电子产品设计之热设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子产品设计之热设计

散热器的设计方法
散热器设计的步骤

通常散热器的设计分为三步
1:根据相关约束条件设计处轮廓图.
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化.
3:进行校核计算.
散热器的设计方法
自然冷却散热器的设计方法
考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.
自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.
由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.
散热器的设计方法
强迫冷却散热器的设计方法
在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.
增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.
采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.
当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.
散热器的设计方法
在一定冷却条件下,所需散热器的体积热阻大小的选取方法
在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法
不同形状、不同的成型方法的散热器的传热效率比较
散热器的相似准则数及其应用方法
相似准则数的定义
散热器的相似准则数及其应用方法
相似准则数的应用
散热器的基板的优化方法
不同风速下散热器齿间距选择方法
不同风速下散热器齿间距选择方法
优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式
辐射换热的考虑原则
如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.
对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.
如果物体表面的温度低于50℃,
可不考虑辐射换热的影响.
辐射换热面积计算时,如表面积不规则,应采用投影

面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.
热设计的计算方法
冷却方式的选择方法
确定冷却方法的原则
在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.
冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.
热设计的计算方法
冷却方式的选择方法
冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却
热设计的计算方法
冷却方式的选择方法
冷却方式的选择方法案例
某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?
计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2
当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.
若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.
机箱的热设计计算
密封机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT
对通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+1000uAΔT
对强迫通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+ 1000QfΔT
自然冷却时进风口面积的计算

在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:
Sin=Q/(7.4×10-5 H×Δt 1.5)
s-通风口面积的大小,cm2
Q-机柜内总的散热量,W
H-机柜的高度,cm,约模块高度的1.5-1.8倍,
Δt=t2-t1-内部空气t2与外部空气温度 t1 之差 , ℃
出风口面积为进风口面积的1.5-2倍
强迫风冷出风口面积的计算
模块
有风扇端的通风面积:
Sfan=0.785(φin2-φhub2)
无风扇端的通风面积S=(1.1-1.5) Sfan
系统
在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:
S=(1.5-2.0)(N×S模块)
N---每层模块的总数
S模块---每一个模块的进风面积
热设计的计算方法
通风面积计算的案例
[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?
H按2倍模块的高度计算,即 H=2×7U=14U
进风口的面积按下式计算:
Si

n=Q/(7.4×10-5×H×△t1.5)
=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2
进风口高度h
机柜的宽度按B=680mm计,则进风口的高度为:
H=Sin/B=875/68=128.7mm
b 出风口面积Sout
Sout=(1.5-2.0)Sin=2×875=1750 cm2
热设计的计算方法
实际冷却风量的计算方法
q`=Q/(0.335△T)
q`---实际所需的风量,M3/h
Q----散热量,W
△T-- 空气的温升,℃,一般为10-15℃.
确定风扇的型号经验公式:
按照1.5-2倍的裕量选择风扇的最大风量:
q=(1.5-2)q` 按最大风量选择风扇型号.
热设计的计算方法
实际冷却风量的计算方法
案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.
实际所须风量为:
q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h
按照2倍的裕量选择风扇的最大风量:
q=2q`=2×159.2=318.4m3/h
下表风扇为可选型号
热设计的计算方法
型材散热器的计算
散热器的热阻
散热器的热阻是从大的方面包括三个部分.
RSA=R对+R导+ R辐
R对=1/(hc F1)
F1--对流换热面积(m), hc –对流换热系数(w/m2.k)
R辐--辐射换热热阻 ,对强迫风冷可忽略不计
对自然冷却 R辐=1/(4бεTm3)
R导=R 基板+R肋导
=δ/(λF2)+((1/η)-1)R对流
λ--导热系数,w/m.h.℃
δ-- 散热器基板厚度(m)
η-- 肋效率系数
F2--基板的导热面积(m)
F2=0.785*(d+δ)2
d- 发热器件的当量直径(m)

热设计的计算方法
型材散热器的计算
对流换热系数的计算
自然对流
垂直表面
hcs=1.414(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取散热表面的高,m
水平表面,热表面朝上
hct=1.322(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m
水平表面,热表面朝下
hcb=0.661(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m


挤压技术

铝挤压技术是 CPU散热片制作工艺中较为成熟的技术,主要针对铝合金材料的加工,因为铝合金材料密度相对较低,可塑性比较强。适合采用挤压技术。但是随着CPU主频的不断提升,CPU制造工艺的不断发展,集成度提高,发热量的增加,为了达到较好的散热效果,采用挤压工艺的散热器体积不断加大,给散热器的安装带来了很多问题。并且这种工艺制作的散热片有效散热面积有

限,要想达到更好的散热效果势必提高风扇的风量,而提高风扇风量又会产生更大的噪音。 

切割技术

切割技术就是把一整块金属一次性切割,散热片很薄、很密,从而有效地增加了散热面积,这样就可以在减少电机风量情况下,达到更好的散热效果,从而大大减少风扇产生的噪音。而且这种工艺可以用于比铝的散热系数更好的铜材料上,和铝挤压技术相比较它的散热效果要好得多。也是目前市场上中高档的CPU散热片使用的制造工艺。

折叶技术

折叶技术是是将单片的鳍片排列以特殊材料焊接在散热片底板上,由于鳍片可以达到很薄,鳍片间距也非常大,在单位面积可以使有效散热面积倍增,从而大大提高散热效果。不过折叶技术也很复杂,一般厂家很难保证金属折叶和底部接触紧密,如果这点做得不好,散热效果会大打折扣。

锻造技术

锻造技术采用了含铝较高的合金材料,使用锻造技术可以将散热片铸造的很大,远远超过铝挤压工艺。锻造技术大大提高了散热器有效散热面积。但是这种工艺模具损耗严重,导致生产成本成倍提高,市场上也少见采用此种技术的产品。

风扇的作用是加快散热片表面空气的流动速度,从而提高散热片和空气的热交换速度。风扇作为风冷散热器的两大重要部件之一,它的性能的好坏往往对服务器散热器效果和使用寿命起着一定的决定性作用。我们在选购服务器风扇的时候,考虑风扇的基本指标有以下几点:

1、风扇功率

功率越大,风扇风力越强劲,散热效果也就越好。而风扇的功率与风扇的转速又是有直接联系的,也就是说风扇的转速越高,风扇也就越强劲有力。

2、风扇转速

风扇的转速与风扇的功率是密不可分的,转速的大小直接影响到风扇功率的大小。风扇的转速越高,向CPU传送的进风量就越大,CPU获得的冷却效果就会越好。但是一旦风扇的转速超过它的额定值,那么风扇在长时间超负荷运作之下,本身产生热量也会增高,而且时间越长产生的热量也就越大,此时风扇不但不能起到很好的冷却效果,反而会“火上浇油”,另外,风扇在高速动转过程中,可能会产生很强的噪音,时间长了可能会缩短风扇寿命;还有,较高的运转速度需要较大的功率来提供“动力源”,而高动力源又是从主板和电源中的功率中获得的,一旦超出主板的负荷就会引起系统的不稳定。因此,我们在选择风扇的,同时应该平衡风扇的转速和发热量之间的关系,最好选择转速在3500转至5200转之间的风扇。

3、风扇噪声


太大的噪音将会影响我们操作电脑的心情,噪音太小通常与风扇的功率有关,功率越大、转速也就越快,噪音自然不可避免的会增大。我们在购买风扇时,一定要先试听一下风扇的噪音,如果太大,那么最好是不要买,除非你有特殊的用途。如今风扇为了减轻噪声都投入了一些设计,例如改变扇叶的角度,增加扇轴的润滑度和稳定度等。现在有很多便宜的风扇用的轴承都是油封的,由铜质外套和钢制轴芯组成,长时间工作之后扇轴润滑度不够,风扇噪音增大、转速减低,这很容易导致机器过热而出现死机现象,严重的时候还有可能把机芯烧坏。现在有许多知名品牌的风扇开始使用滚珠轴承,这种轴承就是利用许多钢珠来作为减少摩擦的介质。这种滚珠风扇的特点就是风力大,寿命长、噪音小,但成本相对较高,只有中高档风扇才可能使用到它。 

4、风扇排风量

风扇排风量可以说是一个比较综合的指标,因此我们可以这么说排风量是衡量一个风扇性能的最直接因素。如果一个风扇可以达到5000转分,不过如果扇叶是扁平的话,那是不会形成任何气流的,所以关系到散热风扇的排风量的时候,扇叶的角度也是很重要的一个因素。测试一个风扇排风量的方法很容易,只要将手放在散热片附近感受一下吹出的风的强度即可,通常质量好的风扇,即使我们在离它很远的位置,也仍然可以感到风流,这就是散热效果上佳的表现。
5、风扇叶片

同一风扇如果其他部分保持不变,只将叶片由五扇叶改为七扇叶,风量变化可能不会增加多少。但是就风扇的转速而言,七扇叶的转速会低于五扇叶(通风量相同的情况下),相对的如果采用七扇叶风扇,轴承的磨损,漏油情况较少,风扇的寿命较长。如果五扇叶和七扇叶的转速相同,七扇叶的通风量会更大。风扇的转速越高,相应的寿命就越短,噪音也越大。另外,风扇的扇叶越厚,叶片斜角越大,则风压也越大。扇叶的入口角(以45度为最大)也是决定风扇通风量的重要因素之一。

我们知道,一般来说,风扇散热片底部的厚度越厚越好,对于底部较厚的散热片,它可以很快吸收到CPU的热量,存储的热量也更多。为了不使CPU长期工作在高温环境下。除了要求散热片本身的导热性较好以外,还需要更大的风流来吹散CPU热量。如果要把底部的热量吹走,就需要风扇产生足够的风压,能将风流吹到散热片的底部,对流方式的散热才能从底部开始进行,这点是请大家在购买散热器的时候要注意的。

风冷散热器虽然效果不错,拆卸也比较方面,但由于风冷依靠的是空气对

流来进行散热,受周围环境的制约较大。另外,如果过分追求风量而提高风扇转速,不可避免的会带来噪音过大,电机使用寿命减少等负面影响。这个时候,水冷散热的优势就体现出来,水冷本身就具有较好的散热效果,与具有热管的高价风冷散热器相比性能还会更好一些,市售的水冷产品还普遍具有静音特点,这也是风冷散热器无法媲美的。水的比热为4.2kJ(kgC),远高于铜(0.39kJ(kgC))和铝(0.88kJ(kgC))的比热,优点是相当突出的,高效散热与静音使之有在超频领域绝对充足的存在理由。此外,由于水循环的特点,大多数水冷系统包含了CPU、GPU、NorthBridge的一整套散热方案,是一个较为全面的解决方案。

基本上,一套水冷系统包括具有水箱的水泵,处理器用的散热组件,以及内建风扇的辅助热交换器等几个部分。为了让整体散热效果达到理想的状况,水冷系统必须组成一套有机的水循环体。目前水冷系统的水循环采用来水泵实现。当然,水泵基于自身的工作原理会发出一定的噪音,不过大多数噪音能量在水中转换成机械波,而且在外壳的层层包裹之下,几乎听不到明显的噪音。不过,对于水冷使用中容易遇到的问题,我们也归纳了几点:

第一,水冷固然具有制冷效果好等特点,但也有一些缺点,尤其是对于动手能力不强的人来说,安装水冷套装是一件相当麻烦的事。即便是内置型产品,其安装也得破费一番心思,而外置型产品虽然安装相对简单,但是在机箱外部放置一个巨大的水桶并不是一种好感觉。频繁更换容易变质的水是相当麻烦的,而且占据不小的空间。当然,水冷最大的不足还在于安全性略显稚嫩,一旦水渠漏水,后果不堪设想。不过,随着水冷技术逐渐受到DIY玩家的青睐,这一情况已经得到散热器大厂的重视。

第二,对于水冷系统而言,扣具的重要性勿庸置疑。如果与CPU的表面结合得不够紧密,那么散热效果将大打折扣;如果扣具设计得过紧,那么很容易顺让脆弱的CPU核心。此外,各种水管、热交换器、电源装置的固定也是一大难题。事实上,以上问题牵涉到不少机械设计,而这方面无疑是国外厂商的强项。

第三,水冷周围的生态环境问题。由于水冷液一般处于一个半封闭的使用环境,与外界空气隔绝,而且换一次水冷液一般要使用半年以上,液体长期的单一流动很容易导致细菌的滋生,时间一长甚至会出现“绿毛”等藻类生物,污染水冷液,导致水冷效果变差。另外,对于家住在北方的玩家来说,冬季的严寒也是水冷系统的一个考验,过低的温度会让水冷液结冰甚至涨破水冷泵。



干冰是二氧化碳的固态,一般有块状和颗粒状,表面温度可达零下78摄氏度,随着干冰的融化,会吸收周围环境的热量,发挥冷冻作用。二氧化碳制冷的方法有两类,一是将二氧化碳制成干冰,再以干冰作为消耗性制冷剂,利用干冰升华过程的吸热现象制冷。另一类就是用二氧化碳作为制冷剂,通过制冷循环实现连续制冷。干冰的温度是-78℃,而在实际使用中,由于损耗的原因,给处理器表面的制冷温度通常在零下60度左右。对比冰水冷,这个温度要低很多,显而易见会让处理器有更高的超频潜力。不过,干冰在储藏、运输、使用过程中有一定的危险性,请用户在使用前阅读好相关说明。

价格方面,由于干冰是很常见的制冷剂,因此全国各大城市专门的化工厂都有销售,价格在10~15元公斤,对于发烧友来说,这个价格还是可以接受的。常见的干冰又分为餐饮干冰、医用干冰和工业干冰等多种类型。餐饮干冰一般用于给食品制冷,被酒吧、餐馆中广泛使用,价格比工业干冰稍高一些,如果购买不到工业干冰亦可找这些食品销售部门购买餐饮干冰。市售的干冰一般以块状、颗粒状或是粉末状存在,在超频中都是采用颗粒或是粉末状干冰,尽量不要购买块状的,因为大块的干冰很坚硬难以敲碎。

使用时,要注意在常温常压下干冰的挥发非常快,不及时使用可是会很快就消失的,尤其现在已经进入夏季,一箱20公斤的干冰,放置在常温室内24小时后就会全部挥发。使用干冰制冷超频之前,有两件事要提醒大家:一是保持房间通风,二是戴好防护手套,由于干冰是低温物质,所以在使用过程中一定要注意安全,冻伤所带来的疼痛可不亚于烧伤。此外,要注意干冰的加入量,很多人以为把整个炮身塞满干冰可以起到更好的制冷效果,但却带来了很多的凝结水,水滴到板卡上便会造成事故。实际上,当处理器进入稳定运行状态之后,制冷与散热会有一个温度平衡点,加入过多的干冰也不会让处理器温度更低。而成熟的极限超频者,就能很好的掌握这个平衡点,用最少的干冰取得最好的制冷效果。

液氮就是液态的氮气,在标准大气压下,氮气被降温到零下196摄氏度就变成了液态。由于是液体,和蒸发器底部的接触比较充分,实际超频中的损耗较小。从散热效果上来看,液氮无疑是最好的,因此液氮是电脑超频中最高级的制冷手法,也是超频达人们 能掌握的最强散热技术,无论是挑战Super Pi成绩的CPU超频阵营,还是冲刺3D Mark名人堂的显卡超频团队,都是液氮超频的坚定追随者。

使用中,由于液氮是液体

,因此必须用合适的器械将其从储液罐中取出,一般是采用保温杯,然后再倒入蒸发器当中。过程中一定注意安全,要带上手套操作。液氮与空气接触的一层会沸腾,就像沸水一样,倒入过程中也会有很多液氮珠飞溅。如果滴落在皮肤上,只要迅速甩掉是不会造成伤害的。在超频过程中,液氮的使用量与干冰类似,切忌倒满整个大炮,最多只要保持23的量就足够了。不过由于液氮的温度比干冰低很多,因此更要注意防水处理,大炮身上也最好缠上一层厚实的保温层,既能保持温度也能吸收水分。

价格方面,由于空气中的大部分成分是氮气,因此液氮的来源很充足,售价也很低廉,通常一公斤4到5元左右,在大中城市的化工厂处有销售。但液氮的存储比较复杂,需要采用特制的液氮容器,相对于液氮的花费,液氮容器虽然是一次性的投资,但成本比较高,我们观念中使用液氮超频成本高的概念也是因为这个原因。超频一般使用贮存型容器,10公斤容量的贮存型液氮容器,视质量和品牌不同价格在1500~3000元不等。同等容量的运输型液氮容器则大约贵出500~1000元左右。液氮容器就和保温瓶性质差不多,运输要注意不要磕、保持平稳。

相关文档
最新文档