=++==,则3124,2b b d d -==-=-,,所以()()21132142n n n n S n S n n +=+⨯-⇒=-+.【点睛】本题考查等差数列,等比数列的基本量计算,属基础题.18.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--==-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑,和223111211352321444444n n k k n n k k k n n c -==---==+++++∑∑ ①由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑ ,由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯-⨯=-⨯-,从而得:21565994n k n k n c =+=-⨯∑.因此,2212111465421949n n n n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯.【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.19.(1)2nn a =(2)332n nn T +=-【分析】(1)根据11,1,2,N n nn S n a S S n n -=⎧=⎨-≥∈⎩,再结合等比数列的定义,即可求出结果;(2)由(1)可知12n nn b +=,再利用错位相减法,即可求出结果.【详解】(1)解:因为22n n S a =-,当1n =时,1122S a =-,解得12a =当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n n n a -=⨯=.(2)解:由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,所以2323412222n n n T +=++++L ①231123122222n n n n n T ++=++++ ②,①-②得23111111122222n n n n T ++⎛⎫=++++- ⎝⎭L 21111112211212n n n -+⎛⎫- ⎪+⎝⎭=+--1111133122222n n n n n ++++=+--=-.所以数列{}n b 的前n 项和332n n n T +=-20.(1)()*1()2n f n n ⎛⎫=∈ ⎪⎝⎭N ;(2)详见解析.【分析】(1)令1y =,将函数表示为等比数列,根据等比数列公式得到答案.(2)将n a 表示出来,利用错位相减法得到前N 项和,最后证明不等式.【详解】(1)令1y =,得()()()11f x f x f +=⋅,∴()()()11f n f n f +=⋅,即()()()()*111,22n f n f n n N f n +⎛⎫=∴=∈ ⎪⎝⎭(2)12n n a n ⎛⎫=⋅ ⎪⎝⎭,设121n a n n T a a a a a -=+++⋯++,则()23111111123122223n n n T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,①()()23111111111221322322n n n n T n n n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅++-+-+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,②来①-②得11122n n ⎛⎫⎛⎫=-+⋅ ⎪ ⎪⎝⎭⎝⎭,23111111221111111112222222212n n n n n n T n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=+++++-⋅=-⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭- ()12222n n T n ⎛⎫∴=-+⋅< ⎪⎝⎭【点睛】本题考查了函数与数列的关系,错位相减法,综合性强,意在考查学生的计算能力和综合应用能力.21.条件选择见解析;(1)32n a n =-;(2)证明见解析.【解析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- -+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =;②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=;选择①②、①③、②③条件组合,均得11a =,3d =,故()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n nT b b b b =++++ 11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111331n ⎛⎫=- ⎪+⎝⎭,∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.22.(1)公司从第3年开始获利;(2)在第8年时,每台充电桩年平均利润最大【分析】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,由此可得第n 年时累计利润的解析式()6400[10001400(400600)]12800f n n n =-++++-L ,则()0f n >,解之即可;(2)每台充电桩年平均利润为()6420028f n n n n ⎛⎫=-+- ⎪⎝⎭,由基本不等式可求出最大值,注意等号成立的条件.【详解】(1)由题意知每年的维修保养费用是以1000为首项,400为公差的等差数列,设第n 年时累计利润为()f n ,()6400[10001400(400600)]12800f n n n =-++++-L 6400(200800)12800n n n =-+-2200560012800n n =-+-()22002864n n =--+,开始获利即()0f n >,∴()220028640n n --+>,即228640n n -+<,解得1414n -<<+5.7≈,∴2.625.4n <<,∴公司从第3年开始获利;(2)每台充电桩年平均利润为()642002828)2400f n n n n ⎛⎫=-+--= ⎪⎝⎭,当且仅当64n n=,即8n =时,等号成立.即在第8年时每台充电桩年平均利润最大为2400元.【点睛】本题考查等差数列的实际应用和利用基本不等式求最值,考查学生分析问题,解决问题的能力,根据条件列出符合题意的表达式是解本题的关键,属中档题.。
新疆高二下学期第一次月考数学试题(解析版)
高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】
2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
全国名校第一次月考试卷数学高二
全国名校第一次月考试卷数学高二示例文章篇一:《我的高二数学第一次月考之旅》哎呀呀,说起这次高二的第一次月考数学试卷,那可真是一场“惊心动魄”的旅程!考试前的那几天,我感觉自己就像个上紧了发条的小机器人,不停地转动着大脑,拼命复习那些数学公式和定理。
我心里一直在想:“这次月考可千万不能考砸了,不然怎么对得起我每天埋头苦读的那些时光呢?”终于到了考试那天,我紧张得手心都出汗了。
走进考场的时候,我看到同学们有的一脸轻松,好像胜券在握;有的则眉头紧锁,跟我一样紧张得不行。
我忍不住在心里问自己:“他们是不是都复习得特别好啊?我会不会比不过他们?”试卷发下来的那一刻,我的心都提到了嗓子眼儿。
我快速地浏览了一遍题目,心里稍微松了一口气,还好,大部分题目看起来不算太难。
我开始认真地答题,就像在战场上冲锋陷阵的战士,每一道题都是我的敌人。
遇到简单的题目,我心里乐开了花,“这题也太容易了吧,简直就是送分题嘛!”可是碰到难题的时候,我就像被一块大石头挡住了去路,怎么也绕不过去。
我抓耳挠腮,绞尽脑汁地想啊想,“这道题到底该怎么做呢?老师好像讲过类似的,可我怎么就想不起来了呢?”就在我苦思冥想的时候,我听到旁边的同学轻轻地叹了口气,我心想:“难道他也被这道题难住了?”我偷偷地瞟了一眼他的试卷,发现他还空着一大片没写呢,我心里突然又有了点信心,“哼,我可不能比他差!”时间一分一秒地过去,我的笔在试卷上不停地写着。
写到后面的大题时,我感觉自己的脑袋都要炸了,那些复杂的图形和密密麻麻的数字,就像一群调皮的小猴子在我眼前上蹿下跳,让我眼花缭乱。
“哎呀,这道题怎么这么难啊!我怎么就这么笨呢!”我忍不住在心里抱怨着。
就在我快要绝望的时候,我突然想起了老师讲过的一个解题方法,“哈哈,有办法啦!”我兴奋得差点叫出声来。
终于,考试结束的铃声响了,我长长地舒了一口气,把试卷交了上去。
走出考场的时候,我感觉自己整个人都虚脱了。
和同学们对答案的时候,我发现自己有好几道题都做错了,心情一下子又变得低落起来,“完了完了,这次肯定考砸了!”现在,我就等着成绩出来了,真希望能有个好结果啊!我觉得这次考试就像一次冒险,有惊喜,也有惊吓。
高二数学下学期第一次月考试题 文
高二数学下学期第一次月考试题 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=2(1)1i i-+,则|z|=2.已知x 与y 之间的一组数据:( )A .(2,2) B.(1,2) C.(1.5,0) D (1.5,4)3.设x∈R,则“|x﹣2|<1”是“x 2+x ﹣2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.复数31i i --在复平面上所对应的点在第( )象限 。
A .一 B. 二 C. 三 D. 四5.已知复数z 满足(3+i )z=4﹣2i ,则复数z=( )A .1﹣iB .1+iC .2+iD .2﹣i 6.曲线y=x 3﹣2x+1在点(1,0)处的切线方程为( )A .y=x ﹣1B .y=﹣x+1C .y=2x ﹣2D .y=﹣2x+27.x xe x f -=)(的一个单调递增区间是( ) A .[-1,0] B .[2,8]C .[1,2]D .[0,2]8.下列函数中,在),0(+∞上为增函数的是( )A.x y cos =B.x xe y =C.x x y -=3D.x x y -=ln 9.函数f (x )=x 3+ax 2+3x ﹣9已知f (x )在x=﹣3时取得极值,则a=( )A .2B .3C .4D .5 10.函数2||2e x y x =-在[2,2]-的图象大致为( )11.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是 ( )A .12a -<<B .2a >或1a <-C .2a ≥或1a ≤-D .12a a ><-或 []12.若函数f (x )=x 2+2x+alnx 在(0,1)上单调递减,则实数a 的取值范围是( )A .a≥0B .a≤0C .a≥﹣4D .a≤﹣4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.复数1i i -的共轭复数是___________ 14.甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算,至少有1人击中目标的概率15.i 表示虚数单位,则2014211i i i ++++Λ=16.如图是函数y=f (x )的导函数图象,给出下面四个判断:①f(x )在区间[﹣2,1]上是增函数;②x=﹣1是f (x )的极小值点;③f(x )在区间[﹣1,2]上是增函数,在区间[2,4]上是减函数;④x=1是f (x )的极大值点.其中,判断正确的是 .(写出所有正确的编号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)通过市场调查,得到某产品的资金投入x (万元)与获得的利润y (万元)的数据,如下表所示:(Ⅰ)画出数据对应的散点图;(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程a bx y +=^;(Ⅲ)现投入资金10(万元),求估计获得的利润为多少万元.1122211()()ˆ()ˆˆn n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑18.(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球 不喜爱打篮球 合计 男生5 女生10 合计 50已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为35. (1)请将上表补充完整(不用写计算过程);(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:2()p K k ≥ 0.15[. 0.10 0.05 0.025 0.010 0.005 0.001k 2.0722.7063.841[] 5.024 6.635 7.879 10.828 (参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++) 19.(本小题满分12分)(1)实数m 取什么数值时,复数221(2)z m m m i =-+--分别是:(1)实数? (2)虚数? (3)纯虚数?(2)已知11m ni i=-+,(m 、n∈R,i 是虚数单位),求m 、n 的值. 20.(本小题满分12分)已知函数f (x )=x 3﹣12x(1)求函数f (x )的极值;(2)当x∈[﹣3,3]时,求f (x )的最值.21.已知函数d cx bx x x f +++=2331)(的图象过点(0,3),且在)1,(--∞和),3(+∞上为增函数,在)3,1(-上为减函数.(1)求)(x f 的解析式; (2)求)(x f 在R 上的极值.22.已知函数f (x )=lnx+.(Ⅰ)求证:f (x )≥1;(Ⅱ)若x ﹣1>alnx 对任意x >1恒成立,求实数a 的最大值23.(7、9班做)设函数 f(x)=|3x+1|-|x-4|.(1)解不等式f(x)<0(2)若f(x)+4|x-4|>m对一切实数x均成立,求实数m的取值范围。
2021-2022学年河南省灵宝市高二年级下册学期第一次月考数学(文)试题【含答案】
2021-2022学年河南省灵宝市高二下学期第一次月考数学(文)试题一、单选题1.复数)z A .-1B .1C .D .i -i【答案】A【分析】利用复数模长与四则运算进行计算即可.【详解】,所以虚部为-1.()()()21i 1i 1i 1i z -==-+-故选:A2.如图5个数据,去掉后,下列说法错误的是( )(,)x y (3,10)D A .相关系数r 变大B .相关指数变大2R C .残差平方和变大D .解释变量x 与预报变量y 的相关性变强【答案】C【分析】去掉离群点D 后,结合散点图对各个选项进行判断得解.【详解】解:由散点图知,去掉离群点D 后,x 与y 的相关性变强,且为正相关,所以相关系数r 的值变大,故选项A 正确;相关指数的值变大,残差平方和变小,故选项B 正确,选项C 错误;2R 解释变量x 与预报变量y 的相关性变强,故选项D 正确.故选:C .3.用反证法证明命题①:“已知,求证:”时,可假设“”;命题332p q +=2p q +≤2p q +>②:“若,则或”时,可假设“或”.以下结论正确的是24x =2x =-2x =2x ≠-2x ≠A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确【答案】C【详解】分析:利用命题的否定的定义判断即可.详解:①的命题否定为,故①的假设正确.2p q +≤2p q +>或”的否定应是“且”② 的假设错误,2x =-2x =2x ≠-2x ≠所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.4.关于下面几种推理,说法错误的是( )A .“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理B .演绎推理在大前提、小前提和推理形式都正确时,得到的结论不一定正确C .由平面三角形的性质推测空间四面体的性质是类比推理D .“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”这是演22221(0)x y a b a b +=>>S ab π=2S π=绎推理【答案】B【分析】根据归纳推理和演绎推理以及类比推理的概念逐个判断可得结果.【详解】对于,“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理,说法正确;A 对于,演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确,所以说法错误;B 对于,由平面三角形的性质推测空间四面体的性质是类比推理,说法正确;C 对于,“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”D 22221(0)x y a b a b +=>>S ab π=2S π=这是演绎推理,说法正确.故选:B.【点睛】本题考查了归纳推理和演绎推理以及类比推理的概念,属于基础题.5.在平面内,点到直线的距离公式为()00,x y 0Ax By C ++=d 可求得在空间中,点到平面的距离为( )()2,1,2210x y z ++-=A .BCD .3【答案】B【分析】类比得到在空间,点到直线的距离公式,再求解.()000,x y z ,0Ax By Cz D +++=【详解】类比得到在空间,点到直线的距离公式为()000,x y z ,0Ax By Cz D +++=d所以点到平面的距离为.()2,1,2210x y z ++-=d 故选B【点睛】本题主要考查类比推理,意在考查学生对该知识的理解掌握水平,属于基础题.6.下列使用类比推理正确的是A .“平面内平行于同一直线的两直线平行”类比推出“空间中平行于同一平面的两直线平行”B .“若,则”类比推出“若,则”12x x+=2212x x +=2212x x -=C .“实数,,满足运算”类比推出“平面向量满足运算”a ()()abc a bc =,,a b c ()()a b c a b c ⋅=⋅ D .“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”【答案】D【分析】根据类比结果进行判断选择.【详解】因为空间中平行于同一平面的两直线位置关系不定,所以A 错;因为“若,则”,所以B 错;12x x -=22112x x x =-≠因为,所以C 错;()()a b c a b c ⋅≠⋅ 因为正方体的内切球切于各面的中心,所以正确.选D.D 【点睛】本题考查线面位置关系判断、向量运算律以及正方体性质,考查基本分析判断能力,属基础题.7.在数学课堂上,张老师给出一个定义在上的函数,甲、乙、丙、丁四位同学各说出了这R ()f x 个函数的一条性质:甲:在上函数单调递减;(],0-∞()f x 乙:在上函数单调递增;[)0,∞+()f x 丙:函数的图像关于直线对称;()f x 1x =丁:不是函数的最小值.()0f ()f x 张老师说:你们四位同学中恰好有三个人说的正确,那么,你认为说法错误的同学是( )A .甲B .乙C .丙D .丁【答案】B【解析】采用反证法判断.【详解】假设甲,乙正确,则丙,丁错误,与题意矛盾所以甲,乙中必有一个错误假设甲错误乙正确,则在上函数单调递增;[)0,∞+()f x 而函数的图像不可能关于直线对称,则丙错误,与题意矛盾;()f x 1x =所以甲正确乙错误;故选:B8.已知下列命题:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆybx a =+(),x y ②两个变量相关性越强,则相关系数r 就越接近于1;③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程 中,当解释变量x 增加一个单位时,预报变量平均减少0.5;20.5ˆyx =-ˆy ⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表2R x y 2R 示回归效果越好;⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度X Y 2K k k X Y 越大.⑦两个模型中残差平方和越小的模型拟合的效果越好. 则正确命题的个数是( )A .3B .4C .5D .6【答案】B【分析】由回归直线恒过样本中心点,不一定经过每一个点,可判断①;由相关系数的绝对值趋近于1,相关性越强,可判断②;由方差的性质可判断③;由线性回归直线方程的特点可判断④;相关指数R 2的大小,可判断⑤;由的随机变量K 2的观测值k 的大小可判断⑥;残差平方和越小,模型的拟合效果越好,可判断⑦.【详解】对于①,回归直线恒过样本点的中心(),可以不过任一个样本点,故①y b x a ∧∧∧=+x y ,错误;对于②,两个变量相关性越强,则相关系数r 的绝对值就越接近于1,故②错误;对于③,将一组数据的每个数据都加一个相同的常数后,由方差的性质可得方差不变,故③正确;对于④,在回归直线方程2﹣0.5x 中,当解释变量x 每增加一个单位时,y ∧=预报变量平均减少0.5个单位,故④正确;y ∧对于⑤,在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好,故⑤正确;对于⑥,对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故⑥错误;对于⑦,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故⑦正确.其中正确个数为4.故选B .【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.9.在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N 个学生(),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中100m,N m *=∈N 40%表示喜欢该学科,其余表示不喜欢.若有99.9%把握认为性别与是否喜欢该学科有关,则可以推测N 的最小值为( )附,22()()()()()n ad bc K a b c d a c b d -=++++()2P K k 0.0500.0100.001k3.8416.63510.828A .400B .300C .200D .100【答案】B【分析】根据题目列出列联表,再根据列联表的数据计算值,进而得到关于的关系式,22⨯2K m 求解即可.【详解】由题可知,男女各人,列联表如下:50m 喜欢不喜欢总计男30m 20m 50m 女20m 30m 50m 总计50m50m100m,()22224100900400=450505050m m m K mm -=⨯⨯⨯有99.9%把握认为性别与是否喜欢该学科有关,,解得,410.828m ∴> 2.707m >,m *∈N ,3m ∴≥.min 300N ∴=故选:B10.已知,且为虚数单位,则的最大值是 ( )C z ∈1,z i i -=35z i--A .B .C .D .5678【答案】B【分析】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆,而表示圆上的点到的距离,由圆的图形可得的的最大值.35z i--(3,5)A 35z i--【详解】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆.表示圆C 上的点到的距离,|35|z i -- (3,5)A 的最大值是,|35|z i ∴--||516CA r +=+=故选B【点睛】本题主要考查了复数的几何意义,圆的性质,属于中档题.11.如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,把图①,图②,图③,图④中图形的周长依次记为,,,,则=( )1C 2C 3C 4C 4C A .B .C .D .1289649642712827【答案】B【分析】观察图形可得出为首项为,公比为的等比数列,即可求出.{}n C 13C =43【详解】观察图形发现,从第二个图形开始,每一个图形的周长都在前一个的周长的基础上多了其周长的,即,131111433n n n n C C C C ---=+=所以为首项为,公比为的等比数列,{}n C 13C =43.34464339C ⎛⎫∴=⨯=⎪⎝⎭故选:B.12.如图,“大衍数列”:、、、、来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,024812主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.如图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的( )n 8m =S =A .B .C .D .4468100140【答案】C【分析】写出程序运行的每一步,即可得出输出结果.【详解】第1次运行, ,不符合 ,继续运行;211,0,0002n n a S -====+=n m ≥第2次运行,,不符合 ,继续运行;22,2,0222n n a S ====+=n m ≥第3次运行,,不符合 ,继续运行;213,4,4262n n a S -====+=n m ≥第4次运行,,不符合,继续运行;24,8,86142n n a S ====+=n m ≥第5次运行,,不符合 ,继续运行;215,12,1412262n n a S -====+=n m ≥第6次运行,,不符合 ,继续运行;26,18,2618442n n a S ====+=n m ≥第7次运行,,不符合 ,继续运行;217,24,2444682n n a S -====+=n m ≥第8次运行,,符合 ,退出运行,输出.28,32,68321002n n a S ====+=n m ≥100S =故选:C.二、填空题13.已知复数的对应点在复平面的第二象限,则||的取值范围是(2)(1)i()z a a a R =-++∈1i a +________.【答案】【分析】根据的几何意义,得的复平面内对应的点,列出不等式组求得,再(2,1)a a -+1a 2-<<结合复数模的计算公式,即可求解.【详解】由题意,复数在复平面内对应的点,(2)(1)i()z a a a R =-++∈(2,1)a a -+因为该点位于第二象限,所以,解得,2010a a -<⎧⎨+>⎩1a 2-<<所以.|1i|a ⎡+=⎣故答案为:.14.甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.【答案】乙【分析】先假设甲乙丙丁中一个人说的是对的然后再逐个去判断其他三个人的说法最后看是否满..足题意,不满足排除.【详解】解:先假设甲说的对,即甲或乙申请了但申请人只有一个,.如果是甲,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”就是错的,丁说“乙申请了”也是()1错的,这样三个错的,不能满足题意,故甲没申请如果是乙,则乙说“丙申请了”就是错的,丙().2说“甲和丁都没申请”可以理解为申请人有可能是乙,丙,戊,但是不一定是乙,故说法不对,丁说“乙申请了”也是对的,这样说的对的就是两个是甲和丁满足题意..故答案为乙.【点睛】本题考查了合情推理的应用,属于中档题.15.有下列一组不等式:,根据111111111111111111,,,,3424562567826789102+>++>+++>++++> 这一规律,若第2020个不等式为,则__________.11111122m m m n ++++>++ m n +=【答案】6064【分析】由归纳推理得:第个不等式为:,若第2020个不等式为k 111123222k k k ++⋯+>+++,所以,,即可得解.11111122m m m n +++⋯+>++2022m =4042n =【详解】解:因为由,,,,,根据这一111342+>11114562++>1111156782+++>1111116789102++++>⋯规律,则第个不等式为:,k 111123222k k k ++⋯+>+++若第2020个不等式为,11111122m m m n +++⋯+>++即,,22022m k =+=224042n k =+=所以,,2022m =4042n =即,202240426064m m +=+=故答案为:.6064【点睛】本题考查了归纳推理,属于基础题.16.已知变量y 关于x 的回归方程为,其一组数据如表所示:若,则预测y 值可能为2e kx y +=8x =___________.x 23456y1.5e 4.5e 5.5e 6.5e 7e 【答案】8e【分析】由已知回归方程取对数并令,得线性回归方程,根据线性回归直线过中ln z y =2z kx =+心点求得值,然后代入可得预测值.k 8x =【详解】由得:,令,即,2ekx y +=ln 2y kx =+ln z y =2z kx =+因为,2345645x ++++==,1.5 4.5 5.5 6.57ln e ln e ln e ln e ln e 1.5 4.5 5.5 6.57555z ++++++++===将点代入直线方程中,即可得:,(4,5)2z kx =+0.75k =所以回归方程为, 0.752e +=x y 若,则.8x = 0.75828ee ⨯+==y 故答案为:.8e 三、解答题17.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,xOy C 22cos 12sin x y θθ=+⎧⎨=+⎩θ轴正半轴为极轴建立极坐标系,直线的极坐标方程为.xl cos 4πρθ⎛⎫+= ⎪⎝⎭(1)求直线的直角坐标方程和曲线的普通方程;l C (2)直线与曲线交于两点,设点的坐标为,求的值.l C ,M N P ()0,2-22||||PM PN +【答案】(1)曲线:,直线:;(2).C 22(2)(1)4x y -+-=l 20x y --=32【分析】(1)利用公式消除参数,可得曲线的方程,再利用直角坐标与极坐标22sin cos 1θθ+=θC 的转化公式求得直线的方程;l (2)利用直线参数方程中参数的几何意义求解.【详解】(1)曲线:,直线:C 22(2)(1)4x y -+-=l 20x y --=(2)设:(为参数)l 2x y ⎧=⎪⎪⎨⎪=-⎪⎩t 将的参数方程代入,l 22(2)(1)4x y -+-=得,222)(3)4-+-+=,290t -+=故,12t t +=129t t =,22222121212()2501832PM PN t t t t t t +=+=+-=-=故.2232PM PN +=【点睛】直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐cos sin x y ρθρθ=⎧⎨=⎩标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生,,222tan x y yx ρθ⎧=+⎪⎨=⎪⎩2ρcos ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数来表示动点坐标,sin ρθθ从而利用一元函数求与动点有关的最值问题.18.设实部为正数的复数,且复数在复平面上对应的点在第一、三象限z ()12i z +的角平分线上.(1)求复数;z (2)若为纯虚数,求实数的值.()i1i m z m R -+∈+m 【答案】(1);(2).3i z =-5-【分析】(1)根据待定系数法求解,设且,由题意得到关于的方程组求i(,z a b a b R =+∈0)a >,a b 解即可.(2)根据纯虚数的定义求解即可.【详解】(1)设,,,由题意:①i z a b =+,a b R ∈0a >2210a b +=,得②()()()()12i 12i i 22i z a b a b a b +=++=-++22a b a b -=+①②联立,解得,得.3a =1b =-3i z =-(2),()()i 1i i113i 31i 1i 222m m m m z ----+⎛⎫+=++=++- ⎪+⎝⎭所以且,解得.1302m -+=1102m +-≠5m =-19.近年来,共享单车进驻城市,绿色出行引领时尚.某公司计划对未开通共享单车的县城进行A 车辆投放,为了确定车辆投放量,对过去在其他县城的投放量情况以及年使用人次进行了统计,得到了投放量(单位:千辆)与年使用人次(单位:千次)的数据如下表所示,根据数据绘制投x y 放量与年使用人次的散点图如图所示.x yx1234567y611213466101196(1)观察散点图,可知两个变量不具有线性相关关系,拟用对数函数模型或指数函数lg =+y a b x 模型对两个变量的关系进行拟合,请问哪个模型更适宜作为投放量与年使用(0,0)=⋅>>xy c d c d x人次的回归方程类型(给出判断即可,不必说明理由),并求出关于的回归方程;y y x (2)已知每辆单车的购入成本为元,年调度费以及维修等的使用成本为每人次元,按用户2000.2每使用一次,收费元计算,若投入辆单车,则几年后可实现盈利?18000参考数据:其中,.lg ii v y =117nii v v ==∑y v71i ii x y=∑71i ii x v=∑0.541062.141.54253550.12 3.47参考公式:对于一组数据,,…,其回归直线的斜率和截距的最()11,x y ()22,x y (),n nx y ˆˆa y bx =-小二乘估计公式分别为.121()()()niii nii x x y y bx x ==--=-∑∑ 【答案】(1)适宜,;(2)年.xy c d =⋅0.25ˆ 3.4710x y =⨯6【分析】(1)根据散点图判断,适宜;由两边同时取对数得,设x y c d =⋅xy c d =⋅lg lg lg y c x d =+,则,根据参考数据以及参考公式首先求出的回归直线方程进而求出结lg y v =lg lg v c x d =+v x ,果;(2)将8000代入回归直线方程可得年使用人次,求出每年收益与总投资,则可求出结果.【详解】(1)由散点图判断,适宜作为投放量与年使用人次的回归方程类型.xy c d =⋅x y 由,两边同时取常用对数得.x y c d =⋅()lg lg lg lg x y c d c x d =⋅=+设,则.lg y v =lg lg v c x d =+因为,,,,4x = 1.54v =721140ii x==∑7150.12==∑i ii x v所以.7172217lg 7==-==-∑∑i i i ii x v x vd xx250.1274 1.5470.251407428-⨯⨯==-⨯把代入,得,(4,1.54)lg lg =+v c x d lg 0.54c =所以,所以,ˆ0.540.25vx =+ˆlg 0.540.25y x =+则,0.540.250.25ˆ10 3.4710x x y+⨯==故关于的回归方程为.y x 0.25ˆ 3.4710xy =⨯(2)投入千辆单车,则年使用人次为千人次,80.2583.4710347⨯⨯=每年的收益为(千元),347(10.2)277.6⨯-=总投资千元,800020016000001600⨯==假设需要年开始盈利,则,即,n 277.61600⨯>n 5.76>n 故需要年才能开始盈利.620.已知圆有以下性质:222:C x y r +=①过圆上一点的圆的切线方程是.C ()00,M x y 200x x y y r +=②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则()00,M x y C M C ,A B 垂直,即.OM AB 1AB OM K K ⋅=-(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);2222:1x y C a b +='()00,M x y (2)若过椭圆外一点(不在坐标轴上)作两直线,与椭圆相切于2222:1x y C a b +='()00,M x y M 两点,求证:为定值.,A B AB OM K K ⋅【答案】(1)切线方程是;(2)见解析.00221x x y ya b +=【详解】分析:(1)根据类比推理可得结果;(2)设由(1)得过椭圆上点()()1122,,,A x y B x y 的切线的方程是,同理,又过两点的直线是唯一的,直()11,A x y 1l 11221x x y ya b +=2020221x x y y a b +=,A B 线的方程是,,又,从而可得结果.AB 00221x x y y a b +=2020AB b x k a y =-00OM y k x =详解:(1)过椭圆上一点的的切线方程是()2222:10x y C a b a b =>'+>()00,M x y 00221x x y ya b +=(2)设()()1122,,,A x y B x y 由(1)得过椭圆上点的切线的方程是,()11,A x y 1l 11221x x y ya b +=∵直线过点,1l ()00,M x y ∴1010221x x y y a b +=同理2020221x x y y ab +=又过两点的直线是唯一的,,A B ∴直线的方程是.AB 00221x x y ya b +=∴,2020AB b x k a y =-又,0OM y k x =∴为定值.22002200AB OM b x y b k k a y x a ⋅=-⋅=-点睛:本题主要考查类比推理、圆锥曲线的切线,圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动23没有兴趣.(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?22⨯90%有兴趣没兴趣合计男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:.22(),()()()()-==+++++++n ad bc n a b c da b c d a c b d χ【答案】(1)有的把握认为“对冰球是否有兴趣与性别有关”;90%(2).710【分析】(1)根据已知数据得到列联表,根据列联表中的数据计算出,可得结论;2χ(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)根据已知数据得到如下列联表有兴趣没有兴趣合计男451055女301545合计7525100由列联表中的数据可得,()22100451510301003.0305545752533χ⨯⨯-⨯==≈⨯⨯⨯因为,23.030 2.706χ≈>所以有90%的把握认为“对冰球是否有兴趣与性别有关”;(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,所有可能的情况为:(A,m,n ),(B,m,n ),(C,m,n ),(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),(A,B,C ),共10种情况,其中3人都对冰球有兴趣的情况有(A,B,C ),共1种,2人对冰球有兴趣的情况有(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),共6种,所以至少2人对冰球有兴趣的情况有7种,因此,所求概率为.710P =22.写出以下各式的值:()1______;()()22sin 60sin 30sin 30 +-⋅-=______;()()22sin 150sin 120sin 120+-⋅-=______.22sin 15sin 15sinl5+⋅= 结合的结果,分析式子的共同特点,写出能反映一般规律的等式,并证明你的结论.()2()1【答案】(1),,; (2)见解析.141414【分析】利用特殊角的三角函数进行计算()1当,,借助于和差角的三角函数公式进行证明即()2αβ30+=221sin αsin βαsin β4+⋅=()可.【详解】,()()()2211sin 60sin 30sin 304+-⋅-=,()()221sin 150sin 120sin 1204 +-⋅-=,221sin 15sin 15sinl54+⋅=当,,()2αβ30+=221sin αsin βαsin β4+⋅=证明:,则,αβ30+= β30α=-,()()2222sin αsin βαsin βsin αsin 30ααsin 30α∴++⋅=+-⋅-,2211sin α(cos αα)αcos αα22⎛⎫=+⋅ ⎪ ⎪⎝⎭.222222133111sin αcos ααsin αααcos αsin αsin αcos α442444sin =+++-=+=【点睛】本题考查归纳推理,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.。
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题一、单选题1.从集合{}1,2,3,4,5中选取两个不同的元素,组成平面直角坐标系中点的坐标,则可确定的点的个数为( ) A .10B .15C .20D .252.五一小长假前夕,甲、乙、丙三人从,,,A B C D 四个旅游景点中任选一个前去游玩,其中甲到过A 景点,所以甲不选A 景点,则不同的选法有( ) A .60B .48C .54D .643.6x ⎛⎝的展开式中含2x 的项的系数为( ).A .20B .20-C .15-D .154.已知随机变量ξ的分布列如下表所示,且满足()0E ξ=,则2a b -=( )A .29B .12C .39D .05.如图,湖北省分别与湖南、安徽、陕西、江西四省交界,且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案数为( )A .480B .600C .720D .8406.设随机变量X 服从两点分布,若()()100.4P X P X =-==,则()E X =( ) A .0.3B .0.4C .0.6D .0.77.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为( ) A .0.78B .0.8C .0.82D .0.848.有一支医疗小队由3名医生和6名护士组成,平均分配到三家医院,每家医院分到医生1名和护士2名.其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种. A .36B .72C .108D .1449.一袋中装有编号分别为1,2,3,4的4个球,现从中随机取出2个球,用X 表示取出球的最大编号,则()E X =( ) A .2B .3C .103D .11310.长时间玩手机可能影响视力.据调查,某校学生大约20%的人近视,而该校大约有10%的学生每天玩手机超过1小时,这些人的近视率约为60%,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为( )A .521B .940C .745D .720二、多选题11.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是( )A .若A ,B 不相邻,有72种排法 B .若A ,B 不相邻,有48种排法C .若A ,B 相邻,有48种排法D .若A ,B 相邻,有24种排法12.对任意实数x ,有()()()()()823801238231111x a a x a x a x a x -=+-+-+-++-L ,下列结论成立的是( )A .01a =-B .01a =C .01281a a a a +++⋯+=D .8012833a a a a a ++--+=L13.已知事件A ,B ,且()13P A =,()15P B A =,()35P B A =,则( ) A .()115P AB =B .()25P B A = C .()25P B A =D .()415P AB =14.将杨辉三角中的每一个数C r n 都换成()11C r n n +,得到如图所示的分数三角形,称为莱布尼茨三角形.莱布尼茨三角形具有很多优美的性质,如从第0行开始每一个数均等于其“脚下”两个数之和,如果()*2N n n ≥∈,那么下面关于莱布尼茨三角形的结论正确的是( )A .当n 是偶数时,中间的一项取得最大值;当n 是奇数时,中间的两项相等,且同时取得最大值B .第8行第2个数是172C .()()111C 1C r n r n n n n -=++(N r ∈,0r n ≤≤)D .()()111111C 1C C r r r n n n n n n --+=++(N r ∈,1r n ≤≤)三、填空题15.4275C A -=. 16.将7个相同的小球放入4个不同的盒子中,则每一个盒子至少有1个小球的放法有种. 17.口袋中装有大小形状相同的红球3个,白球2个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为.18.组合数0243434343434C C C C +⋅⋅⋅+++被9除的余数是.四、解答题19.若()522100121012x x a a x a x a x --=++++L .(1)求01238910a a a a a a a +++++++L 的值; (2)求02410a a a a +++L 的值;20.某地要从2名男运动员、4名女运动员中随机选派3人外出比赛.(1)若选派的3人中恰有1名男运动员和2名女运动员,则共有多少种选派方法?(2)设选派的3人中男运动员人数为X,求X的分布列.21.有完全相同的甲、乙两个袋子,袋子有大小、形状完全相同的小球,其中甲袋中有9个红球和1个白球;乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球.假设试验选到甲袋或乙袋的概率都是12.(1)求从袋子中摸出红球的概率;(2)求在摸出白球的条件下,该球来自甲袋的概率.22.已知2n x⎛⎝的展开式二项式系数和为64.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:方案一:只选择A选项:方案二:选择A选项的同时,再随机选择一个选项;。
高二数学(文)月考试题
高二下学期数学第一次月考试卷(文)(总分:150分 时间:120分钟)一、选择题:(本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知}{R x x y y M ∈-==,42,}{42≤≤=x x P 则M P 与的关系是( )A .P M =B .P M ∈C .φ=P MD .P M ⊇ 2、等比数列{}n a 中,已知3231891===q a a n ,,,则n 为A .3B .4C .5D .63、“3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4、在△ABC 中,a =,b =B =45°,则A 等于( ). A . 30°B . 60°C . 30°或150°D .60°或120°5、函数)62sin(π+-=x y 的单调递减区间是( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππB .Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππC .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππD .Z k k k ∈⎥⎦⎤⎢⎣⎡++,65,6ππππ6、不等式1213≥--xx 的解集是 ( ) A .{x|243≤≤x } B .{x|243<≤x } C .{x|x >2或43≤x } D .{x|x <2}7、已知直线l 、m ,平面α、β,且l ⊥α,m ∥β,给出下列四个命题: (1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β; (3)若α⊥β,则l ∥m ; (4)若l ∥m ,则α⊥β; 其中正确命题的个数是 ( ) A .1 B .2 C .3 D .48、曲线34y x x =-在点(1,3)--处的切线方程是( ).A .74y x =+B .72y x =+C . 4y x =-D .2y x =- 已知函数y=f(x)在区间(a,b)内可导,且x 0∈(a ,b )则hh x f h x f h )()(lim000--+→ 的值为( )A .f’(x 0)B .2 f’(x 0)C .-2 f’(x 0)D .010、已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53B .43C D 二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在横线上)11、点)3,(a P 到直线0134=+-y x 的距离等于4,且在不等式032>-+y x 表示的平面区域内,则点P 的坐标是 .12、已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为13、已知,求42t a b =-的取值范围 ____________ .14、一质点做直线运动,它所经过的路程和时间的关系是s =3t 2+t ,则t =2时的瞬时速度为 .15、给定下列命题:① “若m>-1,则方程x 2+2x-m =0有实数根”的逆否命题;②“1=x ”是“2320x x -+=”的充分不必要条件.③“矩形的对角线相等”的逆命题;④“若220x y +=, 则x , y 全为零”的逆命题.其中真命题的序号是___________.三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16、(本小题满分12分)已知锐角△ABC 的三内角A B C 、、所对的边分别为a b c 、、,边a 、b 是方程x 2-+2=0的两根,角A 、B 满足关系2sin(A +B ),求角C 的度数,边c 的长度及△ABC 的面积.17、(本小题满分12分)公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求。
新人教 数学 高二下 文科 月考
高二数学(文)第一次月考试题班级: 座号: 姓名: 成绩参考公式: 22()()()()()n ad bc k a b c d a c b d -=++++ 21R =-残差平方和总偏差平方和用最小二乘法求线性回归方程系数公式1221ˆˆˆniii nii x yn x ybay b x xn x==-==--∑∑, 一、选择题:(共12小题,每小题4分,共48分.) 1.复数534+i的共轭复数是( )A .34-iB .3545+i C .34+iD .3545-i2.已知x 与y 之间的一组数据:则a bx y+=ˆ必过点( )A .(2,2)B .(1,2)C .(1.5,0)D .(1.5,4) 3.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为A .62n -B .82n -C .62n +D .82n +4.求135101S =++++ 的流程图程序如右图所示, 其中①应为 A .101?A =B .101?A ≤C .101?A >D .101?A ≥…①②③5.若定义运算:()()a ab a b ba b ≥⎧⊗=⎨<⎩,例如233⊗=,则下列等式不能成立....的是A .a b b a ⊗=⊗B .()()a b c a b c ⊗⊗=⊗⊗C .222()a b a b ⊗=⊗D .()()()c a b c a c b ⋅⊗=⋅⊗⋅(0c >)6=∙-=+=2211,3,2OZ i z OZ i z 对应的向量为复数对应的向量为复数A 50B 25C 15 D107.设12(),34,2f z z z i z i ==+=--则12()f z z -是( )A .13i -B .211i -+C .2i -+D .55i -8.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 A .①②③ B .①②C .②③D .①③④9. 设,,a b c 大于0,则3个数:1a b+,1b c+,1c a+的值 ( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于210.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.11.下列说法正确的个数是( )①若()()213x i y y i -+=--,其中U R C y R x U,,∈∈为复数集。
宁夏大学附属中学2013-2014学年高二下学期第一次月考数学(文)试题 Word版含答案
1、已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程是( ) A . 1.234y x =+ B . 1.235y x =+ C . 1.230.08y x =+ D . 0.08 1.23y x =+ 2、已知y 与x 的线性回归方程为2 1.5y x =-,则变量x 增加一个单位时,下列说法正确的是( )A .y 平均增加1.5个单位B .y 平均增加2个单位C .y 平均减少2个单位D .y 平均减小1.5个单位3、炼油厂某分厂将原油精炼为汽油,需对原油进行加热和冷却,如果第x 小时,原油温度(单位:℃)为321()8(05)3f x x x x =-+≤≤,那么,原油温度的瞬时变化率的最小值为( )A .8B .203C .8-D .1-4、设底为等边三角形的直三棱柱的体积为V ,那么其表面积最小时的底面边长为()A B C D .5、一物体的运动方程是23s t =+,则2t =时刻的瞬时速度是( ) A .3 B .7 C .4 D .56、数列1,1,2,3,,8,13,21,x 中的x 的值是( )A .4B .6C .5D .87、将命题“正三角形内任意一点到各边的距离之和为定值”推广到空间是:正四面体内任意一点到各面的距离之和( )A .为定值B .为变数C .有时为定值、有时为变数D .是与正四面体无关的常数8、三角形的面积为1(),2S a b c r a =++、b 、c 为三边的边长,r 为三角形内切圆半径,利用类比推理可得出四面体的体积为( )A .13V abc =B .13V Sh =C .1()3V ab bc ac h =++D .12341()3V S S S S r =+++(其中1S 、2S 、3S 、4S 分别为四面体4个面的面积,r 为四面体内切球的半径)9、下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .∵,a b a c >>,∴a b a c ->-C .若R a +∈,0ab <,则()2a b a b b a b a --+=-+≤-=-D .若,R a b +∈,则lg lg a b +≥10、下列关于独立性检验的说法中,错误的是( )A .独立性检验得到的结论一定正确B .独立性检验依赖小概率原理C .样本不同,独立性检验的结论可能有差异D .独立性检验不是判定两事物是否相关的唯一方法11、若有一组数据的总偏差平方和为120,相关指数为0.6,则回归平方和为( )A .60B .72C .48D .120 12、曲线x y e =在点(0,1)A 处的切线斜率为( )A .2B .1C .eD .1e二、填空题(每小题5分,共20分)13、对于函数()f x 定义域中任意的1212,()x x x x ≠,有如下结论: ①1212()()()f x x f x f x +=⋅; ②1212()()()f x x f x f x ⋅=+;③1212()()()22x x f x f x f ++<; ④1212()()0f x f x x x ->- 当()lg f x x =时,上述结论中正确结论的序号是 。
山西省高二下学期第一次月考数学试题(解析版)
一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
贵州省遵义清华中学2022-2023学年高二下学期第一次月考数学试题及参考答案
遵义清华中学2022-2023学年度第二学期第一次月考试题高二年级数学试题(卷面分值:150分 考试时间:120分钟)注意事项:1.本试卷共4页,答题前,请考生务必将自己的学校、姓名、班级、考号等信息填写答卷的密封区内。
2.作答选择题必须用2B 铅笔在答题卡上将对应题目的选项涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案,作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题卡的指定位置上,请保持答题卡卡面清洁和答题纸清洁,不折叠、不破损。
3.考试结束后,请将试卷和答题卡交回。
第I 卷 (选择题 共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-2.已知随机变量ξ服从二项分布,1(3,)2B ξ,则()1ξ≥P 的值为( )A .18B .78C .38D .583.复数322iz i-=+,则复数z 在复平面上所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知随机变量X 的分布列如表(其中a 为常数): 则()13P X ≤≤等于( ) A .0.4 B .0.5C .0.6D .0.75.5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,则不同的安排方法共有( ) A .30种 B .90种 C .120种 D .150种 6.某中学制订了“光盘计划”,为了了解师生们对这一倡议的关注度和支持度,开展了一次问卷调查,调查中的2000人的得分数据.据统计此次问卷调查的得分x (满分:100分)服从正态分布()293,2N ,则()9197P x <<=( )若随机变量()2,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=A .0.8186B .0.6827C .0.47725D .0.341357.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰X 0 1 2 3 4 5P 0.1 0.1 a 0.3 0.2 0.1 学校: 班级: 姓名: 考号: 线启用 前绝密宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( ) A .1560B .1180C .1020D .4208.艺术节即将到来,承办班级筹备节目单时,准备在前五个节目排三个歌唱节目,一个小品节目以及一个相声节目,若三个歌唱节目最多有两个相邻,则不同的排法总数为( ) A .75B .80C .84D .96二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若2155C C x x -=,则正整数x 的值是( )A .1B .2C .3D .410.下列说法正确的是( ) A .已知随机变量(),XB n p ,若()()30,10E X D X ==,则13p =B .两位男生和两位女生随机排成一列,则两位女生不相邻的概率是12C .已知23A C n n =,则8n =D .从一批含有10件正品、4件次品的产品中任取3件,则取得2件次品的概率为459111.已知2nx⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的( )A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为4512.将2n (n ∈N *)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X (0≤X ≤n ,X ∈N *),则下列说法中正确的有( ) A .当n =1时,方差1()4D X = B .当n =2时,3(1)8P X ==C .3n ∀≥,*0,) [(,)n k n N k ∃∈∈,使得P (X =k )>P (X =k +1)成立D .当n 确定时,期望222(2)()2n nn nn C E X -= 第II 卷 (非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过点()2,3-且与直线210x y ++=垂直的直线l 的方程是________.14.设随机变量X 服从二项分布()2,B p ,若()35136P X ≥=,则p =______. 15.学校有8个优秀学生名额,要求分配到高一、高二、高三,每个年级至少1个名额,则有种 分配方案.16. 某单位安排7位员工在春节期间大年初一到初七值班,每人值班1天,若7位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______ 四、解答题:本题共6小题,共70分.其中第17题10分,其余各题12分.解答应写出文字说明、证明过程或演算步骤.17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率. 18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 3a C c A +=,2a b =,记ABC 的面积为S .(1)求a ; (2)请从下面的三个条件中任选一个,探究满足条件的ABC 的个数,并说明理由. 条件:①()222312S a c b =+-,②2cos 2b A ac +=,③πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭. 注:如果选择多个条件分别解答,按第一个解答计分.19.近些年来,短视频社交软件日益受到追捧,用户可以通过软件选择歌曲,拍摄音乐短视频,创作自己的作品.某用户对自己发布的视频个数x 与收到的点赞个数之和y 之间的关系进行了分析研究,得到如下数据:(1)计算x ,y 的相关系数r (计算结果精确到0.01),并判断是否可以认为发布的视频个数与收到的点赞数之和的相关性很强; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程.参考数据:0.430.656≈,0.0430.207≈.参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---⋅==--∑∑∑∑,ˆˆay bx =-,()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.x 34567y 45 50 60 65 70(1)证明:AE CD ⊥;(2)求直线AE 与平面PBD 所成角的正弦值21. 2021年9月,贵州省正式施行“312++”高考新模式.为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如表: (1)根据所给数据完成上述表格,并依据0.001a =的独立性检验,分析学生选择物理或历史与性别是否有关;(2)该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组.一段时间后,从该小组中抽取3人汇报数学学习心得.记3人中男生人数为X ,求X 的分布列和数学期望()E X .附:()()()()22()n ad bc a b c d a c b d χ-=++++.22. 已知椭圆22221x y a b +=的左右焦点分别为12,F F ,过1F 作直线L ,交椭圆于A 、B 两点,2F AB 的周长为8,且椭圆经过点⎭. (1)求椭圆的方程;(2)过坐标原点O 作直线L 的垂线,交椭圆于P ,Q 两点,试判断214AB PQ +是否为定值,若是,求出这个定值.遵义清华中学2022-2023学年度第二学期第一次月考高二年级数学参考答案一、选择题(每小题8分,共40分) 1.D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D. 2.B【分析】根据二项分布概率公式计算.【详解】()()()()()30317112310128P P P P P C ξξξξξ⎛⎫≥==+=+==-==-⨯= ⎪⎝⎭.故选:B 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D. 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D.4.【答案】C【解析】因为0.10.10.30.20.11a +++++=,所以0.2a =,所以()()()()13123P X P X P X P X ≤===++≤=0.10.20.30.6=++=. 故选:C. 5.【答案】B【解析】因为5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,所以5名大学生分成3组,每组的人数分别为1,2,2,所以不同的安排方式有22353322C C A 90A ⋅=种,故选:B 6.【答案】A【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题. 7.【答案】A【解析】第一步中间小正方形涂色,有6种方法,剩下5种颜色涂在四个直角三角形中,就按图中所示1234的顺序,1有5种方法,2有4种方法,3有4种方法,但要分类:与1相同和与1不相同,然后确定4的方法数, 所以所求方法数为654(1433)1560⨯⨯⨯⨯+⨯=. 故选:A. 8.【答案】C【解析】三个歌唱节目,一个小品节目以及一个相声节目的全排列的排列数为55A ,其中三个歌唱节目都相邻的排法数为3333A A ,故满足条件的排法数为533533A A A =120-36=84-,所以三个歌唱节目最多有两个相邻的排法总数为84, 故选:C.二、选择题(每小题5分,共20分) 9.【答案】AB【分析】由组合数的性质可以列出方程,求出正整数x 的值 【详解】由题意得:21x x =-或215x x +-=, 解得:1x =或2x =,经过检验,均符合题意. 故选:AB11.【答案】BCD【分析】先由已知条件得21024n =求出n 的值,然后求出二项式展开式的通项公式,再逐个12.【答案】ACD三、填空题(每小题5分,共20分)14.【答案】56【解析】因为随机变量X 服从二项分布()2,B p , 所以()()()2202=0C 11P X p p =-=-, 所以()()()23511=01136P X P X p ≥=-=--=, 因为0p >,所以56p =,故答案为:5615.【答案】21【解析】问题等价于将8个完全相同的小球,放入3个不同的盒子,每个盒子至少1个球,由隔板法可知,不同的分配方案种数为27C 21=.16. 【答案】1008【详解】分析:本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两元之间有一个排列,丙不排在初一,丁不排在初七,则可以甲乙排初一、初二和初六、初七,丙排初七和不排初七,根据分类原理得到结果. 详解:分两类:第一类:甲乙相邻排初一、初二或初六、初七,这时先安排甲和乙,有2224A =种,然后排丙或丁,有144A =种,剩下的四人全排有4424A =种,因此共有4424384⨯⨯=种方法;第二类:甲乙相邻排中间,有224A 种,当丙排在初七,则剩下的四人有44A 种排法,若丙排在中间,则甲有13A 种,初七就从剩下的三人中选一个,有13C 种,剩下三人有33A 种,所以共有24113243334()624A A A C A +=种,故共有3846241008+=种安排方案,故答案为1008.点睛:该题考查的是由多个限制条件的排列问题,在解题的过程中,注意相邻问题捆绑法,特殊元素优先考虑的原则,利用分类加法计数原理求得结果.四、解答题(第17题10分,其余各题12分,共70分)17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率.18.(1)a =(2)选①,满足条件的ABC 的个数为2;选②,满足条件的ABC 的个数为1;选③,不存在满足条件的三角形;理由见解析【分析】(1)利用余弦定理化简已知条件,由此求得,b a .(2)选①,利用三角形的面积公式化简已知条件,求得tan B ,进而求得B ,利用正弦定理求得A 有两个解,从而得出结论.选②利用正弦定理化简已知条件,求得B ,利用正弦定理求得A 有一个解,从而得出结论.选③,结合三角恒等变换求得B ,利用正弦定理求得sin 1A >,无解,从而得出结论.(1)因为cos cos a C c A +=22222222a b c b c a a c ab bc+-+-⋅+⋅=解得b =a =(2)选择①,因为)222S a c b =+-,所以)2221sin 2ac B a c b =+-,所以1sin 2cos 2ac B ac B =,化简得tan B =. 又0πB <<,故π6B =.由sin sin a b A B =,得sin sin a B A b ==. 因为a b >,所以π4A =或3π4A =,故满足条件的ABC 的个数为2.选择②,因为cos b A c =,所以sin cos sin B A A C =,即sin cos sin()2B A A A B +=+,sin cos A A B =,因为sin 0A ≠,所以cos B =,解得π4B =.由sin sin a bA B=,得sin sin 1a B A b ==,所以π2A =,故满足条件的ABC 的个数为1. 选择③,因为πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,所以πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭.又sin 0A ≠,所以πsin cos 6B B ⎛⎫=- ⎪⎝⎭,所以31sin cos sin 22BB B ,化简得tan B =又0πB <<,故π3B =.由sin sin a b A B =,得sin sin 1a B A b ==>,无解,不存在满足条件的三角形. 19.【解析】(1)因为3456755x ++++==,4550606570585y ++++==, 所以()()5165i i i x x y y =--=∑,()52110i i x x =-=∑.因为()521430i i y y =-=∑,所以()()5522114300i ii i x x y y ==--=∑∑所以()()5650.9965.6iix x y y r --=≈≈∑, 由此可以认为发布的视频个数与收到的点赞数之和的相关性很强. (2)由(1)知()()5165i i i x x y y =--=∑,()52110i i x x =-=∑,所以()()()5152165ˆ 6.510iii i i x x y y bx x ==--===-∑∑. 因为ˆ58 6.5525.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为 6.525.5y x =+. (0,1,1AE =,(2,0,2BP =-,(0,DP =-设平面PBD 的法向量(),,n x y z =,则00n BP n DP ⎧⋅=⎨⋅=⎩,即则()1,1,1n =.设直线AE 与平面PBD 所成角为θ,则26sin 323AE n AE nθ⋅===⨯⋅.21.【解析】(1)根据所给数据完成列联表:科目性别合计男生 女生物理 300 250 550 历史 100 150 250 合计 400400800222800(300150250100)(450250)16010.828,5502504004005525211χ⨯⨯-⨯-===>⨯⨯⨯⨯⨯所以推断该校学生选择物理或历史与性别有关,此推断犯错误的概率不大于0.001; (2)按照分层抽样的方法,抽取男生2人,女生3人, 随机变量X 的所有可能取值为0,1,2,()032335C C 10C 10P X ∴===()122335C C 31C 5P X ===()212335C C 32C 10P X ===X ∴的分布列为:X 01 2()1336012.105105E X ∴=⨯+⨯+⨯=22.(1)22143xy +=;(2)是定值;214712AB PQ +=. 【分析】(1)根据椭圆定义,由2F AB 的周长为8,求出2a =,再由椭圆过点⎭,求出b =(2)先讨论直线L 的斜率不存在时,求出214ABPQ+;再讨论直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y ,线1:PQ y x k=-,分别联立直线与椭圆方程,根据弦长公式求出AB 和PQ ,即可得出结果. 【详解】(1)由椭圆的定义可得,122a AF AF =+,122a BF BF =+, ∴2248AF BF AB a ++==,则2a =;又椭圆经过点⎭221b ⎝⎭=,解得b =所以椭圆的方程为22143x y +=; (2)当直线L 的斜率不存在时,直线L 的方程为=1x -,代入22143x y +=得294y =,所以3AB =,4PQ =,2141173412AB PQ +=+=; 当直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y , 将()1y k x =+代入22143x y +=,整理得:()22223484120k x k x k +++-=, ∴2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩,∴12 AB x=-===()2212134kk+=+=;又直线1:PQ y xk=-,代入22143x y+=整理得:()22234120k x k+-=,则3423421243x xkx xk+=⎧⎪⎨=-⎪+⎩,∴34PQ x=-=则()()()()()2222222434711443712121481121k kkAB k k kPQ++++=+==+++,综上所述214712AB PQ+=为定值.【点睛】本题主要考查求椭圆的标准方程,考查椭圆中的定值问题,熟记椭圆的标准方程,以及椭圆的简单性质即可,属于常考题型.。
高二数学第一次月考试卷及答案
高二数学月考试卷答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公共汽车上有15位乘客,沿途5个车站,乘客下车的可能方式有() A.515种B.155种C.50种D.50625种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有515种可能的下车方式,故选A.【答案】A2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有() A.6种B.12种C.18种D.24种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选C.【答案】C3.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】B4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.04B.0.16C.0.24D.0.96【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】D5.正态分布密度函数为f(x)=122πe-x-128,x∈R,则其标准差为()A.1B.2C.4D.8【解析】根据f(x)=1σ2πe-x-μ22σ2,对比f(x)=122πe-x-128知σ=2.【答案】B6.随机变量X的分布列如下表,则E(5X+4)等于()X024P0.30.20.5A.16B.11C.2.2D.2.3【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】A7.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种【解析】不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C26·C24·C22=90(种).【答案】D8.在(x2+3x+2)5的展开式中x的系数为()A.140B.240C.360D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x的系数为C45·25+C45·24=240.【答案】B9.设随机变量ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p 的值为()【导学号:97270066】A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【解析】由二项分布的均值与方差性质得=2.4,1-p=1.44,=6,=0.4,故选B.【答案】B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是()A.16B.18C.112D.124【解析】由2个6,1个3,1个9这4个数字一共可以组成A44A22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P=1 12 .【答案】C11.利用下列盈利表中的数据进行决策,应选择的方案是()自然状况概率方案盈利(万元)S i PiA1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4【解析】利用方案A 1,期望为50×0.25+65×0.30+26×0.45=43.7;利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A 3的期望最大,所以应选择的方案是A 3,故选C.【答案】C12.如图12,用五种不同的颜色给图中的A ,B ,C ,D ,E ,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.264种B.360种C.1240种D.1920种【解析】由于A 和E 或F 可以同色,B 和D 或F 可以同色,C 和D 或E 可以同色,所以当五种颜色都选择时,选法有C 13C 12A 55种;当五种颜色选择四种时,选法有C 45C 13×3×A 44种;当五种颜色选择三种时,选法有C 35×2×A 33种,所以不同的涂色方法共C 13C 12A 55+C 45C 13×3×A 44+C 35×2×A 33=1920.故选D.【答案】D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】514.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a0+a2+a4=16,①-②得a1+a3+a5=-16,故(a0+a2+a4)·(a1+a3+a5)的值等于-256.【答案】-25615.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.9的3次方×0.1;③他至少击中目标1次的概率是1-0.1的4次方.其中正确结论的序号是________(写出所有正确结论的序号).解析:②中恰好击中目标3次的概率应为C34×0.93×0.1=0.93×0.4,只有①③正确.答案:①③16.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=________.【解析】由下图可以看出P(550<X<600)=P(400<X<450)=0.3.【答案】0.3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10x n =C 2xn ,x +1n =113C x -1n,试求x ,n 的值.【解】∵C x n =C n -x n =C 2xn ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !x +1!n -x -1!=113·n !x -1!n -x +1!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.18.(本小题满分12分)要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X 1的分布列为X 15678910P 0.030.090.200.310.270.10同学乙击目标的环数X 2的分布列为X 256789P 0.010.050.200.410.33(1)请你评价两位同学的射击水平(用数据作依据);(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?(1)利用期望和方差公式求出两变量的期望和方差;(2)根据第(1)问的结论选择水平高的选手解:(1)EX 1=,EX 2==8DX 1=1.50DX 2=0.8两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
福建省高二下学期第一次月考数学试题(Word版)
高二下学期第一次月考数学试题(考试时间:120分钟 满分:150分)、、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数在处的导数为,则( )()f x 1x =6()()11lim 3x f x f x∆→+∆-=∆A .1B .2C .D .6232.如图所示是函数的图象,其中为的导函数,则下列大小关系正确()y f x =()f x '()f x 的是( )A .B . ()()()213f f f ''>>'-()()()231f f f ''>>'-C .D .()()()312f f f >>''-'()()()321f f f >->'''3.已知某物体在平面上作变速直线运动,且位移(单位:米)与时间(单位:秒)之s t 间的关系可用函数:表示,则该物体在秒时的瞬时速度为( )()2ln 1s t t t =++-3t =A .米/秒 B .米/秒C .米/秒 D .米秒214()62ln2+212()4ln2+4.函数的图象大致为( )sin x xx xy e e --=+A .B .C .D .5.若对任意的 ,,且,都有,则m 的最小值是1x ()2,x m ∈+∞12x x <122121ln ln 2x x x x x x -<-( ) A .B .C .1D .1ee 3e6.已函数及其导函数定义域均为,且,,则关于()f x ()f x 'R ()()0f x f x '->()01f =x的不等式的解集()e xf x >为( ) A . B .C .D .{}0x x >{}0x x <{}1x x <{}1x x >7.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数的取值范围是( ) ()()e ln xf x x a x =-a A . B .C .D .(],0-∞1,e ⎛⎤-∞ ⎝⎦(],1-∞(],e -∞8.已知,则( ) 1ln1.1,,11a b c ===A .B .C .D .a b c >>a c b >>c b a >>c a b >>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数的求导正确的是( )A .B .C .D .211x x '⎛⎫= ⎪⎝⎭()sin cos x x '=()()'e 1e x x x x =+()1ln 22'=x x10.已知,下列说法正确的是( ) ()ln xf x x=A .在处的切线方程为B .若方程有两个不相等的实数()f x 1x =1y x =+()f x a =根,则 10a e<<C .的极大值为D .的极小值点为()f x 1e()f x e x =11.若函数在区间上存在最小值,则整数可以取( )()321233f x x x =+-()1,4a a -+a A .-3B .-2C .-1D .012.若存在实常数k 和b ,使得函数和对其公共定义域上的任意实数x 都满足:()F x ()G x 和恒成立,则称此直线为和的“隔离直线”,已()F x kx b ≥+()G x kx b ≤+y kx b =+()F x ()G x 知函数,,(e 为自然对数的底数),则下列结2()()f x x x R =∈1()(0)g x x x=<()2ln h x e x =论正确的是( ).A .函数在区间上单递减()()()m x f x g x =-,⎛-∞ ⎝B .和之间存在“隔离直线”,且k 的最小值为 ()f x ()g x 4-C .和之间存在“隔离直线”,且b 的取值范围是 ()f x ()g x [4,0]-D .和之间存在“隔离直线”,且“隔离直线”不唯一()f x ()h x 三、填空题:本题共4小题,每小题5分,共20分.13.函数在点处的切线方程为____________. 1()ln f x x x=-(1,1)-14.函数,则________. ()2(1)21xf x f x x '=+-()0f '=15.不等式对任意恒成立,则正实数的取值范围为________. 1e ln 0a x x a x --≥()1,x ∈+∞a 16.若函数在区间D 上有定义,且均可作为一个三角形的()g x ,,,(),(),()a b c D g a g b g c ∀∈三边长,则称在区间D 上为“M 函数”.已知函数在区间为()g x ()1ln x f x x k x -=-+1,e e ⎡⎤⎢⎥⎣⎦“M 函数”,则实数k 的取值范围为_________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数,,且.求:()32f x x ax =-a ∈R ()11f '=(1)a 的值及曲线在点处的切线方程; ()y f x =()()1,1f (2)函数在区间上的最大值. ()f x []0,218. (12分)已知函数在及处取得极值.()32f x x ax bx c =+++13x =-1x =(1)求a ,b 的值;(2)若方程有三个不同的实根,求c 的取值范围. ()0f x =19.(12分)已知函数.()2211ln 2a f x x x x a +=-+(1)当时,求函数的单调增区间. 2a =()f x (2)讨论函数的单调性. ()f x20.(12分)2022年2月4日,第二十四届冬季奥林匹克运动会开幕式在北京国家体育场举行,拉开了冬奥会的帷幕.冬奥会发布的吉祥物“冰墩墩”、“雪容融”得到了大家的广泛喜爱,达到一墩难求的地步.当地某旅游用品商店获批经销此次奥运会纪念品,其中某个挂件纪念品每件的成本为5元,并且每件纪念品需向税务部门上交元的税收,预计5a +(58)a ≤≤当每件产品的售价定为元时,一年的销售量为万件,x (1317)x ≤≤2(18)x -(1)求该商店一年的利润(万元)与每件纪念品的售价的函数关系式; L x (2)求出的最大值. L ()Q a21.(12分) 已知函数为的导数.()e cos 2,()x f x x f x '=+-()f x (1)当时,求的最小值;0x ≥()f x '(2)当时,恒成立,求的取值范围.π2x ≥-2e cos 20xx x x ax x +--≥a22.(12分)已知函数.2()e (e 2.718)=-= x f x ax (1)若在有两个零点,求实数的取值范围;()f x ()0,∞+a (2)设函数,证明:存在唯一的极大值点,且2()e [()1]x g x f x ax x =+--()g x 0x . 0321()e 4<<g x龙岩一中2024届高二下学期第一次月考数学试题参考答案题号1 2 3 4 5 6 7 8 9 10 11 12 答案BAABABBDBCBCBC DAB C13.14. 1 15. 16.23y x =-(],e -∞()2e 4,-+∞17.解:(1),解得:()32f x x ax =-Q ()'232f x x ax ∴=-()'1321f a ∴=-=1a =故,()32f x x x =-(1)0f =曲线在点处的斜率为,切线方程即 ...........5()y f x =()()1,1f 1k =(1)(1)y f k x -=-1y x =-分(2)由(1)可知:,令,解得()32f x x x =-()'232f x x x =-()'2320f x x x =-= 1220,3x x ==故当时,,所以单调递减;当时,,所以2[0,)3x ∈()'0f x <()f x 2[,2]3x ∈()'0f x >()f x 单调递增;区间内,当时取最大值,最大值为 ...........10分()f x []0,22x =(2)4f =18.解:(1)由题意得,函数在及处取得极值, ()232f x x ax b '=++()f x 13x =-1x =得,解得 .()11203331320af b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝'⎭⎨⎪=++'=⎩11a b =-⎧⎨=-⎩此时,.()()()2321311x x x x f x --=+'-=当时,,函数在上单调递增; 13x <-()0f x ¢>()f x 1,3⎛⎫-∞- ⎪⎝⎭当时,,函数在上单调递减;113-<<x ()0f x '<()f x 1,13⎛⎫- ⎪⎝⎭当时,,函数在上单调递增. 1x >()0f x ¢>()f x ()1,+∞所以,在处取得极大值,在处取得极小值,满足题意. ...........6分 ()f x 13x =-1x =(2)由(1)知,在处取得极大值,在处取得极小值.又有三()f x 13x =-1x =()0f x =个不同的实根,由图象知,解得,所以实数c 的取值范围是()150327110fc f c ⎧⎛⎫-=+>⎪ ⎪⎝⎭⎨⎪=-+<⎩5127c -<<5,127⎛⎫- ⎪⎝⎭............12分19.解:(1)函数的定义域为,()2211ln 2a f x x x x a+=-+()0,∞+当时,,所以. 2a =()215ln 22f x x x x =-+()()221251252()22x x x x f x x x x x---+'=-+==故当时, ,函数在上单调递增;10,2x ⎛⎫∈ ⎪⎝⎭()0f x ¢>()f x 10,2⎛⎫ ⎪⎝⎭当时,,函数在上单调递减;1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,22⎛⎫ ⎪⎝⎭当时,,函数在上单调递增;()2,x ∈+∞()0f x ¢>()f x ()2,+∞所以函数的单调递增区间有和;...........4分()f x 10,2⎛⎫⎪⎝⎭()2,+∞(2)由可得:()2211ln 2a f x x x x a+=-+. ()2221()11(1)()ax x a a ax a x a f x x a x ax ax--+-++'=-+==①当时, ,在上单调递增;...........6分 a<0()0f x ¢>()f x ()0,∞+②当时,时,时,在上单调递增;01a <<()0,x a ∈()0f x ¢>()f x ()0,a 时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............8分 1,x a ⎛⎫∈+∞ ⎪⎝⎭()0f x ¢>()f x 1,a ⎛⎫+∞ ⎪⎝⎭③当时,,且仅在时,,所以函数在上单调递增1a =()0f x '≥1x =()0f x '=()f x ()0,∞+;...........9分④当时,时,时,在上单调递增;1a >10,x a ⎛⎫∈ ⎪⎝⎭()0f x '>()f x 10,a ⎛⎫⎪⎝⎭时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............11分(),x a ∈+∞()0f x ¢>()f x (),a +∞综上所述,当时,函数在上单调递增;a<0()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;01a <<()f x ()0,a 1,a ⎛⎫+∞ ⎪⎝⎭1,a a ⎛⎫⎪⎝⎭当时,函数在上单调递增;1a =()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;...........12分1a >()f x 10,a ⎛⎫ ⎪⎝⎭(),a +∞1,a a ⎛⎫⎪⎝⎭20.解(1)由题意,预计当每件产品的售价为元,而每件产品的成本为5x (1317)x ≤≤元,且每件产品需向税务部门上交元,(5)a +(58)a ≤≤所以商店一年的利润(万元)与售价的函数关系式为:L x 2(10)(18),[13,17]L x a x x =---∈............5分(2)∵,∴, 2(10)(18),[13,17]L x a x x =---∈(3823)(18)L a x x =+--'令,解得:或,而,则,...........7分 0L '=3823a x +=18x =58a ≤≤38216183a+≤≤①当,即时,当时,,单调递38216173a +≤<5 6.5a ≤<38213,3a x +⎛⎫∈ ⎪⎝⎭0L >'A A A A L 增,当时,,单调递减,∴当时,取最大值382,173a x +⎛⎫∈ ⎪⎝⎭0L '<L 3823a x +=L 34(8)27a -;...........9分 ②当,即时,当时,,单调递增, 38217183a+≤≤ 6.58a ≤≤()13,17x ∈0L >'A A A A L ∴当时,取最大值,...........11分17x =L 7a -综上, ...........12分 ()()348,5 6.5277,6.58a a Q a a a ⎧-≤<⎪=⎨⎪-≤≤⎩21.(1)由题意,,令,则, ()e sin x f x x '=-()e sin x g x x =-()e cos x g x x '=-当时,,,所以,从而在上单调递增, 0x ≥e 1x ≥cos 1≤x ()0g x '≥()g x [0,)+∞则的最小值为,故的最小值1;...........4分()g x (0)1g =()f x '(2)由已知得当时,恒成立,令,π2x ≥-()e cos 20xx x ax +--≥()e cos 2x h x x ax =+--,...........5分()e sin x h x x a '=--①当时,若时,由(1)可知,∴为增函数, 1a ≤0x ≥()10h x a '≥-≥()h x ∴恒成立,∴恒成立,即恒成立,()()00h x h ≥=()0x h x ⋅≥()e cos 20x x x ax +--≥若,令 则,令,则π,02x ⎡⎫∈-⎪⎢⎣⎭()e sin x m x x a =--()e cos x m x x '=-()e cos xn x x =-,()e sin x n x x '=+令,则,∵在在内大于零恒成立,()e sin x p x x =+()e cos x p x x '=+()p x 'π,02x ⎡⎫∈-⎪⎢⎣⎭∴函数在区间为单调递增,又∵,,,()p x π,02⎡⎫-⎪⎢⎣⎭π2πe 102p -⎛⎫-=-< ⎪⎝⎭()01p =∴上存在唯一的使得,∴当时,,此时()p x 0π,02x ⎛⎫∈- ⎪⎝⎭()00p x =0π,2x x ⎡⎫∈-⎪⎢⎣⎭()0n x '<为减函数,()n x 当时,,此时为增函数,又∵,,()0,0x x ∈()0h x '>()n x π2πe 02n -⎛⎫-=> ⎪⎝⎭()00n =∴存在,使得,∴当时,,为增函数,10π,2x x ⎛⎫∈- ⎪⎝⎭()10n x =1π,2x x ⎡⎫∈-⎪⎢⎣⎭()0m x '>()m x 当时,,为减函数,又∵,,()1,0x x ∈()0m x '<()m x π2πe 102m a -⎛⎫-=+-> ⎪⎝⎭()010m a =-≥∴时,,则为增函数,∴,∴π,02x ⎡⎫∈-⎪⎢⎣⎭()0h x '>()h x ()()00h x h ≤=()e cos 20x x x ax +--≥恒成立,..........9分②当时,在上恒成立,则在上为增函数, 1a >()e cos 0x m x x '=-≥[0,)+∞()m x [0,)+∞∵,, ()010m a =-<ln(1)(ln(1))e sin(ln(1))1sin(ln(1))0a m a a a a ++=-+-=-+≥∴存在唯一的使,()20,x ∈+∞()20h x '=∴当时,,从而在上单调递减,∴,20x x ≤<()0h x '<()h x [)20,x ()()00h x h <=∴,与矛盾,...........11分()e cos 20xx x ax +--<2e cos 20x x x x ax x +--≥综上所述,实数的取值范围为. ...........12分 a (,1]-∞22.(1)解:令,,则,2()0xf x e ax =-=()0,x ∈+∞2e xa x=23.因为在有两个零点,所以函数与的图象有两个不同的交点,()f x ()0,∞+y a =2ex y x=令,则, ()22e (),0,h x x x =∈+∞()()23e 2e (),0,xx x h x x x x -'==∈+∞当时,;当时,. (0,2)x ∈()0h x '<(2,)x ∈+∞()0h x '>所以在单调递减,在单调递增,所以,()h x (0,2)(2,)+∞()()2mine 24h x h ==又当时,,当时,,所以;...........4分0x +→()h x →+∞x →+∞()h x →+∞2e4a >(2) 证明:,故,()e (e 1)x x g x =x --()e (2e 2)x xg x =x '--令,, ()2e 2x m x =x --()2e 1x m x ='-当时,,当时,, 1ln2x <()0m x '<1ln 2x >()0m x '>所以在上单调递减,在上单调递增, ()m x 1(,ln )2-∞1(ln +)2∞,又,,,(0)0m =1ln 211(ln )2e ln 2ln 21022m =--=-<22(2)2e (2)20e 2m ==----->由零点存在性定理及的单调性知,方程在上有唯一根,...........6分()h x ()0m x =1(2,ln )2-设为且,从而有两个零点和,0x 002e 20xx =--()m x 0x 0当或时,,当时,,0x x <0x >()0g x '>00x x <<()0g x '<所以在单调递增,在上单调递减,在单调递增, ()g x 0(,)x -∞0(0)x ,(0+)∞,从而存在唯一的极大值点,由,得, ...........8分 ()g x 0x 002e 20x x =--002e 2xx +=,2000000000222111()e (e 1)(1)()(2)=224444x x x x x x g x x x x x ++-++∴=--=--=-+≤()当且仅当,即时,取等号,002x x -=+01x =-若,则,与题意矛盾,01x =-0102e 22e 10x x =----≠故,所以取等不成立,所以得证,...........10分 01x ≠-01()4g x <又,在单调递增,012ln2x -<< ()g x 0,x -∞()所以得证,...........11分 2242032()(2)e e (2)1e e e g x g ----⎡⎤>-=---=+>⎣⎦所以............12分 0321()e 4g x <<。
高二数学(文)第一次月考试卷
高二数学(文)第一次月考试卷(考试时间100分钟,满分100分)一、选择题:(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合要求的)1、一个物体的运动方程为2-=,其中s的单位是米,t的单位是秒,t1ts+那么物体在3秒末的瞬时速度是()A、8米/秒B、7米/秒C、6米/秒D、5米/秒2、下列各关系中是相关关系的是()(1)路程与时间,速度的关系;(2)加速度与力的关系(3)产品成本与产量的关系;(4)圆周长与圆面积的关系(5)广告费支出与销售额的关系。
A、(1)(2)(4)B、(1)(3)(5)C、(3)(4)(5)D、(3)(5)3、对于样本相关系数r ,叙述正确的是()A、()∈+∞越大,线性相关程度越大,反之越小;r r0,,B、()∈-∞+∞越大,线性相关程度越大,反之越小r r,,C、r≤1, r越接近于1,线性相关程度越大,越接近于0,线性相关程度越小D、以上说法都不对4、函数3+=有()y-x1x3A、极小值1-,极大值3B、极小值2-,极大值3,C、极小值2-,极大值3-,极大值2 D、极小值35、函数f(x)= 320,3上的最小值,最大值分别是()-++在[]x x x29121A、5,15B、1,10C、1,9D、2,106、经过对2χ的统计量的研究,得到了若干个临界值,当2 2.706χ≤时,我们认为两个变量A与B之间()A、有099的把握认为变量A与B有关系B、有095的把握认为变量A与B有关系C、有095的把握认为变量A与B没有关系D 、没有充分理由说明变量A 与B 有关系 7、已知x 、y 之间的一组数据如下: 则线性回归方程bx a y +=所表示的直线必经过点( )A 、(0,0)B 、(2,6)C 、(1.5,5)D 、(1,5) 8、下列命题①定义在R 上的可导函数)(x f 在a x =处取得极值的必要条件为0)('=a f ; ②函数在闭区间上的最大值一定是极大值 ③函数在闭区间上的极大值一定比极小值大; ④函数在区间(),a b 上一定存在最值⑤对于f ()3221,x x px x =+++若p <则f ()x 无极值 其中真命题的个数为( ) A 、4 B 、3 C 、2 D 、19、甲、乙、丙三人参加一次考试,他们合格的概率分别为32,43,52,那么三人中恰有两人合格的概率是( ) A 、52 B 、157 C 、3011 D 、6110、某班学生考试成绩中,数学不及格的占0015,语文不及格的占005,两门都不及格的占003,已知一学生数学不及格,则他语文也不及格的概率是( ) A 、0.2 B 、0.33 C 、0.5 D 、0.611、为预测某种产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8组观察值,计算知88882111152,228,478,1849,ii ii i i i i i xy x x y ========∑∑∑∑则y 对x 的回归方程是( )A 、y=11.47-2.62xB 、y= -11.47+2.62xC 、y=2.62+11.47xD 、y=11.47+2.62x 12、函数y=2x ()0b x x->的单调增区间是()2,,+∞则实数b 取( )A 、80b -≤<B 、8b =-C 、8b ≤-D 、0b >一、 填空题(本大题共4小题,每小题4分,共16分。
2023-2024学年广西河池市高二下学期第一次月考三联考数学质量检测模拟试题(含解析)
2023-2024学年广西河池市高二下学期第一次月考三校联考数学模拟试题一、单选题1.设数列{n a }的前n 项和n s =2n ,则8a 的值为A .15B .16C .49D .64【正确答案】A【分析】利用887a S S =-求解即可.【详解】因为数列{}的前n 项和n s =2n ,所以878644915a S S =-=-=,故选:A.本题主要考查本题主要考查数列的通项公式与前n 项和公式之间的关系,属于中档题.已知数列前n 项和,求数列通项公式,常用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩.2.已知函数()sin f x x x =+,则(0)f '=()A .1-B .0C .1D .2【正确答案】D【分析】对()f x 求导得()1cos f x x '=+,即可求(0)f '.【详解】由题设,()1cos f x x '=+,∴(0)1cos02f =+='.故选:D.3.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =()A .26B .52C .78D .104【正确答案】B【分析】等比数列{}n a 中3544a a a =,可得4244a a =,即44a =,所以在等差数列{}n b 中,744b a ==,13713S b =,代入即可得出答案.【详解】在等比数列{}n a 中,3544a a a =,所以4244a a =,所以44a =,在等差数列{}n b 中,744b a ==,所以()1131371313522a a Sb +===.故选:B.4.已知函数()f x 的导函数()y f x '=的图象如图所示,则下列结论正确的是()A .()2f x 是极小值B .()3f x 是极小值C .()4f x 是极大值D .()5f x 是极大值【正确答案】B【分析】根据导函数的图象确定()f x 的单调区间,进而判断极值.【详解】由图知:()f x 在1(,)a x 上递增,13(,)x x 上递减,3(,)x b 递增,∴()3f x 是极小值,()2f x 、()4f x 不是极值,()5f x 为拐点.故选:B.5.数列{}n a ,{}n b 满足1n n a b =,256n a n n =++,*N n ∈,则{}n b 的前10项之和为()A .413B .513C .839D .1039【正确答案】D求出{}n b 的通项,利用裂项相消法可求前10项之和.【详解】因为1n n a b =,256n a n n =++,故21115623n b n n n n ==-++++,故{}n b 的前10项之和为11111111103445121331339-+-++-=-= ,故选:D.6.已知函数21()23ln 2f x x x x =+-,则()f x 的单调递减区间是()A .(3,1)-B .(0,1)C .(,3)(1,)-∞-+∞ D .(1,)+∞【正确答案】B【分析】利用导数研究()f x 的单调递减区间.【详解】由题设,2323()2x x f x x x x+-'=-+=,又定义域为(0,)+∞,令()0f x '<,则223(3)(1)0x x x x +-=+-<,解得31x -<<,故01x <<,∴()f x 在(0,1)上递减.故选:B.7.已知等比数列{an },满足log 2a 3+log 2a 10=1,且a 3a 6a 8a 11=16,则数列{an }的公比为()A .4B .2C .±2D .±4【正确答案】B将已知条件转化为首项和公比的方程组,解方程组即可得到公比q .【详解】解:依题意,()232102310log log log ·1a a a a +==,21131012a a a q ∴== ①,又42436811116a a a a a q ==②,联立①②得24q =,又23210log log 1a a +=有意义,所以30a >,100a >,所以71030aq a =>,即0q >,所以2q =,故选:B .本题考查了等比数列的性质,考查了等比数列的通项公式,考查分析解决问题的能力和计算能力,属于中档题.8.已知曲线()2ln f x x x =-在点(1,(1))f 处的切线与曲线2()(1)1g x ax a x =+--有且只有一个公共点,则实数=a ()A .2B .0或2C .2-D .2-或0【正确答案】D【分析】利用导数的几何意义求切线方程,根据切线与()g x 有一个公共点,讨论0a ≠、0a =判断公共点的个数,即可得a 值.【详解】由1()2f x x'=-,则(1)1f '=,而(1)2f =,∴(1,(1))f 处的切线方程为21y x -=-,即10x y -+=.又10x y -+=与()g x 有一个公共点,∴2(1)11ax a x x +--=+,整理得2(2)20ax a x +--=,当0a ≠时,2(2)80a a ∆=-+=,可得2a =-,当0a =时,显然只有一个解,符合题设;∴0a =或2a =-.故选:D.二、多选题9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则()A .2d =-B .124a =C .2628a a +=D .n S 取得最大值时,11n =【正确答案】AC【分析】根据已知条件列方程组求出等差数列的首项、公差,然后即可对选项进行判断﹒【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项)选项D 错误.故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误;对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误.故选:AC10.下列曲线中,与直线:230l x y -+=相切的是().A .曲线21:24C y x=B .曲线2:ln 24C y x =+C .曲线223:14y C x -=D .曲线324:2562C y x x x =-++【正确答案】ABD对A ,联立直线与曲线方程,利用判别式可判断;对B ,求出曲线导数,令导数等于2,求出切点,再验证切点是否满足;对C ,根据直线与渐近线平行可判断;对D ,求出曲线导数,令导数等于2,求出切点,再验证切点是否满足.【详解】对A ,将直线:230l x y -+=代入曲线21:24C y x =可得241290x x -+=,则()2124490∆=--⨯⨯=,则直线与曲线相切,故A 正确;对B ,直线:230l x y -+=的斜率为2,对2:ln 24C y x =+,可得1y x '=,令12x =,解得12x =,代入直线可得切点为1,42⎛⎫⎪⎝⎭,满足在ln 24y x =+上,故直线与曲线相切,故B 正确;对C , 223:14y C x -=的一条渐近线为2y x =,和直线:230l x y -+=平行,故直线l 与曲线3C 相交于一点,故不相切,故C 错误;对D ,又324:2562C y x x x =-++可得26106y x x '=-+,令261062x x -+=,解得23x =或1,当23x =时,代入直线可得切点213,33⎛⎫⎪⎝⎭,不满足在曲线上;当1x =时,代入直线可得切点为()1,5,满足在曲线上,故直线与曲线相切,故D 正确.故选:ABD.本题考查判定直线与曲线是否相切,一般采用的方法为,若曲线是椭圆、双曲线或抛物线,可联立直线与曲线方程,利用判别式判断;若曲线是函数曲线,则可通过求导进行判断.11.已知n S 是等比数列{}n a 的前n 项和,下列结论一定成立的是()A .若30a >,则20210a >B .若40a >,则20210a <C .若30a >,则20210S >D .若40a >,则20210S >【正确答案】AC【分析】利用等比数列的通项公式及其前n 项和公式即可判断出正误即可.【详解】解:A 、若2310a a q =>,则10a >,所以2020202110a a q=>,故本选项正确;B 、3410a a q =>,则无法判定1a 的正负,所以202020211a a q=的正负也无法判定,故本选项错误;C 、2310a a q =>,则10a >,若1q =时,2021120210S a =>;若1q ≠,202112021(1)01a q S q -=>-,故本选项正确;D 、若3410a a q =>,若10a >,1q =时,2021120210S a =>;若1q ≠,202112021(1)1a q S q -=-,当1q <-时,则10a <,所以20210S <,故本选项错误.故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是()A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x 的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立【正确答案】ACD【分析】由对数函数的性质直接判断A ,利用导数确定函数的单调性与极值判断BC ,D 选项中,不等式变形为211ln 0x x x -+≥,然后引入函数211()ln g x x x x=-+,由导数求得最小值判断D .【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确;对于选项B ,()()2ln 2ln 1f x x x x x x ¢=+=+,令()0f x ¢>可得2ln 10x +>,有x >()f x 的减区间为⎛ ⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x'-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确.故选:ACD .三、填空题13.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________.【正确答案】2【分析】由题可求函数的导数,再利用导数的几何意义即求.【详解】∵()ln f x x x =+,∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,∴2k =.故2.14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________【正确答案】13【分析】直接计算得到答案.【详解】122nn n a a a +=+,11a =,则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+.故答案为.1315.函数()e xf x x=的极小值为__________.【正确答案】e【分析】对函数求导,根据函数单调性,即可求得函数的极小值.【详解】依题意,得()()22e 1e e ()0--'==≠xx x x x f x x x x,令()0f x '=,得1x =,所以当(),0∈-∞x ,()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;所以当1x =时,函数()f x 有极小值e .故答案为.e16.在我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢”问:良马与驽马_______日相逢?(用数字作答)【正确答案】9【分析】由已知条件转化为两个等差数列的前n 和为2250的问题,进而计算可得结果.【详解】由题可知,良马每日行程an 构成一个首项为103,公差13的等差数列,驽马每日行程bn 构成一个首项为97,公差为﹣0.5的等差数列,则an =103+13(n ﹣1)=13n +90,bn =97﹣0.5(n ﹣1)=97.5﹣0.5n ,则数列{an }与数列{bn }的前n 项和为1125×2=2250,又∵数列{an }的前n 项和为2n ⨯(103+13n +90)2n=⨯(193+13n ),数列{bn }的前n 项和为2n ⨯(97+97.5﹣0.5n )2n =⨯(194.512-n ),∴2n ⨯(193+13n )2n +⨯(194.512-n )=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢.故9四、解答题17.求证:函数32()3f x x x =-在区间(2,4),1,02⎛⎫- ⎪⎝⎭上是单调递增函数.【正确答案】证明见解析【分析】利用导数求()f x 的单调性,即可证明区间单调性.【详解】由()()23632f x x x x x =='--,令()0f x '>得:2x >或0x <,所以()f x 在(2,4),1,02⎛⎫- ⎪⎝⎭上单调递增,函数32()3f x x x =-在(2,4),1,02⎛⎫- ⎪⎝⎭上是单调递增函数.18.在等差数列{}n a 中,已知公差10,10d a <=,且257,,a a a 成等比数列.(1)求数列{}n a 的通项公式n a ;(2)求1230a a a +++ 的值.【正确答案】(1)11n a n =-(2)245【分析】(1)根据257,,a a a 成等比数列可求1d =-,从而可求通项;(2)利用公式可求1230a a a +++ 的值.【详解】(1)因为257,,a a a 成等比数列,故2527a a a =,即()()()210410106d d d +=++,解得0d =(舍)或1d =-,故11n a n =-.(2)()12301111230a a a a a a a +++=++-++ ()11112301112()a a a a a a =-++++++++ ()()3010113011100222+-⨯+=-+⨯159110245=⨯+=19.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【正确答案】(1)7100x y ++=;(2)极小值点为=1x -,极大值点为13x =;(3)()min 1f x =,()max 97f x =.【分析】(1)求导后,利用导数几何意义可求得切线斜率()2f '-,由此可得切线方程;(2)根据导数的正负可确定()f x 单调性,结合单调性可确定所求极值点;(3)由(2)可得()f x 在[]5,0-上的单调性,由单调性可求得最值.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x \在2x =-处的切线方程为()472y x -=-+,即7100x y ++=;(2)令()23210f x x x '=--+=,解得:=1x -或13x =,则()(),,x f x f x '变化情况如下表:x(),1-∞-1-11,3⎛⎫- ⎪⎝⎭131,3⎛⎫+∞ ⎪⎝⎭()f x '-+-()f x 极小值 极大值()f x \的极小值点为=1x -,极大值点为13x =;(3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增;又()5125255297f -=--+=,()02f =,()111121f -=--+=,()()min 11f x f ∴=-=,()()max 597f x f =-=.20.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A .【正确答案】(1)2n n a =;(2)选择①:332n n +-;选择②.332nn +-(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2nT n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解.【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥,因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+,由(1)得,2n n a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅,所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯,()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯,两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-;若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =,所以8187728362T b d d ⨯==+=,解得12b d ==,所以()21222n n n T n n n -=⨯+⨯=+,由(1)得,2n n a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅,所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯,()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯.两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-.关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用;(2)要明确错位相减法的适用条件和使用方法,细心运算.21.“绿水青山就是金山银山”是时任浙江省委书记同志于2005年8月15日在浙江湖州安吉考察时提出的科学论断,2017年10月18日,该理论写入中共19大报告,为响应他号召,我国某西部地区进行沙漠治理,该地区有土地1万平方公里,其中70%是沙漠(其余为绿洲),从今年起,该地区进行绿化改造,每年把原有沙漠的16%改造为绿洲,同时原有绿洲的4%被沙漠所侵蚀又变成沙漠,设从今年起第n 年绿洲面积为n a 万平方公里.(1)求第n 年绿洲面积n a 与上一年绿洲面积()12n a n -≥的关系;(2)判断45n a ⎧⎫-⎨⎬⎩⎭是否是等比数列,并说明理由;(3)至少经过几年,绿洲面积可超过60%?()lg 20.3010=【正确答案】(1)n a 144525n a -=+(2)45n a ⎧⎫-⎨⎩⎭是等比数列,理由见解析.(3)至少经过6年,绿洲面积可超过60%.(1)由题意得()()1114%116%n n n a a a --=-+-⨯110.960.160.16n n a a --=+-化简可得答案;(2)由(1)得144525n n a a -=+,整理得1444555n n a a -⎛⎫-=- ⎪⎝⎭,从而得45n a ⎧⎫-⎨⎬⎩⎭是等比数列.(3)由(2)得114432555n n a -⎛⎫=-+> ⎪⎝⎭,整理并在两边取常用对数可求得 5.1n >从而得出结论.【详解】(1)由题意得()()1114%116%n n n a a a --=-+-⨯110.960.160.16n n a a --=+-10.80.16n a -=+144525n a -=+,所以n a 144525n a -=+;(2)由(1)得144525n n a a -=+,∴1444555n n a a -⎛⎫-=- ⎪⎝⎭,所以45n a ⎧⎫-⎨⎩⎭是等比数列.(3)由(2)有1444555n n a a -⎛⎫-=- ⎪⎝⎭,又1310a =,所以14152a -=-,∴1414525n n a -⎛⎫-=- ⎪⎝⎭,即1144255n n a -⎛⎫=-+ ⎪⎝⎭;114432555n n a -⎛⎫=-+> ⎪⎝⎭,即14255n -⎛⎫< ⎪⎝⎭,两边取常用对数得:()421lg lg 55n -<,所以()()()2lglg 21lg 2lg 2lg 52lg 2120.30110.39851 4.142lg 2lg 52lg 21lg 23lg 2130.30110.097lg 5n ----⨯-->=====≈----⨯-,∴ 5.1n >.∴至少经过6年,绿洲面积可超过60%.思路点睛:解决数列应用题时,常用的解题思路是审题——建模——研究模型——返回实际.研究模型时需注意:(1)量(多个量);(2)量间的关系(规律):等差、等比规律;递推关系;其它规律——由特殊到一般——归纳总结;(3)与通项公式有关或与前n 项和有关等.22.已知函数()2ln 2a f x x x=+-,其中0a >(1)若函数在1x =处取得极值,求实数a 的值;(2)若函数()1f x ≥在[1,)+∞上恒成立,求实数a 的取值范围.【正确答案】(1)2;(2))+∞.【分析】(1)求出函数()f x 的导数,由1x =处导数值为0求出a ,再检验作答.(2)将不等式()1f x ≥作等价变形,再构造函数并借助导数求函数的最值即可作答.【详解】(1)依题意,函数()f x 的定义域为(0,)+∞,求导得:22()a f x x x '=-,因函数()f x 在1x =处取得极值,则有(1)20f a '=-=,解得2a =,此时,22222(1)()x f x x x x -'=-=,当01x <<时,()0f x '<,当1x >时,()0f x '>,因此,函数()f x 在1x =处取得极值,则2a =,所以实数a 的值是2.(2)因[1,)x ∀∈+∞,()12ln 2132ln a f x x a x x x x≥⇔+-≥⇔≥-,令()32ln g x x x x =-,1x ≥,求导得:()32(1ln )12ln g x x x '=-+=-,当1x <<()0g x '>,当x ()0g x '<,即()g x在上单调递增,在)+∞上单调递减,因此,当x =max ()2g x g ==,于是得a ≥所以实数a的取值范围是)+∞.关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.。
三明市第一中学2022-2023学年高二下学期第一次月考数学试题含答案
三明一中2022-2023学年下学期高二第1次月考数学学科试卷(总分150分,时间:120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线()ln f x x x =在1x =处的切线的方程为A .022=--y xB .01=--y xC .01=-+y x D .013=--y x 2.有3名新冠肺炎疫情防控的志愿者,每人从2个不同的社区中选择1个进行服务,则不同的选择方法共有A .12种B .9种C .8种D .6种3.函数()()ln 21f x x x =-+的单调递增区间是A .1,02⎛⎫- ⎪⎝⎭B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.函数()||2()e 2x f x x =-的大致图像为A .B .D .C.5.把一个周长为12cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的高为A .1B .πC .2D .216.《长津湖》和《我和我的父辈》都是2021年国庆档的热门电影.某放映厅在国庆节的白天可以放映6场,晚上可以放映4场电影.这两部影片只各放映一次,且两部电影不能连续放映(白天最后一场和晚上第一场视为不连续),也不能都在白天放映,则放映这两部电影不同的安排方式共有A .30种B .54种C .60种D .64种7.若函数()21ln 2f x x x a x =-+有两个不同的极值点,则实数a 的取值范围为A .10,4⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎤-∞ ⎥⎝⎦8.对任意()0,x ∈+∞,不等式()()1ln e xa x ax -+≤恒成立,则实数a 的取值范围为A .(]0,1B .(]0,e C .(]0,2e D .(20,e⎤⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()f x '的图象,则下面判断正确的是A .()f x 在(3,1)-上是增函数B .()f x 在(1,3)上是减函数C .()f x 在(1,2)上是增函数D .当4x =时,()f x 取得极小值10.在中共二十大代表“燃灯校长”张桂梅老师的不懈努力下,云南华坪山区的2000多名女孩圆了大学梦,她扎根基层教育默默奉献的精神感动了无数人.受她的影响,有甲,乙,丙,丁四名志愿者主动到A,B,C 三所山区学校参加支教活动,要求每个学校至少安排一名志愿者,下列结论正确的是A .共有18种安排方法B .若甲、乙被安排在同一所学校,则有6种安排方法C .若A 学校需要两名志愿者,则有24种安排方法D .若甲被安排在A 学校,则有12安排方法11.已知函数()2ln f x x x =-,则下列说法正确的是A .()f x在2x =处取得最大值B .()f x在12⎛ ⎝⎭上单调递增C .()f x 有两个不同的零点D .()2e 2xf x x <--恒成立(第9题图)12.已知1e a b <<<(e 为自然对数的底数),则A .baa b<B .eeabab >C .eeb aa a >D .eeb ba a <三、填空题:本题共4小题,每小题5分,共20分.13.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.则小明的父母都与他相邻的排法总数为****.14.由数字1,2,3,4可以组成多少个没有重复数字且比1300大的正整数****.15.设函数()ln 2f x x mx =-(m 为实数),若()f x 在[1,)+∞上单调递减,则实数m 的取值范围****.16.已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是****.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)求值:(要有详细的运算过程)(1)计算:215103134A A A A -+;(2)已知()22*1717C C N x x x +=∈,求x .已知函数()322f x x ax bx a =+++在1x =处取得极小值1.(1)求实数,a b 的值;(2)求函数()y f x =在区间[]22-,上的值域.19.(12分)(1)某学校文艺汇演准备从舞蹈、小品、相声、音乐、魔术、朗诵6个节目中选取5个进行演出.要求舞蹈和小品必须同时参加,且他们的演出顺序必须满足舞蹈在前、小品在后.那么不同的演出顺序共有多少种;(2)某地病毒爆发,全省支援,需要从我市某医院选派5名医生支援,5名医生要分配到3个不同的病毒疫情严重的地方,要求每一个地方至少有一名医生.则有多少种不同的分配方法..已知函数()2(1)xf x x e ax =--.(1)讨论()f x 单调性;(2)若函数()()xg x f x xe x =-+在[]1,2上不单调,求a 的取值范围.21.(12分)2022年2月4日,第二十四届冬季奥林匹克运动会开幕式在北京国家体育场举行,拉开了冬奥会的帷幕.冬奥会发布的吉祥物“冰墩墩”、“雪容融”得到了大家的广泛喜爱,达到一墩难求的地步.当地某旅游用品商店获批经销此次奥运会纪念品,其中某个挂件纪念品每件的成本为5元,并且每件纪念品需向税务部门上交5a +元(58)a ≤≤的税收,预计当每件产品的售价定为x 元(1317)x ≤≤时,一年的销售量为2(18)x -万件.(1)求该商店一年的利润L (万元)与每件纪念品的售价x 的函数关系式;(2)求出L 的最大值()Q a .已知函数()()1e 1xf x x =-+.(1)证明:()2102f x x +≥;(2)若0x ≥时,()()ln 1f x mx x ≥+恒成立,求实数m 的取值范围.三明一中2022-2023学年下学期高二第1次月考数学学科参考答案一、选择题123456789101112BCDACBABCDBDABDAD二、填空题13.12种14.22个15.1,2⎡⎫+∞⎪⎢⎣⎭16.()1,3-三、解答题17.解:(1)215103134A A 5410101A A 321410-⨯-===+⨯⨯+………………5分(2)已知221717C C x x +=,则22x x =+或2(2)17x x ++=………………7分解得:2x =或5x =,经检验均符合.………………9分故2x =或5x =.…………………10分18.解:(1)因为()322f x x ax bx a =+++,所以()232f x x ax b '=++,………………1分根据题意,(1)1,(1)0,f f =⎧⎨='⎩………………3分即121,320,a b a a b +++=⎧⎨++=⎩………………5分解得a =3,b =-9,经检验满足题意.………………6分(2)由(1)知,()()()()322396,369331f x x x x f x x x x x =+-+=+-=+-',令()0f x '=,解得3x =-或1x =,………………7分当[]2,2x ∈-时,()f x '及()f x 的变化情况如下表:x 2-()2,1-1()1,22()f x '-+()f x 28单调递减1单调递增8………………9分因此当1x =时,()f x 取得最小值()11f =,当2x =-时,()f x 取得最大值()228f -=,………………11分故()f x 的值域为[]1,28.………………12分19.解:(1)先从相声、音乐、魔术、朗诵4个节目中选3个,有=344C 种,………2分再把5个节目排列且满足舞蹈在前、小品在后,有552260A A =,总共有460240⨯=种.………………5分(2)根据题意,先把5名医生分成3组再分配,一是分成3,1,1然后分配,共有3353C A 10660⋅=⨯=种分配方法,………………8分二是分成2,2,1然后分配,共有22353322C C 30A 690A 2⋅=⨯=种分配方法,………………11分所以共有6090150+=种分配方法.………………12分20.解:(1)函数)(x f 的定义域为R ,()()'(1)22x x x f x e x e ax x e a --=+-=,……………1分(i )当0a ≤时,20xe a ->,所以0x <时,()'0f x <,此时()f x 单调递减;0x >时,()'0f x >,此时()f x 单调递增;……………2分(ii )当102a <<时,ln 20a <时,令()'0f x >,得ln 2x a <或0>x ,令()'0f x <,得ln 20a x <<,所以()f x 的单调递增区间为),0(),2ln ,(+∞-∞a ,()f x 的单调递减区间为)0,2(ln a ……………3分(iii )当12a =时,()'0f x ≥恒成立,()f x 在R 上单调递增.……………4分(iv )当12a >时,ln 20a >,令()'0f x >,得ln 2x a >或0<x ,令()'0f x <,得0ln 2x a <<,所以()f x 的单调递增区间为),2(ln ),0,(+∞-∞a ,()f x 的单调递减区间为)2ln ,0(a 5分综上所述:当0a ≤时,()f x 在)0,(-∞上单调递减,在),0(+∞上单调递增;当102a <<时,()f x 在()ln 2,0a 上单调递减,在(),ln 2a -∞和(0,+∞)上单调递增;当12a =时,()f x 在R 上单调递增;当12a >时,()f x 在()0,ln 2a 上单调递减,在(),0-∞和),2(ln +∞a 上单调递增.……………6分(2)函数()()2xxg x f x xe x x e ax =-+=--,若函数()g x 在[]1,2上不单调,则()'0g x =在()1,2上有解.……………7分又()'120xg x e ax =--=,可得:12xe a x-=……………8分令()1xe h x x -=,则有()()()()221'11x x x e x e x e h x x x---=-⋅-=,……………9分因为()1,2x ∈,则有()'0h x <恒成立,所以()h x 在()1,2上单调递减,……………10分所以()21,12e h x e ⎛⎫-∈- ⎪⎝⎭,即21212e a e -<<-,……………11分解得:21142e e a --<<,则a 的取值范围为21,41(2ee --.……………12分21.解:(1)由题意,预计当每件产品的售价为x 元(1317)x ≤≤,而每件产品的成本为5元,且每件产品需向税务部门上交(5)a +元(58)a ≤≤,所以商店一年的利润L (万元)与售价x 的函数关系式为:2(10)(18),[13,17]L x a x x =---∈.……………3分(2)∵2(10)(18),[13,17]L x a x x =---∈,∴(3823)(18)L a x x =+--',……………4分令0L '=,解得:3823a x +=或18x =,而58a ≤≤,则38216183a +≤≤,……………5分①当38216173a +≤<,即5 6.5a ≤<时,……………6分当38213,3a x +⎛⎫∈ ⎪⎝⎭时,0L '>,L 单调递增,当382,173a x +⎛⎫∈ ⎪⎝⎭时,0L '<,L 单调递减,……………7分∴当3823a x +=时,L 取最大值34(8)27a -;……………8分②当38217183a +≤≤,即6.58a ≤≤时,……………9分当()13,17x ∈时,0L '>,L 单调递增,……………10分∴当17x =时,L 取最大值7a -,……………11分综上,()()348,5 6.5277,6.58a a Q a a a ⎧-≤<⎪=⎨⎪-≤≤⎩……………12分22.解:(1)证明:令()()()22111e 122x g x f x x x x =+=-++,x ∈R ,()00g =,………1分()()e 1x g x x '=+,由()0g x '<可得0x <,由()0g x '>可得0x >.……………2分所以,函数()g x 的减区间为(),0∞-,增区间为()0,∞+,……………3分所以,()()00g x g ≥=,故原不等式得证.……………4分(2)解:当0x ≥时,由()()ln 1f x mx x ≥+可得()()1e ln 110x x mx x --++≥,…………5分令()()()1e ln 11x h x x mx x =--++,其中0x ≥,()()e ln 11x x h x x m x x ⎡⎤'=-++⎢⎥+⎣⎦,且()00h '=,……………6分令()()p x h x '=,其中0x ≥,则()()()()()()32221e 21e 211xx m x x x p x x m x x x ⎡⎤+++'=+-=-⎢⎥+++⎢⎥⎣⎦,令()()31e 2xx t x m x +=-+,其中0x ≥,则()()()()222157e 02xx xx t x x +++'=>+,所以,函数()t x 在[)0,∞+上为增函数,则()()min102t x t m ==-.……………7分①当102m -≥时,即当12m ≤时,对任意的0x ≥,()0p x '≥且()p x '不恒为零,故函数()p x 在[)0,∞+上为增函数,则()()00h x h ''≥=且()h x '不恒为零,故函数()h x 在[)0,∞+上为增函数,则()()00h x h ≥=,合乎题意;……………8分②当102m -<时,即当12m >时,()1002t m =-<,()()()33321e 1210222mm m m m m t m m m m m m +++++=->-=>+++,高二数学第5页共5页所以,存在()00,x m ∈,使得()00t x =,当00x x <<时,()0t x <,则()0p x '<,此时函数()p x 单调递减,则当00x x <<时,()()00p x p <=,即()0h x '<,故函数()h x 在()00,x 上单调递减,所以,()()000h x h <=,不合乎题意.……………11分综上所述,12m ≤.……………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省莆田市第二十五中学2017-2018学年高二数学下学期第一次月
考试题 文
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若i 为虚数单位,则=+i i )1(( )
A .i +1
B .i -1
C .i +-1
D .i --1
2.在复平面内,复数
i
i
+-12对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.函数3
y
x x 的递增区间是( )
A .),0(+∞
B .),1(+∞
C .),(+∞-∞
D . )1,(-∞ 4、已知x,y 之间的一组数据如下表所示,则y 对x 的回归直线必经过( )
A.(0,1) B .(1.5,4) C .(1.5,0) D .(2,5) 5.某篮球运动员在同一位置投球,每次命中率均为
3
2
,那么他两次投球均未命中的概率为( ) A .
91 B .92 C .31 D . 9
4 6 .一个袋中有大小相同的白球2个,黑球3个,有放回的从袋中连续摸出两球,则第一次摸出白球,第二次摸出黑球的概率是( )
A .
254 B . 51 C .256 D . 10
3 7.若z 是复数,且i z 432
+-=,则z 的一个值为( )
A .1-2i
B .1+2i
C .2-i
D .2+i 8. 如果函数y=f (x )的图象如下图,那么导函数()x f y '
=的图象可能是( )
x 0 1 2 3 y
1
3
5
7
9.曲线3
()
2f x x x
在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )
A .(1,0)
B .(2,8)
C .(2,8)和(1,4)--
D . (1,0)和(1,4)--
10.某一批花生种子,如果每1粒发芽的概率为4
5
,那么播下3粒种子都不发芽的概率是( ) A.125124 B. 12564 C. 48125 D. 125
1 11.函数x
x
y ln =的最大值为( )
A .e
B .1-e
C .2e
D .3
10
12.设复数z =cos x +isin x ,则函数f (x )=|z +z
1
|的图象的一部分是图中的 ( )
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.复数i
z -=
12
的共轭复数是______ 14.在复数范围内解方程0222
=+-x x ,得=x ______
15.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取起2粒都是黑子的概率是
16.若函数x ax x x f 23)(2
3
--=在(0,1)内为减函数,则a 的取值范围是
三、解答题:(17题10分,18-22每题12分,共70分)
17.已知R x ∈,R y ∈,且i y y i x )3(2)12(++=+-。
求y x 与的值。
18:已知复数3311)1)(1(i i
i
i i z --+--+=。
求复数z 的模。
19.在对人们的休闲方式的一次调查中,共调查了100人,其中女性60人.女性中有40人主要的休闲方式是看电视;男性中有25人主要的休闲方式是运动.(参考数据:
,01.0)64.6(2≈≥x p 05.0)84.3(2≈≥x p ,10.0)71.2(2≈≥x p )
(1)根据以上数据填写2×2的列联表;(2)请问能有多大的把握认为性别与休闲方式有关系? 解:(1)2×2的列联表 性别 休闲方式
看电视 运动 总计 女 男 总计
20.三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543
且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. 21.已知函数3
()3f x x x =- (1)求函数()f x 的极值;
(2)求函数()f x 在3[3,]2
-上的最大值和最小值.
22.设函数()b f x ax x =-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=。
(1)求()y f x =的解析式;
(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。
答题卷
一、选择题(每小题5分,共60分)
二、填空题(每小题5分,共20分)
13、;14、;15、;16、
三、解答题(17题10分,18-22每小题12分共70分)
17、
18、
19、
解:(1)2×2的列联表
(2)
20、
.
21、
22.
参考答案
一、选择题(每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
C
D
C
B
A
C
B
A
D
D
B
A
二、填空题(每小题5分,共20分)
13、 i -1 ; 14、 i ±1 ;15、; 16、⎪⎭
⎫⎢⎣⎡+∞,27
三、解答题(17-21每小题12分,22题14分)17、18、 性别 休闲方式
看电视 运动 总计 女 男 总计
(2)
20、解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有
123111
(),(),(),54.3
P A P A P A ===且A 1,A 2,A 3相互独立.
(Ⅰ)设“恰好二人破译出密码”为事件B ,则有
B =A 1A 23A A 12A A 3 1A A 2A 3且A 1A 23A ,A 12A A 3,1A A 2A 3彼此互斥
于是P (B )=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3)
=
314154314351324151⨯⨯+⨯⨯+⨯⨯=20
3
. 答:恰好二人破译出密码的概率为20
3
.
(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D .
D =1A 2A 3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=
324354⨯⨯=5
2
. 而P (C )=1-P (D )=
5
3
,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大. 21、 解:(1)f ‘(x)=3x 2-3=3·(x+1)(x -1)令f ‘(x)=0得x 1=1, x 2=-1 列表如下:
∴f (x)的极大值为f(-1)=2,极小值为f(1)=-2 (2)由(1)可知,()f x 在
()f x 上的最值只可能在x=-3,x=2
3-,x=-1. x=1取到, ∵f (-3)= -18, f (-1)=2,f (1)= -2,f (2
3-)=-98
∴()f x 在
()f x 上的最大值和最小值分别为2,-18.
22.解:(Ⅰ)方程74120x y --=可化为734y x =
-.当2x =时,1
2
y =. ··· 2分 又2()b f x a x '=+,于是1222
744
b a b a ⎧
-=⎪⎪⎨⎪+=⎪⎩,,
解得13.a b =⎧⎨=⎩,故3()f x x x =-. ······· 7分
(Ⅱ)设00()P x y ,为曲线上任一点,由2
3
1y x '=+
知曲线在点00()P x y ,处的切线方程为 002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫
--=+- ⎪ ⎪⎝⎭⎝⎭. 。
10分 令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫
- ⎪⎝
⎭,.
令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,
. ··· 12分 所以点00()P x y ,处的切线与直线0x =,y x =所围成的三角形面积为
016
262x x
-=. 故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6. ································· 14分
如有侵权请联系告知删除,感谢你们的配合!。