电子产品设计之热设计

合集下载

电子行业电子设备热设计第三讲

电子行业电子设备热设计第三讲

电子行业电子设备热设计第三讲一、概述在电子行业中,电子设备的热设计是非常关键的一项工作。

合理的热设计可以保证电子设备的稳定性和可靠性,同时也可以提高电子设备的性能和寿命。

本文将对电子行业电子设备热设计的一些基本概念和方法进行介绍,帮助读者更好地理解和应用热设计在电子设备中的作用。

二、热设计的重要性在电子设备中,由于电子器件的工作过程中会产生大量的热量,如果不能及时有效地将热量散发出去,就会导致电子设备的温度升高,进而影响设备的性能和寿命。

因此,热设计成为了电子设备设计中不可忽视的一个重要环节。

在电子设备热设计中,常用的指标包括温度上限、温度梯度和温度均匀性等。

温度上限表示设备能够承受的最高温度,一旦超过该温度,设备就有可能出现损坏或者失效的情况。

温度梯度表示设备内部不同位置的温度差异,过大的温度梯度可能导致部分电子器件工作不稳定。

温度均匀性表示设备内部不同部分的温度分布是否均匀,均匀的温度分布可以提高设备的可靠性和寿命。

三、热设计的基本原理1. 热传导热传导是热设计中最基本的过程,它描述了热量从高温区域传递到低温区域的过程。

在电子设备中,热传导通常是通过导热材料的传导实现的,如铜、铝等具有良好导热性能的材料。

通过合理选择导热材料,可以提高电子设备的散热效果,减少设备的温度上升。

2. 热对流除了热传导外,热对流也是电子设备热设计中常用的散热方式之一。

热对流是指热量通过流体的对流传送,如空气、水等。

在电子设备中,通常通过风扇或者散热片等装置来增加空气流动,加速热量的传输。

合理布置散热片和风扇,可以有效地提高电子设备的散热效果,降低设备的工作温度。

3. 热辐射除了热传导和热对流外,热辐射也是电子设备热设计中需要考虑的因素之一。

热辐射是指热量以电磁波的形式传播,不需要依靠介质传递。

在电子设备中,一些高温的零部件,如芯片和电阻等,会通过热辐射的方式散热。

通过合理设计设备结构和热辐射面积,可以提高设备的散热效果,降低设备的温度。

电子产品热设计及热仿真技术的应用分析

电子产品热设计及热仿真技术的应用分析

电子产品热设计及热仿真技术的应用分析摘要:随着装备性能的不断提升,复杂程度的不断提高,以及使用环境的日趋复杂,电子产品对可靠性的要求日益提高,可靠性已成为衡量电子产品使用性能的一项重要指标。

因散热不良引发的故障一直在电子产品故障发生中占有很大的比重,电子产品一旦出现热设计缺陷,往往在设计周期和设计成本等多方面造成极大的损失。

因此需要在产品设计源头加以控制,即在设计之初考虑产品的功能和性能的同时,考虑其散热等因素。

综合电子产品的性能设计和热设计,选择采用什么散热方式、使用何种散热材料等,其目的是高效率、低成本、高可靠地制造产品。

基于此,本文对电子产品热设计及热仿真技术的应用进行分析,为产品全生命周期设计提供验证支撑,达到合理可靠稳定运行的目的。

关键词:电子产品热设计;热仿真技术;应用分析引言电子产品是基于电子信息技术发展背景下的重要产物,电子信息技术是20世纪初诞生的一种新兴的技术,随着时代的发展与生产技术的不断革新,电子信息技术得到了进一步发展。

进入21世纪之后,电子信息技术已成为科学技术领域的重要标志之一,在各个行业及领域均具有非常广泛的应用。

伴随着大量电子产品的问世,不仅改变了人们传统的生活方式,也为人们的生产与生活带来了巨大的便利。

随着社会信息化的不断发展,电子产品多功能集成和便携的需求日益凸显,电子产品的集成化和小型化就成了目前电子产品的发展趋势,电子产品的集成化意味着功率会大概率的增大,与小型化的发展综合在一起意味着电子产品的单位体积功率密度会不断增大,因此电子产品的热设计就需要从粗放的经验设计向精确化的热理论设计发展。

热仿真就是支持电子产品精确化理论设计最佳手段。

通过热仿真将电子产品在性能设计的基础上叠加热设计,达到电子产品在最优热环境里发挥最佳性能的目的。

1电子产品热设计的意义1.1电子产品进行热设计的优势有效散热对于电子产品的稳定运行和长期可靠性而言至关重要,将电子产品热功能部件的工作温度控制在其有效工作的温度范围内,是提升电子产品可靠性的基本思路。

电子产品的热设计

电子产品的热设计

面积 、 短热传导的路径 , 缩 在传 导 路 径 中不 应有 绝
热 或 隔热 元 件 、 用 导热 数 大 的材 料 制造 传 导 零 选
件 : 流 是 固体 表 面 与 流 体 表 面 的热 流 动 , 自然 对 有 对 流 和强 迫 对 流 之分 . 电子产 品 中流 体通 常 是 指 在
部 温 升 降低 到所 要 求 的 范 围 , 以保 证 产 品性 能 稳
定 , 缓 产 品 零部 件 氧 化 、 减 老化 、 劳 或磨 损 , 高 疲 提
产 品 的平 均无 故 障 工作 时 间 , 而延 长 产 品 的使 用 从 寿命
2 热 设 计 的 原 则
21 热传递 的方式 .
温度 。
加 宽 印制 线 , 以增 强元 器 件 引线 腿 对 印制 线 的热 传 导 和 增强 导 电性 ,必要 时可 以采 取 增 加 散热 器 、 在 元 器 件 与 散 热 材 料 间涂 抹 导 热 膏 等措 施 以增 加 元
器 件发 热量 的传 导散 热 。
元 器 件 的合 理 布 局 是 印 制 板 热 设 计 的重 要 内 容 , 根 据 产 品 中各 热 源 的 发 热 情 况 , 理 安 排 元 即 合 器 件 的位 置 , 止元 器 件 热量 的积 蓄 以及 元 器件 之 防 间 的热 影 响 , 以确保 元 器 件始 终 工 作在 允 许 的 工作 温 度 范 围 内。考 虑 到元 器 件 工作 的 发 热情 况 , 元 在 器 件 布 局 上 一 般 将 热 敏 感 的元 器 件 置 于 温 度 最 低 的区域 , 即对 于 自由 对 流 冷却 产 品 , 敏 感 元 器 件 热 以能 够 放 在 底 部 ,而 其 它 元 器 件 放 置 在 它 们 的上 面 , 对 于冷 壁 冷却 电路插 件 则 应将 热 敏 感 元器 件 而 靠 近插件 的边 缘 。此 外 , 可能 设法 将 发热 元器 件 尽 沿 着冷 壁 均匀 散 开 , 不要 使 热 敏元 器 件 与 发 热元 器

电子行业电子设备热设计基础

电子行业电子设备热设计基础

电子行业电子设备热设计基础引言在电子行业中,电子设备的热设计是非常重要的。

随着电子设备的不断发展,其功能越来越强大,性能越来越高,工作时产生的热量也越来越大。

如果电子设备的热量不能有效地散出去,会导致设备过热,影响设备的性能甚至损坏设备。

因此,合理的热设计对于电子设备的可靠性和稳定性至关重要。

本文将介绍电子行业电子设备热设计的基础知识,包括热传导、热辐射、热对流等方面的内容,帮助读者了解电子设备热设计的重要性并掌握一些基本的设计原则和方法。

热传导热传导是指热能通过物质的传导方式传递的过程。

在电子设备中,常见的热传导方式有三种:导热、对流和辐射。

导热导热是通过物质内部的分子或电子的碰撞传递热能的过程。

导热的速度和效率取决于物质的热导率和传热面的接触情况。

为了提高导热效率,我们可以采用导热材料,如铜、铝等,作为散热板或散热片,将其与电子元件紧密接触以增大接触面积。

对流对流是指热量通过流体(如空气)的对流传递的过程。

当电子设备工作时产生的热量无法直接通过导热方式散出去时,就需要依靠对流来进行热散热。

在设计电子设备时,我们需要合理设置散热孔和散热风扇等设备,以增加热量与周围空气的接触面积,提高对流散热效率。

辐射辐射是指热能以电磁辐射的形式传递的过程。

热辐射是无需传递介质的热传递方式,在电子设备中发挥重要作用。

通过合理设置散热片、散热器等辐射表面,可以增大辐射能量的发射和吸收。

此外,还可以利用红外线热成像等技术来监测电子设备中的热辐射情况,及时发现问题并采取相应的措施。

设计原则和方法在进行电子设备热设计时,需要遵循一些基本的设计原则和方法,以确保设备的稳定运行和长寿命。

合理布局在电子设备的布局设计中,需要考虑到热量的产生和散热的位置。

将产热元件和散热结构合理布置,减少热量在设备内部的积聚,有利于热量的迅速散出,提高散热效率。

优化散热结构为了提高散热效果,可以采用散热片、散热器等散热结构来增大热量与周围环境的接触面积。

浅谈热设计

浅谈热设计

浅谈电子产品热设计(一)、热设计中的常用词汇电子产品中经常会用到“热阻”(K/W)这个词。

在图1的示例中,连接A和B 的管道越细,水就越难流出,A和B之间的水位差也就越大。

相反,加粗管道后,AB之间的水位差将会消失。

这种阻碍水流动的作用就相当于热阻。

举例来说,当热流量为1W、温度上升1K时,热阻就是1K/W。

在热设计中,热阻扮演着非常重要的角色。

因为只要知道热阻,就能构思出散热措施,例如“如果要制造热阻为5K/W的散热片,尺寸大约会达到50mm×50mm×30mm”、“热阻为0.1K/W、因此必须要有风扇”等等。

发热量和散热量也是热设计的常用词汇,但二者都属于“热流量”(W),表示1秒的时间中产生或转移的热量。

“热容量”(J/K)也是一个重要参数。

热容量相当于图1中水箱A的底面积。

如果底面积大,即使加入大量的水,水位也不容易上升。

相反,如果底面积小,即使只加入少量的水,水位也会猛涨。

热也是如此,如果是热容量大的大铁块,就算发热量大,温度也很难升高。

相反,如果是热容量小的小塑料容器,哪怕发热量不大,温度也会迅速升高。

也就是说,热容量代表的是水位上涨1m需要注入多少L水,即使温度升高1K需要多少J热量。

假设热容量为1J/K,热流量为1W。

此时,1 秒钟将有1J的热能流入;而每吸收1J的热量,温度会升高1K。

因此,如果忽略热量的流失,1秒的时间中温度会升高1K。

由此可知,只要知道了热容量,就能推算出温度的升降。

热容量等于“比热×重量”,计算非常简单(注1)。

比热是单位质量物质的热容量,单位为J/kg·K(或J /kg·℃)。

质量则是体积×密度。

比热和密度都是物理性质,可以在手册中查到,而且,体积是由尺寸决定的,因此,只要知道材料和尺寸,就能计算出热容量。

至于印刷电路板等复合材料,在计算出各种材料的热容量之后,相加即为总的热容量。

(注1)热阻的计算方式因热传导、热对流、热辐射等热移动的方式而异,非常复杂。

电子产品热设计原理和原则

电子产品热设计原理和原则


d
L
L
热 热 D
D 热
D 冷
d
热 D
2024/4/28
冷 热 D d


47
3.是否充分利用导热路径:导热材料将发热器件与机壳相连。 4.是否充分利用辐射散热路径; 5.使用散热器; 6.其他冷却技术:冷管
2024/4/28
48
烟囱效应
如果温度变高,空气就会膨胀。也就是说,如果 体积相同,热空气会变轻。较轻的空气被较重的空 气推开,然后上升。这就是自然对流。
如果用墙壁将又热又轻的空气包围起来,敞开上 下面,可进一步地促进自然对流。这就是烟囱效应。
2024/4/28
49
烟囱效应形成的压差
H
基于烟囱效应的静压[kg/m2] =(外部空气密度[kg/m3]-(内部空气密度[kg/m3])X烟囱高度[m]
空气密度[kg/m3]=0 ℃的空气密度[kg/m3]X273.15/(273.15+气温[℃])
近的规格
2024/4/28
40
散热片的材料和表面处理
材料: 1. 散热要求不高的场合,用铝材; 2. 散热要求高的场合,用铜材; 3. 兼顾成本、散热性能要求,基座用铜,鳍片用铝。
表面处理: 为提高鳍片外表面的辐射接收性能,将外表做黑化处理 提高鳍片黑度
2024/4/28
41
散热片的安装
安装散热片的注意事项:
Tj
R = Rjc + Rcs + Rsa
Tj ----晶片界面温度,一般115-180 ℃,军用65-80 ℃; Tc ---- 晶片与导热介质界面温度 Ts ----导热介质与散热片界面温度 Ta ----外界为空气35-45 ℃ ,密闭空间或接近其他热源50-60 ℃ Rjc ----晶片到封装外壳热阻 Rcs ----导热介质热阻 R20s2a4/4-/-2-8-散热片热阻

电子产品设计之热设计

电子产品设计之热设计

电子产品设计之热设计散热器的设计方法散热器设计的步骤通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图.2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化. 3:进行校核计算.散热器的设计方法自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.散热器的设计方法强迫冷却散热器的设计方法在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.散热器的设计方法在一定冷却条件下,所需散热器的体积热阻大小的选取方法在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法不同形状、不同的成型方法的散热器的传热效率比较散热器的相似准则数及其应用方法相似准则数的定义散热器的相似准则数及其应用方法相似准则数的应用散热器的基板的优化方法不同风速下散热器齿间距选择方法不同风速下散热器齿间距选择方法优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式辐射换热的考虑原则如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.如果物体表面的温度低于50℃,可不考虑辐射换热的影响.辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.热设计的计算方法冷却方式的选择方法确定冷却方法的原则在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.热设计的计算方法冷却方式的选择方法冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却热设计的计算方法冷却方式的选择方法冷却方式的选择方法案例某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.机箱的热设计计算密封机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT对通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+1000uAΔT对强迫通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+ 1000QfΔT自然冷却时进风口面积的计算在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:Sin=Q/(7.4×10-5 H×Δt 1.5)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cm,约模块高度的1.5-1.8倍,Δt=t2-t1-内部空气t2与外部空气温度 t1 之差 , ℃出风口面积为进风口面积的1.5-2倍强迫风冷出风口面积的计算模块有风扇端的通风面积:Sfan=0.785(φin2-φhub2)无风扇端的通风面积S=(1.1-1.5) Sfan系统在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:S=(1.5-2.0)(N×S模块)N---每层模块的总数S模块---每一个模块的进风面积热设计的计算方法通风面积计算的案例[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?H按2倍模块的高度计算,即 H=2×7U=14U进风口的面积按下式计算:Sin=Q/(7.4×10-5×H×△t1.5)=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2进风口高度h机柜的宽度按B=680mm计,则进风口的高度为:H=Sin/B=875/68=128.7mmb 出风口面积SoutSout=(1.5-2.0)Sin=2×875=1750 cm2热设计的计算方法实际冷却风量的计算方法q`=Q/(0.335△T)q`---实际所需的风量,M3/hQ----散热量,W△T-- 空气的温升,℃,一般为10-15℃.确定风扇的型号经验公式:按照1.5-2倍的裕量选择风扇的最大风量:q=(1.5-2)q` 按最大风量选择风扇型号.热设计的计算方法实际冷却风量的计算方法案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.实际所须风量为:q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h按照2倍的裕量选择风扇的最大风量:q=2q`=2×159.2=318.4m3/h下表风扇为可选型号热设计的计算方法型材散热器的计算散热器的热阻散热器的热阻是从大的方面包括三个部分.RSA=R对+R导+ R辐R对=1/(hc F1)F1--对流换热面积(m), hc –对流换热系数(w/m2.k)R辐--辐射换热热阻 ,对强迫风冷可忽略不计对自然冷却 R辐=1/(4бεTm3)R导=R 基板+R肋导=δ/(λF2)+((1/η)-1)R对流λ--导热系数,w/m.h.℃δ-- 散热器基板厚度(m)η-- 肋效率系数F2--基板的导热面积(m)F2=0.785*(d+δ)2d- 发热器件的当量直径(m)热设计的计算方法型材散热器的计算对流换热系数的计算自然对流垂直表面hcs=1.414(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取散热表面的高,m水平表面,热表面朝上hct=1.322(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下hcb=0.661(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m挤压技术铝挤压技术是 CPU散热片制作工艺中较为成熟的技术,主要针对铝合金材料的加工,因为铝合金材料密度相对较低,可塑性比较强。

电子产品热设计

电子产品热设计

目录摘要: (2)第1章电子产品热设计概述: (2)第1.1节电子产品热设计理论基础 (2)1.1.1 热传导: (2)1.1.2 热对流 (2)1.1.3 热辐射 (2)第1.2节热设计的基本要求 (3)第1.3节热设计中术语的定义 (3)第1.4节电子设备的热环境 (3)第1.5节热设计的详细步骤 (4)第2章电子产品热设计分析 (5)第2.1节主要电子元器件热设计 (5)2.1.1 电阻器 (5)2.1.2 变压器 (5)第2.2节模块的热设计 (5)电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6)第2.3节整机散热设计 (7)第2.4节机壳的热设计 (8)第2.5节冷却方式设计: (9)2.5.1 自然冷却设计 (9)2.5.2 强迫风冷设计 (9)电子产品热设计实例二:大型计算机散热设计: (10)第3章散热器的热设计 (10)第3.1节散热器的选择与使用 (10)第3.2节散热器选用原则 (11)第3.3节散热器结构设计基本准则 (11)电子产品热设计实例三:高亮度LED封装散热设计 (11)第4章电子产品热设计存在的问题与分析: (15)总结 (15)参考文献 (15)电子产品热设计摘要:电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。

因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。

另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。

由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。

第1章电子产品热设计概述:电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。

产品热设计

产品热设计

YEALINK产品热设计VCS项目散热预研欧国彦2012-12-4热设计、冷却方式、散热器、热管技术产品的热设计一、为什么要进行热设计在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。

所以电失效的很大一部分是热失效。

高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。

温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。

那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。

由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。

二、热设计的目的控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。

最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。

三、热设计的方法1、冷却方式的选择我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量/ 热通道面积。

电子设备热设计概述

电子设备热设计概述

电子设备热设计概述【摘要】热设计在电子设备设计中具有重要作用,散热效果的好坏直接影响设备的性能指标和使用寿命。

如何提高产品的散热性能成为迫切需要解决的问题。

本文就热量传递方式、冷却方式的选择以及电子设备热设计方法等方面进行了简要概述。

【关键词】热设计;热量传递;散热0.引言现代电子设备结构越来越小,性能要求越来越高,不但支持多任务功能,而且具有更好的便携功能,由此会产生更多的系统热量,更大的热流密度。

大量的系统热量在设备中聚集,会严重影响设备的性能指标及使用寿命。

在电子产品中,高温对电子产品的影响包括,绝缘性能退化,元器件损坏,材料的热老化,低熔点焊缝开裂及焊点脱落,从而导致整个产品的性能下降以至完全失效。

因此在许多现代化产品的设计,特别是可靠性设计中,热设计已占有越来越重要的地位。

1.热设计概述1.1 热设计概述热设计是整个系统设计的一部分,它往往与结构设计、内部布局、电磁兼容要求等设计耦合在一起,必须综合考虑才能使整个产品达到优异的性能。

根据相关标准和规范,通过对产品各组成部分的热分析,确定所需散热措施,以调节所有机械部件、电子器件和其它一切与热有关的零部件的温度,使其本身及其所处的工作环境的温度都不超过标准和规范所规定的温度范围。

对于电子产品,最高和最低允许温度的计算应以元器件的耐热性能和应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。

通过热设计在满足性能要求的前提下尽可能减少设备内部产生的热量,减少热阻,选择合理的冷却方式,保证设备在散热方面的可靠性。

1.2 热量传递方式热量传递有三种方式:传导、对流和辐射。

传导:两个良好接触的物体之间的能量交换或一个物体内由于温度梯度引起的内部能量交换。

对流:流动的流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。

根据引起流动的原因可以分为自然对流和强制对流。

辐射:物体通过电磁波来传递热量的方式称为热辐射。

第12章 电子产品热设计

第12章 电子产品热设计

• 12.2.3电子产品热控制的目的 • 12.2.4电子元器件与模块的热设计 1.电子元器件的热设计 2.电子模块的热设计
变压器热设计处理
12.3 笔记本电脑散热设计实例分析
• 12.3.1笔记本电脑热源追踪 • 12.3.2笔记本与台式电脑散热比较
• 12.3.3 笔记本散热方式
1.风扇散热
3.机壳内外表面高黑度的降温效果比单面高黑度的效果好 4.在机壳内外表面黑化的基础上,合理改进通风结构
5.通风口的位置应注意气流短路而影响散热效果,通风口的进出应开在 温差最大的两处,进风口要低,出风口要高
6.在自然散热时,通风孔面积的计算至关重要
7.结构要简单,不易落灰,又要满足强度,电磁兼容性要求和美观大方
比如,使用风冷散热器的体系在运行CPU负载较大时, 会在短时间内出现温度热尖峰,或可能超出CPU警戒温 度,而水冷散热体系则由于热容积大,热波动相对要小 得多。
CPU的水冷散热系统
水冷系统下的笔记本温度曲线
12.3.4埃普八爪鱼笔记本散热器
埃普八爪鱼散热底座是由著名的精辉公司针对桌面支架系 统推出的新款人体工程学支架,参考八爪鱼仿生学设计,主 体采用铝合金结构和高强度工程塑料材料,设计精巧,做工 优良,外观造型独特,具有很高的实用性和便携性。
用美属主 观电体 耐镀采 供用,用 电,质的 ,并感是 提配高铝 高有档合 电两的金 脑个同压 散高时铸 热速保, 性静障表 能音了面 。风使细 扇用喷 ,强沙 采度金
USB
埃普八爪鱼散热底座的包装
细节欣赏
未使用八爪鱼散热器前鲁大师测试结果
使用八爪鱼散热器后鲁大师软件测试结果
12.4电子产品热设计实例: IBM“芯片帽”芯片散热系统

电子产品热设计原理和原则培训课件

电子产品热设计原理和原则培训课件

01
服务器热设计案例
Dell PowerEdge R740
02
热设计挑战
服务器内部通常有多颗处理器和多个硬盘,发热量大,且需要保证长时
间稳定运行,对散热要求极高。
03
解决方案
Dell PowerEdge R740采用了高效的风道设计和多风扇散热系统,同时
使用了液冷技术,如冷板式和浸没式液冷,来将热量快速散发出去。
自然散热技术是指利用自然对流和辐射散热的方式,将电子产品的热量传递到周围 环境中。
自然散热技术适用于低功耗、低发热的电子产品,如小型电子设备、遥控器等。
自然散热技术的优点是结构简单、成本低、可靠性高,缺点是散热效果受环境温度 影响较大,散热效率较低。
强制风冷散热技术
强制风冷散热技术是指通过风扇等机 械通风装置,强制将冷空气吹向发热 元件,将热量带走并排放到周围环境 中。
详细描述
导热是热设计中的基本原理之一,主要通过固体材料的晶格结构和自由电子的 运动传递热量。热量从高温向低温传递,传递速率与材料的导热系数成正比。 常见的导热材料包括金属、石墨烯、金刚石等。
对流换热原理
总结词
对流换热是指流体与固体表面之间的热量传递过程,涉及到流体中质点的宏观运 动和流体分子与固体表面之间的微观相互作用。
电子产品热设计的目标与原则
目标
确保电子产品在工作过程中温度 处于安全范围内,防止过热,保 证稳定运行。
原则
合理选择散热方式、优化散热结 构、降低热阻、提高散热效率。
电子产品热设计的基本流程
选择散热方式
根据实际情况选择自然散热、 强制散热或热管散热等散热方 式。
仿真与优化
利用热仿真软件对设计进行仿 真,分析散热效果,并根据仿 真结果进行优化。

电子产品的热设计方法讲解

电子产品的热设计方法讲解

电子产品的热设计方法v 为什么要进行热设计?高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。

温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。

v 热设计的目的控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。

最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。

v 在本次讲座中将学到那些内容风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。

授课内容v 风路的设计方法20分钟v 产品的热设计计算方法40分钟v 风扇的基本定律及噪音的评估方法20分钟v 海拔高度对热设计的影响及解决对策20分钟v 热仿真技术、热设计的发展趋势50分钟概述v 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。

v 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。

v 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。

v 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。

v 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。

v 热设计的发展趋势:了解最新散热技术、了解新材料。

风路设计方法v 自然冷却的风路设计Ø 设计要点ü机柜的后门(面板)不须开通风口。

电子产品的热设计方法

电子产品的热设计方法

电子产品的热设计方法(一)2007-05-03 14:51:28 字号:大中小为什么要进行热设计?高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落.温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降, 一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组件失效.热设计的目的控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度.最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致.在本次讲座中将学到那些内容风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势.授课内容风路的设计方法 20分钟产品的热设计计算方法 40分钟风扇的基本定律及噪音的评估方法 20分钟海拔高度对热设计的影响及解决对策 20分钟热仿真技术、热设计的发展趋势 50分钟概述风路的设计方法 :通过典型应用案例,让学员掌握风路布局的原则及方法.产品的热设计计算方法 :通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法.风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法.海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响.热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍.热设计的发展趋势:了解最新散热技术、了解新材料.风路设计方法自然冷却的风路设计设计要点机柜的后门(面板)不须开通风口.底部或侧面不能漏风.应保证模块后端与机柜后面门之间有足够的空间.机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间.对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面.对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口.风路设计方法自然冷却的风路设计设计案例风路设计方法自然冷却的风路设计典型的自然冷机柜风道结构形式风路设计方法强迫冷却的风路设计设计要点如果发热分布均匀, 元器件的间距应均匀,以使风均匀流过每一个发热源.如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件.如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器.进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响.风道的设计原则风道尽可能短,缩短管道长度可以降低风道阻力;尽可能采用直的锥形风道,直管加工容易,局部阻力小;风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;风路设计方法强迫冷却的风路设计典型结构风路设计方法强迫冷却的风路设计电源系统典型的风道结构-吹风方式风路设计方法热设计的基础理论自然对流换热大空间的自然对流换热Nu=C(Gr.Pr)n.定性温度: tm=(tf+tw)/2定型尺寸按及指数按下表选取热设计的基础理论自然对流换热有限空间的自然对流换热垂直封闭夹层的自然对流换热问题分为三种情况:(1) 在夹层内冷热壁的两股流道边界层能够相互结合,形成环流;(2) 夹层厚度δ与高度之比δ/h>0.3时,冷热的自然对流边界层不会相互干扰,也不会出现环流,可按大空间自然对流换热计算方法分别计算冷热的自然对流换热;(3) 冷热壁温差及厚度均较小,以厚度为定型尺寸的Gr=(Bg△tδ3)/υ3<2000时,通过夹层的热量可按纯导热过程计算.热设计的基础理论自然对流换热有限空间的自然对流换热水平夹层的自然对流换热问题分为三种情况:(1) 热面朝上,冷热面之间无流动发生,按导热计算;(2) 热面朝下,对气体Gr.Pr<1700,按导热计算;(3) 有限空间的自然对流换热方程式:Nu=C(Gr.Pr)m(δ/h)n定型尺寸为厚度δ,定性温度为冷热壁面的平均温度Tm=(tw1+tw2 )热设计的基础理论流体受迫流动换热管内受迫流动换热管内受迫流动的特征表现为:流体流速、管子入口段及温度场等因素对换热的影响.入口段:流体从进入管口开始需经历一段距离后管两侧的边界层才能够在管中心汇合,这时管断面流速分布及流动状态才达到定型.这段距离称为入口段.入口段管内流动换热系数是不稳定的,所以计算平均对流换热系数应对入口段进行修正.在紊流时,如果管长与管内径之比L/d>50则可忽略入口效应,实际上多属于此类情况.管内受迫层流换热准则式:Nu=0.15Re0.33 Pr0.43Gr0.1(Pr/Prw)0.25管内受迫紊流换热准则式:tw>tf Nu=0.023Re0.8 Pr0.4.tw<tf Nu=0.023Re0.8 Pr0.3热设计的基础理论流体动力学基础流量与断面平均流速流量:单位时间内流过过流断面的流体数量.如数量以体积衡量称为体积流量Q;单位为m3/s(CFM);如数量用重量衡量称为重量流量G,单位为Kg/s.二者的关系为:G=γQ断面平均流速:由于流体的粘性,过流断面上各点的流速分布不均匀,根据流量相等原则所确定的均匀流速称为断面平均流速.单位m/s(CFM)V=Q/A湿周与水力半径湿周:过流断面上流体与固体壁面相接触的周界长度.用x表示,单位m.水力半径:总流过过流断面面积A与湿周x之比称为水力半径,应符号R表示,单位M.恒定流连续性方程对不可压缩流体:V1A1=V2A2.对可压缩流体 : ρ1V1A1=ρ1V2A2热设计的基础理论流体动力学基础恒定流能量方程对理想流体:Z+p/γ+v2/2g=常数实际流体:由于粘性作为会引起流动阻力,流体阻力与流体流动方向相反作负功,使流体的总能量不断衰减,每个断面的Z+p/y+v2/2g≠常数,假设流体从断面1到断面2的能量损失为hw,则元流的能量方程式为:Z1+p1/γ+v12/2g=Z2+p2/γ+v22/2g+hw 热设计的基础理论流体动力学基础流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种.沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力.局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力.层流、紊流与雷诺数层流:流体质点互不混杂,有规则的层流运动.Re=Vde/ν<2300 层流紊流:流体质点相互混杂,无规则的紊流运动.显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力较层流阻力大的多.Re=Vde/ν<2300 紊流热设计的基础理论流体动力学基础管内层流沿程阻力计算(达西公式)hf=λ(L/de)(ρV2/2)λ-沿程阻力系数,λ=64/Re管内紊流沿程阻力计算hf=λ(L/de)(ρV2/2)λ=f(Re,ε/d),即紊流时沿程阻力系数不仅与雷诺数有关,还与相对粗糟度ε有关. 尼古拉兹采用人工粗糟管进行试验得出了沿程阻力系数的经验公式:紊流光滑区:4000<Re<105, λ采用布拉修斯公式计算:λ=0.3164/Re 0.25热设计的基础理论流体动力学基础非园管道沿程阻力的计算引入当量水力半径后所有园管的计算方法与公式均可适用非园管,只需把园管直径换成当量水力直径.de=4A/x局部阻力hj=ξρV2/2ξ-局部阻力系数突然扩大: 按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2)按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)突然缩小: 可从相关的资料中查阅经验值.电子产品的热设计方法(二)2007-05-03 14:53:24 字号:大中小散热器的设计方法散热器设计的步骤通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图.2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化.3:进行校核计算.散热器的设计方法自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.散热器的设计方法强迫冷却散热器的设计方法在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.散热器的设计方法在一定冷却条件下,所需散热器的体积热阻大小的选取方法在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法不同形状、不同的成型方法的散热器的传热效率比较散热器的相似准则数及其应用方法相似准则数的定义散热器的相似准则数及其应用方法相似准则数的应用散热器的基板的优化方法不同风速下散热器齿间距选择方法不同风速下散热器齿间距选择方法优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式辐射换热的考虑原则如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.如果物体表面的温度低于50℃,可不考虑辐射换热的影响.辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.热设计的计算方法冷却方式的选择方法确定冷却方法的原则在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.热设计的计算方法冷却方式的选择方法冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却热设计的计算方法冷却方式的选择方法冷却方式的选择方法案例某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2 当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.机箱的热设计计算密封机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT对通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+1000uAΔT 对强迫通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+ 1000QfΔT 自然冷却时进风口面积的计算在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:Sin=Q/(7.4×10-5 H×Δt 1.5)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cm,约模块高度的1.5-1.8倍,Δt=t2-t1-内部空气t2与外部空气温度 t1 之差, ℃ 出风口面积为进风口面积的1.5-2倍强迫风冷出风口面积的计算模块有风扇端的通风面积:Sfan=0.785(φin2-φhub2)无风扇端的通风面积S=(1.1-1.5) Sfan系统在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为: S=(1.5-2.0)(N×S模块)N---每层模块的总数S模块---每一个模块的进风面积热设计的计算方法通风面积计算的案例[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?H按2倍模块的高度计算,即H=2×7U=14U进风口的面积按下式计算:Sin=Q/(7.4×10-5×H×△t1.5)=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2进风口高度h机柜的宽度按B=680mm计,则进风口的高度为:H=Sin/B=875/68=128.7mmb 出风口面积SoutSout=(1.5-2.0)Sin=2×875=1750 cm2热设计的计算方法实际冷却风量的计算方法q`=Q/(0.335△T)q`---实际所需的风量,M3/hQ----散热量,W△T-- 空气的温升,℃,一般为10-15℃.确定风扇的型号经验公式:按照1.5-2倍的裕量选择风扇的最大风量:q=(1.5-2)q` 按最大风量选择风扇型号.热设计的计算方法实际冷却风量的计算方法案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.实际所须风量为:q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h按照2倍的裕量选择风扇的最大风量:q=2q`=2×159.2=318.4m3/h下表风扇为可选型号热设计的计算方法型材散热器的计算散热器的热阻散热器的热阻是从大的方面包括三个部分.RSA=R对+R导+ R辐R对=1/(hc F1)F1--对流换热面积(m), hc –对流换热系数(w/m2.k)R辐--辐射换热热阻 ,对强迫风冷可忽略不计对自然冷却 R辐=1/(4бεTm3)R导=R 基板+R肋导=δ/(λF2)+((1/η)-1)R对流λ--导热系数,w/m.h.℃δ-- 散热器基板厚度(m)η-- 肋效率系数F2--基板的导热面积(m)F2=0.785*(d+δ)2d- 发热器件的当量直径(m)热设计的计算方法型材散热器的计算对流换热系数的计算自然对流垂直表面hcs=1.414(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取散热表面的高,m 水平表面,热表面朝上hct=1.322(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下hcb=0.661(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m电子产品的热设计方法(三)2007-05-03 14:54:08 字号:大中小热设计的计算方法型材散热器的计算对流换热系数的计算强迫对流层流 Ref<105hc=(1.1-1.4) λ空气 0.66Ref 0.5/L湍流 Ref>105hc=(1.1-1.4) λ空气 0.032Ref 0.8/L肋片效率对直齿肋:η=th(mb)/(mb))m=(2 hc/λδ0)δ0:肋片根部厚度(m)b. 肋高(m)热设计的计算方法型材散热器的计算散热器的流阻计算散热器的流阻包括沿程阻力损失及局部阻力损失△P=hf+hj=λf•L/de•ρV22/2+ζρV22/2λ f --沿程阻力系数L--流向长度(m)de--当量水利直径(m),de=4A流通/湿周长V--断面流速(m/s)沿程阻力系数计算λ f层流区:Re=Vd/υ≤2300λf=64/Re紊统光滑区 4000<Re<105 λf=0.3164/Re0.25υ--运动粘度系数(m2/s),从文献中查找热设计的计算方法型材散热器的计算散热器的流阻计算局面阻力系数ζ突然扩大按小面积流速计算的局部阻力系数:ζ1=(1-A1A2)按大面积流速计算的局部阻力系数: ζ2=(1-A2/A1)突然缩小可从相关的资料中查阅经验值.热设计的计算方法型材散热器的计算【案例】散热器DXC-616(天津铝合金厂编号),截面图略,散热器的截面积为77.78cm2,周长为2.302m,单位长度的重量为21KG/m.风扇采用PAPST 4656Z ,风扇功率19W,最大风量为160m3/h,压头为70Pa.风道阻力曲线的计算入口面积:Fin=0.785×D2 =0.785×0.1192=0.01116m2流通面积:Ff=Fin-Fc=0.01116-0.007778=3.338×10-3m2水力直径: de=4Ff/x=4×3.338×10-3/2.302=5.8×10-3m 由于风速较低,一般最大不会超过6m/s,雷诺数<2300,沿程阻力系数按下式计算:λ=64/Re=64 ν/Vde沿程阻力按下式计算:hf=λ(L/de)(ρV2/2)=(64 ν/Vde)(L/de)(ρV2/2)=(64×16.96×10-6×0.24/(V×0.00582))(ρV2/2)=(8.07/V)(ρV2/2)局部阻力按下式计算:hj=ξρV2/2对于突然缩小,A2/A1=0.003338/0.01116=0.3,查表得ξ=0.38总阻力损失 H=hf+ hj=(0.38+8.07/V )(ρV2/2)热设计的计算方法型材散热器的计算【案例】续确定风扇的工作点10KVA UPS 的选择风扇为PAPST 4656Z,我们把风道曲线与风扇的曲线进行叠加,其交点即为风扇的工作点,给工作点对应的风速为5m/s,压力为35Pa.散热器的校核计算雷诺数Ref=V×L/ν=5×0.24/16.96×10-6=5.6604×104努谢尔特数: Nuf=0.66Ref0.5=0.66(5.6604×104)0.5=157对流换热系数:hc=1.4λNuf/L=21.7w/m.km=(2 hc/λδ)0.5=9.82ml=9.82×0.03=0.295,查得:η=0.96该散热器的最大散热量为(散热器台面温升按最大40℃考虑):Q=hcF△t η=460.4W计算结果表面,散热器及风扇选型是合理的.热设计的计算方法冷板的计算方法传热计算确定空气流过冷板后的温升:t=Q/qmCp确定定性温度 tf=(2ts+t1+t2)/4, 冷板台面温度 ts为假定值设定冷板的宽度为b,则通道的横截面积为Ac ,Ac=b×Ac0确定定性温度下的物性参数(μ、Cp、ρ、Pr).流体的质量流速和雷诺数 G=qm/Af Re=deG/μ根据雷诺数确定流体的状态(层流或紊流), Re<1800, 层流, Re>105, 湍流根据流体的状态(层流或紊流)计算考尔本数JRe<1800,层流 J=6/Re 0.98 Re>105,湍流 J=0.023/Re 0.2也可以根据齿形及雷诺数从GJB/Z 27-92 图12-18查得热设计的计算方法冷板的计算方法传热计算计算冷板的换热系数: h= JGCpPr2/3计算肋片的效率 m=(2h/λδ)0.5,ηf=th(ml)/ml(也可以根据ml值查相应的图表得到肋片效率)计算冷板的总效率:忽略盖板及底版的效率,总效率为:A=At+Ar+Ab, η0=1-Ar(1-ηf)/A计算传热单元数 NTU=hη0A/qmCp计算冷板散热器的台面温度ts=(eNTUt2-t1)/(eNTU-1)热设计的计算方法冷板的计算方法流体流动阻力计算计算流通面积与冷板横截面积之比ζ=Af/Ac查空气进入冷板时入口的损失系数Kc=f(Re,ζ): 根据雷诺数Re及ζ从GJB/Z 27-92 图12-16及图12-16查得查摩擦系数f=f(Re,ζ): 根据雷诺数Re从GJB/Z 27-92 图12-18查得计算流动阻力△P=G2[(Kc+1-ζ2)+2(ρ2/ρ1-1)+fρ1A/(Afρm)-(1-ζ2-Ke)ρ1/ρ2]/(2ρ1)热设计的计算方法冷板的计算方法判断准则确定是否满足ts<[ts],如果不满足,需增大换热面积或增大空气流量.确定是否满足△P<[△P],如果不满足,需减小冷板的阻力(如选择阻力较小的齿形、增大齿解决等)或重新选择压头较大的风扇热设计的计算方法冷板的计算方法案例:10KVA UPS 冷板散热器,器件的损耗为870.5W,要求冷板散热器台面温升小于30℃(在40℃的环境温度下).冷板散热器的截面图略梯形小通道面积:Ai=(3.8+2.6)×9.5/2=30.4mm2每排有29个梯形小通道,共22排,n=29×22=638个基板厚度为:9mm总的流通面积Af =30.4×29×22=0.0193952 m2冷板的横截面积Ac=120×120×2=0.0288 m2水力半径:de=4Afi/х=4×30.4/(2×9.5+3.8+2.6)=4.787mm热设计的计算方法冷板的计算方法【案例】续确定风扇的工作点Re=de G/μ=deqm/μAf在40℃空气的物性参数为: μ=19.1×10-6kg/m.s, ρ1=1.12kg/m3 Re=(4.787×10-3×1.12×0.30483 qm1/(60×19.1×10-6×0.0193952) =6.831 qm1(qm1的单位为:CFM)ζ=Af/Ac=0.0193952/0.0288=0.673热设计的计算方法冷板的计算方法【案例】续先忽略空气密度的变化,不同流量的流阻计算如下表所示:我们把两个NMB4715的风扇流量相加,静压不变,得出两个风扇并联后的静压曲线,再把上表的数据绘制成风道曲线并与风扇静压曲线进行画在同一张图上,其交点即为风扇的工作点,即为(170CFM,0.13in.H2O),工作点对应的风速为4.14m/s.热设计的计算方法冷板的计算方法【案例】续空气流过冷板后的温升空气口温度为40 ℃,ρ1=1.12kg/m3,Cp=1005.7J/kg. ℃μ=19.1×10-6kg/m.s, Pr=0.699质量流量qm=0.080231×1.12=0.08986kg/s△t= Q/qmCp=870.5/0.08986×1005.7=9.63 ℃定性温度: tf=(2ts+t1+t2)= (2×80+40+49.63)/4=62.4℃按定性温度查物性得: ρ1=1.06kg/m3,Cp=1005.7J/kg.℃μ=20.1×10-6kg/m.s,Pr=0.696换热系数质量流速 G=qm/Af=4.14×1.12=4.64kg/m2.s雷诺数 Re=deG/μ=4.787×10-3×4.64/(20.1×10-6)=1105.1层流J=6/Re 0.98=6/1105.10.98=6.25×10-3h= JGCpPr-2/3=6.25×10-3×4.64×1005.7×0.696-2/3 =37.14W/m2.℃ 肋片效率 m=(2h/λδ)0.5=(2×37.14/(180 ×0.001))0.5=20.3ml=20.3×0.11=2.23ηf=th(ml)/ml=th(2.23)/2.23=0.433传热单元数:NTU=hη0A/qmCp=37.14×0.433×3.241 =0.5772冷板的表面温度: Ts=(eNTUt2-t1)/(eNTU-1)=61.9 ℃<70℃冷板设计方案满足散热要求.风扇的基本定律及噪音的评估方法风扇定律风扇的基本定律及噪音的评估方法风扇的噪音问题风扇产生的噪音与风扇的工作点或风量有直接关系,对于轴流风扇在大风量,低风压的区域噪音最小,对于离心风机在高风压,低风量的区域噪音最小,这和风扇的最佳工作区是吻合的.注意不要让风扇工作在高噪音区.风扇进风口受阻挡所产生的噪音比其出风口受阻挡产生的噪音大好几倍,所以一般应保证风扇进风口离阻挡物至少30mm的距离,以免产生额外的噪音.对于风扇冷却的机柜,在标准机房内噪音不得超过55dB,在普通民房内不得超过65dB.风扇的基本定律及噪音的评估方法风扇的噪音问题对于不得不采用大风量,高风压风扇从而产生较大噪音的情况,可以在机柜的进风口、出风口、前后门内侧、风扇框面板、侧板等处在不影响进风的条件下贴吸音材料,吸音效果较好的材料主要是多孔介质,如玻璃棉,厚度越厚越好.有时由于没有合适的风机而选择了转速较高的风机,在保证设计风量的条件下,可以通过调整风机的电压或其它方式降低风扇的转速,从而降低风扇的噪音.相应的噪音降低变化按下式计算:N2 = N1 + 50 log10 (RPM2/RPM1)风扇的基本定律及噪音的评估方法风扇的噪音问题【案例】:一电源模块采用一个轴流风扇进行冷却,为了有效抑止噪音,要求风扇只有在监控点的温度高于85℃才全速运转,其余情况风扇必须半速运转.已知风扇全速运转时转速为2000RMP,噪音为40db,求在半速运转时风扇的噪音为多少?如果已知全速运转时风扇的工作点为(50CFM,0.3IN.H2O),试求风扇在半速运转时的工作点.解:根据风扇定律N2 = N1 + 50 log10 (RPM2/RPM1)=40+50 log10 (1000/2000) =24.9dbP2 =P1 (RPM2/RPM1)2=0.3(1000/2000)2=0.075 IN.H2OCFM2 = CFM1 (RPM2/RPM1)=50(1000/2000)=25CFM海拔高度对热设计的影响及解决对策海拔高度对自然冷却条件的热设计要求对于自然对流,其传热机理是由于冷却空气吸热后其密度减小,迫使重力场中的空气上升而形成冷热空气的对流而产生热量传递.由于随着海拔高度的增加,空气的密度逐渐减小,空气上升的能力也就减少,自然对流换热的能力减弱.自然对流换热能力的变化最终体现在对流换热系数的变化上,根据美国斯坦伯格的经验公式,如果忽略空气温度的变化,可按下式计算海拔高度对自然对流的影响强弱.hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5=hc(海平面) (p高空/p海平面)0.5hc(高空),hc(海平面)-分别为高空及海平面的自然对流换热系数,W/m.k ρ高空,ρ海平面-分别为高空及海平面的空气密度,Kg/m3p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡海拔高度对热设计的影响及解决对策海拔高度对强迫冷却条件的热设计要求海拔高度对强迫风冷影响的机理是由于随着海拔高度的增加,空气密度减小,。

电子产品机箱机壳的热设计

电子产品机箱机壳的热设计

电子产品机箱机壳的热设计
名词概念
黑度:实际物体的辐射力与同温度下黑体的辐射力之比。

机箱热设计的原则:
1.改善设备内部电子元件象机壳的传热能力
2.提高机箱向外界的传热能力
3.尽量降低传热路径上的热阻,形成一条低热阻的热流通路,
保证设备在允许的温度范围内正常工作。

一电子机箱机壳的热设计
1.增加机箱内外表面的黑度、开通风孔等,都可以降低温度
2.机箱内外表面高黑度的效果比低黑度的散热效果好
3.机箱两侧均为高黑度的散热效果优于一侧的散热。

4.在机箱内外表面增加黑度的基础上,合理的改进通风结构,加强冷却空气
的对流,可以明显的降低设备内部的温度。

二机箱通风面积的计算
在机壳上开通风孔是为了利用冷空气的对流换热作用,可以根据散热与电磁兼容性的要求综合考虑。

由通风孔散区的热量为
Φ=7.4X10-5HAΔt1.5 (W)
H——自然冷却设备的高度(或进、出风口的中心距)
A——进出风孔的面积(取较小值)CM²
Δt——设备内外的温度差
开通风孔的基本原则:
1)通风孔的开设要有利于气流形成有效的对流通道
2)进风孔尽量对准发热元气件
3)进风孔要离出风孔要远,防止气流短路,应开在温差较
大的相应位置
4)进风孔要注意防尘和电磁泄露
三热屏蔽
a 尽可能将通路连接到热沉
b 减少高温与低温元件之间的辐射偶合,加热屏蔽板形成热区与冷区
c 尽量降低空气与其他冷却挤的温度梯度
d 将高温元件装在内表面具有高的黑度,外表面具有低的黑度的外壳中,这些外壳与散热器有良好的导热连接。

元气件的引线是重要的导热通路引线尽可能的粗。

电子产品热设计

电子产品热设计

电子产品有效的功率输出要比电路工作所需输入的功率小得多。

多余的功率大部分转化为热而耗散。

当前电子产品大多追求缩小尺寸、增加元器件密度,这种情况导致了热量的集中,因此需要采用合理的热设计手段,进行有效的散热,以便产品在规定的温度极限内工作。

热设计技术就是指利用热的传递条件,通过冷却措施控制电子产品内部所有元器件的温度,使其在产品所在的工作条件下,以不超过规定的最高温度稳定工作的设计技术。

一、电子产品热设计的目的电子产品在工作时会产生不同程度的热能,尤其是一些功耗较大的元器件,如变压器、大功率晶体管、电力电子器件、大规模集成电路、功率损耗大的电阻等,实际上它们是一个热源,会使产品的温度升高。

在温度发生变化时,几乎所有的材料都会出现膨胀或收缩现象,这种膨胀或收缩会引起零件间的配合、密封及内部的应力问题。

温度不均引起的局部应力集中是有害的,金属结构在加热或冷却循环作用下会产生应力,从而导致金属因疲劳而毁坏。

另外,对于电子产品而言,元器件都有一定的工作温度范围,如果超过其温度极限,会引起电子产品工作状态的改变,缩短使用寿命,甚至损坏,导致电子产品不能稳定、可靠地工作。

电子产品热设计的主要目的就是通过合理的散热设计,降低产品的工作温度,控制电子产品内部所有元器件的温度,使其在所处的工作环境温度下,以不超过规定的最高允许温度正常工作,避免高温导致故障,从而提高产品的可靠性。

二、电子产品散热系统简介热传递的三种基本方式是传导、对流和辐射,对应的散热方式为:传导散热、对流散热和辐射散热。

典型的散热系统介绍如下:(1)自然冷却系统自然冷却系统是指电子产品所产生的热量通过传导、对流、辐射三种方式自然地散发到周围的空气中(环境温度略微升高),再通过空调等其他设备降低环境温度,达到散热的目的。

此类散热系统的设计原则是:尽可能减少传递热阻,增加产品中的对流风道和换热面积,增大产品外表的辐射面积。

自然冷却是最简单、最经济的冷却方法"旦散热量不大,一般用于热流密度不大的产品中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切割技术
切割技术就是把一整块金属一次性切割,散热片很薄、很密,从而有效地增加了散热面积,这样就可以在减少电机风量情况下,达到更好的散热效果,从而大大减少风扇产生的噪音。而且这种工艺可以用于比铝的散热系数更好的铜材料上,和铝挤压技术相比较它的散热效果要好得多。也是目前市场上中高档的CPU散热片使用的制造工艺。
机箱的热设计计算
密封机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT
对通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+1000uAΔT
对强迫通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+ 1000QfΔT
对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.
如果物体表面的温度低于50℃,
可不考虑辐射换热的影响.
辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.
热设计的计算方法
1、风扇功率
功率越大,风扇风力越强劲,散热效果也就越好。而风扇的功率与风扇的转速又是有直接联系的,也就是说风扇的转速越高,风扇也就越强劲有力。
热设计的计算方法
型材散热器的计算
对流换热系数的计算
自然对流
垂直表面
hcs=1.414(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取散热表面的高,m
冷却方式的选择方法
确定冷却方法的原则
在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.
冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.
热设计的计算方法
q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h
按照2倍的裕量选择风扇的最大风量:
q=2q`=2×159.2=318.4m3/h
下表风扇为可选型号
热设计的计算方法
型材散热器的计算
散热器的热阻
散热器的热阻是从大的方面包括三个部分.
相似准则数的应用
散热器的基板的优化方法
不同风速下散热器齿间距选择方法
不同风速下散热器齿间距选择方法
优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式
辐射换热的考虑原则
如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.
实际冷却风量的计算方法
q`=Q/(0.335△T)
q`---实际所需的风量,M3/h
Q----散热量,W
△T-- 空气的温升,℃,一般为10-15℃.
确定风扇的型号经验公式:
有风扇端的通风面积:
Sfan=0.785(φin2-φhub2)
无风扇端的通风面积S=(1.1-1.5) Sfan
系统
在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:
S=(1.5-2.0)(N×S模块)
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m
挤压技术
铝挤压技术是 CPU散热片制作工艺中较为成熟的技术,主要针对铝合金材料的加工,因为铝合金材料密度相对较低,可塑性比较强。适合采用挤压技术。但是随着CPU主频的不断提升,CPU制造工艺的不断发展,集成度提高,发热量的增加,为了达到较好的散热效果,采用挤压工艺的散热器体积不断加大,给散热器的安装带来了很多问题。并且这种工艺制作的散热片有效散热面积有限,要想达到更好的散热效果势必提高风扇的风量,而提高风扇风量又会产生更大的噪音。
折叶技术
折叶技术是是将单片的鳍片排列以特殊材料焊接在散热片底板上,由于鳍片可以达到很薄,鳍片间距也非常大,在单位面积可以使有效散热面积倍增,从而大大提高散热效果。不过折叶技术也很复杂,一般厂家很难保证金属折叶和底部接触紧密,如果这点做得不好,散热效果会大打折扣。
锻造技术
计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2
当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.
若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.
RSA=R对+R导+ R辐
R对=1/(hc F1)
F1--对流换热面积(m), hc –对流换热系数(w/m2.k)
R辐--辐射换热热阻 ,对强迫风冷可忽略不计
对自然冷却 R辐=1/(4бεTm3)
R导=R 基板+R肋导
锻造技术采用了含铝较高的合金材料,使用锻造技术可以将散热片铸造的很大,远远超过铝挤压工艺。锻造技术大大提高了散热器有效散热面积。但是这种工艺模具损耗严重,导致生产成本成倍提高,市场上也少见采用此种技术的产品。
风扇的作用是加快散热片表面空气的流动速度,从而提高散热片和空气的热交换速度。风扇作为风冷散热器的两大重要部件之一,它的性能的好坏往往对服务器散热器效果和使用寿命起着一定的决定性作用。我们在选购服务器风扇的时候,考虑风扇的基本指标有以下几点:
冷却方式的选择方法
冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却
热设计的计算方法
冷却方式的选择方法
冷却方式的选择方法案例
某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?
机柜的宽度按B=680mm计,则进风口的高度为:
H=Sin/B=875/68=128.7mm
b 出风口面积Sout
Sout=(1.5-2.0)Sin=2×875=1750 cm2
热设计的计算方法
=δ/(λF2)+((1/
δ-- 散热器基板厚度(m)
η-- 肋效率系数
F2--基板的导热面积(m)
F2=0.785*(d+δ)2
d- 发热器件的当量直径(m)
H-机柜的高度,cm,约模块高度的1.5-1.8倍,
Δt=t2-t1-内部空气t2与外部空气温度 t1 之差 , ℃
出风口面积为进风口面积的1.5-2倍
强迫风冷出风口面积的计算
模块
增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.
采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.
当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.
由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.
散热器的设计方法
强迫冷却散热器的设计方法
在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.
N---每层模块的总数
S模块---每一个模块的进风面积
热设计的计算方法
通风面积计算的案例
[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?
自然冷却时进风口面积的计算
在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:
Sin=Q/(7.4×10-5 H×Δt 1.5)
s-通风口面积的大小,cm2
Q-机柜内总的散热量,W
水平表面,热表面朝上
hct=1.322(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m
水平表面,热表面朝下
hcb=0.661(△t/L)0.25 ,w/m.k
散热器的设计方法
在一定冷却条件下,所需散热器的体积热阻大小的选取方法
在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法
不同形状、不同的成型方法的散热器的传热效率比较
散热器的相似准则数及其应用方法
相似准则数的定义
散热器的相似准则数及其应用方法
H按2倍模块的高度计算,即 H=2×7U=14U
进风口的面积按下式计算:
Sin=Q/(7.4×10-5×H×△t1.5)
=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2
进风口高度h
按照1.5-2倍的裕量选择风扇的最大风量:
q=(1.5-2)q` 按最大风量选择风扇型号.
热设计的计算方法
实际冷却风量的计算方法
案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.
相关文档
最新文档